Tagged: EPFL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:46 pm on October 15, 2018 Permalink | Reply
    Tags: , EPFL, , , , Ultra-light gloves let users 'touch' virtual objects   

    From ETH Zürich: “Ultra-light gloves let users ‘touch’ virtual objects” 

    ETH Zurich bloc

    From ETH Zürich

    15.10.2018

    ETH Zürich
    Media relations
    Phone: +41 44 632 41 41
    mediarelations@hk.ethz.ch

    1
    For now the glove is powered by a very thin electrical cable, but thanks to the low voltage and power required, a very small battery could eventually be used instead. (Photograph: ETH Zürich)

    Scientists from ETH Zürich and EPFL have developed an ultra-light glove – weighing less than 8 grams – that enables users to feel and manipulate virtual objects. Their system provides extremely realistic haptic feedback and could run on a battery, allowing for unparalleled freedom of movement.

    Engineers and software developers around the world are seeking to create technology that lets users touch, grasp and manipulate virtual objects, while feeling like they are actually touching something in the real world. Scientists at ETH Zürich and EPFL have just made a major step toward this goal with their new haptic glove, which is not only lightweight – under 8 grams – but also provides feedback that is extremely realistic. The glove is able to generate up to 40 Newtons of holding force on each finger with just 200 Volts and only a few milliwatts of power. It also has the potential to run on a very small battery. That, together with the glove’s low form factor (only 2 mm thick), translates into an unprecedented level of precision and freedom of movement.

    “We wanted to develop a lightweight device that – unlike existing virtual-reality gloves – doesn’t require a bulky exoskeleton, pumps or very thick cables,” says Herbert Shea, head of EPFL’s Soft Transducers Laboratory (LMTS). The scientists’ glove, called DextrES, has been successfully tested on volunteers in Zürich and will be presented at the upcoming ACM Symposium on User Interface Software and Technology (UIST).

    Fabric, metal strips and electricity

    DextrES is made of cotton with thin elastic metal strips running over the fingers. The strips are separated by a thin insulator. When the user’s fingers come into contact with a virtual object, the controller applies a voltage difference between the metal strips causing them to stick together via electrostatic attraction – this produces a braking force that blocks the finger’s or thumb’s movement. Once the voltage is removed, the metal strips glide smoothly and the user can once again move his fingers freely.

    Tricking your brain

    For now the glove is powered by a very thin electrical cable, but thanks to the low voltage and power required, a very small battery could eventually be used instead. “The system’s low power requirement is due to the fact that it doesn’t create a movement, but blocks one”, explains Shea. The researchers also need to conduct tests to see just how closely they have to simulate real conditions to give users a realistic experience. “The human sensory system is highly developed and highly complex. We have many different kinds of receptors at a very high density in the joints of our fingers and embedded in the skin. As a result, rendering realistic feedback when interacting with virtual objects is a very demanding problem and is currently unsolved. Our work goes one step in this direction, focusing particularly on kinesthetic feedback,” says Otmar Hilliges, head of the Advanced Interactive Technologies Lab at ETH Fabric, metal strips and electricity

    DextrES is made of cotton with thin elastic metal strips running over the fingers. The strips are separated by a thin insulator. When the user’s fingers come into contact with a virtual object, the controller applies a voltage difference between the metal strips causing them to stick together via electrostatic attraction – this produces a braking force that blocks the finger’s or thumb’s movement. Once the voltage is removed, the metal strips glide smoothly and the user can once again move his fingers freely.

    In this joint research project, the hardware was developed by EPFL at its Microcity campus in Neuchâtel, and the virtual reality system was created by ETH Zürich, which also carried out the user tests. “Our partnership with the EPFL lab is a very good match. It allows us to tackle some of the longstanding challenges in virtual reality at a pace and depth that would otherwise not be possible,” adds Hilliges.

    The next step will be to scale up the device and apply it to other parts of the body using conductive fabric. “Gamers are currently the biggest market, but there are many other potential applications – especially in healthcare, such as for training surgeons. The technology could also be applied in augmented reality,” says Shea..

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    ETH Zürich is one of the leading international universities for technology and the natural sciences. It is well known for its excellent education, ground-breaking fundamental research and for implementing its results directly into practice.

    Founded in 1855, ETH Zürich today has more than 18,500 students from over 110 countries, including 4,000 doctoral students. To researchers, it offers an inspiring working environment, to students, a comprehensive education.

    Twenty-one Nobel Laureates have studied, taught or conducted research at ETH Zürich, underlining the excellent reputation of the university.

    Advertisements
     
  • richardmitnick 10:50 am on October 3, 2018 Permalink | Reply
    Tags: , , , , , EPFL, , , Still a ways to go   

    From École Polytechnique Fédérale de Lausanne: “New tool helps scientists better target the search for alien life” 

    EPFL bloc

    From École Polytechnique Fédérale de Lausanne

    1
    © iStock

    02.10.18
    Sarah Perrin

    An EPFL scientist has developed a novel approach that boosts the chances of finding extraterrestrial intelligence in our galaxy. His method uses probability theory to calculate the possibility of detecting an extraterrestrial signal (if there is one) at a given distance from Earth.

    Could there be another planet out there with a society at the same stage of technological advancement as ours? To help find out, EPFL scientist Claudio Grimaldi, working in association with the University of California, Berkeley, has developed a statistical model that gives researchers a new tool in the search for the kind of signals that an extraterrestrial society might emit. His method – described in an article appearing today in PNAS – could also make the search cheaper and more efficient.

    Astrophysics initially wasn’t Grimaldi’s thing; he was interested more in the physics of condensed matter. Working at EPFL’s Laboratory of Physics of Complex Matter, his research involved calculating the probabilities of carbon nanotubes exchanging electrons. But then he wondered: if the nanotubes were stars and the electrons were signals generated by extraterrestrial societies, could we calculate the probability of detecting those signals more accurately?

    This is not pie-in-the-sky research – scientists have been studying this possibility for nearly 60 years. Several research projects concerning the search for extraterrestrial intelligence (SETI) have been launched since the late 1950s, mainly in the United States.




    SETI@home, a BOINC project originated in the Space Science Lab at UC Berkeley


    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)


    Laser SETI, the future of SETI Institute research

    The idea is that an advanced civilization on another planet could be generating electromagnetic signals, and scientists on Earth might be able to pick up those signals using the latest high-performance radio telescopes.

    Renewed interest

    Despite considerable advances in radio astronomy and the increase in computing power since then, none of those projects has led to anything concrete. Some signals have been recorded, like the Wow! signal in 1977, but scientists could not pinpoint their origin.

    Wow! signal

    And none of them has been repeated or seems credible enough to be attributable to alien life.

    But that doesn’t mean scientists have given up. On the contrary, SETI has seen renewed interest following the discovery of the many exoplanets orbiting the billions of suns in our
    galaxy. Researchers have designed sophisticated new instruments – like the Square Kilometre Array, a giant radio telescope being built in South Africa and Australia with a total collecting area of one square kilometer – that could pave the way to promising breakthroughs.

    And Russian entrepreneur Yuri Milner recently announced an ambitious program called Breakthrough Listen, which aims to cover 10 times more sky than previous searches and scan a much wider band of frequencies. Milner intends to fund his initiative with 100 million dollars over 10 years.

    1

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA



    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia


    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    “In reality, expanding the search to these magnitudes only increases our chances of finding something by very little. And if we still don’t detect any signals, we can’t necessarily conclude with much more certainty that there is no life out there,” says Grimaldi.

    Still a ways to go

    4
    Schematic view of the Milky Way showing six isotropic extraterrestrial emission processes forming spherical shells filled by radio signals. The outer radii of the spherical shells are proportional to the time at which the signals were first emitted, while the thicknesses are proportional to the duration of the emissions. In this example, the Earth is illuminated by one of these signals. ©Claudio Grimaldi.

    The advantage of Grimaldi’s statistical model is that it lets scientists interpret both the success and failure to detect signals at varying distances from the Earth. His model employs Bayes’ theorem to calculate the remaining probability of detecting a signal within a given radius around our planet. For example, even if no signal is detected within a radius of 1,000 light years, there is still an over 10% chance that the Earth is within range of hundreds of similar signals from elsewhere in the galaxy, but that our radio telescopes are currently not powerful enough to detect them. However, that probability rises to nearly 100% if even just one signal is detected within the 1,000-light-year radius. In that case, we could be almost certain that our galaxy is full of alien life.

    After factoring in other parameters like the size of the galaxy and how closely packed its stars are, Grimaldi estimates that the probability of detecting a signal becomes very slight only at a radius of 40,000 light years. In other words, if no signals are detected at this distance from the Earth, we could reasonably conclude that no other civilization at the same level of technological development as ours is detectable in the galaxy. But so far, scientists have been able to search for signals within a radius of “just” 40 light years.

    So there’s still a ways to go. Especially since these search methods can’t detect alien civilizations that may be in primordial stages or that are highly advanced but haven’t followed the same technological trajectory as ours.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 6:55 am on September 4, 2018 Permalink | Reply
    Tags: , , EPFL   

    From École Polytechnique Fédérale de Lausanne: “Artificial intelligence helps create at the right time” 

    EPFL bloc

    From École Polytechnique Fédérale de Lausanne

    04.09.18
    Cécilia Carron

    1
    Ana Manasovska is working on improving the semantic recognition and recommendation platform for the inventors. © 2018 Alain Herzog

    Student project (9/9). By using artificial intelligence to comb through the vast array of published research and detect the findings most relevant for invention, engineers can magnify their creative ability and invent faster and more disruptively than has been previously possible. This is the approach that Ana Manasovska helped develop as a Master’s student at EPFL, and the one used by creative Artificial Intelligence firm Iprova, based at EPFL’s Innovation Park, to come up with a wide range of inventions. Manasovska, whose Master’s research involved testing different phrase recognition methods, now works for the firm.

    Inventions like sensors for self-driving cars that can monitor passengers’ health, a geolocation system that can help smooth out passenger traffic on public transportation, and a smartphone feature for virtually painting the light ambience of a room involve pulling together data from several research fields in an inventive way. The ever increasing amount of information in the world, spread across many different industries and markets, makes this an increasingly difficult task. To make it possible for inventors to sense the inventive signal in this ever increasing amount of noise, AI researchers and software developers at Iprova – the innovation creation firm that came up with the aforementioned inventions – have developed an artificial intelligence platform that includes sophisticated semantic analysis algorithms. Ana Manasovska helped create this program as part of her Master’s degree in computer science at EPFL, in association with the school’s Artificial Intelligence Laboratory. She now works for the company, which is based at EPFL’s Innovation Park, to further develop the software that makes it easier for engineers to invent faster and more disruptively..

    Millions of publications sifted

    Millions of research, industry news and other articles are published around the world every year. One part of Iprova’s artificial intelligence platform works by performing a semantic analysis of the terms in published articles. Manasovska’s thesis on summarization methods contributed to this by testing various phrase recognition methods, which she did by representing individual phrases as vectors. If two phrases have a close virtual spatial location, then their meanings are probably similar. This technique can be used to generate better summaries by measuring phrases’ semantic similarity.

    What Manasovska found when comparing the different methods is that the more complicated architectures weren’t necessarily better suited to this task. “Even with a simple architecture, we got excellent results in identifying phrases with similar meanings,” she says. “We also learned that the best way to generate the kinds of summaries that Iprova needs is to approach them from an inventor’s perspective. Most conventional summary-generation methods don’t do that, which is why we wanted to develop our own,” she adds.

    Today Manasovska is working on further improving the semantic recognition and recommendation platform. She works closely with inventors, aiming to find out what kind of data they need and how they plan to use it. She has developed programs allowing engineers to create inventions using input data that they wouldn’t have been able to easily get otherwise. An example of this is the linking of information from inventively relevant, but otherwise disparate, research fields that open up entirely new invention opportunities. “What I really like about my work is that it lets me stay on top of the latest developments in machine learning and natural language processing (NLP) – two fields that are advancing rapidly. I have the opportunity to use the latest technology and the power of data to help people spot relevant new findings more efficiently,” she says.

    “Traditional inventors were scientists or engineers with a deep understanding of a specific technical field. This only gave the inventor access to a limited amount of research insight. Even collaborative inventing through teamwork only provides insight into a handful of additional fields, since it’s just a team of specialists. With such approaches to invention, researchers can only dig deeper into specific areas rather than offering genuine innovation by taking the field in a different direction.

    Iprova does this on a massive scale – in real-time – by using data from across the spectrum of human knowledge to make connections between ideas from different fields of study.”says Julian Nolan, CEO of Iprova. The company is combining AI with a team of creative scientific minds – the invention developers – to accelerate the development of tomorrow’s products and services. Its customers include some of the best known technology companies in Silicon Valley, Japan and Europe. Hundreds of patents have been filed based on its inventions, which are cited by companies including Google, Microsoft and Amazon.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 7:26 am on August 3, 2018 Permalink | Reply
    Tags: , Avalanches, , EPFL   

    From École Polytechnique Fédérale de Lausanne: “The subtle mechanics of an avalanche – as seen in 3D” 

    EPFL bloc

    From École Polytechnique Fédérale de Lausanne

    03.08.18
    Sarah Perrin


    Drawing on the fact that the snow in an avalanche can behave like both a solid and a fluid, a young researcher at EPFL and SLF has managed to simulate a snow slab avalanche with unrivaled precision.

    An avalanche is an extremely complex event, with countless parameters and physical variables coming into play from the time the avalanche is triggered until it ends. Johan Gaume, a researcher in the Laboratory of Cryospheric Sciences (CRYOS) and SLF,* has created a highly accurate digital simulation of an avalanche based on these parameters. His work, which offers unprecedented insight into how avalanches work, could be used to improve risk management in the mountains. It was published today in Nature Communications.**

    The young avalanche expert spent several months last year at the University of California Los Angeles (UCLA) working with 3D modeling experts,*** some of whom had worked with Disney’s engineers to simulate the snow in the film Frozen.

    Combining these mathematicians’ know-how with Gaume’s scientific expertise turned out to be a winning formula. The mathematicians were able to increase the accuracy of their snow simulation thanks to Gaume’s in-depth knowledge and the data and field observations collected and analyzed by Alec Van Herwijnen, Gaume’s SLF colleague and co-author of the study.

    1
    Johan Gaume, avalanche expert at EPFL and SLF. ©A.Herzog/EPFL

    Adopting a whole new approach, the Swiss and US researchers created the first realistic, complete and scientifically rigorous simulation of a snow slab avalanche – a type of avalanche that occurs when a very clear linear crack appears at the top of the snowpack. This usually happens when, over a large area, there is a weak – and therefore not very cohesive – snowpack layer under the dense top layer of snow, known as the slab. Snow slab avalanches are hard to predict and often triggered by skiers or walkers, making them the most dangerous and the mostly deadly type of avalanche.

    Double agent

    “What made our approach so original was that we took account of the fact that the snow in that type of avalanche behaves like both a solid and a fluid,” explains Gaume.

    A snow slab avalanche is usually triggered when there is an extra load – such as a crossing skier – on the snow, or when the snowpack is destabilized in some other way, for instance by an explosion. This causes a crack to appear in the bottom layer of snow, which can spread rapidly. At this point, the snow is behaving in accordance with the principles of solid mechanics. As the crack spreads, the weak layer’s porous structure causes it to collapse under the weight of the surface slab. Because of its mass and the slope, the slab is then released and begins to slide across the weaker layer. The collisions, frictions and fractures that the solid snow experiences as the top layer slides downward and breaks apart lead to a collective behavior characteristic of a fluid.

    The researchers were able to simulate the collapse of the porous bottom layer for the first time at a large scale using a continuum approach. In addition, the model integrates only the relatively few key parameters that dictate how the snow will behave at the various stages of the process; these include the dynamics of the fracture, friction, and the level of compaction based on the type of snow.

    The researchers borrowed a technique known as the Material Point Method, which is used to analyze how moving materials behave yet had never before been applied in the study of avalanche release. It underpinned the researchers’ novel approach to predicting avalanches – and therefore preventing them more effectively as well. “In addition to deepening our knowledge of how snow behaves, this project could make it possible to assess the potential size of an avalanche, the runout distance and the pressure on any obstacles in the avalanche’s path more accurately,” says Gaume.

    The researcher’s simulations could also be applied in the arts – and especially in animated films.

    *CRYOS is run jointly by EPFL and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). The Swiss Federal Institute for Snow and Avalanche Research (SLF) is part of WSL.

    *** Joseph Teran and Theodore Gast, UCLA Mathematics Department, and Chenfanfu Jiang, University of Pennsylvania.

    Science paper:
    Dynamic anticrack propagation in snow Nature Communications

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 8:01 am on March 28, 2018 Permalink | Reply
    Tags: , , EPFL, EPFL invests in quantum science and technology, EPFL’s Institute of Physics, , ,   

    From École Polytechnique Fédérale de Lausanne EPFL: “EPFL invests in quantum science and technology” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    28.03.18
    Nik Papageorgiou

    1
    The IBM Q Experience running on a tablet at IBM Research. (credit: Connie Zhou for IBM).

    Having identified Quantum Science and Technology as a strategic research area to be developed and reinforced, EPFL’s Institute of Physics is plunging headlong into the field with two new research openings, a master’s course, and partnering with IBM and their cutting-edge quantum-computer platform.

    It seems that the future will involve disruptive technologies that rely on the “spooky world” of quantum mechanics. Harnessing the properties of the quantum world, the world is preparing to usher in technologies that seem to be the stuff of science fiction, such as light-based quantum communications, unbreakable quantum cryptography, and quantum computers that run a million times faster than today’s fastest supercomputers.

    Europe is already heavily invested in what has come to be abbreviated as “QST” – Quantum Science and Technology, with its FET Flagship on Quantum Technologies, while Switzerland runs its own, federally funded NCCR-QSIT project.

    Now, EPFL’s Institute of Physics (IPHYS) is reinforcing its own QST efforts, specifically in theoretical quantum science. The Institute recently made an open call for a faculty position in QST, with the selection committee now planning interviews to select one of the short-listed candidates in April. “A second call in QST is very high on our priority list,” says director of IPHYS Professor Harald Brune. “We will be proposing it as soon as possible.”

    In addition to its efforts in QST research, EPFL’s teaching in QST enjoys high visibility. Dr Marc-André Dupertuis, a researcher with two IPHYS labs, has been running a Master course in quantum optics and quantum information since 2013. The course came to life through the efforts of Dupertuis and his assistant Clément Javerzac-Galy, and represents a major commitment by EPFL to establish itself as a leader in the future of QST.

    This view is apparently shared by IBM, an industry pioneer in the field. In 2016, the tech giant launched “the IBM Quantum Experience (QX)”, a cloud-based platform on which students and researchers can learn, research, and interact with a real quantum computer housed in an IBM Research lab through a simple Internet connection and a browser. In 2017, IBM chose EPFL alongside MIT and the University of Waterloo to be one of the first institutions in the world to use its quantum computer for teaching.

    As part of the QST teaching initiative, IBM made the QX platform available to Master students taking Dupertuis’ course. “We are using the IBM Q Experience in the framework of our quantum information class,” says Clément Javerzac-Galy. “It’s fascinating for the students to be the first generation to use a quantum machine and it’s a tremendous tool to speed up the learning curve in quantum information. Things you could previously only theorize about, you can now practice on a real machine.”

    Recognizing EPFL’s effort in QST teaching, IBM also marked the event with a lengthy tweet. “This shows that EPFL is already a top institution in the world for what concerns teaching in this domain,” says Harald Brune. Today, the QX community spans nearly 80,000 users running 3 million quantum experiments and more than 35 third-party research publications, while users can compete for three different awards.

    “This year we will be in the privileged to be able to calculate with 20 quantum bits as opposed to 5 last year,” says Marc-André Dupertuis. “Plus, this year the QX community expects to pass the ‘Quantum supremacy’ limit of quantum computing. A quantum computer will have obtained for the first time at least one result that would have been unthinkable to calculate with any existing conventional supercomputer.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 10:04 am on January 11, 2018 Permalink | Reply
    Tags: , , Blue Brain Nexus, , , EPFL   

    From EPFL: “Blue Brain Nexus: an open-source tool for data-driven science” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne

    11.01.18
    BBP communications

    1
    © iStockphotos

    Knowledge sharing is an important driving force behind scientific progress. In an open-science approach, EPFL’s Blue Brain Project has created and open sourced Blue Brain Nexus that allows the building of data integration platforms. Blue Brain Nexus enables data-driven science through searching, integrating and tracking large-scale data and models.

    EPFL’s Blue Brain Project today announces the release of its open source software project ‘Blue Brain Nexus’, designed to enable the FAIR (Findable, Accessible, Interoperable, and Reusable) data management principles for the Neuroscience and broader scientific community. It is part of EPFL’s open-science initiative, which seeks to maximize the reach and impact of research conducted at the school.

    The aim of the Blue Brain Project is to build accurate, biologically detailed, digital reconstructions and simulations of the rodent brain and, ultimately the human brain. Blue Brain Nexus is instrumental in supporting all stages of Blue Brain’s data-driven modelling cycle including, but not limited to experimental data, single cell models, circuits, simulations and validations. The brain is a complex multi-level system and is one of the biggest ‘Big Data’ problems we have today. Therefore, Blue Brain Nexus has been built to organize, store and process exceptionally large volumes of data and support usage by a broad number of users.

    At the heart of Blue Brain Nexus is the Knowledge Graph, which acts as a data repository and metadata catalogue. It also remains agnostic of the domain to be represented by allowing users to design arbitrary domains, which enables other scientific initiatives (e.g. astronomy, medical research and agriculture) to reuse Blue Brain Nexus as the core of their data platforms. Blue Brain Nexus services are already being evaluated for integration into the Human Brain Project’s Neuroinformatics Platform.

    2
    Specific to enabling scientific progress, Blue Brain Nexus’s Knowledge Graph treats provenance as a first-class citizen, thus facilitating the tracking of the origin of data as well as how it is being used. This allow users to assess the quality of data, and consequently to enable them to build trust. Another key feature of Blue Brain Nexus is its semantic search capability, whereby search is integrated over data and its provenance to enable scientists to easily discover and access new relevant data.

    EPFL Professor Sean Hill commented: “We see that nearly all sciences are becoming data-driven. Blue Brain Nexus represents the culmination of many years of research into building a state-of-the-art semantic data management platform. We can’t wait to see what the community will do with Blue Brain Nexus.”

    Blue Brain Nexus is available under the Apache 2 license, at https://github.com/BlueBrain/nexus

    For more information, please contact:

    EPFL Communications, emmanuel.barraud@epfl.ch, +41 21 693 21 90

    Blue Brain Project communications, kate.mullins@epfl.ch, +41 21 695 51 41

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 12:23 pm on January 1, 2018 Permalink | Reply
    Tags: , , EPFL, , , , , Standardizing perovskite aging measurements   

    From EPFL: “Standardizing perovskite aging measurements” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne

    01.01.18
    Nik Papageorgiou


    EPFL scientists have produced a data-driven proposal for standardizing the measurements of perovskite solar cell stability and degradation. Published in Nature Energy, the work aims to create consensus in the field and overcome one of the major hurdles on the way to commercializing perovskite photovoltaics.

    1
    Perovskite (pronunciation: /pəˈrɒvskaɪt/) is a calcium titanium oxide mineral composed of calcium titanate (CaTiO3). It lends its name to the class of compounds which have the same type of crystal structure as CaTiO3 (XIIA2+VIB4+X2−3), known as the perovskite structure. Many different cations can be embedded in this structure, allowing for the development of diverse engineered materials.
    The mineral was discovered in the Ural Mountains of Russia by Gustav Rose in 1839 and is named after Russian mineralogist Lev Perovski (1792–1856). Perovskite’s notable crystal structure was first described by Victor Goldschmidt in 1926, in his work on tolerance factors. The crystal structure was later published in 1945 from X-ray diffraction data on barium titanate by Helen Dick Megaw. Wikipedia.

    2
    A schematic of a perovskite crystal structure. Clean Energy Institute – University of Washington

    Perovskite solar cells are an alternative to conventional silicon solar cells, and are poised to overtake the market with their high power-conversion efficiencies (over 22% now) and lower capital expenditure and manufacturing costs. But one of the greatest obstacles on this road is stability: to be commercially viable, perovskite solar cells must also be able to maintain their efficiency over time, meaning that they must not degrade significantly over 25 years of service.

    “As a first-order approximation, we are talking about stabilities of several years for the most stable perovskite solar cells,” says Konrad Domanksi, first author on the paper. “We still need an increase of an order of magnitude to reach the stabilities of silicon cells.”

    While research efforts are continuously made to improve perovskite stability, the community is hamstrung by the fact that there are no general standards by which scientists can measure the stability of perovskite solar cells. Consequently, the results coming in from different laboratories and companies cannot be easily compared to each other. And even though dedicated stability measurement standards have been developed for other photovoltaic technologies, they have to be adapted for perovskite solar cells, which show new types of behavior.

    Now, the labs of Michael Grätzel and Anders Hagfeldt at EPFL have carried out a study that proposes to standardize the measurements of perovskite solar cell stability across the entire field. The researchers investigated the effects of different environmental factors on the ageing of perovskite solar cells, looking at the impact of illumination (sunlight-level light), temperature, atmospheric, electrical load, and testing a systematic series of combinations of these.

    “We designed and built a dedicated system to carry out this study,” says Domanski. “It is state-of-the-art for measuring stability of solar cells – we can vary light intensity over samples and control temperature, atmosphere etc. We load the samples, program the experiments, and the data is plotted automatically.”

    The study shows how certain behaviors specific to perovskite solar cells can distort the results of experiments. For example, when the cells are left in the dark, they can recover some of the losses caused by illumination and “start fresh in the morning”. As solar cells naturally undergo day-night cycles, this has important implications on how we define that a solar cell degrades in the first place. It also changes our perception on the metrics used by industry to describe lifetime of solar cells.

    “The work can lay the foundations for standardizing perovskite solar cell ageing,” says Wolfgang Tress, last author on the paper. “The field can use it to develop objective and comparable stability metrics, just like stabilized power is now used as a standard tool for assessing power-conversion efficiency in perovskite solar cells. More importantly, systematically isolating specific degradation factors will help us better understand degradation of perovskite solar cells and improve their lifetimes.”

    “We are not trying to impose standards on the community,” says Domanski. “Rather, being on the forefront on perovskite solar cells and their stability research, we try to lead by example and stimulate the discussion on how these standards should look like. We strongly believe that specific protocols will be adopted by consensus, and that dedicated action groups involving a broad range of researchers will be formed for this purpose.”

    Funding

    Swiss National Science Foundation (FNS)
    King Abdulaziz City for Science and Technology (KACST)

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 3:01 pm on December 18, 2017 Permalink | Reply
    Tags: , EPFL, , Using gold nanoparticles to destroy viruses   

    From EPFL: “Using gold nanoparticles to destroy viruses” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    18.12.17
    Clara Marc

    1
    © SUNMIL/EPFL – Cartoon depicting an imaginary attack of the nanoparticles to a virus leading to its loss of integrity.

    EPFL researchers have created nanoparticles that attract viruses and, using the pressure resulting from the binding process, destroy them. This revolutionary approach could lead to the development of broad-spectrum antiviral drugs.

    HIV, dengue, papillomavirus, herpes and Ebola – these are just some of the many viruses that kill millions of people every year, mostly children in developing countries. While drugs can be used against some viruses, there is currently no broad-spectrum treatment that is effective against several at the same time, in the same way that broad-spectrum antibiotics fight a range of bacteria. But researchers at EPFL’s Supramolecular Nano-Materials and Interfaces Laboratory – Constellium Chair (SUNMIL) have created gold nanoparticles for just this purpose, and their findings could lead to a broad-spectrum treatment. Once injected in the body, these nanoparticles imitate human cells and “trick” the viruses. When the viruses bind to them – in order to infect them – the nanoparticles use pressure produced locally by this link-up to “break” the viruses, rendering them innocuous. The results of this research have just been published in Nature Materials.

    Pressing need for a broad-spectrum treatment

    “Fortunately, we have drugs that are effective against some viruses, like HIV and hepatitis C,” says Francesco Stellacci, who runs SUNMIL, from the School of Engineering. “But these drugs work only on a specific virus.” Hence the need for broad-spectrum antiviral drugs. This would enable doctors to use a single drug to combat all viruses that are still deadly because no treatment currently exists. Such non-specific therapies are especially needed in countries – particularly in developing regions – where doctors do not have the tools they need to make accurate diagnoses. And broad-spectrum antiviral drugs would help curb the antimicrobial resistance resulting from the over-prescription of antibiotics. “Doctors often prescribe antibiotics in response to viral infections, since there is no other drug available. But antibiotics are only effective against bacteria, and this blanket use fosters the development of virus mutations and a build-up of resistance in humans,” says Stellacci.

    Tricky nanoparticles

    Until now, research into broad-spectrum virus treatments has only produced approaches that are toxic to humans or that work effectively in vitro – i.e., in the lab – but not in vivo. The EPFL researchers found a way around these problems by creating gold nanoparticles. They are harmless to humans, and they imitate human cell receptors – specifically the ones viruses seek for their own attachment to cells. Viruses infect human bodies by binding to replicating into cells. It is as if the nanoparticles work by tricking the viruses into thinking that they are invading a human cell. When they bind to the nanoparticles, the resulting pressure deforms the virus and opens it, rendering it harmless. Unlike other treatments, the use of pressure is non-toxic. “Viruses replicate within cells, and it is very difficult to find a chemical substance that attacks viruses without harming the host cells,” says Stellacci. “But until now, that’s been the only known approach attempted permanently damage viruses.” The method developed at SUNMIL is unique in that it achieves permanent damage to the viral integrity without damaging living cells.

    Encouraging results on several viruses

    Successful in vitro experiments have been conducted on cell cultures infected by herpes simplex virus, papillomavirus (which can lead to uterine cancer), respiratory syncytial virus (RSV, which can cause pneumonia), dengue virus and HIV (lentivirus). In other tests, mice infected by RSV were cured. For this project, the SUNMIL researchers teamed up with several other universities that contributed their expertise in nanomaterials and virology.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 3:54 pm on December 15, 2017 Permalink | Reply
    Tags: , , EPFL, , Neutrophils help lung tumors grow, Neutrophils help lung tumors hide   

    From EPFL: “The immune cells that help tumors instead of destroying them” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    14.12.17
    Nik Papageorgiou

    1
    Image: Neutrophils inside lung adenocarcinoma tumors. On the left, neutrophils inside a mouse tumor are stained brown; on the right, neutrophils inside a human tumor are stained red (credit: E. Meylan/EPFL).

    EPFL scientists have discovered that neutrophils, a type of immune cell, can actually help lung tumors grow. The work is published in Cell Reports, and has enormous implications for cancer immunotherapy.

    Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient’s immune system against the tumor. In the past few years, immunotherapies have been largely based on the degree by which immune cells can infiltrate a tumor, which has become a major predictor of the patient’s overall prognosis.

    The problem is that lung tumors adapt to the attacks and find ways to evade them. One of these ways involves a protein called “Programmed death-ligand 1 (PDL1)”, which the tumor cells express on their surface. When immune cells, e.g. T cells, attack the tumor, PDL1 binds a protein on their own surface appropriately named “programmed cell death protein 1”, or PD-1). This interaction triggers an entire cascade of biological reactions in the immune cells that shuts down their attack machinery and renders them harmless to the tumor.

    To deal with this, immunotherapeutic regimens often involve drugs that block PD-1, so as to cut off the tumor-evading mechanism. But, unfortunately, this has not been enough. What we need is a fuller understanding of the immune circuits that are active in lung cancer; a knowledge that would allow us to optimize and increase the efficiency of current immunotherapies.

    Neutrophils help lung tumors hide

    To do this, the lab of Etienne Meylan at EPFL used a mouse model of lung cancer to establish what we call an “immune signature” in lung cancer. The study shows that lung tumors can actually be helped by neutrophils – a type of immune cells that are normally at the first line of attack in infections, allergic reactions, and asthma. In short, neutrophils contribute to disease progression rather than stop it.

    The scientists carried out what is known as “neutrophil depletion”, which is a method for studying what happens in a tumor when neutrophil numbers are reduced. By depleting neutrophils in the mice, the researchers were able to deduce what effects they have on a lung tumor when they are actually present.

    Surprisingly, depleting neutrophils caused a profound re-modeling of the immune compartment of the lung tumor, with T cells flooding it. This means that neutrophils actually help the tumor hide better from T cells – this is referred to as “immune exclusion”. On the contrary, neutrophil depletion sensitized tumors to anti-PD1 immunotherapies.

    “Since neutrophils are important in fighting pathogens, neutrophil depletion is unlikely to be used in the clinic,” says Meylan. “Instead, we must concentrate our efforts to understand exactly how neutrophils promote lung tumor development. This could lead to the identification of drugs that block this specific pro-tumor function of neutrophils.”

    Neutrophils help lung tumors grow

    The data also showed that the presence of neutrophils leads to changes in the function of the tumor’s blood vessels. The changes trigger hypoxia and cause the tumor cells to produce a protein called “Snail”. This is important because Snail is widely known to help cancer cells resist drugs, as well as promote tumor recurrence and metastasis.

    The researchers found that Snail in turn increased the secretion of the protein Cxcl2, augmenting neutrophil infiltration. This creates a positive loop that accelerates the progression of the cancer.

    1
    In short, the study shows that neutrophils promote tumor progression and can actually hamper the work of immunotherapy in lung cancer. The authors describe this as a “vicious cycle” between neutrophils and Snail that ultimately maintains a tumor microenvironment supporting tumor growth.

    “Immunotherapies constitute new treatment options with important clinical success for this devastating disease,” says Etienne Meylan. “But in up to two thirds of patients the lung tumors do not respond. We believe our work offers one explanation for this; finding new ways to break the vicious dialogue between neutrophils and tumor cells might impair tumor growth, and also increase the percentage of patients that benefit from immunotherapy.”

    Contributors

    Centre Hospitalier Universitaire Vaudois,
    University of Lausanne
    Swiss Institute of Bioinformatics (VITAL-IT and Bioinformatics Core Facility)
    EPFL Flow Cytometry Core Facility
    University of Bern

    Funding

    Swiss National Science Foundation
    National Centre of Competence in Research (NCCR) Molecular Oncology,
    Swiss Cancer League
    Chercher et Trouver Foundation,
    ISREC Foundation (“Molecular Life Sciences” grant)
    Nuovo Soldati Foundation

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 11:05 am on November 29, 2017 Permalink | Reply
    Tags: , , , EPFL, Professor Xile Hu, , Swiss National Latsis Prize, Swiss National Science Foundation, Synthesis of high-added-value molecules   

    From EPFL: “The key to chemical transformations” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    29.11.17
    Nik Papageorgiou


    Professor Xile Hu, an expert in catalysis at EPFL’s Institute of Chemical Sciences and Engineering, has been awarded the 2017 National Latsis Prize.

    The National Latsis Prize is among the most important scientific distinctions in Switzerland, and includes a monetary award of CHF 100,000. It is awarded by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation to recognize “researchers up to the age of 40 for exceptional scientific work conducted in Switzerland.”

    This is the 34th award of the Latsis National Prize, and will be presented to Professor Hu by the SNSF on 11 January 2018, during a ceremony at Bern’s Hôtel de ville.

    Professor Xile Hu is recognized “for his impressive scientific career and his excellent research on the fundamental understanding of catalysis.” Catalysis is a branch of chemistry focused on substances that accelerate reactions or transform molecules. Professor Hu has distinguished himself by his pioneering research on the production of solar fuels, as well as on the synthesis of molecules with high added value.

    “I have decided to not worry too much about the barriers between fields, as long as it works and gives interesting results,” he says. “I try to always bring something new or unpredictable into my research, but that is not necessarily obvious. In science, we want things to happen in a logical way – so when we suggest something unprecedented or not deemed to be feasible, we can look a bit crazy.”

    Official press release

    29/Nov/2017

    Contact

    Prof. Xile HU
    Ecole polytechnique fédérale de Lausanne
    EPFL SB ISIC LSCI
    BCH 3305 (Bât. BCH)
    CH-1015 Lausanne
    Tel.: +41 21 693 97 81
    E-mail: xile.hu@epfl.ch

    2
    Swiss National Science Foundation
    3
    Chemist Xile Hu is the winner of the National Latsis Prize for 2017. Hu, a professor at the École Polytechnique Fédérale de Lausanne, was recognised for his outstanding scientific career and his original contributions to the fundamental understanding of catalysis.

    Catalysis is a field of chemistry that studies materials that can accelerate or bring about chemical transformations. Hu has distinguished himself through his pioneering work on the production of solar fuels and the synthesis of high-added-value molecules. The prize is awarded each year by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation.

    Novel approach

    Hu, who was born in China and came to Switzerland in 2007, founded the Laboratory of Inorganic Synthesis and Catalysis at the École Polytechnique Fédérale de Lausanne (EPFL). He is known for his innovative approach, which consists of combining the concepts and methods associated with three different types of catalysis (homogeneous, heterogeneous and enzymatic), which traditionally have remained separate. This approach has led to unprecedented understanding of fundamental catalysis and enabled the discovery of new catalysts with properties superior to those of previous materials.

    “I decided not to worry too much about barriers between the types, as long as they work and give interesting results”, says Hu, a professor at the EPFL’s Institute of Chemical Sciences and Engineering. “I always try to introduce something new or unpredictable to my research, but that’s not necessarily obvious. Scientists like things to happen logically, so when you suggest something unfamiliar or that’s believed to be impossible, you may sound a little crazy.”

    Accordingly, the 39-year-old Hu sought to model enzymes (enzymatic catalysis) as part of his research on solar fuels (heterogeneous catalysis). “It didn’t work, but we discovered a very good, new type of catalyst”, explains Hu. Half of his research team is working on solar fuels. “We use solar energy to split water into oxygen and hydrogen, because hydrogen is an excellent source of energy”, says Hu, who received his undergraduate degree in chemistry from Peking University. “We would like to use catalytic materials to store this energy in the form of chemical products.” Hu estimates that such a technology could become reality in 15 to 20 years.

    At the heart of chemistry

    Research on high-value-added molecules for chemical products is Hu’s other major area of research. “We are focusing on catalysis based on elements that are abundant on Earth, like iron, copper and nickel”, says Hu, who did his postdoctoral research at the California Institute of Technology. “Until now, the chemical industry has mostly been working with precious metals like platinum, but these are rare and expensive. Abundant Earth elements are cheaper and have good potential, seeing as how they have been very little studied from that vantage.” These new molecules could later find use in the pharmaceutical, food-processing or even cosmetic industries.

    Hu has amassed a remarkable number of publications for someone his age. “Scientific articles are really collaborative efforts”, he says. “I have been fortunate in finding students who are motivated and excited by the idea of investigating areas that are still relatively undiscovered.”

    “I find it fascinating to be able to create new materials and to work in a field that has an impact on both nature and the living world”, says Hu. “Catalysis is at the heart of chemistry, but it goes unnoticed because it is so much a part of everyday life. Yet today it is more important than ever, especially for dealing with the energy challenges that humanity faces.”

    _________________________________________________________________________
    Global chemist

    Xile Hu was born in Putian, in south-eastern China, on 7 August 1978. He is a professor at the Institute of Chemical Sciences and Engineering at the École Polytechnique Fédérale de Lausanne (EPFL). After receiving his bachelor’s degree in chemistry at Peking University in 2000, he left for the University of California, San Diego, where he received his master’s degree in 2002 and his PhD in 2004. He then did postdoctoral research at the California Institute of Technology in Pasadena from 2005 to 2007. That same year, he accepted a position at EPFL, where he went on to found the Laboratory of Inorganic Synthesis and Catalysis. He has received numerous prizes and distinctions, including the Werner Prize from the Swiss Chemical Society.

    Hu says he is “sometimes embarrassed that I don’t fit the cliché of the scientist who spends all his free time in the laboratory”. He enjoys skiing and hiking in the mountains. Hu is married to a Swiss acupuncturist, with whom he has a three-month-old daughter.

    Little noticed, but vital

    Catalysis refers to the use of a substance to accelerate chemical transformations, or to bring about transformations that would not have occurred naturally. “Nearly 90% of chemical processes rely on catalysis at some point”, says Xile Hu, professor of chemistry at the École Polytechnique Fédérale de Lausanne (EPFL) and winner of the National Latsis Prize for 2017. “We would like them to enjoy even more widespread use, because a good catalyst makes it possible to avoid needless steps, in terms of cost as well as of time and energy.” Although catalysis is mainly employed in the chemical industry, it is equally important for humans and in nature. “Plants use biological catalysts for photosynthesis, whereas humans rely on enzymatic catalysis to metabolise the oxygen that they breathe”, says Hu. Moreover, anything to do with fermentation, such as the making of beer, yogurt or bread, depends on catalysis. Finally, the best-known catalysts are those used in cars. These catalysts transform engine emissions into non-toxic components that are then released into the air.

    National Latsis Prize

    Since 1983, the National Latsis Prize has been conferred annually by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation, a non-profit organisation founded in 1975 and based in Geneva. It is awarded for outstanding scientific work by a Switzerland-based researcher under 40. With CHF 100,000 in prize money, the National Latsis Prize is one of Switzerland’s most prestigous scientific awards. There are also four University Latsis Prizes, each worth CHF 25,000, awarded by the Universities of Geneva and St, Gallen, and the Swiss Federal Institute of Technology in Zurich (ETHZ) and Lausanne (EPFL).

    The award ceremony for the 34th National Latsis Prize will be held at Berne Town Hall on 11 January 2018. Journalists can register by sending an email to: com@snf.ch.
    _________________________________________________________________________

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: