Tagged: Earthquakes Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:13 am on October 27, 2018 Permalink | Reply
    Tags: , , , Earthquakes, , Greek earthquake in a region of high seismic hazard, , ,   

    From temblor: “Greek earthquake in a region of high seismic hazard” 

    1

    From temblor

    October 26, 2018
    Jason R. Patton, Ph.D.
    Ross Stein, Ph.D.
    Volkan Sevilgen, M.Sc.

    An earthquake with a magnitude of M = 6.8 earthquake struck today along the coast of Greece, preceded by a M = 5.0 earthquake. This large earthquake was felt widely across the region, including Italy, Albania, Bulgaria, and Macedonia. . Greece is at the intersection of several different tectonic regimes and is spanned by a zone of increased seismic hazard evidenced by the GEAR seismic hazard model. The earthquake is related to the convergent plate boundary that spans the southern boundary of Greece. The Gulf of Corinth, where the strongest shaking was felt, is the most seismically active site in Greece.

    Tectonic Setting

    Greece is in the middle of a tectonic die, with the right-lateral strike-slip North Anatolia fault striking from the east and the Ionian trench subduction zone converging from the south. In addition, there is a rapid (10-15 mm per year) extension at the Corinth Rift, forming the Gulf of Corinth just northeast of today’s earthquake sequence.

    The interaction of these different plate boundaries results in overlapping fault systems of different types of faults. The southern boundary of Greece is characterized by the formation of thrust faults formed from compression due to the subduction of the Africa plate beneath the Anatolia plate.

    The North Anatolia fault is a high slip rate fault (it moves fast) and can generate large damaging earthquakes such as the 1999 M = 7.6 Izmit earthquake. Much of the North Anatolia fault has ruptured in the 20th century and many consider the segment of the fault that runs near Istanbul, Turkey, is thought to be ready to slip next.

    The map below shows how the North Anatolia fault enters the region and how the subduction zones may be offset by the Kefallonia fault (Kokkalas, et al., 2006). The Ionian trench is labeled “Hellenic Arc” in this map. The M = 6.8 earthquake is in the general location of the blue star.

    1
    Plate boundary faults are shown with symbols representing the type of plate boundary. Subduction zones are shown with triangles pointing in the direction of motion of the down-going plate. Strike-slip relative motion is shown as oppositely directed arrows. Thick black arrows show relative plate motion in mm per year. Thin arrows with black dots at their base are Global Positioning System plate velocities (reference vector scale is in lower right corner).

    Seismic Hazards

    Hundreds of millions of people globally live in earthquake country. Do you live along a subduction zone or other plate boundary fault? What about another kind of fault?

    To learn more about your exposure to these hazards, visit temblor.net.

    Several governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to provide estimates of seismic hazard at a global to local scale (Bird et al., 2015). GEAR blends quakes during the past 41 years with strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. Seismicity from the past month, week, and day are shown as colored circles. The rainbow color scale represents the chance of a given earthquake magnitude, for a given location, within the lifetime of a person (technically, it is the magnitude with a 1% chance per year of occurring within 100 km). The temblor app suggests that this region could have an earthquake with a magnitude of M = 7.0 to 7.25 in a typical lifetime, and so the M = 6.8 was by no means rare or unexpected.

    Note how the seismic hazard is increased along the North Anatolia fault in Turkey and follows this fault as it enters Greece. There is also an increased risk of earthquakes associated with the Ionian trench. This belt of increased seismic hazard is well correlated with the tectonic boundaries. Much of Greece lies within this zone of increased seismic hazard.

    3
    Global Earthquake Activity Rate map for this region of the western equatorial Pacific. Faults are shown as red lines. Warmer colors represent regions that are more likely to experience a larger earthquake than the regions with cooler colors. Seismicity from the past is shown and the location of the M 6.8 earthquake is located near the blue teardrop symbol.

    References

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Kokkalas, S., Xypolias, P., Koukouvelas, I., and Doutsos, T., 2006, Postcollisional contractional and extensional deformation in the Aegean region, in Dilek, Y., and Pavlides, S., eds., Postcollisional tectonics and magmatism in the Mediterranean region and Asia: Geological Society of America Special Paper 409, p. 97–123

    More can be found about the seismotectonics of this region here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 7:32 am on September 21, 2018 Permalink | Reply
    Tags: A tectonic squeeze may be loading three thrust faults beneath central Los Angeles, , Earthquakes, , ,   

    From temblor: “A tectonic squeeze may be loading three thrust faults beneath central Los Angeles” 

    1

    From temblor

    September 17, 2018
    Chris Rollins

    Thrust-faulting earthquakes are a fact of life in Los Angeles and a threat to it. Three such earthquakes in the second half of the 20th century painfully etched this ongoing threat to life, limb and infrastructure into the memories and the backs of the minds of many who call this growing metropolis home. The first struck 40 seconds after 6:00 AM on a February morning in 1971 when a section of a thrust fault beneath the western San Gabriel Mountains ruptured in a magnitude 6.7 tremor. The earthquake killed 60 people, including 49 in the catastrophic collapse of the Veterans Administration Hospital in Sylmar, the closest town to the event (which is often referred to as the Sylmar earthquake). Among other structures hit hard were the newly built Newhall Pass interchange at the junction of Interstate 5 and California State Route 14, of which multiple sections collapsed, and the Van Norman Dam, which narrowly avoided failure in what could have been a cruel deja vu for a city that had been through deadly dam disasters in 1928 and 1963.

    1
    Devastation at the Veterans Administration Hospital in the 1971 Sylmar earthquake. Photo courtesy of Los Angeles Times.

    Sixteen years later, a section of the Puente Hills thrust fault ruptured in the magnitude 5.9 Whittier Narrows earthquake, killing eight people in East Los Angeles and bringing attention to a class of thrust faults that do not break the surface, called “blind” thrust faults, which will go on to form a key part of this story. Then early on another winter morning in 1994, an even more deeply buried blind thrust fault ruptured beneath the San Fernando Valley in the magnitude 6.7 Northridge earthquake, causing tens of billions of dollars in damage and taking 57 lives. One of the fatalities was Los Angeles police officer Clarence Wayne Dean, who died on his motorcycle when a span of the Newhall Pass interchange that had been rebuilt following the 1971 Sylmar earthquake collapsed again as he was riding across it in the predawn darkness.

    2
    Collapse of the Newhall Pass (I-5/CA-14) interchange in the 1994 Northridge earthquake. Officer Dean died on the downed section of overpass at right. The interchange has since been renamed the Clarence Wayne Dean Memorial Interchange in his memory. Photo courtesy of CNN.

    LA’s problem: The squeeze

    Thrust earthquakes like these, in which the top side of the fault is thrust up and over the bottom side, will likely strike Los Angeles again in the 21st century. They may in fact pose a greater hazard to the city than earthquakes on the nearby San Andreas Fault because they can occur directly beneath the central metropolitan area. This means that a city that has found so much of its identity and place in history from being improvised as it went, and from being a cultural and economic melting pot, now faces the unwieldy task of readying its diverse infrastructure and populace for the strong shaking these kinds of earthquakes can produce.

    One way that the earthquake science community has been assessing the seismic hazard in LA is by using geodesy – long-term, high-precision monitoring of the deformation of the Earth’s surface – to locate sections of faults that are stuck, or locked, causing the Earth’s crust to deform around them. It is this bending of the crust, or accumulated strain, that is violently released in earthquakes; therefore the locations where this bending is taking place might indicate where future earthquakes will occur, and perhaps how large and frequent they could be. Several decades of geodetic monitoring have shown that the greater Los Angeles area is being squeezed from north to south at roughly 8-9 millimeters per year (⅓ inch per year), about one-fourth the rate at which human fingernails grow. Thrust faults, such as those on which the Sylmar, Whittier Narrows and Northridge earthquakes struck, are ultimately driven by this compression.

    3
    Geodetic data, tectonics and material properties relevant to the problem. Dark blue arrows show the north-south tectonic compression inferred by Argus et al. [2005] after removing deformation caused by aquifer and oil use. Black lines are faults, dashed where blind. Background shading is a measure of material stiffness at the surface based on the Community Velocity Model [Shaw et al., 2015]. “Beach balls” show the locations and senses of slip of the 1971 Sylmar, 1987 Whittier Narrows and 1994 Northridge earthquakes. Figure simplified from Rollins et al. [2018].

    Why the science is still very much ongoing

    The task of linking the north-south tectonic squeeze to specific faults encounters several unique challenges in Los Angeles. First, the city sits atop not only active faults but also several aquifers and oil fields that have long provided part of its livelihood and continue to be used today, which deforms the crust around them. Geodetic data are affected by this anthropogenic deformation, to the extent that a recent study used these data to observe Los Angeles “breathing” water from year to year and even to resolve key hydrological properties of particular sections of aquifers. This spectacular deformation, which furnishes science that can be used in resource management around the world, has the unfortunate effect of obscuring the more gradual north-south tectonic shortening in Los Angeles in these data.

    4
    Animation from Riel et al. [2018] showing long-term subsidence of the Earth’s surface due to use of the Los Angeles and Santa Ana aquifers.

    Second, the faults are a complex jumble. The crust underlying Los Angeles is cut by thrust faults, strike-slip faults like the San Andreas Fault and subparallel to it, and other strike-slip faults nearly perpendicular to it. Although these faults all take part in accommodating the gradual north-south squeeze, the relative contributions of the thrust and strike-slip faults in doing so has been the subject of debate. The problem of estimating strain accumulation on subsurface faults is also generally at the mercy of uncertainties as to how faults behave at depth in the Earth’s crust and how they intersect and link up.

    Third, Los Angeles sits atop a deep sedimentary basin, created when a previous episode of extension created a “hole” in the crust that was gradually filled by sediments eroded off the surrounding mountain ranges. These sedimentary layers are more easily deformed than the stiffer rocks in the mountains around the basin, complicating the problem of estimating strain accumulation at depth from the way the surface is deforming. Finally, as in the case of the Puente Hills Fault, some of the major thrust faults in Los Angeles do not break the surface but are “blind.” This means that the bending of the crust around locked sections of these faults is buried and more difficult to detect at the surface.

    5
    Basin sediments affect the relationship between fault slip and deformation at the surface by up to 50% for the cases of the Puente Hills Fault (left) and Compton Fault (right). For the same fault slip, the basin is more compliant and so the Earth’s surface is displaced more (red arrows) than if it were absent (blue arrows). Figure simplified from Rollins et al. [2018].

    Three thrust faults may be doing a lot of the work

    Several important advances over the past two decades have paved pathways towards overcoming these challenges. The signal of deformation due to water and oil management can be subtracted from the geodetic data to yield a clearer picture of the tectonic shortening. The geometries of faults at depth have also come into focus, as earth scientists at the Southern California Earthquake Center and Harvard University have compiled decades of oil well logs and seismic reflection data to build the Community Fault Model, a detailed 3D picture of these complex geometries. A parallel effort has yielded the Community Velocity Model, a 3D model of the structure and composition of the Southern California crust that is internally consistent with the fault geometries.

    6
    A cross section of faults and earthquakes across central Los Angeles from Rollins et al. [2018]. Red lines are faults, dashed where uncertain; pairs of arrows along the thrust faults show their long-term sense of slip. White circles are earthquakes. Basin structure is from the Community Velocity Model.

    Recently, a team of researchers from Caltech, JPL and USC (with contributions from many other earthquake scientists) has begun to put these pieces together. Their approaches and findings were published in the Journal of Geophysical Research (JGR) this summer. On the challenge presented by the complex array of faults, the study found that the strike-slip faults probably accommodate less than 20% of the total shortening at the max, leaving the rest to be explained by thrust faulting or other processes. Three thrust faults, the Sierra Madre, Puente Hills and Compton faults, stand out in particular as good candidates. All three appear to span the Los Angeles basin from west to east, and the Puente Hills and Sierra Madre faults have generated moderate earthquakes in the last three decades, including the Whittier Narrows shock and a magnitude 5.8 tremor in 1991. Paleoseismology (the study of prehistoric earthquakes) has also revealed that these three faults have each generated multiple earthquakes in the past 15,000 years whose magnitudes may have exceeded 7.0.

    7
    Alternative models of how quickly strain is accumulating on the Compton, Puente Hills and Sierra Madre Faults, assuming that the transition between completely locked (stuck) and freely slipping patches of fault is gradual (left) or sharp (right), simplified from Rollins et al. [2018]. Gray lines are major highways.

    How fast is stress building up on these faults?

    Exploring a wide range of assumptions (such as whether the transitions between stuck and unstuck sections of faults may be gradual or abrupt), the team inferred that the Sierra Madre, Puente Hills and Compton faults appear to be partially or fully locked and building up stress on their upper (shallowest) sections. The estimated total rate of strain accumulation on the three faults is equivalent to a magnitude 6.7-6.8 earthquake like the Sylmar earthquake once every 100 years, or a magnitude 7.0 shock every 250 years. These back-of-the-envelope calculations, however, belie the fact that this strain is likely released by earthquakes across a wide range of magnitudes. The team is currently working to assess just how wide this range of magnitudes practically needs to be: whether the strain can be released as fast as it is accruing without needing to invoke earthquakes larger than Sylmar and Northridge, for example, or whether the M>7 thrust earthquakes inferred from paleoseismology are indeed a likely part of the picture over the long term.

    This picture of strain accumulation will sharpen as the methods used to build it are improved, as community models of faults and structure continue to be refined, and especially as more high-resolution data, such as that used to observe LA “breathing” water, is brought to bear on the estimation problem. The tolls of the Sylmar, Whittier Narrows and Northridge earthquakes in lives and livelihoods are a reminder that we should work as fast as possible to understand the menace that lies beneath the City of Angels.

    References

    Argus, D. F., Heflin, M. B., Peltzer, G., Crampé, F., & Webb, F. H. (2005). Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. Journal of Geophysical Research: Solid Earth 110(B4).

    Riel, B. V., Simons, M., Ponti, D., Agram, P., & Jolivet, R. (2018). Quantifying ground deformation in the Los Angeles and Santa Ana coastal basins due to groundwater withdrawal. Water Resources Research 54(5), 3557-3582.

    Rollins, C., Avouac, J.-P., Landry, W., Argus, D. F., & Barbot, S. D. (2018). Interseismic strain accumulation on faults beneath Los Angeles, California. Journal of Geophysical Research: Solid Earth 123, doi: 10.1029/2017JB015387.

    Shaw, J. H., Plesch, A., Tape, C., Suess, M. P., Jordan, T. H., Ely, G., Hauksson, E., Tromp, J., Tanimoto, T., & Graves, R. (2015). Unified structural representation of the southern California crust and upper mantle. Earth and Planetary Science Letters 415: 1-15.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 2:43 pm on September 7, 2018 Permalink | Reply
    Tags: , , , Earthquakes, , , , The ongoing earthquake sequence on the island of Hokkaido Japan   

    From temblor: “The ongoing earthquake sequence on the island of Hokkaido, Japan” 

    1

    From temblor

    September 6, 2018
    Jason Patton
    Jason R. Patton, Ph.D., Ross Stein, Ph.D., Shinji Toda, Ph.D, Volkan Sevilgen, M.Sc.

    The Nation of Japan is one of the most seismically active regions in the world and the people of Japan devote significant efforts to be resilient in the face of these hazards associated with earthquakes. These hazards include ground shaking, tsunami, landslides, and liquefaction. The historical knowledge of these hazards extends centuries into the past. Because of their efforts to learn using scientific methods, the world has learned more about earthquake processes.

    Everyone can benefit from learning about their exposure to natural hazards from earthquakes. To learn more about your exposure to these hazards, visit temblor.net.

    In this report, we discuss the ongoing earthquake sequence on the island of Hokkaido, Japan. Below is a map that shows the epicenter for the mainshock, an earthquake with a magnitude M = 6.6. This map shows the coastline and active faults. There are over 700 aftershocks plotted here.

    1
    Figure 1: Regional seismicity map showing earthquake epicenters from the past 30 days. Faults are in red.

    The major source of earthquakes in Japan are the numerous plate boundary fault systems, which include subduction zones, “forearc sliver” strike slip faults, and a collision zone (another form of convergent plate boundary). The figure below is from the American Geophysical Union blog “Trembling Earth,” written by Dr. Austin Elliot. Great earthquakes, quakes with M ≥ 8.0, in the 20th century include the 1923 Great Kantō subduction earthquake and the 1944 and 1946 Tōnankai and Nankai subduction earthquakes. Subduction zones are convergent plate boundaries where an oceanic plate is subducting beneath a continental or oceanic plate. These events helped shape the earth science programs in Japan, especially regarding efforts to learn about subduction zone processes. The 2011 M 9.1 Tohoku-oki subduction zone earthquake generated a trans-pacific tsunami and reminded the public that their efforts to be resilient are well founded.

    2
    Figure 2: Oblique view showing the configuration of the plate boundaries in the region of Japan.

    The various plates and how they are configured is very complicated in Japan and we learn more about them every year. The recent M 6.6 Sapporo earthquake along the southern part of Hokkaido, Japan was also associated with a plate boundary, but not a subduction zone. In northern Japan, the North America/Okhotsk plate is moving southwestward and converging towards the Amuria/Eurasia plate. This plate motion leads to northeast-southwest oriented compression. This compression has led to the formation of tectonic deformation and thrust faults involved in the Hidaka Collision Zone. Collision zones are convergent plate boundaries where two continental plates are converging. An analogical collision zone is the collision of the India and Eurasia plates that form the Himalayas. The map below shows a generalized view of the geologic rocks in Japan, along with the location of different plate boundary faults (Van Horne et al., 2013). The Hidaka Collision Zone is labeled on the map. I placed a blue star in the location of the M 6.6 earthquake.

    3
    Figure 3: Geologic map of Japan showing the plate boundaries and key tectonic features including the Hidaka Collision Zone (Van Horne et al., 2016).

    Ground Shaking

    The M 6.6 Sapporo earthquake generated significant ground shaking and triggered landslides across the region. There are 3 main factors that control the intensity of ground shaking from earthquakes: (1) the magnitude of the earthquake, (2) the distance from the earthquake, and (3) the earth materials between the earthquake and one’s location. Earthquake magnitude is a measure of the amount of energy released during an earthquake, while intensity is a measure of how strongly the ground shakes (and how damaging the shaking is). It makes sense that when there is a larger magnitude, there is the potential for stronger shaking and a higher intensity. The magnitude does not change with distance, but intensity does. The further away from the earthquake source, the less shaking one might observe.

    Here is a figure prepared using the J-SHIS Japan Seismic Hazard Information website. The color represents Peak Ground Acceleration, a measure of ground shaking. The units are also in g, an acceleration, where g = 9.8/m2. If ground shaking is about 1 g, there is possibly enough energy to throw materials into the air (like rocks, cars, or buildings). The symbols represent locations where instruments made these acceleration measurements. Between symbols, the color represents an estimate of the ground shaking at those locations. Note that one site near the earthquake epicenter has a measured acceleration of 1.5 g!

    4
    Figure 4: Ground shaking map showing Peak Ground Acceleration (PGA) represented by color.

    Many governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards, though on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to prepare estimates of seismic hazard at a global to local scale (Bird et al., 2015). Each of these models incorporate earthquake information from different sources including, but not limited to, fault slip rates, records of prehistoric earthquakes, historic seismicity, and strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. The rainbow color scale represents the change of a given earthquake magnitude, for a given location, within the lifetime of a person. The temblor app suggests that this region could have an earthquake of M 7.1 in a human lifetime.

    5
    Figure 5: Global Earthquake Activity Rate map for this region of the northwest Pacific. Warmer colors represent regions that are more likely to experience a larger earthquake than the regions with cooler colors. Seismicity from the past is shown and the location of the M 6.6 earthquake is located near the blue teardrop symbol.

    Landslides

    There are many different ways in which a landslide can be triggered. The first order relations behind slope failure (landslides) is that the “resisting” forces that are preventing slope failure (e.g. the strength of the land) are overcome by the “driving” forces that are pushing this land downwards (e.g. gravity). The ratio of resisting forces to driving forces is called the Factor of Safety (FOS). We can write this ratio like this:

    FOS = Resisting Force / Driving Force

    When FOS > 1, the slope is stable and when FOS < 1, the slope fails and we get a landslide. The illustration below shows these relations. Note how the slope angle α can take part in this ratio (the steeper the slope, the greater impact of the mass of the slope can contribute to driving forces).

    6
    Figure 6: Landslide force balance diagram showing how driving and resisting forces balance for a stable slope.

    Some factors that change this ratio include rainfall, over steepening of the slope, undercutting of the base of the slope, and earthquakes. There are other factors as well.

    Japan recently experienced the most severe Typhoon in decades, which resulted in significant rainfall. When rain water infiltrates into the earth, that water can fill the spaces between soil particles and rock cracks so that the water pressure pushes apart these particles or rocks. If this pressure is large enough, the strength of the material (a resisting force) becomes weaker and there can be a landslide. Even if there is not enough reduction in resisting force, the strength of the material is still potentially weaker.

    Landslide ground shaking can change the Factor of Safety in several ways that might increase the driving force or decrease the resisting force. Keefer (1984) studied a global data set of earthquake triggered landslides. The plot presented here shows that that larger earthquake magnitudes (horizontal axis) can result in landslides across a larger area.

    7
    Figure 7: Spatial extent of landslide triggering by earthquakes relative to earthquake magnitude (Keefer, 1984).

    As a result of the M 6.6 Sapporo earthquake, there were a large number of slope failures in the epicentral region. These landslides have covered many buildings and unfortunately have trapped many dozens of people within the debris. We will learn more about this in the coming days as search and rescue teams respond to this disaster.

    There have been many videos posted online, possibly the best ones from Nippon Hōsō Kyōkai (NHK), Japan’s national public broadcasting organization. NHK also acquired the best aerial videos from the inundation of the 2011 Tohoko-oki earthquake and tsunami. There have also been some excellent comparisons between pre-landslide and post-landslide aerial imagery.

    Here is another spectacular view of some of these triggered landslides here.

    Below is a pair of images that presents a comparison of the landscape from before and after the earthquake. These come from social media here.

    8
    9
    Figure 8: A comparison of imagery from before and from after the earthquake. The earthquake triggered landslides in the second image are identified in this photo by the areas of exposed brown colored soil.

    These landslides appear to be failures within the soil mantle of the hillsides. While these landslides were triggered by the earthquake, it is highly likely that the water content from the Typhoon decreased the Factor of Safety prior to the earthquake. It is possible that without this preceding Typhoon, the slope failures might have been less catastrophic.

    Active Faults in Hokkaido

    There are a number of active crustal faults in southern Hokkaido, Japan. One may view the location of these faults on the Japan Seismic Hazard Information Station (J-SHIS) website here. In addition, estimates for seismic hazard are also placed on that website. For example, the National Seismic Hazard Map for Japan is included there. There are various versions of this map, but the most useful version is the map that shows the chance that an area in Japan will experience earthquake ground shaking at least JMA 6, for the next 30 years. The Japan Meteorological Agency Seismic Intensity Scale (JMA) is an intensity scale with a range of 0 – 7, with 7 being the highest intensity, the strongest ground shaking. To give us an idea about how strong the shaking might be for an earthquake with a JMA 6 intensity, this is what a person might experience: “Impossible to keep standing and to move without crawling.”

    Below is a map that is based upon the J-SHIS website. We plot USGS earthquake epicenters from this earthquake sequence as circles colored relative to their depth with circle size relative to earthquake magnitude. Included in this map are also the active fault sources, shown as red rectangles and black lines. The two active faults in the region are different parts of the Ishikari-teichi-toen fault (the main part and the southern part). Based upon expert knowledge, these faults have the potential to produce an M 7.2 and M 7.1 earthquake for the main part and southern part, respectively. Combined, these faults may produce an M 7.9 earthquake. The USGS fault plane solution (moment tensor) is shown, along with a legend that helps one interpret this diagram. More can be found about these “beach balls” here.

    10
    Figure 9: Earthquake shaking potential and active fault map. Warmer colors (red) represent areas that are more likely to shake strongly (minimum JMA 6) compared to the less warm colors (yellow). Active faults are shown as red rectangles or black lines.

    This M 6.6 earthquake was about 33 km (20 miles) deep, deeper than the active crustal faults in the National Seismic Hazard Map. The earthquake was a thrust or reverse earthquake (oriented as a result of northeast-southwest compression, consistent with the orientation of the Hidaka Collision Zone).

    This M 6.6 earthquake has changed the stresses within the crust surrounding the earthquake. The amount of this stress change is moderate, especially when compared with the amount of stress that is typically released during an earthquake. We label the faults in the above map that may or may not have an increased amount of stress (the Ishikari fault system).

    This change in stress is called a change in “static coulomb stress” and a paper that discusses the fundamental factors controlling these stress increases is from Lin and Stein (2004). There is software available to the public from the USGS to perform these calculations. This software is called “Coulomb 3” and is available online here. An introduction to this software and the physics behind the calculations can be found in Stein (2003).

    An earthquake occurs when the stress is greater than the strength of the rock. Rocks can have strengths that range dozens of Mega Pascal (1,000,000 Pa = 1 MPa). When earthquakes slip they release stress on the order of several to a dozen MPa. In order for an earthquake to trigger another earthquake due to these changes in stress, the triggered earthquake fault needs to have a pre-existing level of stress that is somewhat close to failure.

    Dr. Shinji Toda has calculated the change in static coulomb stress as a result of the M 6.6 earthquake. They prepared two different analyses. (1) Dr. Toda first used a computer model to estimate the increased stress that could be observed on a generic fault parallel to the M 6.6 earthquake. (2) Then Dr. Toda used a computer model to estimate what the increase in stress that might be observed on a known active fault near the M 6.6 earthquake epicenter.

    For both analyses, the process begins by choosing a fault geometry for the source earthquake fault (e.g. the M 6.6 earthquake fault). This includes the size (length and width) and the geometry (angle dip beneath horizontal and compass orientation) of the fault. The analysis also requires information about how much the fault slipped along this fault, which controls the magnitude of these stress changes. Finally assumptions need to be made about the material properties of the crust (i.e. the rheology), which controls the spatial distribution and extent of these stress changes. Dr. Toda used the mainshock focal mechanism and seismic moment, centered in the hypocenter.

    One may then calculate the change in stress on generic receiver faults in the region surrounding the source fault. Receiver faults are the faults that may have triggered earthquakes from an increase in stress. Dr. Toda calculated the change in stress for two potential source fault orientations. The figure below shows that there are regions of increased stress (red) and decreased stress (blue). The units for these stress changes are bar, a measure of force. 1 bar = 100,000 Pascal (Pa), or 0.1 MPa. If there were a fault in the red region, and this fault were parallel to the source fault, those faults have the potential to be triggered by this change in stress. Faults that are parallel to the source fault and are located in blue areas, they would have a decrease in stress, inhibiting the possibility of a triggered earthquake.

    11
    Figure 10: Static coulomb stress change imparted by the M 6.6 earthquake onto generic receiver faults that are parallel to the source fault. Red represents regions of increased stress and blue represents regions of decreased stress.

    The next step is to input the fault geometry for a “receiver” fault based upon known active faults in the National Seismic Hazard Map database. Dr. Toda selected a fault similar to the southern part of the Ishikari fault in the active fault database from Japan. The map below shows the configuration of this experiment (north is up, units on both axes is kilometers), including the shoreline and fault geometry. The source fault is the blue rectangle in the center of the map. The receiver fault is the series of small rectangles that compose a larger rectangle. Notice how the receiver fault overlaps the source fault.

    12
    Figure 11: Static coulomb stress change imparted by the M 6.6 earthquake onto an active fault with a known geometry. Red represents regions of increased stress and blue represents regions of decreased stress.

    The figure here shows that there is a strong decrease in stress (-0.5 bar) in the area of the fault near the epicenter and a modest increase in stress (0.15 bar) further to the north. Drs. Toda and Stein hypothesize that the net effect probably inhibits failure on this receiver fault. The Ishikari fault is capable of producing an earthquake M > 7 and this fault did not rupture during the M 6.6 earthquake. So, those who live in the region would benefit from continuing their efforts to mitigate the earthquake hazards that they are faced with.

    Here is another perspective of these data. The view is from the southeast looking into the Earth.

    13
    Figure 12: Low Angle Oblique Stress Changes: Static coulomb stress change imparted by the M 6.6 earthquake onto an active fault with a known geometry. Red represents regions of increased stress and blue represents regions of decreased stress.
    References:

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Keefer, D.K., 1984. Landslides caused by earthquakes. GSA Bulletin 95, 406-421

    Lin, J., and R. S. Stein (2004), Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607

    Stein, R.S., 2003. Earthquake conversations, Scientific American, v. 288, no. 1, p. 72-79

    Travasarou, T., Bray, J.D., Abrahamson, N.A., 2003. Empirical attenuation relationship for Arias Intensity. Earthquake Engineering and Structural Dynamics 32, 1133-1155

    Van Horne, A., Sato, H., Ishiyama, T., 2017. Evolution of the Sea of Japan back-arc and some unsolved issues in Tectonophysics, v. 710-711, p. 6-20, http://dx.doi.org/10.1016/j.tecto.2016.08.020

    More information about the tectonics in this region can be found here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:37 pm on August 31, 2018 Permalink | Reply
    Tags: "Earthquake Precursors, , and Predictions, , Earthquakes, , Processes, ,   

    From Eos: “Earthquake Precursors, Processes, and Predictions “ 

    From AGU
    Eos news bloc

    From Eos

    8.31.18
    Dimitar Ouzounov

    A new book presents various studies that may establish a link between earthquakes and different types of precursor signals from the Earth, atmosphere and space.

    1
    The village of Onna was severely damaged in the 2009 earthquake that struck the Abruzzo region of Italy. Our goal is to find robust earthquake precursors that may be able to predict some of the most damaging events, like Onna. The proposed earthquake precursor signals described in our book could contribute to reliable forecasting of future seismic events; however, additional study and testing is needed. Credit: Angelo_Giordano / 170 images (CC0)

    Scientists know much more about what happens after an earthquake (e.g. fault geometry, slip rates, ground deformation) than the various and complex phenomena accompanying the preparatory phases before a seismic event. Pre-Earthquake Processes: A Multi-disciplinary Approach to Earthquake Prediction Studies, a new book just published by the American Geophysical Union, explores different signals that have been recorded prior to some earthquakes and the extent to which they might be used for forecasting or prediction.

    The reporting of physical phenomena observed before large earthquakes has a long history, with fogs, clouds, and animal behavior recorded since the days of Aristotle in Ancient Greece, Pliny in Ancient Rome, and multiple scholars in ancient China [Martinelli, 2018]. Many more recent case studies have suggested geophysical and geochemical “anomalies” occurring before earthquakes [Tributsch, 1978; Cicerone et al., 2009 Nature].

    It should not be surprising that a large accumulation of stress in the Earth’s crust would produce precursory signals. Some of these precursors have been correlated with a range of anomalous phenomena recorded both in the ground and in the atmosphere. These have been measured by variations in radon, the electromagnetic field, thermal infrared radiation, outgoing longwave radiation, and the total electron content of the ionosphere.

    Earth observations from sensors both in space and on the ground present new possibilities for investigating the build-up of stress within the Earth’s crust prior to earthquakes and monitoring a broad range of abnormal phenomena that may be connected. This could enable us to improve our understanding of the lead up to earthquakes at global scales by observing possible lithosphere-atmosphere coupling.

    For example, the French Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite mission (2004-2010) was the first to systematically study electro-magnetic signals in relation to earthquakes and volcanoes. Earlier in 2018, the China Seismo-Electromagnetic Satellite (CSES-1) was launched, dedicated to monitoring electromagnetic fields and particles. There is also a global initiative to develop and coordinate test sites for observation and validation of pre-earthquake signals located in Japan, Taiwan, Italy, Greece, China, Russia, and the United States of America.

    We have carried out statistical checks of historic data to study the correlations between precursor signals and major earthquake events. For example, a decadal study of statistical data for Japan and Taiwan suggested a significant increase in the probability of electromagnetic, thermal infrared, outgoing longwave radiation, and total electron content measurements before large earthquakes [Hattori and Han, 2018; Liu et al., 2018]. A study of satellite data from DEMETER for more than 9000 earthquakes indicated a decrease of the intensity of electromagnetic radiation prior to earthquakes with a magnitude greater than five [Píša et al. 2013, Parrot and Li, 2018]. These results suggest that the earthquake detection based on measurements of these variables is better than a random guess and could potentially be of use in forecasting.

    Our book also presents testing of the CN earthquake prediction algorithm for seismicity in Italy [Peresan, 2018], the first attempt of combining probabilistic seismicity models with precursory information [Shebalin, 2018], and the testing of short-term alerts based on a multi-parameter approach for major seismic events in Japan, Chile, Nepal and Iran [Ouzounov et al., 2018]. Further testing is needed to better understand false alarm ratios and the overall physics of earthquake preparation.

    2
    Conceptual diagram of an integrated satellite and terrestrial framework for multiparameter observations of pre‐earthquake signals in Japan. The ground component includes seismic, electro-magnetic observations, radon, weather, VLF–VHF radio frequencies, and ocean‐bottom electro-magnetic sensors. Satellite component includes GPS/total electron content, synthetic-aperture radar, Swarm, microwave, and thermal infrared satellites. Credit: Katsumi Hattori, presented in Ouzounov et al, 2018, Chapter 20

    Based on our international collaborative work, we found that reliable detection of pre-earthquake signals associated with major seismicity (magnitude greater than 6) could be done only by integration of space- and ground-based observations. However, a major challenge for using precursor signals for earthquake prediction is gathering data from a regional or global network of monitoring stations to a central location and conducting an analysis to determine if, based on previous measurements, they indicate an impending earthquake.

    We also found that no single existing method for precursor monitoring can provide reliable short-term forecasting on a regional or global scale, probably because of the diversity of geologic regions where seismic activity takes place and the complexity of earthquake processes.

    The pre-earthquake phenomena that we observe are intrinsically dynamic but new Earth observations and analytical information systems could enhance our ability to observe and better understand these phenomena.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 12:37 pm on August 25, 2018 Permalink | Reply
    Tags: , Earthquakes, , , Venezuela Rocked By Large Earthquake   

    From Discover Magazine: “Venezuela Rocked By Large Earthquake” 

    DiscoverMag

    From Discover Magazine

    August 21, 2018
    Erik Klemetti

    1
    Map of shaking felt by the M7.3 earthquake in Venezuela on August 21, 2018. USGS.

    Venezuela was hit by a M7.3 earthquake today, causing extensive damage across the northern part of the country as well as nearby Trinidad & Tobago. Shaking was felt as far away at Bogotá, Martinique and Guyana, thousands of kilometers from the earthquake’s epicenter. This temblor may have been the largest earthquake to strike Venezuela since a M7.7 hit off of Caracas in 1900.

    The depth of the earthquake meant the shaking was felt widely across the region and from the looks of it, there was some sustained shaking but that depth might also mean that massive destruction was avoided. Some reports suggest that only minor to moderate damage was seen in cities relatively close to the epicenter. No injuries have been reported so far, however, news is slow to come out of the country due to its current political crisis.

    The region where the earthquake struck is tectonically complicated, with the Lesser Antilles subduction zone just to the east and a strike-slip boundary running across northern South America and the Caribbean Plate. Today’s earthquake was not a strike-slip event like one might expect for the region. Instead, it was a reverse fault where plates are moving towards each other at a depth of ~123 kilometers. This might suggest that the earthquake was rooted in the South American plate’s subduction.

    Focal mechanism (as shown by the “beachball” in the map) is unusual and doesn’t seem to indicate simple strike-slip faulting along a transform fault. Maybe the southernmost edge of the South American plate that is subducting under the Lesser Antilles arc might have been involved. pic.twitter.com/6CytpaDJPx
    3

    The region where the earthquake struck is tectonically complicated, with the Lesser Antilles subduction zone just to the east and a strike-slip boundary running across northern South America and the Caribbean Plate. Today’s earthquake was not a strike-slip event like one might expect for the region. Instead, it was a reverse fault where plates are moving towards each other at a depth of ~123 kilometers. This might suggest that the earthquake was rooted in the South American plate’s subduction.

    August has been a busy month for earthquakes, with 8 M6.5 or greater earthquakes, including a M8.2 that hit Fiji on August 19. That earthquake was centered very deep — about 563 kilometers down (so in the mantle!) — so it did not cause as much shaking felt at the surface as today’s Venezuela earthquake. Before anyone jumps to the conclusion that this cluster of earthquakes means something, Dr. Lucy Jones made it clear that this is just business as usual:

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:07 am on August 17, 2018 Permalink | Reply
    Tags: , Bhutan Earthquake Opens Doors to Geophysical Studies, , Earthquakes, , ,   

    From Eos: “Bhutan Earthquake Opens Doors to Geophysical Studies” 

    From AGU
    Eos news bloc

    From Eos

    13 August 2018
    György Hetényi
    Rodolphe Cattin
    Dowchu Drukpa

    1
    Taktsang, also known as the Tiger’s Nest, is a famous cliffside monastery in western Bhutan. Recent geophysical surveys have uncovered evidence of past earthquakes in this region that were much stronger than more recent events. Credit: iStock.com/KiltedArab

    In 2015, a magnitude 7.8 earthquake shook the Gorkha District of Nepal, killing more than 9,000. The memory of this event is still vivid for the residents of this central Himalayan nation.

    But farther east in the mountains, in Bhutan, many residents doubt the likelihood of a similar event happening to them. Bhutan had experienced several other earthquakes with a magnitude of about 6 during the past century. However, there was no clear evidence that Bhutan had ever seen an earthquake similar to the M7.8 Nepal event.

    Findings from recent geophysical exploration suggest that this confidence may be overly optimistic. These results have shown that the eastern Himalayas region is extremely complex compared with the rest of the mountain belt.

    The kingdom of Bhutan sets great store in its traditions and its principle of Gross National Happiness. Although its rugged terrain and remote location have allowed this kingdom to preserve its unique culture, these factors have also limited the development of international collaborations there, notably in the Earth sciences. This situation changed in 2009 after a damaging M6.1 earthquake that claimed 11 lives persuaded Bhutan to open its doors to exploration of the region’s geophysics.

    Our team studied mountain-building processes in this region after the 2009 earthquake. After 7 years of multipronged field campaigns, we learned that Bhutan’s geodynamics are as unique as its culture. The region’s crustal structure, seismicity, and deformation pattern are all different from what scientists had speculated previously.

    During our campaigns, we found evidence that at least one M8 earthquake had, in fact, occurred in Bhutan. This means that other earthquakes of this magnitude could occur in the region again [Hetényi et al., 2016b; Berthet et al., 2014; Le Roux-Mallouf et al., 2016].

    A Different Plate?

    Although the western and central Himalayan arc curves gently from Pakistan to Sikkim and has a low-lying foreland, the eastern third curves more sharply and has significant topographical relief south of the mountain belt, namely, the Shillong Plateau and neighboring hills (Figure 1). Previous studies proposed that these structures accommodate part of the India-Eurasia tectonic plate convergence. These earlier studies also proposed that the great 1897 Assam earthquake (M8.1) had relieved some of the strain between these converging tectonic plates, thereby lowering earthquake hazard in Bhutan.

    3
    Fig. 1. Topographic map of the 2,500-kilometer-long Himalayan arc and surrounding region, with formerly (yellow) and newly (pink) cataloged seismicity. The dextral fault zone (white arrows) between Sikkim and the Shillong Plateau marks the break of the India plate, east of which a zone of complex 3-D deformation begins. Red dates mark the three largest earthquakes mentioned in the text. Green lines mark the surface trace of the megathrust along which the India plate underthrusts the Himalayan orogen, as well as the thrust faults bounding the Shillong Plateau. Political boundaries are shown for reference. Abbreviations: Pl. = plateau; Pr. = Pradesh; Sik. = Sikkim.

    We collected new gravity, geodetic, and seismology data, and we found that the lithosphere—the rigid top layer of Earth—beneath Bhutan and the Shillong Plateau is most likely not part of the Indian plate or, if it once was, that it is now detached from it. The demarcation between plates stretches in a NW–SE direction, without a surface trace, but it is evident in a middle to lower crustal zone of continuously active seismicity and dextral (right-lateral) motion [Diehl et al., 2017]. This fault zone most likely hosted an M7 earthquake in 1930.

    4
    Research team member Théo Berthet monitors data collection during a campaign to a less visited region in central Bhutan. The Black Mountains, which rise to 4,500–4,600 meters, are visible in the background. Credit: György Hetényi

    Our GPS measurements confirm the relative motion of the newly defined microplate. These measurements also show that this microplate is rotating clockwise with respect to the Indian plate [Vernant et al., 2014]. The different behaviors of the two lithospheres are clearly expressed in their differences in flexural stiffness along the strike direction of the orogen (mountain belt). The flexural stiffness beneath Nepal is homogeneous [Berthet et al., 2013] but is comparatively weaker beneath Bhutan [Hammer et al., 2013].

    A similar, but less well defined, deep seismicity zone, with distinct GPS vectors and flexural signatures, may mark another terrain boundary farther east along the Himalayas in Arunachal Pradesh [Hetényi et al., 2016a].

    Not a Safe Haven

    India’s 1897 Assam earthquake, which occurred farther south, is only a few human generations in the past and has not completely faded from memory. No event since then has reached magnitude 7 in Bhutan, and many of the local population believe that big earthquakes cannot happen there.

    However, the return period of large Himalayan events is longer than oral history: Western Nepal, for example, has not experienced a significant event since 1505. It is true that over the past decades, the seismicity rate in Bhutan has been low, but we have found evidence of several great earthquakes in the past on the local megathrust.

    Geomorphological analysis of uplifted river terraces in central Bhutan revealed two major events over the past millennium [Berthet et al., 2014]. A newly excavated paleoseismological trench has documented surface rupture during a medieval event and a 17th–18th century event [Le Roux-Mallouf et al., 2016]. Calculations based on newly translated historical eyewitness reports, macroseismic information, and reassessed damage reports have constrained a M8 ± 0.5 earthquake on 4 May 1714 [Hetényi et al., 2016b].

    Thus, the seismic gap proved to be an information gap: The entire length of the Himalayas can generate earthquakes with a magnitude greater than 7.5, and it has done so in the past 500 years.

    5
    The landscape in eastern Bhutan, south of Trashigang, typically features incised valleys, steep slopes, and terraces. The hut in the center is shown in the inset for scale. The view here is to the east, and the hut is located at 27.2784°N, 91.4478°E. Credit: György Hetényi

    Differences at Multiple Scales

    The major change along the Himalayas occurs between their central western part (with a single convergence zone) and the eastern third (with distributed deformation including strike-slip motion), and the east–west extent of Bhutan exhibits even greater complexity. The crust appears to be smoothly descending in western Bhutan and is subhorizontal in the eastern part of the country [Singer et al., 2017a]. Our measurements of seismic wave speeds in the upper crust show important changes across the country, and they coincide well with the geological structure mapped at the surface [Singer et al., 2017b].

    The most striking difference between western and eastern Bhutan is the crustal deformation pattern. In the west, the accommodation of present-day crustal shortening is very similar to the rest of the Himalayas: The plates in the megathrust region are fully locked [Vernant et al., 2014], and microseismicity (the occurrence of small events) is scattered across the crust [Diehl et al., 2017]. In the east, the locked segment of the megathrust is shorter, and it focuses most of the microseismic activity within a smaller region. Also, the fault appears to be creeping (sliding without producing significant seismicity) in both shallower and deeper segments [Marechal et al., 2016].

    This variation of loading and background seismicity warrants further research along the entire Himalayan orogen because there is very little existing insight into variations of structures and processes at such short distance scales.

    6
    Gangkhar Puensum, a mountain in north central Bhutan, is clearly visible from the main road between Ura and Sengor, looking north-northwest. Gangkhar Puensum, at an altitude of 7,570 meters, is the highest unclimbed peak on Earth. For religious reasons, mountaineering above 6,000 meters is prohibited in Bhutan, so this record is very likely to remain. Credit: György Hetényi

    Bhutan Is Moving Forward

    Bhutan is an exotic place that has self-imposed isolation for a long time, but the country’s technology is now catching up at a rate that is higher than for the rest of the Himalayan regions. During our 2010 campaign, we used paper traveler’s checks, and we lacked individual cell phones. During our 2017 campaign, we had access to automated teller machines (ATMs) and 3G internet.

    Likewise, our 7 years of field campaigns in this region have advanced our geophysical exploration and geodynamic understanding considerably. Still, there is a strong need to continue and build on the existing knowledge, which includes freely available seismological, gravity, and GPS data from our projects.

    Focusing on three areas would help improve future development in Bhutan:

    Broadening timescales. Acquiring long-term data needed to confirm or to adjust interpretations made on relatively short timescales is possible only with national observatories. We have launched seismology and GPS monitoring initiatives, and we hope for long-term funding and training of local manpower for all levels of operation.
    Broadening investigations. Some fields of study have advanced dramatically, including work on glacial lake outburst floods and on landslides. Others, like seismic microzonation, have been limited so far and could benefit from more extensive efforts. There is also a strong need for up-to-date building codes that reflect the scientific knowledge coming from these investigations.
    Increasing public awareness of natural hazards. The Bhutanese Ministry of Home and Cultural Affairs now has a full department devoted to disaster management that includes well-trained employees and comprehensive administration. However, education is the key to reaching the broadest population possible, which requires regular adaptation of school curricula and concise, practical information that local residents from any generation can understand.

    We hope that recent efforts by our teams have promoted progress in the right direction. We also hope that large portions of the population will be sufficiently aware to deal with the next natural disaster. As our research shows, the next event may come sooner than previously thought.

    6
    The main Himalayan peaks in northwest Bhutan, on the border with southern Tibet, are, from left to right, Chomolhari, Jichu Drake, and Tserim Kang. Exact altitudes are debated, but Chomolhari is higher than 7,000 meters, and Tserim Kang towers above 6,500 meters. Credit: György Hetényi

    Acknowledgments

    The authors gratefully acknowledge all scientific, fieldwork, and logistical help provided by participants of the projects GANSSER and BHUTANEPAL, carried out in collaboration with the Department of Geology and Mines and the National Land Commission, Thimphu, Bhutan, and with support of Helvetas. Research highlighted in this article became possible thanks to the seed funding of the North-South Centre (ETH Zurich), followed by funding from the Swiss National Science Foundation (grants 200021_143467 and PP00P2_157627) and the French Agence Nationale de la Recherche (grant 13-BS06-0006-01).

    References

    Berthet, T., et al. (2013), Lateral uniformity of India plate strength over central and eastern Nepal, Geophys. J. Int., 195, 1,481–1,493, https://doi.org/10.1093/gji/ggt357.

    Berthet, T., et al. (2014), Active tectonics of the eastern Himalaya: New constraints from the first tectonic geomorphology study in southern Bhutan, Geology, 42, 427–430, https://doi.org/10.1130/G35162.1.

    Diehl, T., et al. (2017), Seismotectonics of Bhutan: Evidence for segmentation of the eastern Himalayas and link to foreland deformation, Earth Planet. Sci. Lett., 471, 54–64, https://doi.org/10.1016/j.epsl.2017.04.038.

    Hammer, P., et al. (2013), Flexure of the India plate underneath the Bhutan Himalaya, Geophys. Res. Lett., 40, 4,225–4,230, https://doi.org/10.1002/grl.50793.

    Hetényi, G., et al. (2016a), Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies, Sci. Rep., 6, 33866, https://doi.org/10.1038/srep33866.

    Hetényi, G., et al. (2016b), Joint approach combining damage and paleoseismology observations constrains the 1714 A.D. Bhutan earthquake at magnitude 8±0.5, Geophys. Res. Lett., 43, 10,695–10,702, https://doi.org/10.1002/2016GL071033.

    Le Roux-Mallouf, R., et al. (2016), First paleoseismic evidence for great surface-rupturing earthquakes in the Bhutan Himalayas, J. Geophys. Res. Solid Earth, 121, 7,271–7,283, https://doi.org/10.1002/2015JB012733.

    Marechal, A., et al. (2016), Evidence of interseismic coupling variations along the Bhutan Himalayan arc from new GPS data, Geophys. Res. Lett., 43, 12,399–12,406, https://doi.org/10.1002/2016GL071163.

    Singer, J., et al. (2017a), The underthrusting Indian crust and its role in collision dynamics of the eastern Himalaya in Bhutan: Insights from receiver function imaging, J. Geophys. Res. Solid Earth, 122, 1,152–1,178, https://doi.org/10.1002/2016JB013337.

    Singer, J., et al. (2017b), Along-strike variations in the Himalayan orogenic wedge structure in Bhutan from ambient seismic noise tomography, Geochem. Geophys. Geosyst., 18, 1,483–1,498, https://doi.org/10.1002/2016GC006742.

    Vernant, P., et al. (2014), Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau, J. Geophys. Res. Solid Earth, 119, 6,558–6,571, https://doi.org/10.1002/2014JB011196.

    Author Information

    György Hetényi (email: gyorgy.hetenyi@unil.ch), Faculty of Geosciences and Environment, Institute of Earth Sciences, University of Lausanne, Switzerland; Rodolphe Cattin, Géosciences Montpellier, University of Montpellier, France; and Dowchu Drukpa, Department of Geology and Mines, Ministry of Economic Affairs, Thimphu, Bhutan

    See the full article here .

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 3:09 pm on August 6, 2018 Permalink | Reply
    Tags: , Earthquakes, M=6.9 earthquake near Bali leaves at least 98 dead and 20000 homeless, , ,   

    From temblor: “M=6.9 earthquake near Bali leaves at least 98 dead and 20,000 homeless” 

    1

    From temblor

    August 6, 2018
    David Jacobson, M.Sc

    1
    Sunday’s M=6.9 earthquake on the Indonesian island of Lombok comes just a week after a M=6.4 event claimed 16 lives. At least 98 people are reported to have died in yesterday’s event. (Photo from: Antara Foto/Reuters)

    A major quake strikes a popular tourist destination

    Over the weekend, a M=6.9 earthquake struck the Indonesian island of Lombok, just east of Bali. So far, there are at least 98 confirmed fatalities from this quake, which registered strong shaking across the popular tourist destinations. Initially, a tsunami warning was issued, but it was lifted after waves reached only 15 centimeters high. The majority of people killed and injured during the quake were struck by falling debris on were in collapsed buildings. While aid has begun to flow into the country, roads and bridges are significantly damaged, and much of the worst-hit areas remain without power and telecommunications network. According to Sutopo Purwo Nugroho, a spokesman for the Indonesian Disaster Management Agency, the northern part of Lombok suffered massive damage. In total, at least 20,000 people have been left homeless.

    2
    This Temblor map shows the locations of earthquake around the Indonesian island on Lombok. Both yesterday’s M=6.9 earthquake, as well as the deadly M=6.4 quake a week earlier are shown. Because of their spatial and temporal similarities, yesterday’s event can be considered an aftershock of the July 29th earthquake.

    Since the quake, over 10,000 people have been evacuated from the island of Lombok. Additionally, boats have been sent to the nearby Gili Islands, which is a popular destination for backpackers and divers, to evacuate more than 1,000 tourists. The photo below shows hundreds of tourists on the beach awaiting evacuation. Meanwhile, on the nearby island of Bali, the airport suffered some damage, but is still operational.

    Sunday’s earthquake was an aftershock from another deadly quake

    The earthquake over the weekend can be considered an aftershock of a M=6.4 earthquake which struck just a week ago, and left 16 people dead. While the majority of earthquakes in this region occur on the Java Trench to the south of Lombok and Bali, the quake over the weekend appears to have struck on or near the Flores Back-Arc Thrust at a depth of 31 km. This back-arc thrust is associated with the compression at the Java Trench, and means that eastern Bali, and the island of Lombok are flanked by two large thrust faults.

    3
    Thousands of buildings were damaged in yesterday’s M=6.9 earthquake. It is estimated that at least 20,000 people have been left homeless. (Photo from: Antara Foto/Reuters)

    By using the Global Earthquake Activity Rate (GEAR) model, we can determine whether or not yesterday’s earthquake can be considered surprising. This model uses global strain rates and the last 40 years of seismicity to forecast the likely earthquake magnitude in your lifetime anywhere on earth. From the figure below, one can see that in the location of yesterday’s event, the likely earthquake is a M=6.5-6.75. Therefore, the magnitude can be considered relatively surprising but not unheard of for the region.

    4
    This Temblor map shows the Global Earthquake Activity Rate (GEAR) model for the area around yesterday’s earthquake in Indonesia. This model uses global strain rates and the last 40 years of seismicity to forecast the likely earthquake magnitude in your lifetime anywhere on earth. From this model, one can see that in the location of yesterday’s event, the likely earthquake is M=6.5-6.75, meaning a M=6.9 quake can be considered relatively surprising.

    References -no links
    USGS
    EMSC
    New York Times
    BBC
    CNN
    ABC

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:38 pm on July 26, 2018 Permalink | Reply
    Tags: , , Earthquakes, , ,   

    From temblor: “New findings clarify the seismic risk in the Pacific Northwest” 

    1

    From temblor

    July 24, 2018
    David Jacobson, M.Sc.

    1
    New findings have shown how the cities of Seattle and Portland could fare in a Cascadia Subduction Zone earthquake. (Photo from Fine Art America)

    How bad would a Cascadia Subduction Zone earthquake be for the Pacific Northwest?

    In the last month, several studies were published which not only showcase the dangers posed by this 1,000 km-long (600 mi) plate boundary, but highlight where ruptures may be most likely. The findings show that in the cities of Portland and Seattle, the quake could leave hundreds of thousands of properties damaged and destroyed, and that in places like Seattle, which lies in a sediment-filled basin, shaking could be much more severe.

    Three years ago, Kathryn Schultz’ Pulitzer Prize-winning New Yorker essay, The Really Big One, thrust the Cascadia Subduction Zone into the public spotlight. While the convergent plate boundary, which extends from Vancouver Island at its north end to California’s Cape Mendocino at the south, had been known to scientists for decades, the article renewed public interest and scientific focus.

    Major population centers exposed to significant risk

    2
    In the event of a Cascadia Subduction Zone earthquake, over 200,000 homes are likely to be damaged in the city of Portland, according to a study by the Oregon Department of Geology and Mineral Industries (DOGAMI).

    The two largest cities in the Pacific Northwest, Seattle and Portland, are home to several million people. In the event of a M=9 earthquake, which is what Cascadia is capable of, the impact would be severe. Part of this is due to proximity to the plate boundary to theses urban centers, but also the geology.

    The city of Seattle, the nation’s fastest-growing city, lies in the Puget lowland on the shores of Puget Sound and Lake Washington. While the location creates an ideal trade gateway, it also means the city lies atop a deep basin. This has startling consequences for shaking, according to a recent study by scientists at the University of Washington, the USGS, and University of Southern California. They looked at how buildings ranging from 4-40 stories high would sway (engineers call this “drift”) in simulated earthquakes, comparing the ride in the Seattle basin, and outside it. They found that within the basin, buildings swayed at least three times more than outside of it because of stronger, slower shaking. Thus could result in much greater levels of damage throughout the city, and longer recovery times.

    In Portland, 233 km (145 mi) south of Seattle, the situation is not much better. The Oregon Department of Geology and Mineral Industries (DOGAMI) recently published an updated scenario of what a M=9 Cascadia event could do to the city. By assessing the shaking throughout the metropolitan area, they found approximately 38-39% (235,000) of the city’s buildings would suffer some level of damage. This emphasizes, is that in the event of a Cascadia event, the impacts will not only be extremely severe, but extremely widespread.

    Where is a great rupture most likely to happen?

    While scientists do not know where a rupture will strike, there are clues that point to areas which may be more susceptible. Two of these are ‘locking,’ and seismic ‘tremor.’ As tectonic plates move against one another, stress builds up. Eventually, the stress reaches a critical level, the fault leaps forward and an earthquake takes place. Where plates are “locked,” the amount of stress that can be built up is greatest. Therefore, identifying the most locked portions of the Cascadia Subduction Zone sheds light on areas of greatest risk. The figure below shows that along the plate boundary, locking is greatest in Washington on the one hand, and Southern Oregon and Northern California on the other. Northern Oregon shows quite a bit.

    3
    The area between the bold dashed east-west lines is not strongly locked and produces few tremors, so it is less likely to rupture in a megaquake than the fault segments to the north and south of the dashed lines. The figure is from Bodmer et al., 2018, based on geodetic data from Schmalzle et al., 2014 as well as tremor density from the Pacific Northwest Seismic Network.

    Seismic tremor, which accompanies slow slip events, is common along parts of the Cascadia subduction zones. Tremor seems to be another indication that the fault is locked above a certain depth, but is firing off in very small shocks and slippage just below that depth.

    In fact, over the last two weeks, tremor has picked up in Northern Washington, Southern Oregon, and Northern California, as the map from the Pacific Northwest Seismic Network below shows.

    Cascadia subduction zone

    Cascadia plate zones

    Slow slip events are not like regular earthquakes, which last for tens of seconds, but instead last for days to weeks. These events locate just below the locked portions of the fault, and are accompanied high frequency vibration or ‘tremor.’

    While scientists are still unsure if periods of intense tremor, such as has occurred for the past two weeks, can presage large earthquakes, strongly-locked tectonic plates tend to produce the largest and most frequent megaquakes. And, a recent study by University of Oregon and University of New Mexico scientists shows that the higher levels of locking and tremor in certain parts of the Pacific Northwest are likely permanent features.

    What does this mean for the Pacific Northwest?

    Seattle, Portland, and Vancouver B.C. all lie within the zones of elevated tremor and strong locking. In contrast, Eugene lies inland of the portion of the megathrust that is not strongly locked and that produces less tremor. Therefore, the new evidence only confirms and highlights the risk for Vancouver, Seattle, and Portland, and perhaps reduces it for Eugene.

    References [sorry, no links]

    John M. Bauer, William J. Burns, and Ian P. Madin, Earthquake Regional Impact Analysis for Clackamas, Multnomah, and Washington Counties, Oregon, Oregon Department of Geology and Mineral Industries Open-File Report O-18-02

    N. Marafi, M. Eberhard, J. Berman, E. Wirth, A. Frankel, and J. Vidale. Effects of Simulated Magnitude 9 Earthquake Motions on Structures in the Pacific Northwest. Proceedings of the 11th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Los Angeles, CA. 2018.

    Bodmer, M., Toomey, D. R., Hooft, E. E. E., & Schmandt, B. (2018). Buoyant asthenosphere beneath Cascadia influences megathrust segmentation. Geophysical Research Letters, 45. https:// doi.org/10.1029/2018GL078700

    John E. Vidale and Heidi Houston, Slow slip: A new kind of earthquake, January 2012, Physics Today

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 9:58 am on June 21, 2018 Permalink | Reply
    Tags: Earthquakes, , Underwater fiber-optic cables could moonlight as earthquake sensors   

    From Science News: “Underwater fiber-optic cables could moonlight as earthquake sensors” 


    From Science News

    June 14, 2018
    Maria Temming

    1
    MOTION OF THE OCEAN FLOOR The network of submarine fiber-optic cables that deliver work emails and cat videos to computers around the world could double as undersea earthquake detectors. Existing cables are shown in purple; planned cables are in blue.

    The global network of seafloor cables may be good for more than ferrying digital communication between continents. These fiber-optic cables could also serve as underwater earthquake detectors, researchers report online June 14 in Science.

    “It’s a very exciting proposition,” says Barbara Romanowicz, a seismologist at the University of California, Berkeley and the Collège de France in Paris.

    Almost all seismic stations around the world are based on land, leaving many oceanic earthquakes undetected. Harnessing the million-plus kilometers of underwater fiber-optic cables to monitor seafloor earthquakes would be “a great step forward” for studying Earth’s interior, Romanowicz says.

    What’s more, quake-detecting cables could bolster tsunami alert systems. “The more [seismic] stations feeding into a tsunami warning system, the faster it can give a warning,” says study coauthor Richard Luckett, a seismologist at the British Geological Survey in Edinburgh.

    To use a telecommunication cable as a seismic sensor, researchers inject light from a laser into one end of the optical fiber and monitor the light that exits the other end. When a seismic wave rattles the cable, it distorts the laser light travelling through it. By comparing the original laser signal with the light that exits the cable, researchers determine how much the beam was distorted along the way — and therefore the strength of the seismic wave that strummed the cable.

    Combining measurements from multiple fiber-optic cables can triangulate the earthquake’s point of origin, explains study coauthor Giuseppe Marra, a frequency metrology researcher at the National Physical Laboratory in Teddington, England. Once researchers know the strength of a seismic wave when it passed the cable and where the wave started, they can determine the original earthquake’s magnitude.

    ___________________________________________________________________
    Submarine seismology

    An underwater fiber-optic cable stretching from Malta to Sicily sensed a magnitude 3.4 quake in the Mediterranean Sea on September 2, 2017. Researchers confirmed this detection with two nearby seismometers. One seismometer near the Malta end of the cable, closer to the earthquake’s epicenter, detected the quake shortly before the cable, and a seismometer near the Sicily end identified it shortly after.

    2
    ___________________________________________________________________

    Marra and colleagues tested their quake-detecting technique on both land-based and submarine fiber-optic cables. One 79-kilometer cable in southern England sensed vibrations from quakes originating in New Zealand and Japan that seismometers put at magnitude 7.9 and 6.9, respectively. Other land-based cables in the United Kingdom and Italy sensed a magnitude 7.3 quake that rocked the Iraq-Iran border last November. And an underwater cable that runs 96 kilometers from Sicily to Malta detected a magnitude 3.4 tremor emanating from the middle of the Mediterranean Sea last September. This seismic sensing technique still needs to be tested on longer cables that cross oceans, Marra says.

    Fiber-optic cables that identify earthquakes far from land could provide new insight into geologic goings-on under the sea. For instance, better views of seafloor movements could help researchers understand how volcanism at mid-ocean ridges creates new oceanic crust, Luckett says (SN: 10/19/13, p. 22). Monitoring seafloor seismic activity could also help scientists study mantle plumes, upwellings of hot, buoyant rock within Earth’s mantle, Romanowicz says (SN: 10/22/11, p. 8).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 3:02 pm on June 18, 2018 Permalink | Reply
    Tags: , Earthquakes, , ,   

    From temblor: “Today’s deadly Japan earthquake could be related to the 1995 Kobe earthquake” 

    1

    From temblor

    1
    Today’s M=5.9 earthquake in Japan struck just north of the city of Osaka, which is home to 2.7 million people.

    At 7:58 a.m. local time, a M=5.9 earthquake struck Osaka, Japan, leaving 3 people, dead, and hundreds injured. The quake resulted in numerous collapsed walls, broken water pipes, and left 170,000 homes without power. Since the mainshock, over 100 aftershocks have continued to rattle the city, which is home to approximately 2.7 million people.

    2
    Today’s M=5.9 earthquake just north of Japan resulted in three fatalities, hundreds of injuries and significant damage throughout the city. This photo shows the collapsed gate at the Myotoku-ji temple. (Photo from: SF Gate)

    Near but not on a major fault

    Based on the earthquake’s location, today’s quake struck just off the Takatsuki Fault, a right-lateral strike-slip fault in the northern part of Osaka. This fault last ruptured in 1596, and typically ruptures every 2,600 years in M≈6.8 events. Therefore, this fault is susceptible to rupturing in large events, which could be devastating to Osaka.

    3
    This Temblor map shows the location of today’s earthquake just north of the city of Osaka, Japan. This earthquake struck just off the Takatsuki Fault, which has a rough recurrence interval of 2,600 years.

    Very Strong Shaking

    Despite this quake’s moderate magnitude, it produced significant ground shaking, which resulted in the few fatalities and obvious damage. Based on the nearest seismic station, shaking levels reached 0.8 g, 6 km from the epicenter. This translates to violent shaking and potential heavy damage. Such levels of ground shaking are typically not seen in earthquakes of this magnitude. However, in April, a M=5.6 earthquake in western Japan also registered high (0.5-0.7 g) shaking typically associated with much larger quakes. This illustrates that Japan’s dense network of sensors capture high levels of ground shaking even for small quakes, raising the possibility that such strong shaking in small shocks is far more common worldwide than we now realize.

    4
    This map shows ground accelerations recorded from today’s M=5.9 earthquake just outside of Osaka. (Data and map from the National Research Institute for Earthquake Science and Disaster Resilience (NIED))

    6
    This map shows a comparison of the network of earthquake sensors in California and Japan. California is clearly not prepared.(Figure from: http://www.Shakealert.org [see below for shakealert)

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: