Tagged: eBOSS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:27 am on June 25, 2017 Permalink | Reply
    Tags: , , , , , D.O.E. Office of Science, , eBOSS, , Lambda-Cold Dark Matter Accelerated Expansion of the Universe, ,   

    From US D.O.E. Office of Science: “Our Expanding Universe: Delving into Dark Energy” 

    DOE Main

    Department of Energy Office of Science

    06.21.17
    Shannon Brescher Shea
    shannon.shea@science.doe.gov

    Space is expanding ever more rapidly and scientists are researching dark energy to understand why.

    1
    This diagram shows the timeline of the universe, from its beginnings in the Big Bang to today. Image courtesy of NASA/WMAP Science Team.

    The universe is growing a little bigger, a little faster, every day.

    And scientists don’t know why.

    If this continues, almost all other galaxies will be so far away from us that one day, we won’t be able to spot them with even the most sophisticated equipment. In fact, we’ll only be able to spot a few cosmic objects outside of the Milky Way. Fortunately, this won’t happen for billions of years.

    But it’s not supposed to be this way – at least according to theory. Based on the fact that gravity pulls galaxies together, Albert Einstein’s theory predicted that the universe should be expanding more slowly over time. But in 1998, astrophysicists were quite surprised when their observations showed that the universe was expanding ever faster. Astrophysicists call this phenomenon “cosmic acceleration.”

    “Whatever is driving cosmic acceleration is likely to dominate the future evolution of the universe,” said Josh Frieman, a researcher at the Department of Energy’s (DOE) Fermilab [FNAL] and director of the Dark Energy Survey.


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

    While astrophysicists know little about it, they often use “dark energy” as shorthand for the cause of this expansion. Based on its effects, they estimate dark energy could make up 70 percent of the combined mass and energy of the universe. Something unknown that both lies outside our current understanding of the laws of physics and is the major influence on the growth of the universe adds up to one of the biggest mysteries in physics. DOE’s Office of Science is supporting a number of projects to investigate dark energy to better understand this phenomenon.

    The Start of the Universe

    Before scientists can understand what is causing the universe to expand now, they need to know what happened in the past. The energy from the Big Bang drove the universe’s early expansion. Since then, gravity and dark energy have engaged in a cosmic tug of war. Gravity pulls galaxies closer together; dark energy pushes them apart. Whether the universe is expanding or contracting depends on which force dominates, gravity or dark energy.

    Just after the Big Bang, the universe was much smaller and composed of an extremely high-energy plasma. This plasma was vastly different from anything today. It was so dense that it trapped all energy, including light. Unlike the current universe, which has expanses of “empty” space dotted by dense galaxies of stars, this plasma was nearly evenly distributed across that ancient universe.

    As the universe expanded and became less dense, it cooled. In a blip in cosmic time, protons and electrons combined to form neutral hydrogen atoms. When that happened, light was able to stream out into the universe to form what is now known as the “cosmic microwave background [CMB].”

    CMB per ESA/Planck


    ESA/Planck

    Today’s instruments that detect the cosmic microwave background provide scientists with a view of that early universe.

    Back then, gravity was the major force that influenced the structure of the universe. It slowed the rate of expansion and made it possible for matter to coalesce. Eventually, the first stars appeared about 400 million years after the Big Bang. Over the next several billion years, larger and larger structures formed: galaxies and galaxy clusters, containing billions to quadrillions (a million billion) of stars. While these cosmic objects formed, the space between galaxies continued to expand, but at an ever slower rate thanks to gravitational attraction.

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    But somewhere between 3 and 7 billion years after the Big Bang, something happened: instead of the expansion slowing down, it sped up. Dark energy started to have a bigger influence than gravity. The expansion has been accelerating ever since.

    Scientists used three different types of evidence to work out this history of the universe. The original evidence in 1998 came from observations of a specific type of supernova [Type 1a]. Two other types of evidence in the early 2000s provided further support.

    “It was this sudden avalanche of results through cosmology,” said Eric Linder, a Berkeley Lab researcher and Office of Science Cosmic Frontier program manager.

    Now, scientists estimate that galaxies are getting 0.007 percent further away from each other every million years. But they still don’t know why.

    What is Dark Energy?

    “Cosmic acceleration really points to something fundamentally different about how the forces of the universe work,” said Daniel Eisenstein, a Harvard University researcher and former director of the Sloan Digital Sky Survey. “We know of four major forces: gravity, electromagnetism, and the weak and strong forces. And none of those forces can explain cosmic acceleration.”

    So far, the evidence has spurred two competing theories.

    The leading theory is that dark energy is the “cosmological constant,” a concept Albert Einstein created in 1917 to balance his equations to describe a universe in equilibrium. Without this cosmological constant to offset gravity, a finite universe would collapse into itself.

    Today, scientists think the constant may represent the energy of the vacuum of space. Instead of being “empty,” this would mean space is actually exerting pressure on cosmic objects. If this idea is correct, the distribution of dark energy should be the same everywhere.

    All of the observations fit this idea – so far. But there’s a major issue. The theoretical equations and the physical measurements don’t match. When researchers calculate the cosmological constant using standard physics, they end up with a number that is off by a huge amount: 1 X 10^120 (1 with 120 zeroes following it).

    “It’s hard to make a math error that big,” joked Frieman.

    That major difference between observation and theory suggests that astrophysicists do not yet fully understand the origin of the cosmological constant, even if it is the cause of cosmic acceleration.

    The other possibility is that “dark energy” is the wrong label altogether. A competing theory posits that the universe is expanding ever more rapidly because gravity acts differently at very large scales from what Einstein’s theory predicts. While there’s less evidence for this theory than that for the cosmological constant, it’s still a possibility.

    The Biggest Maps of the Universe

    To collect evidence that can prove or disprove these theories, scientists are creating a visual history of the universe’s expansion. These maps will allow astrophysicists to see dark energy’s effects over time. Finding that the structure of the universe changed in a way that’s consistent with the cosmological constant’s influence would provide strong evidence for that theory.

    There are two types of surveys: imaging and spectroscopic. The Dark Energy Survey and Large Synoptic Survey Telescope (LSST) are imaging surveys, while the Baryon Oscillation Spectroscopic Survey (part of the Sloan Digital Sky Survey), eBOSS, and the Dark Energy Spectroscopic Instrument are spectroscopic.


    LSST Camera, built at SLAC



    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    BOSS Supercluster Baryon Oscillation Spectroscopic Survey (BOSS)

    LBNL/DESI Dark Energy Spectroscopic Instrument for the Nicholas U. Mayall 4-meter telescope at Kitt Peak National Observatory near Tucson, Ariz, USA

    Imaging surveys use giant cameras – some the size of cars – to take photos of the night sky. The farther away the object, the longer the light has taken to reach us. Taking pictures of galaxies, galaxy clusters, and supernovae at various distances shows how the distribution of matter has changed over time. The Dark Energy Survey, which started collecting data in 2013, has already photographed more than 300 million galaxies. By the time it finishes in 2018, it will have taken pictures of about one-eighth of the entire night sky. The LSST will further expand what we know. When it starts in 2022, the LSST will use the world’s largest digital camera to take pictures of 20 billion galaxies.

    “That is an amazing number. It could be 10% of all of the galaxies in the observable universe,” said Steve Kahn, a professor of physics at Stanford and LSST project director.

    However, these imaging surveys miss a key data point – how fast the Milky Way and other galaxies are moving away from each other. But spectroscopic surveys that capture light outside the visual spectrum can provide that information. They can also more accurately estimate how far away galaxies are. Put together, this information allows astrophysicists to look back in time.

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the larger Sloan Digital Sky Survey, was one of the biggest projects to take, as the name implies, a spectroscopic approach. It mapped more than 1.2 million galaxies and quasars.

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    However, there’s a major gap in BOSS’s data. It could measure what was going on 5 billion years ago using bright galaxies and 10 billion years ago using bright quasars. But it had nothing about what was going on in-between. Unfortunately, this time period is most likely when dark energy started dominating.

    “Seven billion years ago, dark energy starts to really dominate and push the universe apart more rapidly. So we’re making these maps now that span that whole distance. We start in the backyard of the Milky Way, our own galaxy, and we go out to 7 billion light years,” said David Schlegel, a Berkeley Lab researcher who is the BOSS principal investigator. That 7 billion light years spans the time from when the light was originally emitted to it reaching our telescopes today.

    Two new projects are filling that gap: the eBOSS survey and the Dark Energy Spectroscopic Instrument (DESI). eBOSS will target the missing time span from 5 to 7 billion years ago.

    4
    SDSS eBOSS.

    DESI will go back even further – 11 billion light years. Even though the dark energy was weaker then relative to gravity, surveying a larger volume of space will allow scientists to make even more precise measurements. DESI will also collect 10 times more data than BOSS. When it starts taking observations in 2019, it will measure light from 35 million galaxies and quasars.

    “We now realize that the majority of … the universe is stuff that we’ll never be able to directly measure using experiments here on Earth. We have to infer their properties by looking to the cosmos,” said Rachel Bean, a researcher at Cornell University who is the spokesperson for the LSST Dark Energy Science Collaboration. Solving the mystery of the galaxies rushing away from each other, “really does present a formidable challenge in physics. We have a lot of work to do.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The mission of the Energy Department is to ensure America’s security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions.

    Science Programs Organization

    The Office of Science manages its research portfolio through six program offices:

    Advanced Scientific Computing Research
    Basic Energy Sciences
    Biological and Environmental Research
    Fusion Energy Sciences
    High Energy Physics
    Nuclear Physics

    The Science Programs organization also includes the following offices:

    The Department of Energy’s Small Business Innovation Research and Small Business Technology Transfer Programs, which the Office of Science manages for the Department;
    The Workforce Development for Teachers and Students program sponsors programs helping develop the next generation of scientists and engineers to support the DOE mission, administer programs, and conduct research; and
    The Office of Project Assessment provides independent advice to the SC leadership regarding those activities essential to constructing and operating major research facilities.

     
  • richardmitnick 7:08 am on August 1, 2016 Permalink | Reply
    Tags: , , , eBOSS, ,   

    From SDSS: “THIRTEENTH DATA RELEASE” 

    SDSS Science blog bloc

    Science Blog from the SDSS

    July 31, 2016
    Zheng Zheng

    This weekend, the Sloan Digital Sky Survey (SDSS) is celebrating its thirteenth public data release, or lucky DR13!

    Data releases are an important part of the SDSS. All the data that are observed by the Sloan Telescope for the various surveys that are part of SDSS, get reduced and processed, and eventually are made publicly available. This means that everyone with access to the internet can download the data, use it for their research or teaching, or simply look at all the images and spectra that are available. You just have to go to the SDSS website, and you can start exploring the data for yourself!

    So, what does DR13 have in store for you? Apart from including all the data that was released in previous data releases, there is also lots of new data:

    DR13 is the first data release for the MaNGA survey! MaNGA stands for Mapping Nearby Galaxies at Apache Point Observatory, and it studies galaxies with integral-field spectroscopy. This allows us to study chemical elements and motions of stars and gas not just in the centre of the galaxies, but all over the galaxy outskirts too. MaNGA is releasing its spectra in datacubes for 1351 individual galaxies, making it the biggest integral-field galaxy survey available on-line so far!

    APOGEE, or the APO Galaxy Evolution Experiment is taking infra-red spectra for hundreds of thousands of stars in the Milky Way. For this data release, they have improved the analysis of all their previously released spectra, and measured the abundances of various chemical elements of stars. This will help us understand how the Milky Way formed over time.

    eBOSS, short for extended Baryon Oscillation Spectroscopic Survey, is mapping the structure of the Universe, by taking spectra of more than a million galaxies and quasars. Its goal is to measure the expansion rate of the Universe, and the nature of the mysterious Dark Energy that accelerates this expansion. eBOSS is releasing improved analysis of previously released spectra, as well as several catalogs with information on emission line galaxies and variable quasars.

    Do you want to have a look at all of this data? Here are some places to get started:

    The SDSS SkyServer has several tools to explore the data. You can for instance:
    find stars and galaxies in the Navigate tool
    look at images and spectra of stars and galaxies with the QuickLook tool
    search for a particular sample of galaxies or stars with SQL

    If you are interested in analyzing the data yourself, then you can find more information on how to download the data on the SDSS data access page

    If you are a teacher and interested in activities that will help your students explore the Universe, then have a look at our SDSS education web page, with lots of resources for the class room.

    Anne-Marie Weijmans
    SDSS Data Release Coordinator
    University of St Andrews

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    After nearly a decade of design and construction, the Sloan Digital Sky Survey saw first light on its giant mosaic camera in 1998 and entered routine operations in 2000. While the collaboration and scope of the SDSS have changed over the years, many of its key principles have stayed fixed: the use of highly efficient instruments and software to enable astronomical surveys of unprecedented scientific reach, a commitment to creating high quality public data sets, and investigations that draw on the full range of expertise in a large international collaboration. The generous support of the Alfred P. Sloan Foundation has been crucial in all phases of the SDSS, alongside support from the Participating Institutions and national funding agencies in the U.S. and other countries.

    The Sloan Digital Sky Survey has created the most detailed three-dimensional maps of the Universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

    In its first five years of operations, the SDSS carried out deep multi-color imaging over 8000 square degrees and measured spectra of more than 700,000 celestial objects. With an ever-growing collaboration, SDSS-II (2005-2008) completed the original survey goals of imaging half the northern sky and mapping the 3-dimensional clustering of one million galaxies and 100,000 quasars. SDSS-II carried out two additional surveys: the Supernova Survey, which discovered and monitored hundreds of supernovae to measure the expansion history of the universe, and the Sloan Extension for Galactic Understanding and Exploration (SEGUE), which extended SDSS imaging towards the plane of the Galaxy and mapped the motions and composition of more than a quarter million Milky Way stars.

    SDSS-III (2008-2014) undertook a major upgrade of the venerable SDSS spectrographs and added two powerful new instruments to execute an interweaved set of four surveys, mapping the clustering of galaxies and intergalactic gas in the distant universe (BOSS), the dynamics and chemical evolution of the Milky Way (SEGUE-2 and APOGEE), and the population of extra-solar giant planets (MARVELS).

    The latest generation of the SDSS (SDSS-IV, 2014-2020) is extending precision cosmological measurements to a critical early phase of cosmic history (eBOSS), expanding its revolutionary infrared spectroscopic survey of the Galaxy in the northern and southern hemispheres (APOGEE-2), and for the first time using the Sloan spectrographs to make spatially resolved maps of individual galaxies (MaNGA).

    This is the “Science blog” of the SDSS. Here you’ll find short descriptions of interesting scientific research and discoveries from the SDSS. We’ll also update on activities of the collaboration in public engagement and other arenas. We’d love to see your comments and questions about what you read here!

    You can explore more on the SDSS Website.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: