Tagged: Energy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:52 pm on March 9, 2015 Permalink | Reply
    Tags: , , , , Energy   

    From Caltech: “One Step Closer to Artificial Photosynthesis and “Solar Fuels” 

    Caltech Logo
    Caltech

    03/09/2015
    Ker Than

    1
    Ke Sun, a Caltech postdoc in the lab of George L. Argyros Professor and Professor of Chemistry Nate Lewis, peers into a sample of a new, protective film that he has helped develop to aid in the process of harnessing sunlight to generate fuels.
    Credit: Lance Hayashida/Caltech Marcomm

    Caltech scientists, inspired by a chemical process found in leaves, have developed an electrically conductive film that could help pave the way for devices capable of harnessing sunlight to split water into hydrogen fuel.

    When applied to semiconducting materials such as silicon, the nickel oxide film prevents rust buildup and facilitates an important chemical process in the solar-driven production of fuels such as methane or hydrogen.

    “We have developed a new type of protective coating that enables a key process in the solar-driven production of fuels to be performed with record efficiency, stability, and effectiveness, and in a system that is intrinsically safe and does not produce explosive mixtures of hydrogen and oxygen,” says Nate Lewis, the George L. Argyros Professor and professor of chemistry at Caltech and a coauthor of a new study, published the week of March 9 in the online issue of the journal the Proceedings of the National Academy of Sciences, that describes the film.

    The development could help lead to safe, efficient artificial photosynthetic systems—also called solar-fuel generators or “artificial leaves”—that replicate the natural process of photosynthesis that plants use to convert sunlight, water, and carbon dioxide into oxygen and fuel in the form of carbohydrates, or sugars.

    The artificial leaf that Lewis’ team is developing in part at Caltech’s Joint Center for Artificial Photosynthesis (JCAP) consists of three main components: two electrodes—a photoanode and a photocathode—and a membrane. The photoanode uses sunlight to oxidize water molecules to generate oxygen gas, protons, and electrons, while the photocathode recombines the protons and electrons to form hydrogen gas. The membrane, which is typically made of plastic, keeps the two gases separate in order to eliminate any possibility of an explosion, and lets the gas be collected under pressure to safely push it into a pipeline.

    Scientists have tried building the electrodes out of common semiconductors such as silicon or gallium arsenide—which absorb light and are also used in solar panels—but a major problem is that these materials develop an oxide layer (that is, rust) when exposed to water.

    Lewis and other scientists have experimented with creating protective coatings for the electrodes, but all previous attempts have failed for various reasons. “You want the coating to be many things: chemically compatible with the semiconductor it’s trying to protect, impermeable to water, electrically conductive, highly transparent to incoming light, and highly catalytic for the reaction to make oxygen and fuels,” says Lewis, who is also JCAP’s scientific director. “Creating a protective layer that displayed any one of these attributes would be a significant leap forward, but what we’ve now discovered is a material that can do all of these things at once.”

    The team has shown that its nickel oxide film is compatible with many different kinds of semiconductor materials, including silicon, indium phosphide, and cadmium telluride. When applied to photoanodes, the nickel oxide film far exceeded the performance of other similar films—including one that Lewis’s group created just last year. That film was more complicated—it consisted of two layers versus one and used as its main ingredient titanium dioxide (TiO2, also known as titania), a naturally occurring compound that is also used to make sunscreens, toothpastes, and white paint.

    “After watching the photoanodes run at record performance without any noticeable degradation for 24 hours, and then 100 hours, and then 500 hours, I knew we had done what scientists had failed to do before,” says Ke Sun, a postdoc in Lewis’s lab and the first author of the new study.

    Lewis’s team developed a technique for creating the nickel oxide film that involves smashing atoms of argon into a pellet of nickel atoms at high speeds, in an oxygen-rich environment. “The nickel fragments that sputter off of the pellet react with the oxygen atoms to produce an oxidized form of nickel that gets deposited onto the semiconductor,” Lewis says.

    Crucially, the team’s nickel oxide film works well in conjunction with the membrane that separates the photoanode from the photocathode and staggers the production of hydrogen and oxygen gases.

    “Without a membrane, the photoanode and photocathode are close enough to each other to conduct electricity, and if you also have bubbles of highly reactive hydrogen and oxygen gases being produced in the same place at the same time, that is a recipe for disaster,” Lewis says. “With our film, you can build a safe device that will not explode, and that lasts and is efficient, all at once.”

    Lewis cautions that scientists are still a long way off from developing a commercial product that can convert sunlight into fuel. Other components of the system, such as the photocathode, will also need to be perfected.

    “Our team is also working on a photocathode,” Lewis says. “What we have to do is combine both of these elements together and show that the entire system works. That will not be easy, but we now have one of the missing key pieces that has eluded the field for the past half-century.”

    Along with Lewis and Sun, additional authors on the paper, “Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films,” include Caltech graduate students Fadl Saadi, Michael Lichterman, Xinghao Zhou, Noah Plymale, and Stefan Omelchenko; William Hale, from the University of Southampton; Hsin-Ping Wang and Jr-Hau He, from King Abdullah University in Saudi Arabia; Kimberly Papadantonakis, a scientific research manager at Caltech; and Bruce Brunschwig, the director of the Molecular Materials Research Center at Caltech. Funding was provided by the Office of Science at the U.S. Department of Energy, the National Science Foundation, the Beckman Institute, and the Gordon and Betty Moore Foundation.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings

     
  • richardmitnick 10:00 am on February 26, 2015 Permalink | Reply
    Tags: , Energy,   

    From NYT: “Bill Gates and Other Business Leaders Urge U.S. to Increase Energy Research” 

    New York Times

    The New York Times

    FEB. 23, 2015
    JUSTIN GILLIS

    1
    This Duke Energy battery project in Texas, supported by federal research dollars, stores power from wind turbines for later use. A new report calls on the government to increase its spending on energy research.

    The government is spending far too little money on energy research, putting at risk the long-term goals of reducing carbon emissions and alleviating energy poverty, some of the country’s top business leaders found in a new report.

    The American Energy Innovation Council, a group of six executives that includes the Microsoft co-founder Bill Gates and the General Electric chief Jeffrey R. Immelt, urged Congress and the White House to make expanded energy research a strategic national priority.

    The leaders pointed out that the United States had fallen behind a slew of other countries in the percentage of economic output being spent on energy research, among them China, Japan, France and South Korea. Their report urged leaders of both political parties to start increasing funds to ultimately triple today’s level of research spending, about $5 billion a year.

    “Growing and consistent appropriations for energy innovation should be a top U.S. priority over the next decade,” the business leaders recommended in their report. “The budget numbers over the last five years are a major failure in U.S. energy policy.”

    At stake, Mr. Gates said in an interview, are not just long-term goals like reducing emissions of greenhouse gases, but also American leadership in industries of the future, including advanced nuclear reactors and coal-burning power plants that could capture and bury their emissions.

    “Our universities, our national labs are the best in the world,” Mr. Gates said, but he added that a chronic funding shortfall was holding back the pace of their work.

    The report did credit the Obama administration and Congress with some gains, including a one-time injection of funds in the economic stimulus bill of 2009. But subsequent budgets have essentially dropped back to prior levels, and spending on American energy research remains far below the high point it reached just after the energy crises of the 1970s.

    In the past, the report found, investments in energy innovation have paid major dividends. Mr. Gates cited the example of hydraulic fracturing to unlock gas and oil in shale deposits, a technique developed in part with federal research money that has led to a newfound abundance of oil and gas, lowering prices for consumers.

    Similar innovation is needed in low-emission sources of energy, the report found, if the goal of limiting global warming is to be met while making energy more available to poor people around the world. Experts involved in writing the report said the needed breakthroughs included safer types of nuclear reactors, cheaper methods of capturing carbon dioxide emissions at power plants and improved batteries that can store large amounts of energy.

    The new report is an update on similar recommendations the same business leaders made five years ago. While the report found that the picture remained generally bleak, it did cite some progress.

    For instance, Congress established the Advanced Research Projects Agency-Energy, or ARPA-E, modeled on the Pentagon research agency that helped create the Internet. And the Energy Department has funded a string of energy innovation hubs across the country.

    “There’s some very promising things that are in these centers, but the pace is absolutely limited by the modest funding level,” Mr. Gates said. “Those should be funded at a much higher level.”

    The report pointed out that funding for ARPA-E was less than $300 million per year, and urged that it be raised closer to $1 billion. The entire federal appropriation for energy research is less than Americans spend every year buying potato and tortilla chips, the report noted.

    The recommendations in the report are similar to those made by other groups in recent years. But with the federal budget under pressure, the idea of a major push on energy research has gained little traction in Washington.

    The business leaders hope to change that as the 2016 presidential race gets under way, urging both parties to embrace ambitious research plans.

    Aside from Mr. Gates and Mr. Immelt, the American Energy Innovation Council comprises Norman R. Augustine, a former chairman and chief executive of Lockheed Martin; John Doerr, the Silicon Valley venture capitalist; Chad Holliday, a former chairman and chief executive of DuPont who soon will become chairman of Shell; and Tom Linebarger, chairman and chief executive of Cummins.

    In pushing their case in Washington, the leaders are likely to encounter reluctance on the right to increase government spending, as well as some philosophical objections to expanding the government’s role in the energy market. On the left, they may encounter wariness from environmentalists who, while not opposing new research, do not want that push to detract from rapid deployment of current clean-energy technologies, like wind and solar power.

    “I am 100 percent for more research, since who could possibly oppose that?” said Joseph J. Romm, who helped manage federal energy research in the Bill Clinton administration and later founded a widely read blog on climate change. “But it is only a small part of the answer, and certainly not the most important.”

    He added that aggressive deployment of existing technologies and a price on emissions of carbon dioxide would go a long way to reduce emissions, and that the latter would help unlock more private innovation.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 7:24 am on February 17, 2015 Permalink | Reply
    Tags: , , Energy, , ,   

    From physicsworld: “Smaller fusion reactors could deliver big gains” 

    physicsworld
    physicsworld.com

    Feb 16, 2015
    Michael Banks

    1
    Hot topic: size may not be everything in tokamak design

    Researchers from the UK firm Tokamak Energy say that future fusion reactors could be made much smaller than previously envisaged – yet still deliver the same energy output. That claim is based on calculations showing that the fusion power gain – a measure of the ratio of the power from a fusion reactor to the power required to maintain the plasma in steady state – does not depend strongly on the size of the reactor. The company’s finding goes against conventional thinking, which says that a large power output is only possible by building bigger fusion reactors.

    The largest fusion reactor currently under construction is the €16bn ITER facility in Cadarache, France.

    ITER Tokamak

    This will weigh about 23,000 tonnes when completed in the coming decade and consist of a deuterium–tritium plasma held in a 60 m-tall, doughnut-shaped “tokamak”. ITER aims to produce a fusion power gain (Q) of 10, meaning that, in theory, the reactor will emit 10 times the power it expends by producing 500 MW from 50 MW of input power. While ITER has a “major” plasma radius of 6.21 m, it is thought that an actual future fusion power plant delivering power to the grid would need a 9 m radius to generate 1 GW.

    Low power brings high performance

    The new study, led by Alan Costley from Tokamak Energy, which builds compact tokamaks, shows that smaller, lower-power, and therefore lower-cost reactors could still deliver a value of Q similar to ITER. The work focused on a key parameter in determining plasma performance called the plasma “beta”, which is the ratio of the plasma pressure to the magnetic pressure. By using scaling expressions consistent with existing experiments, the researchers show that the power needed for high fusion performance can be three or four times lower than previously thought.

    Combined with the finding on the size-dependence of Q, these results imply the possibility of building lower-power, smaller and cheaper pilot plants and reactors. “The consequence of beta-independent scaling is that tokamaks could be much smaller, but still have a high power gain,” David Kingham, Tokamak Energy chief executive, told Physics World.

    The researchers propose that a reactor with a radius of just 1.35 m would be able to generate 180 MW, with a Q of 5. This would result in a reactor just 1/20th of the size of ITER. “Although there are still engineering challenges to overcome, this result is underpinned by good science,” says Kingham. “We hope that this work will attract further investment in fusion energy.”

    Many challenges remain

    Howard Wilson, director of the York Plasma Institute at the University of York in the UK, points out, however, that the result relies on being able to achieve a very high magnetic field. “We have long been aware that a high magnetic field enables compact fusion devices – the breakthrough would be in discovering how to create such high magnetic fields in the tokamak,” he says. “A compact fusion device may indeed be possible, provided one can achieve high confinement of the fuel, demonstrate efficient current drive in the plasma, exhaust the heat and particles effectively without damaging material surfaces, and create the necessary high magnetic fields.”

    The work by Tokamak Energy follows an announcement late last year that the US firm Lockheed Martin plans to build a “truck-sized” compact fusion reactor by 2019 that would be capable of delivering 100 MW. However, the latest results from Tokamak Energy might not be such bad news for ITER. Kingham adds that his firm’s work means that, in principle, ITER is actually being built much larger than necessary – and so should outperform its Q target of 10.

    The research is published in Nuclear Fusion.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    PhysicsWorld is a publication of the Institute of Physics. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

    We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.
    IOP Institute of Physics

     
  • richardmitnick 5:28 pm on February 9, 2015 Permalink | Reply
    Tags: , Energy, , ,   

    From LBL: “New Design Tool for Metamaterials” 

    Berkeley Logo

    Berkeley Lab

    February 9, 2015
    Lynn Yarris (510) 486-5375

    1
    Confocal microscopy confirmed that the nonlinear optical properties of metamaterials can be predicted using a
    theory about light passing through nanostructures.

    Metamaterials – artificial nanostructures engineered with electromagnetic properties not found in nature – offer tantalizing future prospects such as high resolution optical microscopes and superfast optical computers. To realize the vast potential of metamaterials, however, scientists will need to hone their understanding of the fundamental physics behind them. This will require accurately predicting nonlinear optical properties – meaning that interaction with light changes a material’s properties, for example, light emerges from the material with a different frequency than when it entered. Help has arrived.

    Scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have shown, using a recent theory for nonlinear light scattering when light passes through nanostructures, that it is possible to predict the nonlinear optical properties of metamaterials.

    “The key question has been whether one can determine the nonlinear behavior of metamaterials from their exotic linear behavior,” says Xiang Zhang, director of Berkeley Lab’s Materials Sciences Division and an international authority on metamaterial engineering who led this study. “We’ve shown that the relative nonlinear susceptibility of large classes of metamaterials can be predicted using a comprehensive nonlinear scattering theory. This will allow us to efficiently design metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.”

    2
    Xiang Zhang, Haim Suchowski and Kevin O’Brien were part of the team that discovered a way to predict thenon-linear optical properties of metamaterials. (Photo by Roy Kaltschmidt)

    Zhang, who holds the Ernest S. Kuh Endowed Chair at UC Berkeley and is a member of the Kavli Energy NanoSciences Institute at Berkeley (Kavli ENSI), is the corresponding author of a paper describing this research in the journal Nature Materials. The paper is titled Predicting nonlinear properties of metamaterials from the linear response. The other authors are Kevin O’Brien, Haim Suchowski, Junsuk Rho, Alessandro Salandrino, Boubacar Kante and Xiaobo Yin.

    The unique electromagnetic properties of metamaterials stem from their physical structure rather than their chemical composition. This structure, for example, provides certain metamaterials with a negative refractive index, an optical property in which the phase front of light moving through a material propagates backward towards the source. The phase front light moving through natural materials always propagates forward, away from its source.

    Zhang and his group have already exploited the linear optical properties of metamaterials to create the world’s first optical invisibility cloak and mimic black holes. Most recently they used a nonlinear metamaterial with a refractive index of zero to generate “phase mismatch–free nonlinear light,” meaning light waves moved through the material gaining strength in all directions. However, engineering nonlinear metamaterials remains in its infancy, with no general conclusion on the relationship between linear and nonlinear properties.

    3
    Metamaterial arrays whose geometry varied gradually from a symmetric bar to an asymmetric U-shape were used to compare the predictive abilities of Miller’s rule and a non-linear light scattering theory.

    For the past several decades, scientists have estimated the nonlinear optical properties in natural crystals using a formulation known as “Miller’s rule,” for the physicist Robert Miller who authored it. In this new study, Zhang and his group found that Miller’s rule doesn’t work for a number of metamaterials. That’s the bad news. The good news is that a nonlinear light scattering theory, developed for nanostructures by Dutch scientist Sylvie Roke, does.

    “From the linear properties, one calculates the nonlinear polarization and the mode of the nanostructure at the second harmonic,” says Kevin O’Brien, co-lead author of the Nature Materials paper and a member of Zhang’s research group. “We found the nonlinear emission is proportional to the overlap integral between these, not simply determined by their linear response.”

    Zhang, O’Brien, Suchowski, and the other contributors to this study evaluated Miller’s rule and the nonlinear light scattering theory by comparing their predictions to experimental results obtained using a nonlinear stage-scanning confocal microscope.

    “Nonlinear stage-scanning confocal microscopy is critical because it allows us to rapidly measure the nonlinear emission from thousands of different nanostructures while minimizing the potential systematic errors, such as intensity or beam pointing variations, often associated with tuning the wavelength of an ultrafast laser,” O’Brien says.

    The researchers used confocal microscopy to observe the second harmonic generation from metamaterial arrays whose geometry was gradually shifted from a symmetric bar-shape to an asymmetric U-shape. Second harmonic light is a nonlinear optical property in which photons with the same frequency interact with a nonlinear material to produce new photons at twice the energy and half the wavelength of the originals. It was the discovery of optical second harmonic generation in 1961 that started modern nonlinear optics.

    “Our results show that nonlinear scattering theory can be a valuable tool in the design of nonlinear metamaterials not only for second-order but also higher order nonlinear optical responses over a broad range of wavelengths,” O’Brien says. “We’re now using these experimental and theoretical techniques to explore other nonlinear processes in metamaterials, such as parametric amplification and entangled photon generation.”

    This research was supported by the DOE Office of Science.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 8:20 am on January 30, 2015 Permalink | Reply
    Tags: , , Energy, , Solar Fuels   

    From Science 2.0: “Calculating The Future Of Solar-fuel Refineries” 

    Science 2.0 bloc

    Science 2.0

    January 30th 2015
    News Staff

    The process of converting the sun’s energy into liquid fuels requires a sophisticated, interrelated series of choices but a solar refinery is especially tricky to map out because the designs involve newly developed or experimental technologies. This makes it difficult to develop realistic plans that are economically viable and energy efficient.

    In a paper recently published in the journal Energy & Environmental Science, a team led by University of Wisconsin-Madison chemical and biological engineering Professors Christos Maravelias and George Huber outlined a tool to help engineers better gauge the overall yield, efficiency and costs associated with scaling solar-fuel production processes up into large-scale refineries.

    1

    That’s where the new UW-Madison tool comes in. It’s a framework that focuses on accounting for general variables and big-picture milestones associated with scaling up energy technologies to the refinery level. This means it’s specifically designed to remain relevant even as solar-fuel producers and researchers experiment with new technologies and ideas for technologies that don’t yet exist.

    Renewable-energy researchers at UW-Madison have long emphasized the importance of considering energy production as a holistic process, and Maravelias says the new framework could be used by a wide range of solar energy stakeholders, from basic science researchers to business decision-makers. The tool could also play a role in wider debates about which renewable-energy technologies are most appropriate for society to pursue on a large scale.

    “The nice thing about it being general is that if a researcher develops a different technology – and there are many different ways to generate solar fuels – our framework would still be applicable, and if someone wants a little more detail, our framework can be adjusted accordingly,” Maravelias says.

    In addition to bringing clarity to the solar refinery conversation, the framework could also be adapted to help analyze and plan any number of other energy-related processes, says Jeff Herron, a postdoc in Maravelias’ group and the paper’s lead author.

    “People tend to be narrowly focused on their particular role within a bigger picture,” Herron says. “I think bringing all that together is unique to our work, and I think that’s going to be one of the biggest impacts.”

    Ph.D. student Aniruddha Upadhye and postdoc Jiyong Kim also contributed to the project. The research was funded by the U.S. Department of Energy.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:17 pm on January 23, 2015 Permalink | Reply
    Tags: , , , Energy, ,   

    From BNL: “Self-Assembled Nanotextures Create Antireflective Surface on Silicon Solar Cells” 

    Brookhaven Lab

    January 21, 2015
    Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

    Nanostructured surface textures—with shapes inspired by the structure of moths’ eyes—prevent the reflection of light off silicon, improving conversion of sunlight to electricity

    1
    Chuck Black of the Center for Functional Nanomaterials displays a nanotextured square of silicon on top of an ordinary silicon wafer. The nanotextured surface is completely antireflective and could boost the production of solar energy from silicon solar cells.

    Reducing the amount of sunlight that bounces off the surface of solar cells helps maximize the conversion of the sun’s rays to electricity, so manufacturers use coatings to cut down on reflections. Now scientists at the U.S. Department of Energy’s Brookhaven National Laboratory show that etching a nanoscale texture onto the silicon material itself creates an antireflective surface that works as well as state-of-the-art thin-film multilayer coatings.

    The surface nanotexture … drastically cut down on reflection of many wavelengths of light simultaneously.

    Their method, described in the journal Nature Communications and submitted for patent protection, has potential for streamlining silicon solar cell production and reducing manufacturing costs. The approach may find additional applications in reducing glare from windows, providing radar camouflage for military equipment, and increasing the brightness of light-emitting diodes.

    “For antireflection applications, the idea is to prevent light or radio waves from bouncing at interfaces between materials,” said physicist Charles Black, who led the research at Brookhaven Lab’s Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility.

    Preventing reflections requires controlling an abrupt change in “refractive index,” a property that affects how waves such as light propagate through a material. This occurs at the interface where two materials with very different refractive indices meet, for example at the interface between air and silicon. Adding a coating with an intermediate refractive index at the interface eases the transition between materials and reduces the reflection, Black explained.

    “The issue with using such coatings for solar cells,” he said, “is that we’d prefer to fully capture every color of the light spectrum within the device, and we’d like to capture the light irrespective of the direction it comes from. But each color of light couples best with a different antireflection coating, and each coating is optimized for light coming from a particular direction. So you deal with these issues by using multiple antireflection layers. We were interested in looking for a better way.”

    For inspiration, the scientists turned to a well-known example of an antireflective surface in nature, the eyes of common moths. The surfaces of their compound eyes have textured patterns made of many tiny “posts,” each smaller than the wavelengths of light. This textured surface improves moths’ nighttime vision, and also prevents the “deer in the headlights” reflecting glow that might allow predators to detect them.

    “We set out to recreate moth eye patterns in silicon at even smaller sizes using methods of nanotechnology,” said Atikur Rahman, a postdoctoral fellow working with Black at the CFN and first author of the study.

    2
    A closeup shows how the nanotextured square of silicon completely blocks reflection compared with the surrounding silicon wafer.

    The scientists started by coating the top surface of a silicon solar cell with a polymer material called a “block copolymer,” which can be made to self-organize into an ordered surface pattern with dimensions measuring only tens of nanometers. The self-assembled pattern served as a template for forming posts in the solar cell like those in the moth eye using a plasma of reactive gases—a technique commonly used in the manufacture of semiconductor electronic circuits.

    The resulting surface nanotexture served to gradually change the refractive index to drastically cut down on reflection of many wavelengths of light simultaneously, regardless of the direction of light impinging on the solar cell.

    “Adding these nanotextures turned the normally shiny silicon surface absolutely black,” Rahman said.

    Solar cells textured in this way outperform those coated with a single antireflective film by about 20 percent, and bring light into the device as well as the best multi-layer-coatings used in the industry.

    “We are working to understand whether there are economic advantages to assembling silicon solar cells using our method, compared to other, established processes in the industry,” Black said.

    Hidden layer explains better-than-expected performance

    One intriguing aspect of the study was that the scientists achieved the antireflective performance by creating nanoposts only half as tall as the required height predicted by a mathematical model describing the effect. So they called upon the expertise of colleagues at the CFN and other Brookhaven scientists to help sort out the mystery.

    3
    Details of the nanotextured antireflective surface as revealed by a scanning electron microscope at the Center for Functional Nanomaterials. The tiny posts, each smaller than the wavelengths of light, are reminiscent of the structure of moths’ eyes, an example of an antireflective surface found in nature.

    “This is a powerful advantage of doing research at the CFN—both for us and for academic and industrial researchers coming to use our facilities,” Black said. “We have all these experts around who can help you solve your problems.”

    Using a combination of computational modeling, electron microscopy, and surface science, the team deduced that a thin layer of silicon oxide similar to what typically forms when silicon is exposed to air seemed to be having an outsized effect.

    “On a flat surface, this layer is so thin that its effect is minimal,” explained Matt Eisaman of Brookhaven’s Sustainable Energy Technologies Department and a professor at Stony Brook University. “But on the nanopatterned surface, with the thin oxide layer surrounding all sides of the nanotexture, the oxide can have a larger effect because it makes up a significant portion of the nanotextured material.”

    Said Black, “This ‘hidden’ layer was the key to the extra boost in performance.”

    The scientists are now interested in developing their self-assembly based method of nanotexture patterning for other materials, including glass and plastic, for antiglare windows and coatings for solar panels.

    This research was supported by the DOE Office of Science.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
  • richardmitnick 5:03 pm on December 22, 2014 Permalink | Reply
    Tags: , Energy, ,   

    From LBL: “Piezoelectricity in a 2D Semiconductor” 

    Berkeley Logo

    Berkeley Lab

    December 22, 2014
    Lynn Yarris (510) 486-5375

    A door has been opened to low-power off/on switches in micro-electro-mechanical systems (MEMS) and nanoelectronic devices, as well as ultrasensitive bio-sensors, with the first observation of piezoelectricity in a free standing two-dimensional semiconductor by a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab).

    Xiang Zhang, director of Berkeley Lab’s Materials Sciences Division and an international authority on nanoscale engineering, led a study in which piezoelectricity – the conversion of mechanical energy into electricity or vice versa – was demonstrated in a free standing single layer of molybdenum disulfide, a 2D semiconductor that is a potential successor to silicon for faster electronic devices in the future.

    “Piezoelectricity is a well-known effect in bulk crystals, but this is the first quantitative measurement of the piezoelectric effect in a single layer of molecules that has intrinsic in-plane dipoles,” Zhang says. “The discovery of piezoelectricity at the molecular level not only is fundamentally interesting, but also could lead to tunable piezo-materials and devices for extremely small force generation and sensing.”

    z
    Xiang Zhang directs Berkeley Lab’s Materials Sciences Division (photo by Roy Kaltschmidt, Berkeley Lab)

    Zhang, who holds the Ernest S. Kuh Endowed Chair at the University of California (UC) Berkeley and is a member of the Kavli Energy NanoSciences Institute at Berkeley, is the corresponding author of a paper in Nature Nanotechnology describing this research. The paper is titled Observation of Piezoelectricity in Free-standing Monolayer MoS2. The co-lead authors are Hanyu Zhu and Yuan Wang, both members of Zhang’s UC Berkeley research group. (See below for a complete list of co-authors.)

    Since its discovery in 1880, the piezoelectric effect has found wide application in bulk materials, including actuators, sensors and energy harvesters. There is rising interest in using nanoscale piezoelectric materials to provide the lowest possible power consumption for on/off switches in MEMS and other types of electronic computing systems. However, when material thickness approaches a single molecular layer, the large surface energy can cause piezoelectric structures to be thermodynamically unstable.

    Over the past couple of years, Zhang and his group have been carrying out detailed studies of molybdenum disulfide, a 2D semiconductor that features high electrical conductance comparable to that of graphene, but, unlike graphene, has natural energy band-gaps, which means its conductance can be switched off.

    “Transition metal dichalcogenides such as molybdenum disulfide can retain their atomic structures down to the single layer limit without lattice reconstruction, even in ambient conditions,” Zhang says. “Recent calculations predicted the existence of piezoelectricity in these 2D crystals due to their broken inversion symmetry. To test this, we combined a laterally applied electric field with nano-indentation in an atomic force microscope for the measurement of piezoelectrically-generated membrane stress.”

    m
    To maximize piezoelectric coupling, electrodes (yellow dashed lines) were defined parallel to the zigzag edges (white dashed lines) of the MoS2 monolayer. Green and red colors denote the intensity of reflection and photoluminescence respectively.

    Zhang and his group used a free-standing molybdenum disulfide single layer crystal to avoid any substrate effects, such as doping and parasitic charge, in their measurements of the intrinsic piezoelectricity. They recorded a piezoelectric coefficient of 2.9×10-10 C/m, which is comparable to many widely used materials such as zinc oxide and aluminum nitride.

    “Knowing the piezoelectric coefficient is important for designing atomically thin devices and estimating their performance,” says Nature paper co-lead author Zhu. “The piezoelectric coefficient we found in molybdenum disulfide is sufficient for use in low-power logic switches and biological sensors that are sensitive to molecular mass limits.”

    Zhang, Zhu and their co-authors also discovered that if several single layers of molybdenum disulfide crystal were stacked on top of one another, piezoelectricity was only present in the odd number of layers (1,3,5, etc.)

    “This discovery is interesting from a physics perspective since no other material has shown similar layer-number sensitivity,” Zhu says. “The phenomenon might also prove useful for applications in which we want devices consisting of as few as possible material types, where some areas of the device need to be non-piezoelectric.”

    In addition to logic switches and biological sensors, piezoelectricity in molybdenum disulfide crystals might also find use in the potential new route to quantum computing and ultrafast data-processing called “valleytronics.” In valleytronics, information is encoded in the spin and momentum of an electron moving through a crystal lattice as a wave with energy peaks and valleys.

    “Some types of valleytronic devices depend on absolute crystal orientation, and piezoelectric anisotropy can be employed to determine this,’ says Nature paper co-lead author Wang. “We are also investigating the possibility of using piezoelectricity to directly control valleytronic properties such as circular dichroism in molybdenum disulfide.”

    In addition to Zhang, Zhu and Wang, other co-authors of the Nature paper were Jun Xiao, Ming Liu, Shaomin Xiong, Zi Jing Wong, Ziliang Ye, Yu Ye and Xiaobo Yin.

    This research was supported by Light-Material Interactions in Energy Conversion, an Energy Frontier Research Center led by the California Institute of Technology, in which Berkeley Lab is a major partner. The Energy Frontier Research Center program is supported by DOE’s Office of Science.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 5:08 pm on December 17, 2014 Permalink | Reply
    Tags: , , Energy, ,   

    From LBL: “Switching to Spintronics” 

    Berkeley Logo

    Berkeley Lab

    December 17, 2014
    Lynn Yarris (510) 486-5375

    In a development that holds promise for future magnetic memory and logic devices, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Cornell University successfully used an electric field to reverse the magnetization direction in a multiferroic spintronic device at room temperature. This demonstration, which runs counter to conventional scientific wisdom, points a new way towards spintronics. and smaller, faster and cheaper ways of storing and processing data.

    s
    Conceptual illustration of how magnetism is reversed (see compass) by the application of an electric field (blue dots) applied across gold capacitors. Blurring of compass needles under electric field represents two-step process. (Image courtesy of John Heron, Cornell)

    “Our work shows that 180-degree magnetization switching in the multiferroic bismuth ferrite can be achieved at room temperature with an external electric field when the kinetics of the switching involves a two-step process,” says Ramamoorthy Ramesh, Berkeley Lab’s Associate Laboratory Director for Energy Technologies, who led this research. “We exploited this multi-step switching process to demonstrate energy-efficient control of a spintronic device.”

    Ramesh, who also holds the Purnendu Chatterjee Endowed Chair in Energy Technologies at the University of California (UC) Berkeley, is the senior author of a paper describing this research in Nature. The paper is titled Deterministic switching of ferromagnetism at room temperature using an electric field. John Heron, now with Cornell University, is the lead and corresponding author. (See below for full list of co-authors).

    r
    Ramamoorthy Ramesh is Berkeley Lab’s Associate Laboratory Director for Energy Technologies, a UC Berkeley professor, and a leading authority on multiferroics. (Photo by Roy Kaltschmidt)

    Multiferroics are materials in which unique combinations of electric and magnetic properties can simultaneously coexist. They are viewed as potential cornerstones in future data storage and processing devices because their magnetism can be controlled by an electric field rather than an electric current, a distinct advantage as Heron explains.

    “The electrical currents that today’s memory and logic devices rely on to generate a magnetic field are the primary source of power consumption and heating in these devices,” he says. “This has triggered significant interest in multiferroics for their potential to reduce energy consumption while also adding functionality to devices.”

    Nature, however, has imposed thermodynamic barriers and material symmetry constrains that theorists believed would prevent the reversal of magnetization in a multiferroic by an applied electric field. Earlier work by Ramesh and his group with bismuth ferrite, the only known thermodynamically stable room-temperature multiferroic, in which an electric field was used as on/off switch for magnetism, suggested that the kinetics of the switching process might be a way to overcome these barriers, something not considered in prior theoretical work.

    “Having made devices and done on/off switching with in-plane electric fields in the past, it was a natural extension to study what happens when an out-of-plane electric field is applied,” Ramesh says.

    Ramesh, Heron and their co-authors set up a theoretical study in which an out-of-plane electric field – meaning it ran perpendicular to the orientation of the sample – was applied to bismuth ferrite films. They discovered a two-step switching process that relies on ferroelectric polarization and the rotation of the oxygen octahedral.

    j
    John Heron is the lead author of a Nature paper describing the switching of ferromagnetism at room temperature using an electric field.

    “The two-step switching process is key as it allows the octahedral rotation to couple to the polarization,” Heron says. “The oxygen octahedral rotation is also critical because it is the mechanism responsible for the ferromagnetism in bismuth ferrite. Rotation of the oxygen octahedral also allows us to couple bismuth ferrite to a good ferromagnet such as cobalt-iron for use in a spintronic device.”

    To demonstrate the potential technological applicability of their technique, Ramesh, Heron and their co-authors used heterostructures of bismuth ferrite and cobalt iron to fabricate a spin-valve, a spintronic device consisting of a non-magnetic material sandwiched between two ferromagnets whose electrical resistance can be readily changed. X-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) images showed a clear correlation between magnetization switching and the switching from high-to-low electrical resistance in the spin-valve. The XMCD-PEEM measurements were completed at PEEM-3, an aberration corrected photoemission electron microscope at beamline 11.0.1 of Berkeley Lab’s Advanced Light Source.

    LBL Advanced Light Source
    LBL ALS interior
    LBL ALS

    “We also demonstrated that using an out-of-plane electric field to control the spin-valve consumed energy at a rate of about one order of magnitude lower than switching the device using a spin-polarized current,” Ramesh says.

    In addition to Ramesh and Heron, other co-authors of the Nature paper were James Bosse, Qing He, Ya Gao, Morgan Trassin, Linghan Ye, James Clarkson, Chen Wang, Jian Liu, Sayeef Salahuddin, Dan Ralph, Darrell Schlom, Jorge Iniguez and Bryan Huey.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 8:36 pm on December 8, 2014 Permalink | Reply
    Tags: , , Energy, , ,   

    From PPPL: “Monumental effort: How a dedicated team completed a massive beam-box relocation for the NSTX upgrade” 


    PPPL

    December 8, 2014
    By John Greenwald

    Your task: Take apart, decontaminate, refurbish, relocate, reassemble, realign and reinstall a 75-ton neutral beam box that will add a second beam box to the National Spherical Torus Experiment-Upgrade (NSTX-U) and double the experiment’s heating power. Oh, and while you’re at it, hoist the two-story tall box over a 22-foot wall.

    Members of the “Beam Team” faced those challenges when moving the huge box from the Tokamak Fusion Test Reactor (TFTR) cell to the NSTX-U cell. The task required all the savvy of the PPPL engineers and technicians who make up the veteran team. “They’re a tight-knit group that really knows what they’re doing,” said Mike Williams, director of engineering and infrastructure and associate director of PPPL and a former member of the team himself.

    The second box is one of the two major components of the upgrade that will make NSTX-U the most powerful spherical tokamak fusion facility in the world when construction is completed early next year. The new center stack that serves as the other component will double the strength and duration of the magnetic field that controls the plasma that fuels fusion reactions.

    The two new components will work together hand-in-glove. The stronger magnetic field will increase the confinement time for the plasma while the second beam box performs double-duty. Its beams will raise the temperature of the plasma and will help to maintain a current in the plasma to demonstrate that future tokamaks can operate in a continuous condition known as a “steady state.” The second box is “an absolutely crucial part of the upgrade,” said Masayuki Ono, project director for the NSTX-U.

    PPPL Tokamak
    PPPL Tokamak

    Work began in 2009

    Work on the second beam box began in 2009 when technicians clad in protective clothing dismantled and decontaminated the box as it sat in the TFTR test cell. While the box had used radioactive tritium to heat the plasma in TFTR, no tritium will be used in NSTX-U experiments.

    The decontamination took huge effort, said Tim Stevenson, who led the beam box project. Workers wearing protective garb used cloths, Windex and sprayers with deionized water to clean every part of the box by hand, and went over each part as many as 50 separate times. The cloths were then packaged and shipped to a Utah radiation-waste disposal site.

    Next came the task of moving the beam box and its cleaned and refurbished components out of the TFTR area and into the NSTX-U test cell next door. But how do you get something so massive to budge?

    The Beam Team solved the problem with air casters, said Ron Strykowsky, who heads the NSTX-U upgrade program. Using a ceiling crane, workers lifted the box onto the casters, which floated the load on a cushion of air just above the floor, enabling forklifts to tow it. Technicians then removed some hardware from the large doorway between the two test cells so the beam box could get through.

    The doorway led to a section of the NSTX-U area that is separated from the vacuum vessel by a 22-foot shield wall — a barrier too high for the box and its lid to clear when suspended by sling from a crane. Workers surmounted the problem by first lifting the box and then the lid, which had been removed during the decontamination process. The parts cleared the wall and sailed over the vacuum vessel before coming to rest on the test cell floor. The vessel itself was wrapped in plastic to prevent contamination from any tritium that might still be in the box and the lid as they swung by overhead.

    “Like rebuilding a ship in a bottle”

    The beam box was now ready to be reassembled and reinstalled. But carving out room for all the parts and equipment, including power supplies, cables, and cooling water pipes, proved difficult. “There were so many conflicting demands for space that it was like rebuilding a ship in a bottle,” Stevenson said, citing a remark originally made by engineer Larry Dudek, who heads the center stack upgrade project. “There was no existing footprint,” Stevenson said. “We had to make our own footprint.”

    Technicians needed to cut a port into the vacuum vessel for the beam to pass through. But the supplier-built unit that connected the box to the vessel left too much space between the unit and this new port, requiring the Welding Shop to fill in the gap. “The Welding Shop saved the port,” Stevenson said.

    Still another challenge called for ensuring that the beam would enter the plasma at precisely the angle that NSTX-U specifications required. Complicating this task was the test cell’s uneven floor, which meant that the position of the box also had to be adjusted. To align the beam, engineers used measurements to derive a bull’s-eye on the inside of the vessel; technicians then used laser technology to zero in on the target. The joint effort aligned the beam to within 80 thousands of an inch of the target.

    Installing power supplies

    Left to complete was installation of power supplies, a task accomplished earlier this year. The job called for bringing three orange high-voltage enclosures — the source of the power — up from a basement area and into the test cell through a hatch in the floor. Taken together, the two NSTX-U beam boxes will have the capacity to put up to 18 megawatts of power into the plasma, enough to briefly light some 20,000 homes.

    When asked to name the greatest challenge the project encountered, Stevenson replied, “The whole thing was fraught with challenges and difficulties. It was a monumental team effort that took a great deal of preparation. And when it was show-time, everyone showed up.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

     
  • richardmitnick 6:01 pm on November 26, 2014 Permalink | Reply
    Tags: , , , Energy,   

    From Caltech: “New Technique Could Harvest More of the Sun’s Energy” 

    Caltech Logo
    Caltech

    11/26/2014
    Jessica Stoller-Conrad

    As solar panels become less expensive and capable of generating more power, solar energy is becoming a more commercially viable alternative source of electricity. However, the photovoltaic cells now used to turn sunlight into electricity can only absorb and use a small fraction of that light, and that means a significant amount of solar energy goes untapped.

    A new technology created by researchers from Caltech, and described in a paper published online in the October 30 issue of Science Express, represents a first step toward harnessing that lost energy.

    m
    An ultra-sensitive needle measures the voltage that is generated while the nanospheres are illuminated.
    Credit: AMOLF/Tremani – Figure: Artist impression of the plasmo-electric effect.

    Sunlight is composed of many wavelengths of light. In a traditional solar panel, silicon atoms are struck by sunlight and the atoms’ outermost electrons absorb energy from some of these wavelengths of sunlight, causing the electrons to get excited. Once the excited electrons absorb enough energy to jump free from the silicon atoms, they can flow independently through the material to produce electricity. This is called the photovoltaic effect—a phenomenon that takes place in a solar panel’s photovoltaic cells.

    Although silicon-based photovoltaic cells can absorb light wavelengths that fall in the visible spectrum—light that is visible to the human eye—longer wavelengths such as infrared light pass through the silicon. These wavelengths of light pass right through the silicon and never get converted to electricity—and in the case of infrared, they are normally lost as unwanted heat.

    “The silicon absorbs only a certain fraction of the spectrum, and it’s transparent to the rest. If I put a photovoltaic module on my roof, the silicon absorbs that portion of the spectrum, and some of that light gets converted into power. But the rest of it ends up just heating up my roof,” says Harry A. Atwater, the Howard Hughes Professor of Applied Physics and Materials Science; director, Resnick Sustainability Institute, who led the study.

    Now, Atwater and his colleagues have found a way to absorb and make use of these infrared waves with a structure composed not of silicon, but entirely of metal.

    The new technique they’ve developed is based on a phenomenon observed in metallic structures known as plasmon resonance. Plasmons are coordinated waves, or ripples, of electrons that exist on the surfaces of metals at the point where the metal meets the air.

    While the plasmon resonances of metals are predetermined in nature, Atwater and his colleagues found that those resonances are capable of being tuned to other wavelengths when the metals are made into tiny nanostructures in the lab.

    “Normally in a metal like silver or copper or gold, the density of electrons in that metal is fixed; it’s just a property of the material,” Atwater says. “But in the lab, I can add electrons to the atoms of metal nanostructures and charge them up. And when I do that, the resonance frequency will change.”

    “We’ve demonstrated that these resonantly excited metal surfaces can produce a potential”—an effect very similar to rubbing a glass rod with a piece of fur: you deposit electrons on the glass rod. “You charge it up, or build up an electrostatic charge that can be discharged as a mild shock,” he says. “So similarly, exciting these metal nanostructures near their resonance charges up those metal structures, producing an electrostatic potential that you can measure.”

    This electrostatic potential is a first step in the creation of electricity, Atwater says. “If we can develop a way to produce a steady-state current, this could potentially be a power source. He envisions a solar cell using the plasmoelectric effect someday being used in tandem with photovoltaic cells to harness both visible and infrared light for the creation of electricity.

    Although such solar cells are still on the horizon, the new technique could even now be incorporated into new types of sensors that detect light based on the electrostatic potential.

    “Like all such inventions or discoveries, the path of this technology is unpredictable,” Atwater says. “But any time you can demonstrate a new effect to create a sensor for light, that finding has almost always yielded some kind of new product.”

    This work was published in a paper titled, Plasmoelectric Potentials in Metal Nanostructures. Other coauthors include first author Matthew T. Sheldon, a former postdoctoral scholar at Caltech; Ana M. Brown, an applied physics graduate student at Caltech; and Jorik van de Groep and Albert Polman from the FOM Institute AMOLF in Amsterdam. The study was funded by the Department of Energy, the Netherlands Organization for Scientific Research, and an NSF Graduate Research Fellowship.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 425 other followers

%d bloggers like this: