Tagged: Earthquakes Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:52 am on January 24, 2019 Permalink | Reply
    Tags: , Earthquakes, Peru-Chile Trench, , , Strong shaking from central coastal Chile earthquake, , What does it reveal about the next megathrust shock?   

    From temblor: “Strong shaking from central coastal Chile earthquake: What does it reveal about the next megathrust shock?” 

    1

    From temblor

    January 20, 2019
    Jason Patton

    Jason R. Patton, Ph.D.; Jean Baptiste Ammirati, Ph.D., University of Chile National Seismological Center; Ross Stein, Ph.D.; Volkan Sevilgen, M.Sc.

    “It is clear to many of us that the Coquimbo region has an unusual, increasing seismicity that may be preparing the area for a very large earthquake near the end of the present century.”

    Raul Madariaga, Ecole Normale Superieure (Paris) and Universidad de Chile (Santiago)

    An earthquake located just beneath the subduction zone of the Peru-Chile Trench strongly shook Coquimbo and La Serena, and was felt up to 400 km away in Santiago. This quake struck just north of the edge of the M=8.3 Illapel megathrust earthquake, which launched a destructive tsunami in 2015.

    Deep earthquake was felt broadly

    On 20 January 2019 there was an M=6.7 earthquake along the convergent plate boundary on the west coast of Chile, about the same size as the 1994 Northridge quake in southern California or about the size of an earthquake that might hit the San Francisco Bay area In northern CA. The earthquake was quite deep (53 km, or about 33 miles), so was not as damaging as those CA examples. However, it was broadly felt with over 800 USGS Did You Feel It reports at the time we write this article.

    1
    Reports from the USGS Did You Feel It website survey

    For most earthquakes that have a potential to damage people, buildings, or infrastructure, the U.S. Geological Survey prepares an estimate of these types of damage. The PAGER alert is based on the strength of measured and modeled shaking (explained in greater detail here). For this M=6.7 earthquake PAGER assigns a 43% chance that there will be between 10 and 100 fatalities, and a 53% chance that there will be economic losses between $10 and $100 million (USD).

    The largest city near the earthquake, Coquimbo, was hit by a tsunami in 2015 when the adjacent section of the subduction zone ruptured. Below is a photo taken following the 2015 M=8.3 earthquake and tsunami. There are over 300,000 people in Coquimbo and the nearby city of La Serena that likely experienced strong to severe shaking intensity from the M=6.7 event. We were quite surprised that the M=6.7 actually caused as much damage as it has, especially in comparison with the 2015 M=8.3 earthquake, which shook less despite being about 300 times larger.

    The Chilean Navy (SHOA) alert system worked very well yesterday. The SHOA tsunami alert that was withdrawn about 30 min after the earthquake, once it was clear that this was not a subduction event. During that half hour, several thousand people followed instructions and took evacuation routes until told to return. This is a valuable test-run of tsunami warnings, and a credit to Chile.

    Plate motions: locked or slipping?

    The deep marine trench offshore the west coast of Chile is formed by a subduction zone where the Nazca plate is shoved beneath the South America plate. This megathrust fault has a variety of material properties and structures that appear to control where the plates are locked, and so accumulating stress towards the next large earthquake, and where they are slipping ‘aseismically’ past each other, and so with a low likelihood of hosting a great quake.

    Below is a map that shows the location of plate boundaries in the region. The majority of high hazard is associated with the subduction zone fault.

    2
    Seismic hazard for South America (Rhea et al., 2010). The numbers (“80”) indicate the rate at which the Nazca Plate is subducting beneath South America. 80 mm/yr = 3 in/yr.

    Are you in earthquake country? Do you know what the earthquake hazards are where you live, work, or play? Temblor uses a model like the USGS model to forecast the chance that an area may have an earthquake. Learn more about your temblor earthquake score here.

    These locked zones are generally where megathrust earthquakes nucleate. In Chile, below a depth of about 50 km (~30 miles) the plate interface is not locked (Gardi et al., 2017), so megathrust fault earthquakes are generally shallower than this depth. Earthquakes deeper than this generally occur within the Nazca plate slab, called ‘slab’ earthquakes because they lie are within the subducting slab. Often these slab earthquakes are extensional, as was the 20 January 2019 M=6.7 quake.

    3
    Cross section of the subduction zone that forms the Chile Trench.

    Below is an aftershock map prepared by Jean-Baptise Ammirati at the University of Chile and the Chilean National Seismic Network.

    4
    We have added the arrows to suggest that the aftershock alignment hints at a west-dipping tensional fault.

    Earthquake history along the Peru-Chile trench

    Much of the megathrust has slipped during earthquakes in the 20th and 21st centuries. The historic record of earthquakes is shown in the figure below. The vertical lines represent the size and extent of the earthquake. The largest earthquake ever recorded by seismometers was the 1960 M=9.5 Chile shock that caused widespread damage, triggered landslides, and generated a trans-oceanic tsunami that destroyed the built environment and caused casualties in Hawaii, Japan, and the west coast of the USA (e.g. Crescent City).

    In 1922 there was an M=8.5 earthquake in the region of today’s M=6.7 quake (Ruiz and Madariaga, 2018). According to Dr. Raul Madariaga, this 1922 event was a subduction zone earthquake that generated a trans-oceanic tsunami which caused damage in Japan and launched a 9m (30 feet) wave just north or Coquimbo, Chile. There has not been a large earthquake in the area of the 1922 earthquake in almost a century, a time longer than average when compared to the rest of the subduction zone. Nevertheless, there was a 129-year pause between the 1877 and 2005 events to the north.

    Also remarkable is the apparent northward progression of great quakes with time from the 1922 event, to 1946, 1966, 1995, 2007, and 2014, for a distance of 1200 km (11° of latitude).

    5
    Historic earthquake record (on the left) coincides with the map of the megathrust showing an estimate of where the fault is stuck and where it may be freely slipping. The M=6.7 earthquake epicenter is located near the blue star. Slab earthquakes are labeled with a gray star (e.g. 1997 discussed below).

    The nearby 1997 sequence started from the north and advanced to the south during the
    month of July 1997, until it produced the 15 October Punitaqui 1997 earthquake. Seismologists will monitor this event to see if there is any seismic migration, which is rare.

    Geologists use GPS data, remote sensing data, and physical measurements of the Earth to monitor how the Earth deforms during the earthquake cycle. The observations can be “inverted” to estimate where the fault is locked and where it is slipping. The figure above shows an interpretation of where the subduction zone fault is locked, and where it may be slipping. Note how the M=6.7 earthquake struck in an area where the megathrust may be freely slipping.

    What does it mean?

    The historic record of earthquakes along the subduction zone makes clear that the absence of megathrust earthquakes for almost a century at the location of the M=6.7 event is unusually long. While it is possible that the Coquimbo portion of the megathrust is not fully locked, it would be prudent for those living along the coast of Chile would to practice their earthquake drills and prepare their homes and finances to withstand effects from a future large earthquake.

    Stay tuned to the latest news about earthquake, tsunami, landslide, liquefaction, and other natural hazards by signing up for our free email service here.

    Citation: Patton J.R., Ammirati J.B. ,Stein R.S., Sevilgen V., 2019, Strong shaking from central coastal Chile earthquake: What does it reveal about the next megathrust shock?, Temblor, http://doi.org/10.32858/temblor.012

    References

    Beck, S., Barrientos, S., Kausel, E., and Reyes, M., 1998. Source Characteristics of Historic Earthquakes along the Central Chile Subduction Zone in Journal of South American Earth Sciences, v. 11, no. 2, p. 115-129, https://doi.org/10.1016/S0895-9811(98)00005-4

    Gardi, A., A. Lemoine, R. Madariaga, and J. Campos (2006), Modeling of stress transfer in the Coquimbo region of central Chile, J. Geophys. Res., 111, B04307, https://doi.org/10.1029/2004JB003440

    Métois, M., Vigny, C., and Socquet, A., 2016. Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms Along the Chilean Subduction Zone (38°–18°S) in Pure Applied Geophysics, https://doi.org/10.1007/s00024-016-1280-5

    Rhea, S., Hayes, G., Villaseñor, A., Furlong, K.P., Tarr, A.C., and Benz, H.M., 2010. Seismicity of the earth 1900–2007, Nazca Plate and South America: U.S. Geological Survey Open-File Report 2010–1083-E, 1 sheet, scale 1:12,000,000.

    Ruiz, S. and Madariaga, R., 2018. Historical and recent large megathrust earthquakes in Chile in Tectonophysics, v. 733, p. 37-56, https://doi.org/10.1016/j.tecto.2018.01.015

    Learn more about the plate tectonics in this region here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:41 am on January 17, 2019 Permalink | Reply
    Tags: , Earthquakes, , , , the U.S. government shutdown, What if the Northridge earthquake had struck today   

    From temblor: “What if the Northridge earthquake had struck today, on its 25th anniversary, during the U.S. government shutdown?” 

    1

    From temblor

    January 16, 2019
    Jason Patton, Ph.D.

    Ross Stein, Ph.D., Volkan Sevilgen, M.Sc.

    Twenty-five years ago, the M=6.7 Northridge earthquake caused enormous damage in southern California. Today people are far less insured, and the best estimates suggest that we would take a major economic hit if one like it were to strike the Southland today. The government shutdown would only compound the problems.

    What if the Northridge Earthquake Happened Today?

    The M=6.7 earthquake struck on a ‘blind’ thrust fault (meaning that geologists were blind to its presence). There are other blind faults in southern California that pose an equal or greater hazard to the economy and well-being of Angelinos, and despite being associated with earthquakes up to M=7.3, blind thrusts are notoriously difficult to identify. Learn more about these faults here.

    1
    Sylmar Overpass damage from the 1994 Northridge earthquake. Credit: USGS Public Domain

    Dr. Patricia Grossi from RMS, Inc., concluded that if an M=6.7 Northridge earthquake struck in 2014, it would cause up to $155 billion in total economic losses, comparable to that for Hurricane Katrina, which cost the nation $148 billion. But the insured losses would amount to only $16-$24 billion, or 10-15% of the total.

    What about other quakes in the Southland?

    An earthquake on the Puente Hills blind thrust fault, which runs beneath much of the Los Angeles basin including downtown, could cause over $600 billion in economic damages (Larsen et al., 2015). A recent M=5.1 earthquake on 29 March 2014 highlighted the presence of the Puente Hills and other blind fault faults in southern California capable of producing damaging earthquakes.

    The 1933 M=6.4 Long Beach earthquake ruptured the Newport-Inglewood fault, killing 120 and causing widespread damage estimated to be between $40 and $50 million (1933 dollars; Swift et al., 2012). If the 1993 Long Beach earthquake were to recur, the losses could be between $131 and $781 million, depending upon the earthquake size (given analysis in 2006 using valuation estimates from 2002; Swift et al., 2012).

    Many are familiar with the hazards from an earthquake on the San Andreas fault. If not, check out the video series “The Whistle.” The U.S. Geological Survey prepared a study of the impacts of an earthquake on the southern San Andreas fault (Jones et al., 2008). Using a computer tool developed by FEMA, they estimate that there may be as many as 1800 deaths and $191 billion in damages (in 2008 dollars and level of infrastructural development; Porter et al., 2011).

    2
    A large earthquake on the Puente Hills Blind Thrust Fault would strongly shake the most densely part of the Southland. The color gradients give the size of an earthquake expected over the period of a human lifetime (Bird et al., 2013). So for greater Los Angeles, a M=6.5-7.0 is likely.

    Do you know what your losses to earthquake hazards would be? Check Your Risk in the Temblor app here.

    Below is a map showing historic earthquakes in southern California (Hauksson et al., 1995). The spatial extent of the aftershocks correlate roughly with damage.

    3
    Historic earthquakes in southern California (Hauksson et al., 1995).

    The partial shutdown could make things worse

    During the government shutdown, the USGS is operating with a skeletal crew just sufficient to monitor earthquakes in California and around the world. However, no routine maintenance of its seismic and geodetic stations is being conducted, no buildout of the partially-completed Earthquake Early Warning system is being undertaken, no research is conducted, no publications are produced, no research meetings are held, and there is a press blackout.

    In the event of a large California earthquake, the USGS has been granted authority by the Department of Interior to resume operations with as large a staff as needed to protect life and property, and to collect essential data.

    Forrest Lanning, Earthquake Program Manager for FEMA Region IX (southwest U.S.), explained that if there were a disaster, FEMA would be mobilized in accordance with their mandate to respond to requests of disaster declaration from the state. Mobilized FEMA personnel would be given authorization to be paid for overtime under the Stafford Act, but the work leading up to this overtime would not be covered unless congress provided authorization. The FEMA Watch Center is required to be in operation 24 hours a day, 7 days a week. Staff at the watch center keep their eyes on media and other sources to determine if events may impact Region IX. They work with the NOAA Pacific Tsunami Warning Center and the USGS to monitor these potential impacts.

    But what would happen if, instead, there were a swarm of small earthquakes on a major fault, as occurred at the southern tip of the San Andreas in September 2016, or near the Calaveras Fault in northern California in February 2018? In fact, today, there was a M=3.4 quake followed by several others on the Hayward Fault, which last ruptured in a M~7 shock in 1868. Because of widespread damage, the 1868 quake was known as the ‘Great San Francisco Quake’ until it was dethroned in 1906.

    3

    When a swarm culminating in a M=4.3 shock occurred in September 2016 at Bombay Beach near the southern end of the San Andreas, USGS calculations and consultations led the California Office of Emergency Services to issue a week-long ‘Earthquake Advisory’ for the entire Southland.

    Seismic swarms are simply unchartered shutdown territory.

    Rate of Insurance Coverage is Down

    In 1994, 34% of Californians carried earthquake insurance. Today this is down to about 10%. Why is this?
    Costs are up

    The Northridge quake caused about $40 billion in damage in 1994 dollars (Eguchi et al., 1998), which was an unprecedented loss to the insurance industry, leading to a complicated response, with many insurers refusing to offer homeowner’s policies if they had to offer quake.

    The California Earthquake Authority was set up by the state following Northridge, to help provide insurance when most carriers refused to do so. The CEA is a privately funded, but publicly managed, provider of residential earthquake insurance. But because of a reassessment of the risk, all earthquake insurance premiums, as well as deductibles, rose.

    Out of sight, out of mind

    The more time passes following an event, the more rapidly people stop considering the potential impact of such an event if it were to recur in the future. This is especially true for earthquakes.

    In 1989, the large Loma Prieta earthquake devastated the San Francisco Bay area. The entire country responded in this time of need and the visual evidence of the impact of this quake was broadcast globally. People were aware of their place in earthquake country and this may have contributed to the large proportion of people who had earthquake insurance when the Northridge quake hit.

    So, the take away from this is that, depending on the costs of repairing expected quake damage to your home, you should consider earthquake insurance and seismic retrofit. Without economic resilience, we may crumble under the load, as the column did in the following photo.

    4
    Building damage from 1994 Northridge earthquake, the parking structure at CSU Northridge. Credit: USGS public domain.

    References

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Eguchi, R.T., Goltz, J.D., Taylor, C.E., Chang, S.E., Flores, P.J., Johnson, L.A., Seligson, H.A., and Blais, N.C., 1998. Direct Economic Losses in the Northridge Earthquake: A Three-Year Post-Event Perspective in Earthquake Spectra, v. 14, no. 2, p. 245-264 DOI: 10.1193/1.1585998

    Grossi, Patricia (2014), Northridge Earthquake today could cost insurers $20B, Carrier Management, 20 January 2014, https://www.carriermanagement.com/news/2014/01/20/117897.htm

    Hauksson, E., Jones, L.M., and Hutton, K., 1995. The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects in Journal of Geophysical Research, v., 100, no. B7, p. 12235-12355.

    Jones, L.M., Bernknopf, R., Cox, D., Goltz, J., Hudnut, K., Mileti, D., Perry, S., Ponti, D., Porter, K., Reichle, M., Seligson, H., Shoaf, K., Teriman, J., and Wein, A., 2008. The Shakeout Scenario, USGS Open File Report 2008-1150, CGS Preliminary Report 25, Version 1.0.

    Larsen, T., Bolton, M.K., and David, K.M., 2015. Pinpointing the Cost of Natural Disasters – Local Devastation and Global Impact in proceedings SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World 9-10 July 2015, Cambridge UK, 11 pp.

    Porter, K., Jones, L., Cox, D., Goltz, J., Hudnut, K., Mileti, D., Perry, S., Ponti, D., Reichle, M., Rose, A.Z. Scawthorn, C., Seligson, H.A., Shoaf, K.I., Treiman, J., and Wein, A., 2011. The ShakeOut Scenario: A Hypothetical Mw7.8 Earthquake on the Southern San Andreas Fault in Earthquake Spectra, v. 27, no. 2., p 239-261, DOI: 10.1193/1.3563624

    Swift, J., Wilson, J., and Le, T.N., 2012. Estimated Temporal Variation of Losses Due to a Recurrence of the 1933 Long Beach Earthquake in Earthquake Spectra, v. 28, no. 1, p. 347-365 DOI: 10.1193/1.3672995

    Read about the earthquake that killed insurance at the Jumpstart Blog here.

    Learn more about the tectonics behind the 17 January 1994 M=6.7 Northridge earthquake here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:57 am on January 8, 2019 Permalink | Reply
    Tags: , , Earthquakes, , In the late evening on January 3 a M=5.1 earthquake caused strong local ground shaking in Nagomi-machi, , Quake Connectivity, ,   

    From temblor: “Quake Connectivity: 3 January 2019 M=5.1 Japan shock was promoted by the April 2016 M=7.0 Kumamoto earthquake” 

    1

    From temblor

    January 7, 2019
    By Shinji Toda, Ph.D. (IRIDeS, Tohoku University)
    Ross S. Stein, Ph.D. (Temblor, Inc.)

    Was the small but strong shock in southern Japan a random event?

    In the late evening on January 3, a M=5.1 earthquake caused strong local ground shaking (JMA Intensity 6-, equivalent to MMI Intensity IX-X) in Nagomi-machi, ~25 km north of Kumamoto City (Fig. 1). Although the quake brought only light damage to the town, it stopped the Shinkansen ‘bullet trains’ and highway services for an emergency check-up during Japan’s well-traveled New Year holiday.

    1
    Figure 1. JMA intensity distribution of the January 3 M=5.1 earthquake. At the epicenter (X), the shaking reached JMA 6-.

    Japan’s Headquarters for Earthquake Research Promotion (HERP) declares the M=5.1 to be unrelated to the 2016 M=7.0 shock. We beg to differ.

    This quake recalls the devastating 2016 Mw=7.0 (Mjma=7.3) Kumamoto earthquake that killed 50 people and destroyed thousands of houses (Hashimoto et al., 2017). Immediately after the M=5.1 shock, HERP (2019) announced that there is no causal relation between the 3 Jan 2019 shock and the 15 April 2016 Kumamoto earthquake. In contrast, we contend that the M=5.1 is instead part of the long-lasting and remarkably widespread aftershock sequence of the M=7.0 Kumamoto earthquake.

    2
    Figure 2. (Left panel) Coulomb stress imparted by the 2016 Kumamoto earthquake sequence to the surrounding crust as a result of the combined Mw=6.0 and Mw=7.0 shocks. This figure was originally posted in a Temblor blog (Stein and Toda, 2016). Regions in which strike-slip faults are brought closer to failure are red (‘stress trigger zones’); regions now inhibited from failure are blue (‘stress shadows’). Aftershocks during first three months (translucent green dots) generally lie in regions brought closer to failure. The January 3 event (yellow star) is located in one of the stress trigger zones.

    (Right panel) Seismicity rate change between before (2009/01/01-2016/04/14) and after (2016/04/14-2019/01/02) the 2016 Kumamoto earthquake sequence. Red areas ‘turned on’ after the 2016 mainshock; blue areas ‘shut down.’

    The M=5.1 shock struck in a previously published Coulomb ‘stress trigger zone’

    In the web article of the IRIDeS Tohoku University released immediately after the 2016 shock (IRIDeS, 2016) and our blog article posted on September 2, 2016 (Stein and Toda, 2016), we emphasized the effect of Coulomb stress transfer to nearby regions (warmer color regions in Fig. 2 left panel), and mentioned the initial aftershocks mostly occurred in the regions where we calculated that the Coulomb stress increased. The Jan 3, 2019 M=5.1 shock indeed occurred in one of the stress increased lobes (yellow star in Fig. 2). This lobe experienced an increase in seismicity after the Kumamoto mainshock (Box A in Fig. 3 below).

    3
    Figure 3. Epicenters of all earthquakes shallower than 20 km during the period of 2015-2018 (JMA catalog). Although there are several dense clusters that have nothing to do with the Kumamoto earthquake, we nevertheless see that the aftershock zone is extends up to five rupture lengths from the fault (thick black line). The three boxes are where we examined the seismicity over time in Figure 4.

    The quake rate doubled in the stress trigger zone of the 2016 Mw=7.0 quake, and dropped by a factor of 5 in its stress shadow.

    Given that Japan is such an earthquake-prone country, one could argue that it was simply a random accident that the M=5.1 quake struck in the stress trigger zone. To address this possibility, we first examined the change in earthquake occurrence rate (‘seismicity rate change’) before and after the 2016 Kumamoto earthquake (Fig. 2 right panel). A visual comparison of our Coulomb calculation (Fig. 2 left panel) with seismicity rate change (Fig. 2 right panel) shows they match reasonably well. The epicenter of the 3 January 2019 event is in the red spot on both maps. Furthermore, regions north and south of the 2016 rupture zone, in which the faults were inhibited from failure by the stress changes, indeed show a seismicity decrease.

    To make sure that the local seismicity responded to the Kumamoto earthquake and not some other event at roughly the same time, we have chosen three sub-regions (boxes in Fig. 3) and looked at their seismicity time series (Fig. 4). In box A, the number of shocks, most of which are very small, was ~600 a year before the 2016 mainshock. But it has risen by over 2, to ~1500 per year since the mainshock. Thus, the M=5.1 event occurred in the zone of sustained higher rate of seismicity associated with the 2016 Kumamoto earthquake. A similar continuous and long-lasting seismicity increase also occurred in box C (northern Miyazaki Prefecture) where Coulomb stress was also imparted by the mainshock. The opposite response is observed in box B, where Coulomb stress was calculated to have decreased. There, the seismicity plummeted to 1/5 of the pre-Kumamoto level.

    4
    Figure 4. Seismic time series in the particular sub-regions, A, B, and C, corresponding to the boxes in Fig. 2 left panel and Fig. 3. The blue line indicates cumulative number of earthquakes since 2015 (with the corresponding blue scale at left), whereas the green stems identify each earthquake time and magnitude (green scale at right). What’s clear is that in all cases, the seismicity rates changed roughly at the time of the 2016 Kumamoto mainshock, and in the manner forecast by the Coulomb stress changes.

    There is a caveat that the Japan Meteorological Agency (JMA) has changed their earthquake determination algorithm after April 2016. However, it should have been homogeneously implemented in Kyushu. Since we confirmed the regional-dependent seismic behaviors in Fig. 4, we do not think the increased seismicity in the box A in Fig. 4 is an artifact. We also note that the rate of shallow M≥5 earthquakes under inland Japan (378,000 km2) is roughly about 10 a year. It enables us to say the probability to have one M≥5 quake in the box A (1168 km2) per year is ~3%, and so it is rare enough to make an accidental or coincidental occurrence unlikely.

    The long-lasting and far-reaching impact of stress transfer on seismic hazard.

    A key lesson learned from this M=5.1 quake is the effect of stress disturbance due to the three-year-old M=7 event continues over a large area in central Kyushu. And even though the size of the January 3 quake is much smaller than the M=7.0, it can nevertheless cause serious damage. Further, aftershocks do not get smaller with time after a mainshock; instead they only get more spaced out in time. So, a larger shock could still strike. The most likely place for such an event is unfortunately the highly-populated Kumamoto city, because there the stress imparted by the 2016 mainshock was greater than anywhere else.

    References

    Manabu Hashimoto, Martha Savage, Takuya Nishimura, Haruo Horikawa and Hiroyuki Tsutsumi (2017), Special issue “2016 Kumamoto earthquake sequence and its impact on earthquake science and hazard assessment” Earth, Planets and Space, 69-98, https://earth-planets-space.springeropen.com/articles/10.1186/s40623-017-0682-7

    Headquarters for Earthquake Research Promotion (2019), https://www.static.jishin.go.jp/resource/monthly/2019/20190103_kumamoto.pdf

    IRIDeS (International Research Institute of Disaster Science) (2016), http://irides.tohoku.ac.jp/event/2016kumamotoeq_science.html

    Ross S. Stein and Volkan Sevilgen (2016), The Tail that Wagged the Dog: M=7.0 Kumamoto, Japan shock promoted by M=6.1 quake that struck 28 hr beforehand http://temblor.net/earthquake-insights/japan-542/

    Ross S. Stein and Shinji Toda (2016), How a M=6 earthquake triggered a deadly M=7 in Japan, Temblor http://temblor.net/earthquake-insights/how-a-m6-earthquake-triggered-a-deadly-m7-in-japan-1304/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:54 am on November 8, 2018 Permalink | Reply
    Tags: , “It’s not just about engineering a stronger building. Rather it’s about designing a more resilient city by reducing damage and overcoming impeding factors that can interfere with recovery.”, Earthquakes, , How will San Francisco’s skyscrapers fare after the next Big One?, If one or more high-rises suffers serious damage how badly could that disrupt the rest of the city?, Survey reveals that many high-rises built before 1990 were constructed with a type of steel frame that developed dangerous cracks in the welds during the 1994 Northridge earthquake in Los Angeles   

    From Stanford University Engineering: “How will San Francisco’s skyscrapers fare after the next Big One?” 

    Stanford University Name
    From Stanford University Engineering

    November 06, 2018
    Edmund L. Andrews

    1
    It’s not just about engineering a stronger building. It’s about designing a more resilient city. | Unsplash/Hardik Pandya

    When Greg Deierlein looks at San Francisco’s skyline, he wonders: Will the city be ready if a major earthquake shakes those skyscrapers?

    It’s not primarily a question of whether all the towers will remain standing, though there are some concerns about the ones built more than 30 years ago. The more complicated question is this, says Deierlein, the John A. Blume Professor in the School of Engineering: If one or more high-rises suffers serious damage, how badly could that disrupt the rest of the city?

    “Traditionally, the building codes for seismic design have focused on collapse safety and preventing the loss of life,” he says. “A full reckoning should also take into account the potential costs during the recovery.” For instance, a single damaged high-rise apartment building could force hundreds of residents out of their homes for months — bad news for a city that’s already notoriously short on housing. Likewise, an office tower that becomes temporarily unusable could cost the city millions of dollars in lost economic activity. And should a damaged skyscraper be at risk of collapsing, it would pose a danger to everything in its shadow. “What,” Deierlein asks, “would be the cumulative effects of this disruption on the health and welfare of the city?”

    The city of San Francisco wants to know, too. In recent years city officials have been developing a sweeping new strategy on earthquake preparedness for skyscrapers, the first such effort by a city in the United States, and Deierlein and his team have been providing city leaders with hard data and new modeling tools to better estimate the costs associated with disruption and downtime.

    As a start, he and his colleagues, including Stanford PhD candidates Anne Hulsey and Wen-Yi Yen, inventoried 156 San Francisco buildings that rise 240 feet or more, noting their age, design and potential weaknesses. Their survey reveals that many high-rises built before 1990 were constructed with a type of steel frame that developed dangerous cracks in the welds during the 1994 Northridge earthquake in Los Angeles. Research by Hulsey and Yen aims to assess the risks posed to these pre-Northridge buildings and the surrounding neighborhoods. Retrofitting these older buildings would be enormously expensive, Deierlein says. Complicated, too.

    ___________________________________________
    At the moment, owners are not required to complete new earthquake assessments, much less retrofits, unless they’re renovating at least two-thirds of a building. Most building owners carefully avoid hitting that trigger.
    ___________________________________________

    Partly as a result of the building inventory, city officials have recommended changing the triggers that require property owners to reassess their seismic risks and requiring that future reassessments factor in building recovery time as well as safety.

    San Francisco officials are also considering a number of recommendations for new buildings aimed at reducing downtime. These may include imposing tighter “drift limits” on the how much a building is permitted to sway in an earthquake, thereby reducing building damage and downtime. Another idea is to demand greater robustness in the building’s mechanical systems, from elevators and electrical systems to plumbing, which could reduce the time that all or part of a building is effectively unusable. They also propose requiring tall building owners to have a recovery plan that could include making advanced arrangements with engineers and contractors to repair damage after a quake.

    One major obstacle is the status of the city’s current high-rise housing stock. San Francisco’s official goal is to make sure that 95% of the city’s high-rise housing can be restored to habitability within a few weeks after an earthquake. But studies by the Stanford team indicate that a damaged high-rise condominium could be uninhabitable for two to six months. Although the repairs themselves might indeed take only a few weeks, it could take several additional months to make a full damage assessment, get the proper permits and enlist the engineers and contractors.

    The Stanford researchers also highlighted the possibility that a badly damaged skyscraper might force a city to cordon off all the streets and buildings in its shadow. In Christchurch, New Zealand, the central business district was shut down for more than two years after a 2011 earthquake. The San Francisco strategy calls for new protocols on setting up cordons, which are likely to be based in part on a model the Stanford team has developed to predict the risks.

    The underlying theme of all this work, Deierlein says, is to look at skyscrapers as more than individual buildings. “It’s all about interconnectedness,” he says. “It’s not just about engineering a stronger building. Rather, it’s about designing a more resilient city by reducing damage and overcoming impeding factors that can interfere with recovery.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 11:39 am on October 27, 2018 Permalink | Reply
    Tags: , , , Earthquakes, , , , , The Whistle   

    From temblor: “The Whistle: Are We Ready for the Big One?” 

    1

    From temblor

    October 24, 2018

    Jason R. Patton, Ph.D.
    Ross Stein, Ph.D.
    Volkan Sevilgen, M.Sc.

    It Has Happened Before

    The southern San Andreas fault (SSAF) is a plate boundary strike-slip fault, where the Pacific plate moves northward relative to the North America plate. There have been large earthquakes on this fault in historic time, including the 1857 Forth Tejon earthquake. This 1857 earthquake is estimated to have been a magnitude 7.9 earthquake (larger than the recent earthquake in Sulawesi, Indonesia). There is also a record of prehistoric earthquakes on this fault, spanning the past 5000 years (Weldon et al., 2004; Sharer et al., 2007). These authors have determined that the average time between earthquakes on the SSAF is 105 years. However, the time between earthquakes ranges from 31 – 165 years. This large variation in inter-event time periods makes it more difficult to know when the next “Big One” will happen.

    The USGS prepares earthquake scenarios based on our knowledge about past earthquakes and how future earthquakes may behave based on our empirical knowledge. Below is a USGS scenario map for the part of the SSAF that ruptured in the 1857 Fort Tejon earthquake. The color scale represent relative earthquake shaking intensity based on the Modified Mercalli Intensity scale. Warmer colors represent areas of stronger ground shaking. While the map below is based on a computer model, this is a good estimate of how strongly the ground shook in 1957. Note how the strongest ground shaking is adjacent to the fault.

    1
    USGS Shakemap scenario map for the southern San Andreas fault, showing an estimate of shaking intensity from an earthquake similar in length and magnitude to the 1857 Fort Tejon earthquake. The part of the fault that slips in this scenario earthquake is shown as a black line, very similar to the known extent of the 1857 earthquake.

    Several governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to provide estimates of seismic hazard at a global to local scale (Bird et al., 2015). GEAR blends quakes during the past 41 years with strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. Seismicity from the past month, week, and day are shown as colored circles. The temblor app suggests that this region of San Bernardino, CA has an earthquake score of 93. To find out what your earthquake score is, enter your address in the app at temblor.net.

    2
    Earthquake Risk map for southern California, centered on the inland empire. Active faults are shown as red lines. Earthquakes from the past month are shown as circles.

    We Imagine the Consequences

    Earthquakes can cause damage to buildings and other infrastructure due to the shaking intensity. The closer to the earthquake, the higher the intensity. Buildings are located on different types of bedrock and this can amplify the shaking intensity in places. How do we know this? We have made direct observations of the damage from earthquakes.

    There is ample evidence of what happens during earthquakes like what will occur on the SSAF someday. The same fault system, further north, has also ruptured in historic time. In 1868, the Hayward fault (a sister fault of the San Andreas) had an earthquake that caused extensive damage in the San Francisco Bay area. The USGS and the California Geological Survey are using the 150 year anniversary of this earthquake as a tool to educate the public about earthquake hazards along these active faults in northern California. Here is a short video about the HayWired Scenario. More can be learned about how to outsmart disaster at the “HayWired” website here.

    Below is a photo from the aftermath of the 1868 Hayward fault earthquake.

    3
    This photo shows damage to “Pierce’s House,” a building damaged by the 1868 Hayward fault earthquake. Image source: Wikimedia Commons, public domain.

    Another historic earthquake that caused extensive damage in California is the 1906 Great San Francisco earthquake, another San Andreas fault earthquake. The damage from this earthquake included building damage and fire. Fire is one of the most common damaging effects of an earthquake like what will happen someday on the SSAF.

    Below is a photo showing damage to houses that were built on material that did not perform well during an earthquake.

    4
    Photo of houses following the 1906 San Francisco earthquake. Photo from National Archives Record Group 46, public domain.

    The combination of hazard and exposure (people) is what we call risk. When people are exposed to earthquake hazards, they are at risk from damage due to those earthquakes. If there is an earthquake and nobody is there to experience the earthquake, there is no risk. One major difference between 1868, 1906, and today is that there are more people that live close to these earthquake faults. While the average number of earthquakes stays relatively constant through time, as the population grows in earthquake country, the risk also grows.

    Do you live along the San Andreas or some other plate boundary fault? What about another kind of fault?

    To learn more about your exposure to these hazards, visit temblor.net.

    When is the next Big One?

    We don’t know when the next southern San Andreas fault big earthquake will happen. Currently there are no scientifically demonstrated ways to predict earthquakes. We can use the frequency of past earthquakes and patterns of earthquake occurrence (current seismicity) to estimate the chance that an earthquake will occur over a period of time.

    These estimates of future earthquake occurrence are called forecasts. Most people are familiar with weather forecasts, but we know much less about earthquakes than we do about weather. Because of this, earthquake forecasts may not have the same amount of accuracy that weather forecasts do. However, these forecasts are based on the latest cutting edge science about earthquakes and are monumentally better than simply tossing a coin. The cool thing about these forecasts is that the science behind them improves over time as we learn more about how earthquakes happen. This is another improvement over coin tosses, which flip pretty much the same as they did since coins were invented.

    The Whistle is an upcoming series of broadcasts produced by the Empire Network, a collaboration between KVCR, PBS, and National Public Radio.

    This four-part documentary series that dives into earthquake science, history, local and international earthquakes and tsunamis, California preparedness and immediate response, prevention, mitigation, retrofits, resilience, sustainability, conservation, incentives, challenges, new technologies… and solutions. Are we ready for the Big One?

    The first episode airs on October 25 and we will learn about earthquakes and the San Andreas fault:

    ______________________________________________________
    Earthquakes and the San Andreas fault. The Ring of Fire. What do we know about earthquakes today? What causes them, how often, why we know the Big One is due. Evolution of seismology and our understanding of earthquakes and plate tectonics. How did the First Nations and early European settlers deal with Earthquakes before modern technology? How dangerous is the threat and how much of an impact can a big earthquake cause? What will happen when the next big one hits?
    ______________________________________________________

    Episode 2 covers how our immediate response might unfold during and following the Big One. Episode 3 reviews our knowledge of the current state of infrastructures (buildings, roads) and how an earthquake might impact these investments in society. Finally, the 4th episode presents an evaluation of how we have improved our ability to be resilient in the face of disasters from the Big One following decades of applying the scientific method to our observations of earthquakes. How will Earthquake Early Warning work and how will we benefit from this? Learn more by watching The Whistle.

    The premiere for “The Whistle, Are We Ready for the Big One?” premieres on Thursday Oct. 25. Watch the first episode on television, or head to this website where the video will be available to stream online.

    3

    References

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Sharer, K.M., Weldon, R.J.III., Fumal, T.E., and Biasi, G., 2007. Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B.C.: A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons in Bull. Seismol. Soc. Am., v. 97, no. 4, p. 1054–1093, DOI: 10.1785/0120060137

    Weldon, R., Sharer, K.M., Fumal, T., and Biasi, G., 2004. Wrightwood and the Earthquake Cycle: What a Long Recurrence Record Tells Us About How Faults Work in GSA Today, v. 14, no. 9, doi: 10.1130/1052-5173(2004)0142.0.CO;2

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 11:13 am on October 27, 2018 Permalink | Reply
    Tags: , , , Earthquakes, , Greek earthquake in a region of high seismic hazard, , ,   

    From temblor: “Greek earthquake in a region of high seismic hazard” 

    1

    From temblor

    October 26, 2018
    Jason R. Patton, Ph.D.
    Ross Stein, Ph.D.
    Volkan Sevilgen, M.Sc.

    An earthquake with a magnitude of M = 6.8 earthquake struck today along the coast of Greece, preceded by a M = 5.0 earthquake. This large earthquake was felt widely across the region, including Italy, Albania, Bulgaria, and Macedonia. . Greece is at the intersection of several different tectonic regimes and is spanned by a zone of increased seismic hazard evidenced by the GEAR seismic hazard model. The earthquake is related to the convergent plate boundary that spans the southern boundary of Greece. The Gulf of Corinth, where the strongest shaking was felt, is the most seismically active site in Greece.

    Tectonic Setting

    Greece is in the middle of a tectonic die, with the right-lateral strike-slip North Anatolia fault striking from the east and the Ionian trench subduction zone converging from the south. In addition, there is a rapid (10-15 mm per year) extension at the Corinth Rift, forming the Gulf of Corinth just northeast of today’s earthquake sequence.

    The interaction of these different plate boundaries results in overlapping fault systems of different types of faults. The southern boundary of Greece is characterized by the formation of thrust faults formed from compression due to the subduction of the Africa plate beneath the Anatolia plate.

    The North Anatolia fault is a high slip rate fault (it moves fast) and can generate large damaging earthquakes such as the 1999 M = 7.6 Izmit earthquake. Much of the North Anatolia fault has ruptured in the 20th century and many consider the segment of the fault that runs near Istanbul, Turkey, is thought to be ready to slip next.

    The map below shows how the North Anatolia fault enters the region and how the subduction zones may be offset by the Kefallonia fault (Kokkalas, et al., 2006). The Ionian trench is labeled “Hellenic Arc” in this map. The M = 6.8 earthquake is in the general location of the blue star.

    1
    Plate boundary faults are shown with symbols representing the type of plate boundary. Subduction zones are shown with triangles pointing in the direction of motion of the down-going plate. Strike-slip relative motion is shown as oppositely directed arrows. Thick black arrows show relative plate motion in mm per year. Thin arrows with black dots at their base are Global Positioning System plate velocities (reference vector scale is in lower right corner).

    Seismic Hazards

    Hundreds of millions of people globally live in earthquake country. Do you live along a subduction zone or other plate boundary fault? What about another kind of fault?

    To learn more about your exposure to these hazards, visit temblor.net.

    Several governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to provide estimates of seismic hazard at a global to local scale (Bird et al., 2015). GEAR blends quakes during the past 41 years with strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. Seismicity from the past month, week, and day are shown as colored circles. The rainbow color scale represents the chance of a given earthquake magnitude, for a given location, within the lifetime of a person (technically, it is the magnitude with a 1% chance per year of occurring within 100 km). The temblor app suggests that this region could have an earthquake with a magnitude of M = 7.0 to 7.25 in a typical lifetime, and so the M = 6.8 was by no means rare or unexpected.

    Note how the seismic hazard is increased along the North Anatolia fault in Turkey and follows this fault as it enters Greece. There is also an increased risk of earthquakes associated with the Ionian trench. This belt of increased seismic hazard is well correlated with the tectonic boundaries. Much of Greece lies within this zone of increased seismic hazard.

    3
    Global Earthquake Activity Rate map for this region of the western equatorial Pacific. Faults are shown as red lines. Warmer colors represent regions that are more likely to experience a larger earthquake than the regions with cooler colors. Seismicity from the past is shown and the location of the M 6.8 earthquake is located near the blue teardrop symbol.

    References

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Kokkalas, S., Xypolias, P., Koukouvelas, I., and Doutsos, T., 2006, Postcollisional contractional and extensional deformation in the Aegean region, in Dilek, Y., and Pavlides, S., eds., Postcollisional tectonics and magmatism in the Mediterranean region and Asia: Geological Society of America Special Paper 409, p. 97–123

    More can be found about the seismotectonics of this region here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 7:32 am on September 21, 2018 Permalink | Reply
    Tags: A tectonic squeeze may be loading three thrust faults beneath central Los Angeles, , Earthquakes, , ,   

    From temblor: “A tectonic squeeze may be loading three thrust faults beneath central Los Angeles” 

    1

    From temblor

    September 17, 2018
    Chris Rollins

    Thrust-faulting earthquakes are a fact of life in Los Angeles and a threat to it. Three such earthquakes in the second half of the 20th century painfully etched this ongoing threat to life, limb and infrastructure into the memories and the backs of the minds of many who call this growing metropolis home. The first struck 40 seconds after 6:00 AM on a February morning in 1971 when a section of a thrust fault beneath the western San Gabriel Mountains ruptured in a magnitude 6.7 tremor. The earthquake killed 60 people, including 49 in the catastrophic collapse of the Veterans Administration Hospital in Sylmar, the closest town to the event (which is often referred to as the Sylmar earthquake). Among other structures hit hard were the newly built Newhall Pass interchange at the junction of Interstate 5 and California State Route 14, of which multiple sections collapsed, and the Van Norman Dam, which narrowly avoided failure in what could have been a cruel deja vu for a city that had been through deadly dam disasters in 1928 and 1963.

    1
    Devastation at the Veterans Administration Hospital in the 1971 Sylmar earthquake. Photo courtesy of Los Angeles Times.

    Sixteen years later, a section of the Puente Hills thrust fault ruptured in the magnitude 5.9 Whittier Narrows earthquake, killing eight people in East Los Angeles and bringing attention to a class of thrust faults that do not break the surface, called “blind” thrust faults, which will go on to form a key part of this story. Then early on another winter morning in 1994, an even more deeply buried blind thrust fault ruptured beneath the San Fernando Valley in the magnitude 6.7 Northridge earthquake, causing tens of billions of dollars in damage and taking 57 lives. One of the fatalities was Los Angeles police officer Clarence Wayne Dean, who died on his motorcycle when a span of the Newhall Pass interchange that had been rebuilt following the 1971 Sylmar earthquake collapsed again as he was riding across it in the predawn darkness.

    2
    Collapse of the Newhall Pass (I-5/CA-14) interchange in the 1994 Northridge earthquake. Officer Dean died on the downed section of overpass at right. The interchange has since been renamed the Clarence Wayne Dean Memorial Interchange in his memory. Photo courtesy of CNN.

    LA’s problem: The squeeze

    Thrust earthquakes like these, in which the top side of the fault is thrust up and over the bottom side, will likely strike Los Angeles again in the 21st century. They may in fact pose a greater hazard to the city than earthquakes on the nearby San Andreas Fault because they can occur directly beneath the central metropolitan area. This means that a city that has found so much of its identity and place in history from being improvised as it went, and from being a cultural and economic melting pot, now faces the unwieldy task of readying its diverse infrastructure and populace for the strong shaking these kinds of earthquakes can produce.

    One way that the earthquake science community has been assessing the seismic hazard in LA is by using geodesy – long-term, high-precision monitoring of the deformation of the Earth’s surface – to locate sections of faults that are stuck, or locked, causing the Earth’s crust to deform around them. It is this bending of the crust, or accumulated strain, that is violently released in earthquakes; therefore the locations where this bending is taking place might indicate where future earthquakes will occur, and perhaps how large and frequent they could be. Several decades of geodetic monitoring have shown that the greater Los Angeles area is being squeezed from north to south at roughly 8-9 millimeters per year (⅓ inch per year), about one-fourth the rate at which human fingernails grow. Thrust faults, such as those on which the Sylmar, Whittier Narrows and Northridge earthquakes struck, are ultimately driven by this compression.

    3
    Geodetic data, tectonics and material properties relevant to the problem. Dark blue arrows show the north-south tectonic compression inferred by Argus et al. [2005] after removing deformation caused by aquifer and oil use. Black lines are faults, dashed where blind. Background shading is a measure of material stiffness at the surface based on the Community Velocity Model [Shaw et al., 2015]. “Beach balls” show the locations and senses of slip of the 1971 Sylmar, 1987 Whittier Narrows and 1994 Northridge earthquakes. Figure simplified from Rollins et al. [2018].

    Why the science is still very much ongoing

    The task of linking the north-south tectonic squeeze to specific faults encounters several unique challenges in Los Angeles. First, the city sits atop not only active faults but also several aquifers and oil fields that have long provided part of its livelihood and continue to be used today, which deforms the crust around them. Geodetic data are affected by this anthropogenic deformation, to the extent that a recent study used these data to observe Los Angeles “breathing” water from year to year and even to resolve key hydrological properties of particular sections of aquifers. This spectacular deformation, which furnishes science that can be used in resource management around the world, has the unfortunate effect of obscuring the more gradual north-south tectonic shortening in Los Angeles in these data.

    4
    Animation from Riel et al. [2018] showing long-term subsidence of the Earth’s surface due to use of the Los Angeles and Santa Ana aquifers.

    Second, the faults are a complex jumble. The crust underlying Los Angeles is cut by thrust faults, strike-slip faults like the San Andreas Fault and subparallel to it, and other strike-slip faults nearly perpendicular to it. Although these faults all take part in accommodating the gradual north-south squeeze, the relative contributions of the thrust and strike-slip faults in doing so has been the subject of debate. The problem of estimating strain accumulation on subsurface faults is also generally at the mercy of uncertainties as to how faults behave at depth in the Earth’s crust and how they intersect and link up.

    Third, Los Angeles sits atop a deep sedimentary basin, created when a previous episode of extension created a “hole” in the crust that was gradually filled by sediments eroded off the surrounding mountain ranges. These sedimentary layers are more easily deformed than the stiffer rocks in the mountains around the basin, complicating the problem of estimating strain accumulation at depth from the way the surface is deforming. Finally, as in the case of the Puente Hills Fault, some of the major thrust faults in Los Angeles do not break the surface but are “blind.” This means that the bending of the crust around locked sections of these faults is buried and more difficult to detect at the surface.

    5
    Basin sediments affect the relationship between fault slip and deformation at the surface by up to 50% for the cases of the Puente Hills Fault (left) and Compton Fault (right). For the same fault slip, the basin is more compliant and so the Earth’s surface is displaced more (red arrows) than if it were absent (blue arrows). Figure simplified from Rollins et al. [2018].

    Three thrust faults may be doing a lot of the work

    Several important advances over the past two decades have paved pathways towards overcoming these challenges. The signal of deformation due to water and oil management can be subtracted from the geodetic data to yield a clearer picture of the tectonic shortening. The geometries of faults at depth have also come into focus, as earth scientists at the Southern California Earthquake Center and Harvard University have compiled decades of oil well logs and seismic reflection data to build the Community Fault Model, a detailed 3D picture of these complex geometries. A parallel effort has yielded the Community Velocity Model, a 3D model of the structure and composition of the Southern California crust that is internally consistent with the fault geometries.

    6
    A cross section of faults and earthquakes across central Los Angeles from Rollins et al. [2018]. Red lines are faults, dashed where uncertain; pairs of arrows along the thrust faults show their long-term sense of slip. White circles are earthquakes. Basin structure is from the Community Velocity Model.

    Recently, a team of researchers from Caltech, JPL and USC (with contributions from many other earthquake scientists) has begun to put these pieces together. Their approaches and findings were published in the Journal of Geophysical Research (JGR) this summer. On the challenge presented by the complex array of faults, the study found that the strike-slip faults probably accommodate less than 20% of the total shortening at the max, leaving the rest to be explained by thrust faulting or other processes. Three thrust faults, the Sierra Madre, Puente Hills and Compton faults, stand out in particular as good candidates. All three appear to span the Los Angeles basin from west to east, and the Puente Hills and Sierra Madre faults have generated moderate earthquakes in the last three decades, including the Whittier Narrows shock and a magnitude 5.8 tremor in 1991. Paleoseismology (the study of prehistoric earthquakes) has also revealed that these three faults have each generated multiple earthquakes in the past 15,000 years whose magnitudes may have exceeded 7.0.

    7
    Alternative models of how quickly strain is accumulating on the Compton, Puente Hills and Sierra Madre Faults, assuming that the transition between completely locked (stuck) and freely slipping patches of fault is gradual (left) or sharp (right), simplified from Rollins et al. [2018]. Gray lines are major highways.

    How fast is stress building up on these faults?

    Exploring a wide range of assumptions (such as whether the transitions between stuck and unstuck sections of faults may be gradual or abrupt), the team inferred that the Sierra Madre, Puente Hills and Compton faults appear to be partially or fully locked and building up stress on their upper (shallowest) sections. The estimated total rate of strain accumulation on the three faults is equivalent to a magnitude 6.7-6.8 earthquake like the Sylmar earthquake once every 100 years, or a magnitude 7.0 shock every 250 years. These back-of-the-envelope calculations, however, belie the fact that this strain is likely released by earthquakes across a wide range of magnitudes. The team is currently working to assess just how wide this range of magnitudes practically needs to be: whether the strain can be released as fast as it is accruing without needing to invoke earthquakes larger than Sylmar and Northridge, for example, or whether the M>7 thrust earthquakes inferred from paleoseismology are indeed a likely part of the picture over the long term.

    This picture of strain accumulation will sharpen as the methods used to build it are improved, as community models of faults and structure continue to be refined, and especially as more high-resolution data, such as that used to observe LA “breathing” water, is brought to bear on the estimation problem. The tolls of the Sylmar, Whittier Narrows and Northridge earthquakes in lives and livelihoods are a reminder that we should work as fast as possible to understand the menace that lies beneath the City of Angels.

    References

    Argus, D. F., Heflin, M. B., Peltzer, G., Crampé, F., & Webb, F. H. (2005). Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. Journal of Geophysical Research: Solid Earth 110(B4).

    Riel, B. V., Simons, M., Ponti, D., Agram, P., & Jolivet, R. (2018). Quantifying ground deformation in the Los Angeles and Santa Ana coastal basins due to groundwater withdrawal. Water Resources Research 54(5), 3557-3582.

    Rollins, C., Avouac, J.-P., Landry, W., Argus, D. F., & Barbot, S. D. (2018). Interseismic strain accumulation on faults beneath Los Angeles, California. Journal of Geophysical Research: Solid Earth 123, doi: 10.1029/2017JB015387.

    Shaw, J. H., Plesch, A., Tape, C., Suess, M. P., Jordan, T. H., Ely, G., Hauksson, E., Tromp, J., Tanimoto, T., & Graves, R. (2015). Unified structural representation of the southern California crust and upper mantle. Earth and Planetary Science Letters 415: 1-15.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 2:43 pm on September 7, 2018 Permalink | Reply
    Tags: , , , Earthquakes, , , , The ongoing earthquake sequence on the island of Hokkaido Japan   

    From temblor: “The ongoing earthquake sequence on the island of Hokkaido, Japan” 

    1

    From temblor

    September 6, 2018
    Jason Patton
    Jason R. Patton, Ph.D., Ross Stein, Ph.D., Shinji Toda, Ph.D, Volkan Sevilgen, M.Sc.

    The Nation of Japan is one of the most seismically active regions in the world and the people of Japan devote significant efforts to be resilient in the face of these hazards associated with earthquakes. These hazards include ground shaking, tsunami, landslides, and liquefaction. The historical knowledge of these hazards extends centuries into the past. Because of their efforts to learn using scientific methods, the world has learned more about earthquake processes.

    Everyone can benefit from learning about their exposure to natural hazards from earthquakes. To learn more about your exposure to these hazards, visit temblor.net.

    In this report, we discuss the ongoing earthquake sequence on the island of Hokkaido, Japan. Below is a map that shows the epicenter for the mainshock, an earthquake with a magnitude M = 6.6. This map shows the coastline and active faults. There are over 700 aftershocks plotted here.

    1
    Figure 1: Regional seismicity map showing earthquake epicenters from the past 30 days. Faults are in red.

    The major source of earthquakes in Japan are the numerous plate boundary fault systems, which include subduction zones, “forearc sliver” strike slip faults, and a collision zone (another form of convergent plate boundary). The figure below is from the American Geophysical Union blog “Trembling Earth,” written by Dr. Austin Elliot. Great earthquakes, quakes with M ≥ 8.0, in the 20th century include the 1923 Great Kantō subduction earthquake and the 1944 and 1946 Tōnankai and Nankai subduction earthquakes. Subduction zones are convergent plate boundaries where an oceanic plate is subducting beneath a continental or oceanic plate. These events helped shape the earth science programs in Japan, especially regarding efforts to learn about subduction zone processes. The 2011 M 9.1 Tohoku-oki subduction zone earthquake generated a trans-pacific tsunami and reminded the public that their efforts to be resilient are well founded.

    2
    Figure 2: Oblique view showing the configuration of the plate boundaries in the region of Japan.

    The various plates and how they are configured is very complicated in Japan and we learn more about them every year. The recent M 6.6 Sapporo earthquake along the southern part of Hokkaido, Japan was also associated with a plate boundary, but not a subduction zone. In northern Japan, the North America/Okhotsk plate is moving southwestward and converging towards the Amuria/Eurasia plate. This plate motion leads to northeast-southwest oriented compression. This compression has led to the formation of tectonic deformation and thrust faults involved in the Hidaka Collision Zone. Collision zones are convergent plate boundaries where two continental plates are converging. An analogical collision zone is the collision of the India and Eurasia plates that form the Himalayas. The map below shows a generalized view of the geologic rocks in Japan, along with the location of different plate boundary faults (Van Horne et al., 2013). The Hidaka Collision Zone is labeled on the map. I placed a blue star in the location of the M 6.6 earthquake.

    3
    Figure 3: Geologic map of Japan showing the plate boundaries and key tectonic features including the Hidaka Collision Zone (Van Horne et al., 2016).

    Ground Shaking

    The M 6.6 Sapporo earthquake generated significant ground shaking and triggered landslides across the region. There are 3 main factors that control the intensity of ground shaking from earthquakes: (1) the magnitude of the earthquake, (2) the distance from the earthquake, and (3) the earth materials between the earthquake and one’s location. Earthquake magnitude is a measure of the amount of energy released during an earthquake, while intensity is a measure of how strongly the ground shakes (and how damaging the shaking is). It makes sense that when there is a larger magnitude, there is the potential for stronger shaking and a higher intensity. The magnitude does not change with distance, but intensity does. The further away from the earthquake source, the less shaking one might observe.

    Here is a figure prepared using the J-SHIS Japan Seismic Hazard Information website. The color represents Peak Ground Acceleration, a measure of ground shaking. The units are also in g, an acceleration, where g = 9.8/m2. If ground shaking is about 1 g, there is possibly enough energy to throw materials into the air (like rocks, cars, or buildings). The symbols represent locations where instruments made these acceleration measurements. Between symbols, the color represents an estimate of the ground shaking at those locations. Note that one site near the earthquake epicenter has a measured acceleration of 1.5 g!

    4
    Figure 4: Ground shaking map showing Peak Ground Acceleration (PGA) represented by color.

    Many governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards, though on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to prepare estimates of seismic hazard at a global to local scale (Bird et al., 2015). Each of these models incorporate earthquake information from different sources including, but not limited to, fault slip rates, records of prehistoric earthquakes, historic seismicity, and strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. The rainbow color scale represents the change of a given earthquake magnitude, for a given location, within the lifetime of a person. The temblor app suggests that this region could have an earthquake of M 7.1 in a human lifetime.

    5
    Figure 5: Global Earthquake Activity Rate map for this region of the northwest Pacific. Warmer colors represent regions that are more likely to experience a larger earthquake than the regions with cooler colors. Seismicity from the past is shown and the location of the M 6.6 earthquake is located near the blue teardrop symbol.

    Landslides

    There are many different ways in which a landslide can be triggered. The first order relations behind slope failure (landslides) is that the “resisting” forces that are preventing slope failure (e.g. the strength of the land) are overcome by the “driving” forces that are pushing this land downwards (e.g. gravity). The ratio of resisting forces to driving forces is called the Factor of Safety (FOS). We can write this ratio like this:

    FOS = Resisting Force / Driving Force

    When FOS > 1, the slope is stable and when FOS < 1, the slope fails and we get a landslide. The illustration below shows these relations. Note how the slope angle α can take part in this ratio (the steeper the slope, the greater impact of the mass of the slope can contribute to driving forces).

    6
    Figure 6: Landslide force balance diagram showing how driving and resisting forces balance for a stable slope.

    Some factors that change this ratio include rainfall, over steepening of the slope, undercutting of the base of the slope, and earthquakes. There are other factors as well.

    Japan recently experienced the most severe Typhoon in decades, which resulted in significant rainfall. When rain water infiltrates into the earth, that water can fill the spaces between soil particles and rock cracks so that the water pressure pushes apart these particles or rocks. If this pressure is large enough, the strength of the material (a resisting force) becomes weaker and there can be a landslide. Even if there is not enough reduction in resisting force, the strength of the material is still potentially weaker.

    Landslide ground shaking can change the Factor of Safety in several ways that might increase the driving force or decrease the resisting force. Keefer (1984) studied a global data set of earthquake triggered landslides. The plot presented here shows that that larger earthquake magnitudes (horizontal axis) can result in landslides across a larger area.

    7
    Figure 7: Spatial extent of landslide triggering by earthquakes relative to earthquake magnitude (Keefer, 1984).

    As a result of the M 6.6 Sapporo earthquake, there were a large number of slope failures in the epicentral region. These landslides have covered many buildings and unfortunately have trapped many dozens of people within the debris. We will learn more about this in the coming days as search and rescue teams respond to this disaster.

    There have been many videos posted online, possibly the best ones from Nippon Hōsō Kyōkai (NHK), Japan’s national public broadcasting organization. NHK also acquired the best aerial videos from the inundation of the 2011 Tohoko-oki earthquake and tsunami. There have also been some excellent comparisons between pre-landslide and post-landslide aerial imagery.

    Here is another spectacular view of some of these triggered landslides here.

    Below is a pair of images that presents a comparison of the landscape from before and after the earthquake. These come from social media here.

    8
    9
    Figure 8: A comparison of imagery from before and from after the earthquake. The earthquake triggered landslides in the second image are identified in this photo by the areas of exposed brown colored soil.

    These landslides appear to be failures within the soil mantle of the hillsides. While these landslides were triggered by the earthquake, it is highly likely that the water content from the Typhoon decreased the Factor of Safety prior to the earthquake. It is possible that without this preceding Typhoon, the slope failures might have been less catastrophic.

    Active Faults in Hokkaido

    There are a number of active crustal faults in southern Hokkaido, Japan. One may view the location of these faults on the Japan Seismic Hazard Information Station (J-SHIS) website here. In addition, estimates for seismic hazard are also placed on that website. For example, the National Seismic Hazard Map for Japan is included there. There are various versions of this map, but the most useful version is the map that shows the chance that an area in Japan will experience earthquake ground shaking at least JMA 6, for the next 30 years. The Japan Meteorological Agency Seismic Intensity Scale (JMA) is an intensity scale with a range of 0 – 7, with 7 being the highest intensity, the strongest ground shaking. To give us an idea about how strong the shaking might be for an earthquake with a JMA 6 intensity, this is what a person might experience: “Impossible to keep standing and to move without crawling.”

    Below is a map that is based upon the J-SHIS website. We plot USGS earthquake epicenters from this earthquake sequence as circles colored relative to their depth with circle size relative to earthquake magnitude. Included in this map are also the active fault sources, shown as red rectangles and black lines. The two active faults in the region are different parts of the Ishikari-teichi-toen fault (the main part and the southern part). Based upon expert knowledge, these faults have the potential to produce an M 7.2 and M 7.1 earthquake for the main part and southern part, respectively. Combined, these faults may produce an M 7.9 earthquake. The USGS fault plane solution (moment tensor) is shown, along with a legend that helps one interpret this diagram. More can be found about these “beach balls” here.

    10
    Figure 9: Earthquake shaking potential and active fault map. Warmer colors (red) represent areas that are more likely to shake strongly (minimum JMA 6) compared to the less warm colors (yellow). Active faults are shown as red rectangles or black lines.

    This M 6.6 earthquake was about 33 km (20 miles) deep, deeper than the active crustal faults in the National Seismic Hazard Map. The earthquake was a thrust or reverse earthquake (oriented as a result of northeast-southwest compression, consistent with the orientation of the Hidaka Collision Zone).

    This M 6.6 earthquake has changed the stresses within the crust surrounding the earthquake. The amount of this stress change is moderate, especially when compared with the amount of stress that is typically released during an earthquake. We label the faults in the above map that may or may not have an increased amount of stress (the Ishikari fault system).

    This change in stress is called a change in “static coulomb stress” and a paper that discusses the fundamental factors controlling these stress increases is from Lin and Stein (2004). There is software available to the public from the USGS to perform these calculations. This software is called “Coulomb 3” and is available online here. An introduction to this software and the physics behind the calculations can be found in Stein (2003).

    An earthquake occurs when the stress is greater than the strength of the rock. Rocks can have strengths that range dozens of Mega Pascal (1,000,000 Pa = 1 MPa). When earthquakes slip they release stress on the order of several to a dozen MPa. In order for an earthquake to trigger another earthquake due to these changes in stress, the triggered earthquake fault needs to have a pre-existing level of stress that is somewhat close to failure.

    Dr. Shinji Toda has calculated the change in static coulomb stress as a result of the M 6.6 earthquake. They prepared two different analyses. (1) Dr. Toda first used a computer model to estimate the increased stress that could be observed on a generic fault parallel to the M 6.6 earthquake. (2) Then Dr. Toda used a computer model to estimate what the increase in stress that might be observed on a known active fault near the M 6.6 earthquake epicenter.

    For both analyses, the process begins by choosing a fault geometry for the source earthquake fault (e.g. the M 6.6 earthquake fault). This includes the size (length and width) and the geometry (angle dip beneath horizontal and compass orientation) of the fault. The analysis also requires information about how much the fault slipped along this fault, which controls the magnitude of these stress changes. Finally assumptions need to be made about the material properties of the crust (i.e. the rheology), which controls the spatial distribution and extent of these stress changes. Dr. Toda used the mainshock focal mechanism and seismic moment, centered in the hypocenter.

    One may then calculate the change in stress on generic receiver faults in the region surrounding the source fault. Receiver faults are the faults that may have triggered earthquakes from an increase in stress. Dr. Toda calculated the change in stress for two potential source fault orientations. The figure below shows that there are regions of increased stress (red) and decreased stress (blue). The units for these stress changes are bar, a measure of force. 1 bar = 100,000 Pascal (Pa), or 0.1 MPa. If there were a fault in the red region, and this fault were parallel to the source fault, those faults have the potential to be triggered by this change in stress. Faults that are parallel to the source fault and are located in blue areas, they would have a decrease in stress, inhibiting the possibility of a triggered earthquake.

    11
    Figure 10: Static coulomb stress change imparted by the M 6.6 earthquake onto generic receiver faults that are parallel to the source fault. Red represents regions of increased stress and blue represents regions of decreased stress.

    The next step is to input the fault geometry for a “receiver” fault based upon known active faults in the National Seismic Hazard Map database. Dr. Toda selected a fault similar to the southern part of the Ishikari fault in the active fault database from Japan. The map below shows the configuration of this experiment (north is up, units on both axes is kilometers), including the shoreline and fault geometry. The source fault is the blue rectangle in the center of the map. The receiver fault is the series of small rectangles that compose a larger rectangle. Notice how the receiver fault overlaps the source fault.

    12
    Figure 11: Static coulomb stress change imparted by the M 6.6 earthquake onto an active fault with a known geometry. Red represents regions of increased stress and blue represents regions of decreased stress.

    The figure here shows that there is a strong decrease in stress (-0.5 bar) in the area of the fault near the epicenter and a modest increase in stress (0.15 bar) further to the north. Drs. Toda and Stein hypothesize that the net effect probably inhibits failure on this receiver fault. The Ishikari fault is capable of producing an earthquake M > 7 and this fault did not rupture during the M 6.6 earthquake. So, those who live in the region would benefit from continuing their efforts to mitigate the earthquake hazards that they are faced with.

    Here is another perspective of these data. The view is from the southeast looking into the Earth.

    13
    Figure 12: Low Angle Oblique Stress Changes: Static coulomb stress change imparted by the M 6.6 earthquake onto an active fault with a known geometry. Red represents regions of increased stress and blue represents regions of decreased stress.
    References:

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Keefer, D.K., 1984. Landslides caused by earthquakes. GSA Bulletin 95, 406-421

    Lin, J., and R. S. Stein (2004), Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607

    Stein, R.S., 2003. Earthquake conversations, Scientific American, v. 288, no. 1, p. 72-79

    Travasarou, T., Bray, J.D., Abrahamson, N.A., 2003. Empirical attenuation relationship for Arias Intensity. Earthquake Engineering and Structural Dynamics 32, 1133-1155

    Van Horne, A., Sato, H., Ishiyama, T., 2017. Evolution of the Sea of Japan back-arc and some unsolved issues in Tectonophysics, v. 710-711, p. 6-20, http://dx.doi.org/10.1016/j.tecto.2016.08.020

    More information about the tectonics in this region can be found here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:37 pm on August 31, 2018 Permalink | Reply
    Tags: "Earthquake Precursors, , and Predictions, , Earthquakes, , Processes, ,   

    From Eos: “Earthquake Precursors, Processes, and Predictions “ 

    From AGU
    Eos news bloc

    From Eos

    8.31.18
    Dimitar Ouzounov

    A new book presents various studies that may establish a link between earthquakes and different types of precursor signals from the Earth, atmosphere and space.

    1
    The village of Onna was severely damaged in the 2009 earthquake that struck the Abruzzo region of Italy. Our goal is to find robust earthquake precursors that may be able to predict some of the most damaging events, like Onna. The proposed earthquake precursor signals described in our book could contribute to reliable forecasting of future seismic events; however, additional study and testing is needed. Credit: Angelo_Giordano / 170 images (CC0)

    Scientists know much more about what happens after an earthquake (e.g. fault geometry, slip rates, ground deformation) than the various and complex phenomena accompanying the preparatory phases before a seismic event. Pre-Earthquake Processes: A Multi-disciplinary Approach to Earthquake Prediction Studies, a new book just published by the American Geophysical Union, explores different signals that have been recorded prior to some earthquakes and the extent to which they might be used for forecasting or prediction.

    The reporting of physical phenomena observed before large earthquakes has a long history, with fogs, clouds, and animal behavior recorded since the days of Aristotle in Ancient Greece, Pliny in Ancient Rome, and multiple scholars in ancient China [Martinelli, 2018]. Many more recent case studies have suggested geophysical and geochemical “anomalies” occurring before earthquakes [Tributsch, 1978; Cicerone et al., 2009 Nature].

    It should not be surprising that a large accumulation of stress in the Earth’s crust would produce precursory signals. Some of these precursors have been correlated with a range of anomalous phenomena recorded both in the ground and in the atmosphere. These have been measured by variations in radon, the electromagnetic field, thermal infrared radiation, outgoing longwave radiation, and the total electron content of the ionosphere.

    Earth observations from sensors both in space and on the ground present new possibilities for investigating the build-up of stress within the Earth’s crust prior to earthquakes and monitoring a broad range of abnormal phenomena that may be connected. This could enable us to improve our understanding of the lead up to earthquakes at global scales by observing possible lithosphere-atmosphere coupling.

    For example, the French Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite mission (2004-2010) was the first to systematically study electro-magnetic signals in relation to earthquakes and volcanoes. Earlier in 2018, the China Seismo-Electromagnetic Satellite (CSES-1) was launched, dedicated to monitoring electromagnetic fields and particles. There is also a global initiative to develop and coordinate test sites for observation and validation of pre-earthquake signals located in Japan, Taiwan, Italy, Greece, China, Russia, and the United States of America.

    We have carried out statistical checks of historic data to study the correlations between precursor signals and major earthquake events. For example, a decadal study of statistical data for Japan and Taiwan suggested a significant increase in the probability of electromagnetic, thermal infrared, outgoing longwave radiation, and total electron content measurements before large earthquakes [Hattori and Han, 2018; Liu et al., 2018]. A study of satellite data from DEMETER for more than 9000 earthquakes indicated a decrease of the intensity of electromagnetic radiation prior to earthquakes with a magnitude greater than five [Píša et al. 2013, Parrot and Li, 2018]. These results suggest that the earthquake detection based on measurements of these variables is better than a random guess and could potentially be of use in forecasting.

    Our book also presents testing of the CN earthquake prediction algorithm for seismicity in Italy [Peresan, 2018], the first attempt of combining probabilistic seismicity models with precursory information [Shebalin, 2018], and the testing of short-term alerts based on a multi-parameter approach for major seismic events in Japan, Chile, Nepal and Iran [Ouzounov et al., 2018]. Further testing is needed to better understand false alarm ratios and the overall physics of earthquake preparation.

    2
    Conceptual diagram of an integrated satellite and terrestrial framework for multiparameter observations of pre‐earthquake signals in Japan. The ground component includes seismic, electro-magnetic observations, radon, weather, VLF–VHF radio frequencies, and ocean‐bottom electro-magnetic sensors. Satellite component includes GPS/total electron content, synthetic-aperture radar, Swarm, microwave, and thermal infrared satellites. Credit: Katsumi Hattori, presented in Ouzounov et al, 2018, Chapter 20

    Based on our international collaborative work, we found that reliable detection of pre-earthquake signals associated with major seismicity (magnitude greater than 6) could be done only by integration of space- and ground-based observations. However, a major challenge for using precursor signals for earthquake prediction is gathering data from a regional or global network of monitoring stations to a central location and conducting an analysis to determine if, based on previous measurements, they indicate an impending earthquake.

    We also found that no single existing method for precursor monitoring can provide reliable short-term forecasting on a regional or global scale, probably because of the diversity of geologic regions where seismic activity takes place and the complexity of earthquake processes.

    The pre-earthquake phenomena that we observe are intrinsically dynamic but new Earth observations and analytical information systems could enhance our ability to observe and better understand these phenomena.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 12:37 pm on August 25, 2018 Permalink | Reply
    Tags: , Earthquakes, , , Venezuela Rocked By Large Earthquake   

    From Discover Magazine: “Venezuela Rocked By Large Earthquake” 

    DiscoverMag

    From Discover Magazine

    August 21, 2018
    Erik Klemetti

    1
    Map of shaking felt by the M7.3 earthquake in Venezuela on August 21, 2018. USGS.

    Venezuela was hit by a M7.3 earthquake today, causing extensive damage across the northern part of the country as well as nearby Trinidad & Tobago. Shaking was felt as far away at Bogotá, Martinique and Guyana, thousands of kilometers from the earthquake’s epicenter. This temblor may have been the largest earthquake to strike Venezuela since a M7.7 hit off of Caracas in 1900.

    The depth of the earthquake meant the shaking was felt widely across the region and from the looks of it, there was some sustained shaking but that depth might also mean that massive destruction was avoided. Some reports suggest that only minor to moderate damage was seen in cities relatively close to the epicenter. No injuries have been reported so far, however, news is slow to come out of the country due to its current political crisis.

    The region where the earthquake struck is tectonically complicated, with the Lesser Antilles subduction zone just to the east and a strike-slip boundary running across northern South America and the Caribbean Plate. Today’s earthquake was not a strike-slip event like one might expect for the region. Instead, it was a reverse fault where plates are moving towards each other at a depth of ~123 kilometers. This might suggest that the earthquake was rooted in the South American plate’s subduction.

    Focal mechanism (as shown by the “beachball” in the map) is unusual and doesn’t seem to indicate simple strike-slip faulting along a transform fault. Maybe the southernmost edge of the South American plate that is subducting under the Lesser Antilles arc might have been involved. pic.twitter.com/6CytpaDJPx
    3

    The region where the earthquake struck is tectonically complicated, with the Lesser Antilles subduction zone just to the east and a strike-slip boundary running across northern South America and the Caribbean Plate. Today’s earthquake was not a strike-slip event like one might expect for the region. Instead, it was a reverse fault where plates are moving towards each other at a depth of ~123 kilometers. This might suggest that the earthquake was rooted in the South American plate’s subduction.

    August has been a busy month for earthquakes, with 8 M6.5 or greater earthquakes, including a M8.2 that hit Fiji on August 19. That earthquake was centered very deep — about 563 kilometers down (so in the mantle!) — so it did not cause as much shaking felt at the surface as today’s Venezuela earthquake. Before anyone jumps to the conclusion that this cluster of earthquakes means something, Dr. Lucy Jones made it clear that this is just business as usual:

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: