Tagged: ENIGMA-Evolution of Nanomachines in Geospheres and Microbial Ancestors Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:01 am on March 19, 2020 Permalink | Reply
    Tags: "Scientists Have Discovered the Origins of the Building Blocks of Life", , , , ENIGMA project seeks to reveal the role of the simplest proteins that catalyzed the earliest stages of life., ENIGMA-Evolution of Nanomachines in Geospheres and Microbial Ancestors,   

    From Rutgers University: “Scientists Have Discovered the Origins of the Building Blocks of Life” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    March 16, 2020

    Todd Bates
    848-932-0550
    todd.bates@rutgers.edu

    Rutgers researchers retraced the evolution of enzymes over billions of years.

    1
    This image shows a fold (shape) that may have been one of the earliest proteins in the evolution of metabolism. Image: Vikas Nanda/Rutgers University

    Rutgers researchers have discovered the origins of the protein structures responsible for metabolism: simple molecules that powered early life on Earth and serve as chemical signals that NASA could use to search for life on other planets.

    Their study, which predicts what the earliest proteins looked like 3.5 billion to 2.5 billion years ago, is published in the journal Proceedings of the National Academy of Sciences.

    The scientists retraced, like a many thousand piece puzzle, the evolution of enzymes (proteins) from the present to the deep past. The solution to the puzzle required two missing pieces, and life on Earth could not exist without them. By constructing a network connected by their roles in metabolism, this team discovered the missing pieces.

    “We know very little about how life started on our planet. This work allowed us to glimpse deep in time and propose the earliest metabolic proteins,” said co-author Vikas Nanda, a professor of Biochemistry and Molecular Biology at Rutgers Robert Wood Johnson Medical School and a resident faculty member at the Center for Advanced Biotechnology and Medicine. “Our predictions will be tested in the laboratory to better understand the origins of life on Earth and to inform how life may originate elsewhere. We are building models of proteins in the lab and testing whether they can trigger reactions critical for early metabolism.”

    A Rutgers-led team of scientists called ENIGMA (Evolution of Nanomachines in Geospheres and Microbial Ancestors) is conducting the research with a NASA grant and via membership in the NASA Astrobiology Program. The ENIGMA project seeks to reveal the role of the simplest proteins that catalyzed the earliest stages of life.

    “We think life was built from very small building blocks and emerged like a Lego set to make cells and more complex organisms like us,” said senior author Paul G. Falkowski, ENIGMA principal investigator and a distinguished professor at Rutgers University–New Brunswick who leads the Environmental Biophysics and Molecular Ecology Laboratory. “We think we have found the building blocks of life – the Lego set that led, ultimately, to the evolution of cells, animals and plants.”

    The Rutgers team focused on two protein “folds” that are likely the first structures in early metabolism. They are a ferredoxin fold that binds iron-sulfur compounds, and a “Rossmann” fold, which binds nucleotides (the building blocks of DNA and RNA). These are two pieces of the puzzle that must fit in the evolution of life.

    Proteins are chains of amino acids and a chain’s 3D path in space is called a fold. Ferredoxins are metals found in modern proteins and shuttle electrons around cells to promote metabolism. Electrons flow through solids, liquids and gases and power living systems, and the same electrical force must be present in any other planetary system with a chance to support life.

    There is evidence the two folds may have shared a common ancestor and, if true, the ancestor may have been the first metabolic enzyme of life.

    The lead author is Hagai Raanan, a former post-doctoral associate in the Environmental Biophysics and Molecular Ecology Laboratory. Rutgers co-authors include Saroj Poudel, a post-doctoral associate, and Douglas H. Pike, a doctoral student in the ENIGMA project.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 5:31 pm on June 5, 2018 Permalink | Reply
    Tags: , , , , ENIGMA-Evolution of Nanomachines in Geospheres and Microbial Ancestors, ,   

    From Rutgers: “NASA Funds Rutgers Scientists’ Pursuit of the Origins of Life” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    [THIS POST IS DEDICATED TO L.Z. OF RUTGERS AND HP FOR HIS UNENDING SUPPORT OF THIS BLOG AND PHYSICS AT RUTGERS UNIVERSITY]

    Jun 4, 2018

    Todd Bates
    848-932-0550
    todd.bates@rutgers.edu

    Rutgers-led ENIGMA team examines whether “protein nanomachines” in our cells arose before life on Earth, other planets.

    What are the origins of life on Earth and possibly elsewhere? Did “protein nanomachines” evolve here before life began to catalyze and support the development of living things? Could the same thing have happened on Mars, the moons of Jupiter and Neptune, and elsewhere in the universe?

    A Rutgers University-led team of scientists called ENIGMA, for “Evolution of Nanomachines in Geospheres and Microbial Ancestors,” will try to answer those questions over the next five years, thanks to an approximately $6 million NASA grant and membership in the NASA Astrobiology Institute.

    Rutgers Today asked Paul G. Falkowski, ENIGMA principal investigator and a distinguished professor at Rutgers University–New Brunswick, about research on the origins of life.

    1
    Iron- and sulfur-containing minerals found on the early Earth (greigite, left, is one example) share a remarkably similar molecular structure with metals found in modern proteins (ferredoxin, right, is one example). Did the first proteins at the dawn of life on Earth interact directly with rocks to promote catalysis of life?
    Image: Professor Vikas Nanda/Center for Advanced Biotechnology and Medicine at Rutgers

    What is astrobiology?

    It is the study of the origins of life on Earth and potential life on planets – called extrasolar planets – and planetary bodies like moons in our solar system and other solar systems. More than 3,700 extrasolar planets have been confirmed in the last decade or so. Many of these are potentially rocky planets that are close enough to their star that they may have liquid water, and we want to try and understand if the gases on those planets are created by life, such as the oxygen on Earth.

    What is the ENIGMA project?

    All life on Earth depends on the movement of electrons; life literally is electric. We breathe in oxygen and breathe out water vapor and carbon dioxide, and in that process we transfer hydrogen atoms, which contain a proton and an electron, to oxygen to make water (H20). We move electrons from the food we eat to the oxygen in the air to derive energy. Every organism on Earth moves electrons to generate energy. ENIGMA is a team of primarily Rutgers researchers that is trying to understand the earliest evolution of these processes, and we think that hydrogen was probably one of the most abundant gases in the early Earth that supported life.

    What are the chances of life being found elsewhere in our solar system and the universe?

    We’ve been looking for evidence of life on Mars since the Viking mission, which landed in 1976. I think it will be very difficult to prove there is life on Mars today, but there may be signatures of life that existed on Mars in the distant past. Mars certainly had a lot of water on it and had an atmosphere, but that’s all largely gone now. A proposed mission to Europa – an ice-covered moon of Jupiter – is in the planning phase. NASA’s Cassini mission to investigate Titan, a moon of Neptune, revealed liquid methane over what we think is water – very cold, shallow oceans – so there may be life on Titan.

    What are protein nanomachines?

    They are enzymes that physically move. Each time we take a breath, an enzyme in every cell allows you to transfer electrons to oxygen. Enzymes, like all proteins, are made up of amino acids, of which there are 20 that are used in life. Early on, amino acids were delivered to Earth by meteorites, and we think some of these amino acids could have been coupled together and made nanomachines before life began. That’s what we’re looking to see if we can recreate, using the tens of thousands of protein structures in the Protein Data Bank at Rutgers together with our colleagues in the Center for Advanced Biotechnology and Medicine.

    What are the next steps?

    Organizing our research so it is coherent and relevant to the other collaborating teams in the NASA Astrobiology Institute. We want to develop an education and outreach program at Rutgers that leads to an astrobiology minor for undergraduate students and helps inform K-12 schoolchildren about the origins of life on Earth and what we know and don’t know about the potential for life on other planets. We also want to help make Rutgers a center of excellence in this field so future undergraduate and graduate students and faculty will gravitate towards this university to try to understand the evolution and origin of the molecules that derive energy for life.

    See the full article here .

    Follow Rutgers Research here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
    • stewarthoughblog 1:20 am on June 6, 2018 Permalink | Reply

      I suppose it is inevitable for naturalists to revisit the myths of chemical evolution, Darwin’s “warm little ponds,” OparinHaldane prebiotic soup, Miller-Urey test tube goo, FeS minerals, etc. This may get funding, have some interesting science, but otherwise will offer nothing to the present chaotic mess of naturalist origin of life, OoL, research.
      If they really want to address OoL, then they need to explain the creation of DNA and the homochiral amino acids and pentose sugars required. The 20 amino acids mentioned are exclusively produced through cellular, aka living, functions, never naturalistically. There is no naturalistic process capable of producing all amino acids.
      The propositions in this article are intellectually insulting and scientifically nonsensical.

      Like

      • richardmitnick 12:59 pm on June 6, 2018 Permalink | Reply

        While I respect your opinions, the main reason I posted this was that anything good that happens at Rutgers, my alma mater, I need to jump on. Rutgers is a great research university with a penchant for very poor representation in social media.

        Like

        • stewarthoughblog 11:32 pm on June 6, 2018 Permalink | Reply

          Richard, no slight intended against your alma mater, but it is the substance of the article that prompted my comment, which I can only propose was written by someone very uninformed about the pertinent science, or by a fully impregnated naturalistic ideologue, if you know what I mean.. Regards.

          Like

          • richardmitnick 3:13 pm on June 7, 2018 Permalink | Reply

            No harm, no foul. I appreciate your continued interest in the blog. I am in a personal war with Rutgers to wake them up to their web compeition like all of the University of California schools, UBC, U Toronto, U Arizona, a bunch of “state” schools in Australia, and the like, all state schools. I am not asking them to to be Harvard, MIT, Caltech, Oxford or Cambridge. I want what I want.

            Like

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: