Tagged: EPFL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:01 am on March 28, 2018 Permalink | Reply
    Tags: , , EPFL, EPFL invests in quantum science and technology, EPFL’s Institute of Physics, , ,   

    From École Polytechnique Fédérale de Lausanne EPFL: “EPFL invests in quantum science and technology” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    28.03.18
    Nik Papageorgiou

    1
    The IBM Q Experience running on a tablet at IBM Research. (credit: Connie Zhou for IBM).

    Having identified Quantum Science and Technology as a strategic research area to be developed and reinforced, EPFL’s Institute of Physics is plunging headlong into the field with two new research openings, a master’s course, and partnering with IBM and their cutting-edge quantum-computer platform.

    It seems that the future will involve disruptive technologies that rely on the “spooky world” of quantum mechanics. Harnessing the properties of the quantum world, the world is preparing to usher in technologies that seem to be the stuff of science fiction, such as light-based quantum communications, unbreakable quantum cryptography, and quantum computers that run a million times faster than today’s fastest supercomputers.

    Europe is already heavily invested in what has come to be abbreviated as “QST” – Quantum Science and Technology, with its FET Flagship on Quantum Technologies, while Switzerland runs its own, federally funded NCCR-QSIT project.

    Now, EPFL’s Institute of Physics (IPHYS) is reinforcing its own QST efforts, specifically in theoretical quantum science. The Institute recently made an open call for a faculty position in QST, with the selection committee now planning interviews to select one of the short-listed candidates in April. “A second call in QST is very high on our priority list,” says director of IPHYS Professor Harald Brune. “We will be proposing it as soon as possible.”

    In addition to its efforts in QST research, EPFL’s teaching in QST enjoys high visibility. Dr Marc-André Dupertuis, a researcher with two IPHYS labs, has been running a Master course in quantum optics and quantum information since 2013. The course came to life through the efforts of Dupertuis and his assistant Clément Javerzac-Galy, and represents a major commitment by EPFL to establish itself as a leader in the future of QST.

    This view is apparently shared by IBM, an industry pioneer in the field. In 2016, the tech giant launched “the IBM Quantum Experience (QX)”, a cloud-based platform on which students and researchers can learn, research, and interact with a real quantum computer housed in an IBM Research lab through a simple Internet connection and a browser. In 2017, IBM chose EPFL alongside MIT and the University of Waterloo to be one of the first institutions in the world to use its quantum computer for teaching.

    As part of the QST teaching initiative, IBM made the QX platform available to Master students taking Dupertuis’ course. “We are using the IBM Q Experience in the framework of our quantum information class,” says Clément Javerzac-Galy. “It’s fascinating for the students to be the first generation to use a quantum machine and it’s a tremendous tool to speed up the learning curve in quantum information. Things you could previously only theorize about, you can now practice on a real machine.”

    Recognizing EPFL’s effort in QST teaching, IBM also marked the event with a lengthy tweet. “This shows that EPFL is already a top institution in the world for what concerns teaching in this domain,” says Harald Brune. Today, the QX community spans nearly 80,000 users running 3 million quantum experiments and more than 35 third-party research publications, while users can compete for three different awards.

    “This year we will be in the privileged to be able to calculate with 20 quantum bits as opposed to 5 last year,” says Marc-André Dupertuis. “Plus, this year the QX community expects to pass the ‘Quantum supremacy’ limit of quantum computing. A quantum computer will have obtained for the first time at least one result that would have been unthinkable to calculate with any existing conventional supercomputer.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

    Advertisements
     
  • richardmitnick 10:04 am on January 11, 2018 Permalink | Reply
    Tags: , , Blue Brain Nexus, , , EPFL   

    From EPFL: “Blue Brain Nexus: an open-source tool for data-driven science” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne

    11.01.18
    BBP communications

    1
    © iStockphotos

    Knowledge sharing is an important driving force behind scientific progress. In an open-science approach, EPFL’s Blue Brain Project has created and open sourced Blue Brain Nexus that allows the building of data integration platforms. Blue Brain Nexus enables data-driven science through searching, integrating and tracking large-scale data and models.

    EPFL’s Blue Brain Project today announces the release of its open source software project ‘Blue Brain Nexus’, designed to enable the FAIR (Findable, Accessible, Interoperable, and Reusable) data management principles for the Neuroscience and broader scientific community. It is part of EPFL’s open-science initiative, which seeks to maximize the reach and impact of research conducted at the school.

    The aim of the Blue Brain Project is to build accurate, biologically detailed, digital reconstructions and simulations of the rodent brain and, ultimately the human brain. Blue Brain Nexus is instrumental in supporting all stages of Blue Brain’s data-driven modelling cycle including, but not limited to experimental data, single cell models, circuits, simulations and validations. The brain is a complex multi-level system and is one of the biggest ‘Big Data’ problems we have today. Therefore, Blue Brain Nexus has been built to organize, store and process exceptionally large volumes of data and support usage by a broad number of users.

    At the heart of Blue Brain Nexus is the Knowledge Graph, which acts as a data repository and metadata catalogue. It also remains agnostic of the domain to be represented by allowing users to design arbitrary domains, which enables other scientific initiatives (e.g. astronomy, medical research and agriculture) to reuse Blue Brain Nexus as the core of their data platforms. Blue Brain Nexus services are already being evaluated for integration into the Human Brain Project’s Neuroinformatics Platform.

    2
    Specific to enabling scientific progress, Blue Brain Nexus’s Knowledge Graph treats provenance as a first-class citizen, thus facilitating the tracking of the origin of data as well as how it is being used. This allow users to assess the quality of data, and consequently to enable them to build trust. Another key feature of Blue Brain Nexus is its semantic search capability, whereby search is integrated over data and its provenance to enable scientists to easily discover and access new relevant data.

    EPFL Professor Sean Hill commented: “We see that nearly all sciences are becoming data-driven. Blue Brain Nexus represents the culmination of many years of research into building a state-of-the-art semantic data management platform. We can’t wait to see what the community will do with Blue Brain Nexus.”

    Blue Brain Nexus is available under the Apache 2 license, at https://github.com/BlueBrain/nexus

    For more information, please contact:

    EPFL Communications, emmanuel.barraud@epfl.ch, +41 21 693 21 90

    Blue Brain Project communications, kate.mullins@epfl.ch, +41 21 695 51 41

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 12:23 pm on January 1, 2018 Permalink | Reply
    Tags: , , EPFL, , , , , Standardizing perovskite aging measurements   

    From EPFL: “Standardizing perovskite aging measurements” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne

    01.01.18
    Nik Papageorgiou


    EPFL scientists have produced a data-driven proposal for standardizing the measurements of perovskite solar cell stability and degradation. Published in Nature Energy, the work aims to create consensus in the field and overcome one of the major hurdles on the way to commercializing perovskite photovoltaics.

    1
    Perovskite (pronunciation: /pəˈrɒvskaɪt/) is a calcium titanium oxide mineral composed of calcium titanate (CaTiO3). It lends its name to the class of compounds which have the same type of crystal structure as CaTiO3 (XIIA2+VIB4+X2−3), known as the perovskite structure. Many different cations can be embedded in this structure, allowing for the development of diverse engineered materials.
    The mineral was discovered in the Ural Mountains of Russia by Gustav Rose in 1839 and is named after Russian mineralogist Lev Perovski (1792–1856). Perovskite’s notable crystal structure was first described by Victor Goldschmidt in 1926, in his work on tolerance factors. The crystal structure was later published in 1945 from X-ray diffraction data on barium titanate by Helen Dick Megaw. Wikipedia.

    2
    A schematic of a perovskite crystal structure. Clean Energy Institute – University of Washington

    Perovskite solar cells are an alternative to conventional silicon solar cells, and are poised to overtake the market with their high power-conversion efficiencies (over 22% now) and lower capital expenditure and manufacturing costs. But one of the greatest obstacles on this road is stability: to be commercially viable, perovskite solar cells must also be able to maintain their efficiency over time, meaning that they must not degrade significantly over 25 years of service.

    “As a first-order approximation, we are talking about stabilities of several years for the most stable perovskite solar cells,” says Konrad Domanksi, first author on the paper. “We still need an increase of an order of magnitude to reach the stabilities of silicon cells.”

    While research efforts are continuously made to improve perovskite stability, the community is hamstrung by the fact that there are no general standards by which scientists can measure the stability of perovskite solar cells. Consequently, the results coming in from different laboratories and companies cannot be easily compared to each other. And even though dedicated stability measurement standards have been developed for other photovoltaic technologies, they have to be adapted for perovskite solar cells, which show new types of behavior.

    Now, the labs of Michael Grätzel and Anders Hagfeldt at EPFL have carried out a study that proposes to standardize the measurements of perovskite solar cell stability across the entire field. The researchers investigated the effects of different environmental factors on the ageing of perovskite solar cells, looking at the impact of illumination (sunlight-level light), temperature, atmospheric, electrical load, and testing a systematic series of combinations of these.

    “We designed and built a dedicated system to carry out this study,” says Domanski. “It is state-of-the-art for measuring stability of solar cells – we can vary light intensity over samples and control temperature, atmosphere etc. We load the samples, program the experiments, and the data is plotted automatically.”

    The study shows how certain behaviors specific to perovskite solar cells can distort the results of experiments. For example, when the cells are left in the dark, they can recover some of the losses caused by illumination and “start fresh in the morning”. As solar cells naturally undergo day-night cycles, this has important implications on how we define that a solar cell degrades in the first place. It also changes our perception on the metrics used by industry to describe lifetime of solar cells.

    “The work can lay the foundations for standardizing perovskite solar cell ageing,” says Wolfgang Tress, last author on the paper. “The field can use it to develop objective and comparable stability metrics, just like stabilized power is now used as a standard tool for assessing power-conversion efficiency in perovskite solar cells. More importantly, systematically isolating specific degradation factors will help us better understand degradation of perovskite solar cells and improve their lifetimes.”

    “We are not trying to impose standards on the community,” says Domanski. “Rather, being on the forefront on perovskite solar cells and their stability research, we try to lead by example and stimulate the discussion on how these standards should look like. We strongly believe that specific protocols will be adopted by consensus, and that dedicated action groups involving a broad range of researchers will be formed for this purpose.”

    Funding

    Swiss National Science Foundation (FNS)
    King Abdulaziz City for Science and Technology (KACST)

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 3:01 pm on December 18, 2017 Permalink | Reply
    Tags: , EPFL, , Using gold nanoparticles to destroy viruses   

    From EPFL: “Using gold nanoparticles to destroy viruses” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    18.12.17
    Clara Marc

    1
    © SUNMIL/EPFL – Cartoon depicting an imaginary attack of the nanoparticles to a virus leading to its loss of integrity.

    EPFL researchers have created nanoparticles that attract viruses and, using the pressure resulting from the binding process, destroy them. This revolutionary approach could lead to the development of broad-spectrum antiviral drugs.

    HIV, dengue, papillomavirus, herpes and Ebola – these are just some of the many viruses that kill millions of people every year, mostly children in developing countries. While drugs can be used against some viruses, there is currently no broad-spectrum treatment that is effective against several at the same time, in the same way that broad-spectrum antibiotics fight a range of bacteria. But researchers at EPFL’s Supramolecular Nano-Materials and Interfaces Laboratory – Constellium Chair (SUNMIL) have created gold nanoparticles for just this purpose, and their findings could lead to a broad-spectrum treatment. Once injected in the body, these nanoparticles imitate human cells and “trick” the viruses. When the viruses bind to them – in order to infect them – the nanoparticles use pressure produced locally by this link-up to “break” the viruses, rendering them innocuous. The results of this research have just been published in Nature Materials.

    Pressing need for a broad-spectrum treatment

    “Fortunately, we have drugs that are effective against some viruses, like HIV and hepatitis C,” says Francesco Stellacci, who runs SUNMIL, from the School of Engineering. “But these drugs work only on a specific virus.” Hence the need for broad-spectrum antiviral drugs. This would enable doctors to use a single drug to combat all viruses that are still deadly because no treatment currently exists. Such non-specific therapies are especially needed in countries – particularly in developing regions – where doctors do not have the tools they need to make accurate diagnoses. And broad-spectrum antiviral drugs would help curb the antimicrobial resistance resulting from the over-prescription of antibiotics. “Doctors often prescribe antibiotics in response to viral infections, since there is no other drug available. But antibiotics are only effective against bacteria, and this blanket use fosters the development of virus mutations and a build-up of resistance in humans,” says Stellacci.

    Tricky nanoparticles

    Until now, research into broad-spectrum virus treatments has only produced approaches that are toxic to humans or that work effectively in vitro – i.e., in the lab – but not in vivo. The EPFL researchers found a way around these problems by creating gold nanoparticles. They are harmless to humans, and they imitate human cell receptors – specifically the ones viruses seek for their own attachment to cells. Viruses infect human bodies by binding to replicating into cells. It is as if the nanoparticles work by tricking the viruses into thinking that they are invading a human cell. When they bind to the nanoparticles, the resulting pressure deforms the virus and opens it, rendering it harmless. Unlike other treatments, the use of pressure is non-toxic. “Viruses replicate within cells, and it is very difficult to find a chemical substance that attacks viruses without harming the host cells,” says Stellacci. “But until now, that’s been the only known approach attempted permanently damage viruses.” The method developed at SUNMIL is unique in that it achieves permanent damage to the viral integrity without damaging living cells.

    Encouraging results on several viruses

    Successful in vitro experiments have been conducted on cell cultures infected by herpes simplex virus, papillomavirus (which can lead to uterine cancer), respiratory syncytial virus (RSV, which can cause pneumonia), dengue virus and HIV (lentivirus). In other tests, mice infected by RSV were cured. For this project, the SUNMIL researchers teamed up with several other universities that contributed their expertise in nanomaterials and virology.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 3:54 pm on December 15, 2017 Permalink | Reply
    Tags: , , EPFL, , Neutrophils help lung tumors grow, Neutrophils help lung tumors hide   

    From EPFL: “The immune cells that help tumors instead of destroying them” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    14.12.17
    Nik Papageorgiou

    1
    Image: Neutrophils inside lung adenocarcinoma tumors. On the left, neutrophils inside a mouse tumor are stained brown; on the right, neutrophils inside a human tumor are stained red (credit: E. Meylan/EPFL).

    EPFL scientists have discovered that neutrophils, a type of immune cell, can actually help lung tumors grow. The work is published in Cell Reports, and has enormous implications for cancer immunotherapy.

    Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient’s immune system against the tumor. In the past few years, immunotherapies have been largely based on the degree by which immune cells can infiltrate a tumor, which has become a major predictor of the patient’s overall prognosis.

    The problem is that lung tumors adapt to the attacks and find ways to evade them. One of these ways involves a protein called “Programmed death-ligand 1 (PDL1)”, which the tumor cells express on their surface. When immune cells, e.g. T cells, attack the tumor, PDL1 binds a protein on their own surface appropriately named “programmed cell death protein 1”, or PD-1). This interaction triggers an entire cascade of biological reactions in the immune cells that shuts down their attack machinery and renders them harmless to the tumor.

    To deal with this, immunotherapeutic regimens often involve drugs that block PD-1, so as to cut off the tumor-evading mechanism. But, unfortunately, this has not been enough. What we need is a fuller understanding of the immune circuits that are active in lung cancer; a knowledge that would allow us to optimize and increase the efficiency of current immunotherapies.

    Neutrophils help lung tumors hide

    To do this, the lab of Etienne Meylan at EPFL used a mouse model of lung cancer to establish what we call an “immune signature” in lung cancer. The study shows that lung tumors can actually be helped by neutrophils – a type of immune cells that are normally at the first line of attack in infections, allergic reactions, and asthma. In short, neutrophils contribute to disease progression rather than stop it.

    The scientists carried out what is known as “neutrophil depletion”, which is a method for studying what happens in a tumor when neutrophil numbers are reduced. By depleting neutrophils in the mice, the researchers were able to deduce what effects they have on a lung tumor when they are actually present.

    Surprisingly, depleting neutrophils caused a profound re-modeling of the immune compartment of the lung tumor, with T cells flooding it. This means that neutrophils actually help the tumor hide better from T cells – this is referred to as “immune exclusion”. On the contrary, neutrophil depletion sensitized tumors to anti-PD1 immunotherapies.

    “Since neutrophils are important in fighting pathogens, neutrophil depletion is unlikely to be used in the clinic,” says Meylan. “Instead, we must concentrate our efforts to understand exactly how neutrophils promote lung tumor development. This could lead to the identification of drugs that block this specific pro-tumor function of neutrophils.”

    Neutrophils help lung tumors grow

    The data also showed that the presence of neutrophils leads to changes in the function of the tumor’s blood vessels. The changes trigger hypoxia and cause the tumor cells to produce a protein called “Snail”. This is important because Snail is widely known to help cancer cells resist drugs, as well as promote tumor recurrence and metastasis.

    The researchers found that Snail in turn increased the secretion of the protein Cxcl2, augmenting neutrophil infiltration. This creates a positive loop that accelerates the progression of the cancer.

    1
    In short, the study shows that neutrophils promote tumor progression and can actually hamper the work of immunotherapy in lung cancer. The authors describe this as a “vicious cycle” between neutrophils and Snail that ultimately maintains a tumor microenvironment supporting tumor growth.

    “Immunotherapies constitute new treatment options with important clinical success for this devastating disease,” says Etienne Meylan. “But in up to two thirds of patients the lung tumors do not respond. We believe our work offers one explanation for this; finding new ways to break the vicious dialogue between neutrophils and tumor cells might impair tumor growth, and also increase the percentage of patients that benefit from immunotherapy.”

    Contributors

    Centre Hospitalier Universitaire Vaudois,
    University of Lausanne
    Swiss Institute of Bioinformatics (VITAL-IT and Bioinformatics Core Facility)
    EPFL Flow Cytometry Core Facility
    University of Bern

    Funding

    Swiss National Science Foundation
    National Centre of Competence in Research (NCCR) Molecular Oncology,
    Swiss Cancer League
    Chercher et Trouver Foundation,
    ISREC Foundation (“Molecular Life Sciences” grant)
    Nuovo Soldati Foundation

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 11:05 am on November 29, 2017 Permalink | Reply
    Tags: , , , EPFL, Professor Xile Hu, , Swiss National Latsis Prize, Swiss National Science Foundation, Synthesis of high-added-value molecules   

    From EPFL: “The key to chemical transformations” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    29.11.17
    Nik Papageorgiou


    Professor Xile Hu, an expert in catalysis at EPFL’s Institute of Chemical Sciences and Engineering, has been awarded the 2017 National Latsis Prize.

    The National Latsis Prize is among the most important scientific distinctions in Switzerland, and includes a monetary award of CHF 100,000. It is awarded by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation to recognize “researchers up to the age of 40 for exceptional scientific work conducted in Switzerland.”

    This is the 34th award of the Latsis National Prize, and will be presented to Professor Hu by the SNSF on 11 January 2018, during a ceremony at Bern’s Hôtel de ville.

    Professor Xile Hu is recognized “for his impressive scientific career and his excellent research on the fundamental understanding of catalysis.” Catalysis is a branch of chemistry focused on substances that accelerate reactions or transform molecules. Professor Hu has distinguished himself by his pioneering research on the production of solar fuels, as well as on the synthesis of molecules with high added value.

    “I have decided to not worry too much about the barriers between fields, as long as it works and gives interesting results,” he says. “I try to always bring something new or unpredictable into my research, but that is not necessarily obvious. In science, we want things to happen in a logical way – so when we suggest something unprecedented or not deemed to be feasible, we can look a bit crazy.”

    Official press release

    29/Nov/2017

    Contact

    Prof. Xile HU
    Ecole polytechnique fédérale de Lausanne
    EPFL SB ISIC LSCI
    BCH 3305 (Bât. BCH)
    CH-1015 Lausanne
    Tel.: +41 21 693 97 81
    E-mail: xile.hu@epfl.ch

    2
    Swiss National Science Foundation
    3
    Chemist Xile Hu is the winner of the National Latsis Prize for 2017. Hu, a professor at the École Polytechnique Fédérale de Lausanne, was recognised for his outstanding scientific career and his original contributions to the fundamental understanding of catalysis.

    Catalysis is a field of chemistry that studies materials that can accelerate or bring about chemical transformations. Hu has distinguished himself through his pioneering work on the production of solar fuels and the synthesis of high-added-value molecules. The prize is awarded each year by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation.

    Novel approach

    Hu, who was born in China and came to Switzerland in 2007, founded the Laboratory of Inorganic Synthesis and Catalysis at the École Polytechnique Fédérale de Lausanne (EPFL). He is known for his innovative approach, which consists of combining the concepts and methods associated with three different types of catalysis (homogeneous, heterogeneous and enzymatic), which traditionally have remained separate. This approach has led to unprecedented understanding of fundamental catalysis and enabled the discovery of new catalysts with properties superior to those of previous materials.

    “I decided not to worry too much about barriers between the types, as long as they work and give interesting results”, says Hu, a professor at the EPFL’s Institute of Chemical Sciences and Engineering. “I always try to introduce something new or unpredictable to my research, but that’s not necessarily obvious. Scientists like things to happen logically, so when you suggest something unfamiliar or that’s believed to be impossible, you may sound a little crazy.”

    Accordingly, the 39-year-old Hu sought to model enzymes (enzymatic catalysis) as part of his research on solar fuels (heterogeneous catalysis). “It didn’t work, but we discovered a very good, new type of catalyst”, explains Hu. Half of his research team is working on solar fuels. “We use solar energy to split water into oxygen and hydrogen, because hydrogen is an excellent source of energy”, says Hu, who received his undergraduate degree in chemistry from Peking University. “We would like to use catalytic materials to store this energy in the form of chemical products.” Hu estimates that such a technology could become reality in 15 to 20 years.

    At the heart of chemistry

    Research on high-value-added molecules for chemical products is Hu’s other major area of research. “We are focusing on catalysis based on elements that are abundant on Earth, like iron, copper and nickel”, says Hu, who did his postdoctoral research at the California Institute of Technology. “Until now, the chemical industry has mostly been working with precious metals like platinum, but these are rare and expensive. Abundant Earth elements are cheaper and have good potential, seeing as how they have been very little studied from that vantage.” These new molecules could later find use in the pharmaceutical, food-processing or even cosmetic industries.

    Hu has amassed a remarkable number of publications for someone his age. “Scientific articles are really collaborative efforts”, he says. “I have been fortunate in finding students who are motivated and excited by the idea of investigating areas that are still relatively undiscovered.”

    “I find it fascinating to be able to create new materials and to work in a field that has an impact on both nature and the living world”, says Hu. “Catalysis is at the heart of chemistry, but it goes unnoticed because it is so much a part of everyday life. Yet today it is more important than ever, especially for dealing with the energy challenges that humanity faces.”

    _________________________________________________________________________
    Global chemist

    Xile Hu was born in Putian, in south-eastern China, on 7 August 1978. He is a professor at the Institute of Chemical Sciences and Engineering at the École Polytechnique Fédérale de Lausanne (EPFL). After receiving his bachelor’s degree in chemistry at Peking University in 2000, he left for the University of California, San Diego, where he received his master’s degree in 2002 and his PhD in 2004. He then did postdoctoral research at the California Institute of Technology in Pasadena from 2005 to 2007. That same year, he accepted a position at EPFL, where he went on to found the Laboratory of Inorganic Synthesis and Catalysis. He has received numerous prizes and distinctions, including the Werner Prize from the Swiss Chemical Society.

    Hu says he is “sometimes embarrassed that I don’t fit the cliché of the scientist who spends all his free time in the laboratory”. He enjoys skiing and hiking in the mountains. Hu is married to a Swiss acupuncturist, with whom he has a three-month-old daughter.

    Little noticed, but vital

    Catalysis refers to the use of a substance to accelerate chemical transformations, or to bring about transformations that would not have occurred naturally. “Nearly 90% of chemical processes rely on catalysis at some point”, says Xile Hu, professor of chemistry at the École Polytechnique Fédérale de Lausanne (EPFL) and winner of the National Latsis Prize for 2017. “We would like them to enjoy even more widespread use, because a good catalyst makes it possible to avoid needless steps, in terms of cost as well as of time and energy.” Although catalysis is mainly employed in the chemical industry, it is equally important for humans and in nature. “Plants use biological catalysts for photosynthesis, whereas humans rely on enzymatic catalysis to metabolise the oxygen that they breathe”, says Hu. Moreover, anything to do with fermentation, such as the making of beer, yogurt or bread, depends on catalysis. Finally, the best-known catalysts are those used in cars. These catalysts transform engine emissions into non-toxic components that are then released into the air.

    National Latsis Prize

    Since 1983, the National Latsis Prize has been conferred annually by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation, a non-profit organisation founded in 1975 and based in Geneva. It is awarded for outstanding scientific work by a Switzerland-based researcher under 40. With CHF 100,000 in prize money, the National Latsis Prize is one of Switzerland’s most prestigous scientific awards. There are also four University Latsis Prizes, each worth CHF 25,000, awarded by the Universities of Geneva and St, Gallen, and the Swiss Federal Institute of Technology in Zurich (ETHZ) and Lausanne (EPFL).

    The award ceremony for the 34th National Latsis Prize will be held at Berne Town Hall on 11 January 2018. Journalists can register by sending an email to: com@snf.ch.
    _________________________________________________________________________

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 11:33 am on November 3, 2017 Permalink | Reply
    Tags: , , EPFL, For this study the researchers focused primarily on the calcium sodium potassium and other ions in cerebral fluid, LMIS4-Microsystems Laboratory 4, , Reading our brain chemistry   

    From EPFL: “Reading our brain chemistry” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    03.11.17
    Clara Marc

    1
    © Guillaume Petit-Pierre – Perfusion microdroplet allowing the extraction of interstitial liquid using the system developed by EPFL researchers.

    Researchers at EPFL have developed a new device and analysis method that let doctors measure the neurochemicals in a patient’s brain. The Microsystems Laboratory 4 (LMIS4)’s system involves collecting microdroplets of cerebral fluid and analyzing them to obtain chemical data that can help doctors diagnose and treat neurodegenerative diseases.

    Neurologists often use electrical impulses to stimulate and read brain signals. But the chemicals that neurons produce in response to these impulses are poorly understand at this point, even though they can provide valuable information for understanding the mechanisms behind neurodegenerative diseases like Alzheimer’s and Parkinson’s. “Neurons can be read two ways: electrically or chemically,” says Guillaume Petit-Pierre, a post-doc researcher at LMIS4 and one of the study’s authors. “Reading their electrical behavior can provide some limited information, such as the frequency and pace at which neurons communicate. However, reading their neurochemistry gives insight into the proteins, ions and neurotransmitters in a patient’s cerebral fluid.” By analyzing this fluid, doctors can obtain additional information – beyond that provided by neurons – and get a complete picture of a patient’s brain tissue metabolism.

    Collecting information through microchannels

    The EPFL researchers developed a system that can both collect a patient’s neurochemical feedback and form electrical connections with brain tissue. Their device is made up of electrodes and microchannels that are about half a hair in diameter. Once the device is placed inside brain tissue, the microchannels draw in cerebral fluid while the electrodes, which are located right at the fluid-collection interface, make sure that the measurements are taken at very precise locations. The microchannels subsequently create highly concentrated microdroplets of cerebral fluid. “The microdroplets form directly at the tip of the device, giving us a very high temporal resolution, which is essential if we want to accurately analyze the data,” says Petit-Pierre. The microdroplets are then placed on an analytical instrument that was also developed by scientists at the LMIS4 and the nearby University Centre of Legal Medicine which has expertise in this type of complex analysis. As a last step, the microdroplets are vaporized with a laser and the gas residue is analyzed. Both the researchers’ device and their analysis method are totally new. “Today there is only one method for performing neurochemical analyses: microdialysis. But it isn’t very effective in terms of either speed or resolution,” says Petit-Pierre. Another advantage of the researchers’ method is that it is a minimally invasive way to collect data. Currently scientists have to work directly on the brains of rats afflicted with neurodegenerative diseases, meaning the rats must be sacrificed to take the measurements. Their research was published in Nature Communications.

    Direct applications

    For this study, the researchers focused primarily on the calcium, sodium, potassium and other ions in cerebral fluid. They worked with EPFL’s Neurodegenerative Disease Laboratory to compare the measurements they took on rats with those reported in the literature – and found that the results were well correlated. The next step will be to develop a method for analyzing the proteins and neurotransmitters in cerebral fluid, so that their implications in neurodegenerative diseases can be further studied. “Doctors could measure neurochemical responses to help them make diagnoses, such as for epilepsy, when they use electricity to measure signals from a patient’s cortex,” says Guillaume, “or to improve the efficiency of treatments like deep brain stimulation (DBS) for Parkinson’s disease.” Their research could also soon find direct applications in other medical fields. Guillaume currently works on a start-up project to develop a catheter for patients affected by hemorrhagic stroke. Based on a similar technology, his catheter would let doctors treat a common yet serious complication of this condition and thereby reduce the risk of death.

    This research was carried out jointly by EPFL’s Laboratory of Microsystems 4 (LMIS4), EPFL’s Neurodegenerative Disease Laboratory (LEN), the Unit of Toxicology at the University Centre of Legal Medicine (CURML, CHUV and HUG) and the University of Lausanne’s Faculty of Biology and Medicine (FBM, UNIL).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 6:21 am on October 25, 2017 Permalink | Reply
    Tags: , Developing a “gravitational theory” for ecology, , EPFL, Is there a link between a given species’ body mass and its abundance or between the size of an ecosystem and its level of biodiversity?, Scaling laws   

    From EPFL: “Developing a “gravitational theory” for ecology” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    25.10.17
    Sandrine Perroud

    1
    © 2017 EPFL

    An important breakthrough by EPFL researchers could lead to the discovery of a set of general laws applicable to the environmental sciences.

    Is there a link between a given species’ body mass and its abundance, or between the size of an ecosystem and its level of biodiversity? Ecologists often find that similar relationships of this type exist in different ecosystems. These relationships are called scaling laws, and they have been shown to apply in both marine and terrestrial environments and to various types of organisms (e.g., microorganisms, mammals and trees). But until now, no clear link has been drawn between these laws. That is now changing: in a recent study, EPFL researchers proved the existence of common macroecological patterns exhibited by these ostensibly independent scaling laws. These patterns could even lead to the discovery of a set of general laws governing the environmental sciences. The study was recently published in Proceedings of the National Academy of Sciences (PNAS).

    The researchers began by testing their hypothesis on three sets of empirical data on tropical forests and communities of mammals and reptiles living on islands with similar climates. Using a computer model, they then replicated the laws that they had observed in the field and developed general algebraic formulas that tie them all together. “Our goal was to rationalize macroecological patterns observed in various ecosystems and position them in a unified framework from which they all derive,” says Silvia Zaoli. “In other words, we wanted to find their shared origin.” Zaoli is a PhD student at EPFL’s Laboratory of Ecohydrology (ECHO) and the study’s lead author.

    Scaling laws describe the relationship between two quantities. The probability of finding an organism in an ecosystem, for example, declines with the organism’s size: there are more bacteria than blue whales in the ocean. “Scaling laws are defined by their exponent,” Zaoli continues. “They are used at several levels, such as for predicting how many species will survive if their habitat shrinks or for modeling the distribution of species’ body mass in a marine community relative to their environmental functions. They also come in handy for determining the most common body mass within a community, as well as the smallest and largest. The theoretical framework that we discovered shows that, even if the value of each exponent varies from one ecosystem to the next, all the exponents that describe an ecosystem are connected by universal relationships that apply to all ecosystems. For example, these relationships link an increase in the number of mammals, in proportion to the size of an ecosystem, to an increase in the abundance of each species.”

    One of the two reviewers at PNAS took the highly unusual step of sending encouraging feedback. In a short comment, the reviewer situates the researchers’ work in a broad, historical perspective. For him, this study has set the environmental sciences on a path towards discovering a physical theory that encompasses all previously observed laws. He compares it to Tycho Brahe’s catalog of the positions of stars, planets and comets – a 17th-century work that formed the empirical basis for Johannes Kepler’s laws of planetary motion, which in turn laid the groundwork for Isaac Newton’s universal law of gravitation. “It is true that we have plotted a course in that direction,” says Zaoli, “but we know that we have a long way to go!”

    This study was supported by the Swiss National Science Foundation (SNSF).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 6:12 am on October 19, 2017 Permalink | Reply
    Tags: A sharp rise in the content of sediments, , , , EPFL, Hydroelectric power plants, LMH-EPFL's Laboratory for Hydraulic Machines, Of all the electricity produced in Switzerland 56% comes from hydropower, One of the aims of Switzerland’s 2050 Energy Strategy is to increase hydroelectric production, SCCER-SoE-Swiss Competence Center for Energy Research - Supply of Electricity   

    From EPFL: “Hydroelectric power plants have to be adapted for climate change” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    19.10.17
    Clara Marc

    1
    © 2017 LMH – Grande Dixence dam. This hydroelectric power complex generates some 2 billion kWh of power per year
    Of all the electricity produced in Switzerland, 56% comes from hydropower. The life span of hydroelectric plants, which are massive and expensive to build and maintain, is measured in decades, yet the rivers and streams they depend on and the surrounding environment are ever-changing. These changes affect the machinery and thus the amount of electricity that can be revised. EPFL’s Laboratory for Hydraulic Machines (LMH) is working on an issue that will be very important in the coming years: the impact of sediment erosion on turbines, which are the main component of this machinery. The laboratory’s work could help prolong these plants’ ability to produce electricity for Switzerland’s more than eight million residents.

    One of the aims of Switzerland’s 2050 Energy Strategy is to increase hydroelectric production. The Swiss government therefore also needs to predict the environment in which these power plants will operate so that the underlying technology can keep pace with changing needs and future conditions. “In Switzerland, the glaciers and snow are melting more and more quickly. This affects the quality of the water, with a sharp rise in the content of sediments,” says François Avellan, who heads the LMH and is one of the study’s authors. “The sediments are very aggressive and erode the turbines.” This undermines the plants’ efficiency, leaves cavities in the equipment and leads to an increase in vibrations – and in the frequency and cost of repairs. To top things off, the turbines’ useful life is reduced. Under the umbrella of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE) and with the support of the Commission for Technology and Innovation (CTI), EPFL has teamed up with General Electric Renewable Energy in an effort to better understand and predict the process of sediment erosion. The aim is to lengthen the hydropower plants’ life span through improved turbines and more effective operating strategies.

    Tiny particles with an outsized impact

    One of the challenges facing researchers in the field of hydropower is that they cannot run experiments directly on power plants because of the impact and cost of a plant’s outage. They must therefore limit their investigations to simulations and reduced-scale physical model tests. In response to this challenge, the LMH has come up with a novel multiscale computer model that predicts sediment erosion in turbines with much greater accuracy than other approaches. The results have been published in the scientific journal Wear. “Sediment erosion, like many other problems in nature, is a multiscale phenomenon. It means that behavior observed at the macroscopic level is the result of a series of interactions at the microscopic level,” says Sebastián Leguizamón, an EPFL doctoral student and lead author of the study. “The sediments are extremely small and move very fast, and their impact lasts less than a microsecond. On the other hand, the erosion process we see is gradual, taking place over the course of many operating hours and affecting all the turbine.”

    A multiscale solution

    The researchers therefore opted for a multiscale solution and modeled the two processes involved in erosion separately. At the microscopic level, they focused on the extremely brief impact of the minuscule sediments that strike the turbines, taking into account parameters such as the angle, speed, size, shape – and even composition – of the slurry. At the macroscopic level, they looked at how the sediments are transported by water flow, as this affects the flux, distribution and density of sediments reaching the walls of the turbine flow passages. The results were then combined in order to develop erosion predictions. “It’s not possible to study the entire process of erosion as a whole. The sediments are so small and the period of time over which the process takes place so long that replicating the process would take hundreds of years of calculations and require a computer that doesn’t exist yet,” says Leguizamón. “But the problem becomes manageable when you decouple the different phases.”

    Adapting to the future

    With conclusive results in hand, the LMH has now moved on to the next phase, which consists in characterizing the materials used in the turbines. Following this step, the researchers will be able to apply the new model to existing hydroelectric facilities. The stakes are global when it comes to retrofitting turbines in response to climate change, as hydropower accounts for 17% of the world’s electricity production. Turbines offer little leeway and have to operate in a wide range of environments – including monsoon regions and anything from tropical to alpine climates. If turbines are to last, changes will have to be made to both their underlying design and how they are operated. “While I was evaluating a hydro plant in the Himalayas, my contacts there told me that if a turbine made it through more than one monsoon season, that was a success!” says Avellan.

    This study is part of CTI project No. 17568.1 PFEN-IW GPUSpheros. It was conducted in conjunction with General Electric Renewable Energy under the umbrella of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE).

    A multiscale model for sediment impact erosion simulation using the finite volume particle method, Sebastián Leguizamón, Ebrahim Jahanbakhsh, Audrey Maertens, Siamak Alimirzazadeh and François Avellan. Science Direct.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 12:25 pm on September 19, 2017 Permalink | Reply
    Tags: EPFL, , Tilt-less electron microscopy   

    From EPFL: “New microscopy method offers one-shot 3D imaging of nanostructures” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    07.09.17 [Where has this been hiding?]
    Nik Papageorgiou

    1
    Superposed, tilt-less electron microscopy stereo image (color-filtered) of carbon nanospheres decorated with nanoparticles. The same structures appear in red and blue and the nanoparticles are slightly shifted according to their 3D distribution in the carbon sphere. This image shows the applicability of the new tilt-less 3D imaging techniques to other structures. © Cécile Hébert/Emad Oveisi/EPFL

    EPFL scientists have developed a scanning transmission electron microscopy method that can quickly and efficiently generate 3D representations of curvilinear nanostructures.

    Physical and biological sciences increasingly require the ability to observe nano-sized objects. This can be accomplished with transmission electron microscopy (TEM), which is generally limited to 2D images. Using TEM to reconstruct 3D images instead usually requires tilting the sample through an arc to image hundreds of views of it and needs sophisticated image processing to reconstruct their 3D shape, creating a number of problems. Now, EPFL scientists have developed a scanning transmission electron microscopy (STEM) method that generates fast and reliable 3D images of curvilinear structures from a single sample orientation. The work is published in Scientific Reports.

    The labs of Cécile Hébert and Pascal Fua at EPFL have developed an electron microscopy method that can obtain 3D images of complex curvilinear structures without needing to tilt the sample. The technique, developed by EPFL researcher Emad Oveisi, relies on a variation of TEM called scanning TEM (STEM), where a focused beam of electrons scans across the sample.

    The novelty of the method is that it can acquire images in a single shot, which opens the way to study samples dynamically as they change over time. Furthermore, it can rapidly provide a “sense” of three dimensions, just like we would have with a 3D cinema.

    “Our own eyes can see 3D representations of an object by combining two different perspectives of it, but the brain still has to complement the visual information with its previous knowledge of the shape of certain objects,” says Hébert. “But in some cases with TEM we know something about what shape the sample’s structure must have. For example, it can be curvilinear, like DNA or the mysterious defects that we call ‘dislocations’, which govern the optoelectronic or mechanical properties of materials.”

    The classical approach

    TEM is a very powerful technique that can provide high-resolution views of objects just a few nanometers across — for example, a virus, or a crystal defect. However TEM only provides 2D images, which are not enough for identifying the 3D morphology of the sample, which often limits research. A way around this problem is to acquire consecutive images while rotating the specimen through a tilt arc. The images can then be reconstructed on a computer to gain a 3D representation of the sample.

    The problem with this approach is that it requires extreme precision on hundreds of images, which is hard to achieve. The 3D images generated in this way are also prone to artefacts, which are difficult to remove afterwards. Finally, taking multiple images with TEM requires shooting a beam of electrons though the sample each time, and the total dose can actually affect the sample’s structure during acquisition and produce a false or corrupted image.

    The new approach

    In the STEM method developed by the researchers, the sample stands still while the microscope sends two beams of electrons tilted against each other, and two detectors are simultaneously used to record the signal. As a result, the process is much faster than previous TEM 3D imaging technique and with almost no artefacts.

    The team also used a sophisticated image-processing algorithm, developed in collaboration with Fua’s CVlab, to reduce the number of images needed for 3D reconstruction to only two images taken at different electron beam angles. This increases the efficiency of data acquisition and 3D reconstruction by one to two orders of magnitude compared to conventional TEM 3D techniques. At the same time, it prevents structural changes on the sample due to high electron doses.

    Because of its speed and immunity to problems with standard TEM methods, this “tilt-less 3D electron imaging” method is of great advantage for studying radiation-sensitive, polycrystalline, or magnetic materials. And because the total electron dose is reduced to a single scan, the method is expected to open up new avenues for real-time 3D electron imaging of dynamic material and biological processes.

    Funding

    Swiss National Science Foundation

    Reference

    Emad Oveisi, Antoine Letouzey, Duncan T.L. Alexander, Quentin Jeangros, Robin Schäublin, Guillaume Lucas, Pascal Fua, Cécile Hébert. Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures.Scientific Reports, 06 September 2017. DOI: 10.1038/s41598-017-07537-6

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: