Tagged: Earthquake Alert system Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:55 pm on December 14, 2021 Permalink | Reply
    Tags: "Evidence for Shared Earthquakes Between San Andreas and San Jacinto Faults", , , Earthquake Alert system, , , , , , The San Diego State University (US),   

    From The University of California-Davis (US) : “Evidence for Shared Earthquakes Between San Andreas and San Jacinto Faults” 

    UC Davis bloc

    From The University of California-Davis (US)

    December 14, 2021
    Andy Fell

    1
    A small fault lying between the San Andreas and San Jacinto faults provides evidence for past earthquakes that involved both major faults. Geologists Tom Rockwell (The San Diego State University (US)) and Michael Oskin (The University of California-Davis (US)) work in a trench into the fault. Credit: Alba Rodriguez Padilla/UC Davis).

    The San Andreas and San Jacinto faults have ruptured simultaneously at least three times in the past 2,000 years, most recently in 1812, according to a new study by geologists at The University of California-Davis (US), and The San Diego State University (US). The work was published Dec. 7 in the journal Geology.

    Large earthquakes involving multiple faults increase the threat of strong ground shaking. However, each of these faults on their own can generate a large-magnitude (7.5 or above) earthquake, said Alba Rodríguez Padilla, a graduate student at UC Davis and first author on the paper.

    1
    SAF SJF conjunction

    “Typically, we think earthquakes will remain confined to a single fault, especially for “mature” faults such as the San Andreas and the San Jacinto, which are well-established, geometrically simple plate boundary faults,” Rodríguez Padilla said. But researchers previously have shown that it’s theoretically possible for an earthquake to transfer from one fault to another where they come close together at Cajon Pass, north of Los Angeles, she said.

    “However, prior to our study, there was no direct physical evidence that these joint ruptures, or shared earthquakes, do in fact occur,” Rodríguez Padilla said.

    Between the south end of the San Andreas Fault and the northern end of the San Jacinto lies a small fault, the Lytle Creek Ridge Fault. This fault would slip only when there is an earthquake shared across the two bigger faults.

    The Lytle Creek Ridge Fault does not itself do any work during these shared earthquakes, just acting as a passive marker, Rodríguez Padilla said.

    20% to 23% of earthquakes shared

    To get evidence of potential shared earthquakes, Rodríguez Padilla and colleagues hand-dug a trench 15 meters long and 1.5-3 meters deep into the Lytle Creek Ridge Fault. They identified signs of three earthquake events in the past 2,000 years, based on radiocarbon and pollen dating.

    3
    The study involved digging a trench 15 meters long and up to 3 meters deep into the San Gabriel mountains. Credit: Alba Rodríguez Padilla/UC Davis.

    That compares to 15 known earthquakes on the San Andreas and 13 on the San Jacinto over the same time. Based on that, the team concluded that 20% to 23% of earthquakes on these major faults are shared with the other fault.

    Next, they simulated the historically recorded earthquakes of 1812 and 1857 to see if these could have been multi-fault earthquakes. Based on the simulations, they discarded the 1857 earthquake and found that the 1812 earthquake was capable of jumping faults.

    Additional co-authors on the paper are Professor Michael Oskin and project scientist Irina Delusina, UC Davis Department of Earth and Planetary Sciences; and Thomas Rockwell and Drake Singleton, San Diego State University. Julian Lozos, The California State University-Northridge (US), and Kelian Dascher-Cousineau, The University of California-Santa Cruz (US), helped dig the trench.

    The work was supported by the Southern California Earthquake Center, which is funded by The Geological Survey (US) and The National Science Foundation (US).

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015
    Meet The Quake-Catcher Network
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
    and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:
    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
    _____________________________________________________________________________________

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California-Davis (US) is a public land-grant research university near Davis, California. Named a Public Ivy, it is the northernmost of the ten campuses of The University of California (US) system. The institution was first founded as an agricultural branch of the system in 1905 and became the seventh campus of the University of California in 1959.

    The university is classified among “R1: Doctoral Universities – Very high research activity”. The University of California-Davis faculty includes 23 members of The National Academy of Sciences, 30 members of The American Academy of Arts and Sciences (US), 17 members of the American Law Institute, 14 members of the Institute of Medicine, and 14 members of the National Academy of Engineering. Among other honors that university faculty, alumni, and researchers have won are two Nobel Prizes, a Presidential Medal of Freedom, three Pulitzer Prizes, three MacArthur Fellowships, and a National Medal of Science.

    Founded as a primarily agricultural campus, the university has expanded over the past century to include graduate and professional programs in medicine (which includes the University of California-Davis Medical Center), law, veterinary medicine, education, nursing, and business management, in addition to 90 research programs offered by University of California-Davis Graduate Studies. The University of California-Davis School of Veterinary Medicine is the largest veterinary school in the United States and has been ranked first in the world for five consecutive years (2015–19). University of California-Davis also offers certificates and courses, including online classes, for adults and non-traditional learners through its Division of Continuing and Professional Education.

    The UC Davis Aggies athletic teams compete in NCAA Division I, primarily as members of the Big West Conference with additional sports in the Big Sky Conference (football only) and the Mountain Pacific Sports Federation.

    Seventh UC campus

    In 1959, the campus was designated by the Regents of the University of California as the seventh general campus in the University of California system.

    University of California-Davis’s Graduate Division was established in 1961, followed by the creation of the College of Engineering in 1962. The law school opened for classes in fall 1966, and the School of Medicine began instruction in fall 1968. In a period of increasing activism, a Native American studies program was started in 1969, one of the first at a major university; it was later developed into a full department within the university.

    Graduate Studies

    The University of California-Davis Graduate Programs of Study consist of over 90 post-graduate programs, offering masters and doctoral degrees and post-doctoral courses. The programs educate over 4,000 students from around the world.

    UC Davis has the following graduate and professional schools, the most in the entire University of California system:

    UC Davis Graduate Studies
    Graduate School of Management
    School of Education
    School of Law
    School of Medicine
    School of Veterinary Medicine
    Betty Irene Moore School of Nursing

    Research

    University of California-Davis is one of 62 members in The Association of American Universities (US), an organization of leading research universities devoted to maintaining a strong system of academic research and education.

    Research centers and laboratories

    The campus supports a number of research centers and laboratories including:

    Advanced Highway Maintenance Construction Technology Research Laboratory
    BGI at UC Davis Joint Genome Center (in planning process)
    Bodega Marine Reserve
    C-STEM Center
    CalEPR Center
    California Animal Health and Food Safety Laboratory System
    California International Law Center
    California National Primate Research Center
    California Raptor Center
    Center for Health and the Environment
    Center for Mind and Brain
    Center for Poverty Research
    Center for Regional Change
    Center for the Study of Human Rights in the Americas
    Center for Visual Sciences
    Contained Research Facility
    Crocker Nuclear Laboratory
    Davis Millimeter Wave Research Center (A joint effort of Agilent Technologies Inc. and UC Davis) (in planning process)
    Information Center for the Environment
    John Muir Institute of the Environment (the largest research unit at UC Davis, spanning all Colleges and Professional Schools)
    McLaughlin Natural Reserve
    MIND Institute
    Plug-in Hybrid Electric Vehicle Research Center
    Quail Ridge Reserve
    Stebbins Cold Canyon Reserve
    Tahoe Environmental Research Center (TERC) (a collaborative effort with Sierra Nevada University)
    UC Center Sacramento
    UC Davis Nuclear Magnetic Resonance Facility
    University of California Pavement Research Center
    University of California Solar Energy Center (UC Solar)
    Energy Efficiency Center (the very first university run energy efficiency center in the Nation).
    Western Institute for Food Safety and Security

    The Crocker Nuclear Laboratory on campus has had a nuclear accelerator since 1966. The laboratory is used by scientists and engineers from private industry, universities and government to research topics including nuclear physics, applied solid state physics, radiation effects, air quality, planetary geology and cosmogenics. University of California-Davis is the only University of California campus, besides The University of California-Berkeley (US), that has a nuclear laboratory.

    Agilent Technologies will also work with the university in establishing a Davis Millimeter Wave Research Center to conduct research into millimeter wave and THz systems.

     
  • richardmitnick 11:47 am on December 10, 2021 Permalink | Reply
    Tags: "Simulations show how earthquake early warning might be improved for magnitude-9 earthquakes", , , Earthquake Alert system, Earthquake Network project smartphone ap, , , , , ,   

    From The University of Washington (US) : “Simulations show how earthquake early warning might be improved for magnitude-9 earthquakes” 

    From The University of Washington (US)

    December 8, 2021
    Hannah Hickey

    When the next major earthquake hits the Pacific Northwest, a system launched last spring [ShakeAlert] should give some advance warning, as emergency alerts go out and cell phones buzz. But how well the system functions might depend on whether that quake is the so-called “really big one,” and where it starts.

    The Pacific Northwest’s last magnitude-9 event from the offshore subduction zone was in 1700. Only a few clues remain about how it unfolded. But with the earthquake early warning system being built out and improved, seismologists want to know how ShakeAlert would do if the really big one were to happen today.

    A research project by the University of Washington and the Geological Survey (US) uses simulations of different magnitude-9 slips on the Cascadia fault to evaluate how the ShakeAlert system would perform in 30 possible scenarios.

    Cascadia subduction zone

    Results show the alerts generally work well, but suggests ways the system could be improved for some of these highest-risk events.

    The research will be presented Dec. 13, 2021 as an online poster at the American Geophysical Union’s annual fall meeting, being held as a hybrid event based in New Orleans.

    2
    Earthquake early warning times for a magnitude-9 event with an epicenter in southern Oregon. With a lower alert threshold (left) some locations closest to the source feel the ground shake before the alert arrives (late alert, pictured in dark gray). For a higher alert threshold set only to warn of moderate shaking (right) a larger region close to the source feels the ground shake before the alert arrives (dark gray), and most of Washington state has either a missed alert or a late alert. Researchers suggest that lowering the alert threshold, from intensity-5 to intensity-3 or -4, would help to improve the alerts’ performance for offshore earthquakes. Black patches on the maps are highly populated areas, and red dots are seismic stations.Credit: Mika Thompson/University of Washington.

    “I’ve experienced both the Loma Prieta and the Nisqually earthquakes, and both times my first thought was: ‘Is this really happening?’” said lead author Mika Thompson, a UW doctoral student in Earth and space sciences. “An early warning system gives people a moment to collect their thoughts and prepare to react. That’s especially important for a major earthquake.”

    The work used detailed computer simulations of magnitude-9 earthquakes created for a previous study looking at how a big offshore event would play out, depending on where and how deep the Cascadia tectonic fault slipped. Thompson played those simulations through an off-line version of the ShakeAlert system and calculated the alerts that would go out across the region.

    “The alerts are generally doing well, but they’re not perfect,” said co-author Renate Hartog, manager at the UW-based Pacific Northwest Seismic Network. “This project is trying to understand the system’s limitations so that we can make recommendations for future alerting strategies.”

    The alerts performed well even though big offshore earthquakes are harder for the system to detect and locate. But there were cases in which a warning arrived too late to some areas.

    For instance, when the simulated rupture started at the southern end of the fault, the initial estimate for places far away, like Seattle, were sometimes below the shaking intensity level 5 threshold to generate an immediate alert. As the slip moved northward the shaking increased, but at this point the alerts arrived too late in Seattle to give ample warning time for level-5 and higher levels of shaking in that area.

    3
    Earthquake early warning times for a magnitude-9 event with an epicenter in Northern California. With a lower alert threshold (left) locations closest to the source feel the ground shake before the alert arrives (late alert, pictured in dark gray) while large regions have more than a minute of warning (pink). For a higher alert threshold set to only warn of moderate shaking (right) a larger region close to the source feels the ground shake before the alert arrives (dark gray), and most of Washington state has a missed alert. Researchers suggest that lowering the alert threshold, from intensity-5 to intensity-3 or -4, would help to improve the alerts’ performance for offshore earthquakes. Black patches on the maps are highly populated areas, and red dots are seismic stations.Mika Thompson/University of Washington.

    “Magnitude-9 events are challenging because the alerts are being generated as the seismic event continues to unfold,” Thompson said. “The Nisqually earthquake was a magnitude-6.8 and lasted only about six seconds. But a magnitude-9 earthquake could take more than five minutes for the whole rupture to occur.”

    One solution for this uncertainty, which Hartog says is in some ways unavoidable, might be for users to lower their threshold for alerts to shaking intensity 3 or 4. Users might get alerts for some minor events, but they would also have better odds of being alerted to a magnitude-9 earthquake – even if the slipping started far away.

    “For the scenario that starts in Northern California, if the threshold is set to shaking intensity-3 then everyone in the West Coast ShakeAlert region is alerted, and some people can get warning times of up to one minute,” Thompson said. “But if you use a higher intensity-5 threshold, you’ll see smaller alerting regions that will have missed alerts on the outer edges.”

    In the case of a rupture starting in southern Oregon or Northern California, the entire Seattle-Tacoma region would miss alerts at the higher threshold. Apps, expected to arrive soon in Washington state, will allow users to set their own alert thresholds.

    “What is the cost of taking action when it is not necessary, versus not taking action when it is necessary? It just depends on each individual situation, and that’s how people should decide how to set the threshold,” Hartog said.

    Installing seismic sensors on the seafloor directly over the offshore fault would be another way to improve the alerts, especially for coastal communities.

    Final results will be analyzed and shared with the full West Coast ShakeAlert community to determine whether and how to adjust the system’s warning algorithms.

    “The ShakeAlert system is constantly evolving. The algorithms are being tuned, our networks are still being built out,” Hartog said. “It’s not a static system, it’s still actively being improved.”

    Also involved in this work is Erin Wirth, a research scientist at the U.S. Geological Survey and a UW affiliate faculty member in Earth and space sciences. The research was funded by the U.S. Geological Survey.

    4
    Earthquake early warning times for a magnitude-9 event with an epicenter in northern Oregon. With a lower alert threshold (left) everyone gets some warning time. For a higher alert threshold (right) locations closest to the rupture feel the ground shake before the alert arrives (late alert, pictured dark gray) and parts of northern California get no alert (missed alert, pictured light gray). Researchers suggest that lowering the alert threshold, from intensity-5 to intensity-3 or -4, would improve the alerts’ performance for offshore earthquakes. Black patches on the maps are highly populated areas, and red dots are seismic stations. Credit: Mika Thompson/University of Washington.

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project smartphone ap is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015
    Meet The Quake-Catcher Network
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
    and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:
    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
    _____________________________________________________________________________________

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus

    The University of Washington (US) is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington (US) is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities(US) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation(US), UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine(US), 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering(US), 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
  • richardmitnick 9:10 am on December 3, 2021 Permalink | Reply
    Tags: "Improving Coseismic Slip Measurements", , , , Earthquake Alert system, , , , , ,   

    From Eos: “Improving Coseismic Slip Measurements” 

    From AGU
    Eos news bloc

    From Eos

    29 November 2021
    Morgan Rehnberg

    A physics-based method estimates the duration of earthquakes’ coseismic phase and can help improve the precision of coseismic slip models and magnitude estimates.

    1
    A comparison between (left) earthquake motion derived from daily geodetic observations (blue arrows) and the approach of Golriz et al. (red arrows) and (right) the net difference between these methods, which is attributed to early postseismic motions. Credit: Golriz et al.

    Source: Journal of Geophysical Research: Solid Earth

    Geologists describe the process of an earthquake as occurring in three distinct phases. During the interseismic phase, strain builds up along a fault as adjacent pieces of crust catch onto one another and move in opposite directions. This strain eventually reaches a breaking point, initiating the coseismic phase, in which the crust gives way and “snaps” to a new position. This snap is what we experience as an earthquake. Additional deformation occurs during the postseismic phase, which can last from minutes to years, as the crust relaxes and returns to the interseismic phase.

    Because they happen in rapid succession, distinguishing the boundary between the coseismic and postseismic motions is difficult. Earthquake scientists have two sets of tools for directly observing the motion of an earthquake. Seismic instruments, such as seismographs, record the velocity and acceleration of the movement. Geodetic instruments, such as GPS measurement stations, record displacement (a change in position).

    Geodetic instruments make measurements at a cadence; if the interval is too long when used to estimate the magnitude of coseismic slip, the result can erroneously incorporate energy released in the postseismic phase. Golriz et al. develop a physics-based approach to estimating the duration of the coseismic phase in an effort to improve the precision of coseismic slip models and magnitude estimates.

    The authors’ general method is to use seismic observations to estimate the time window of the coseismic phase and high-frequency (1-hertz) geodetic observations over that window to calculate the crust’s change in position. This approach makes the best use of each method’s strengths, while minimizing its weaknesses, the authors say.

    The onset of coseismic motion is marked by the arrival of the first pressure wave, a clear and commonly observed signal. The authors define the end of a coseismic phase as the time at which a given seismic station has experienced 99% of the total energy it will record for that event. The coseismic period, as a function of distance from the epicenter, enables the authors to use and consider various geodetic observation sites, even if they are not collocated with the seismic stations.

    To analyze the effect of this approach, the study considers 10 earthquakes with a variety of morphologies and magnitudes. The authors compare their methodology to more traditional daily geodetic observations and find that their physics-based approach results in significant discrepancies in total crustal motion and energy release. For example, for the magnitude 9.1 Tōhoku-oki event, their approach estimates movement of 5 meters during the coseismic phase, compared with 6.5 meters of movement using the daily observation method. This suggests that historically, a significant amount of postseismic activity has been misclassified as coseismic.

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015
    Meet The Quake-Catcher Network
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
    and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:
    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
    _____________________________________________________________________________________

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 9:19 am on November 5, 2021 Permalink | Reply
    Tags: "Keeping one step ahead of earthquakes", Earthquake Alert system, , , , ,   

    From Horizon The EU Research and Innovation Magazine : “Keeping one step ahead of earthquakes” 

    From Horizon The EU Research and Innovation Magazine

    03 November 2021
    Nick Klenske

    1
    As technologies continue to improve, earthquake-prone cities will be better prepared. © Marco Iacobucci Epp, Shutterstock.

    While accurately predicting earthquakes is in the realm of science fiction, early warning systems are very much a reality. As advances in research and technology make these systems increasingly effective, they’re vital to reducing an earthquake’s human, social and economic toll.

    Damaging earthquakes can strike at any time. While we can’t prevent them from occurring, we can make sure casualties, economic loss and disruption of essential services are kept to a minimum.

    Building more resilient cities is key to withstanding earthquake disasters. If we had a better idea of when earthquakes would strike, authorities could initiate local emergency, evacuation and shelter plans. But unfortunately, this is not the case.

    ‘Because earthquakes occur on faults, we know where they will occur. The problem is that we don’t know how to predict when an earthquake will strike,’’ explained Quentin Bletery, from the Research Institute for Development (IRD) in France. He is a researcher at the Géoazur laboratory at The University of Côte d’Azur [Université Côte d’Azur](FR).

    ‘Successful earthquake prediction must provide the location, time and magnitude of a future event with high accuracy, [something] which as of now, can’t be done,’ added Johannes Schweitzer, Principal Research Geophysicist at NORSAR, an independent research foundation specialised in seismology and seismic monitoring.

    Potential of AI to improve the accuracy and speed of early warning systems

    Earthquake early warning (EEW) systems are evolving rapidly thanks to advances in computer power and network communication.

    EEW systems work by identifying the first signals generated by an earthquake rupture before the strongest shaking and tsunami reach populated areas. These signals follow the origin of the earthquake and can be recorded seconds before the seismic waves.

    A promising, recently identified early signal is the prompt elasto-gravity signal (PEGS), which travels at the speed of light but is a million times smaller than seismic waves, and therefore, often goes undetected.

    According to Bletery, artificial intelligence (AI) could play a key role in identifying this signal. With the support of the EARLI project, he is leading an effort to develop an AI algorithm capable of doing exactly that.

    “Our AI system aims to increase the accuracy and speed of early warning systems by enabling them to pick up an extremely weak signal that precedes even the fastest seismic waves,” said Bletery.

    Albeit still in its very early stages, if the project succeeds, Bletery says public authorities will have access to nearly instantaneous information about an earthquake’s magnitude and location. “This would allow them to take such immediate mitigation efforts as, for example, shutting down infrastructure like trains and nuclear power plants and moving people to earthquake- and tsunami-safe zones,” he noted.

    Statistical technique to enhance seismic resilience

    Another approach to improve seismic seismic resilience and reduce human losses is operational earthquake forecasting (OEF). TURNkey, led by NORSAR, aims to improve the effectiveness of this statistical technique used to study seismic sequences to provide timely warnings.

    “OEF can inform us about changing seismic hazards over time, enabling emergency managers and public authorities to prepare for a potentially damaging earthquake,” explained Ivan Van Bever, TURNkey project manager. “What OEF can’t do, is provide warnings with a high level of accuracy.”

    In addition to improving existing methods, TURNkey is developing the “Forecasting – Early Warning – Consequence Prediction – Response” (FWCR) platform to increase the accuracy of earthquake warnings and ensure that all warning-related information is sent to end-users in a format that is both understandable and useful.

    “The platform will forecast and issue warnings for aftershocks and will improve the ability for users to estimate both direct and indirect losses,” said Van Bever

    Better prepared than ever

    The platform is currently being tested at six locations across Europe: Bucharest (Romania), the Pyrenees mountain range (France), the towns of Hveragerdi and Husavik (Iceland), the cities of Patras and Aigio (Greece), and the port of Gioia Tauro (Southern Italy). It is also being tested in Groningen province (Netherlands), which is affected by induced seismicity – minor earthquakes and tremors caused by human activity that alters the stresses and strains on the Earth’s crust.

    Johannes Schweitzer, who is the project coordinator, is confident the multi-sensor-based earthquake information system will prove capable of enabling early warning and rapid response. “The TURNkey platform will close the gap between theoretical systems and their practical application in Europe,” remarked Schweitzer. “In doing so, it will improve a city’s seismic resilience before, during and after a damaging earthquake.”

    “As these technologies and systems continue to improve, they could reduce an earthquake’s human, social and economic toll,” added Bletery.

    Earthquake-prone cities will be better prepared than ever before. At the very least these new systems will give people a heads up to drop, cover and hold on during an earthquake.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015
    Meet The Quake-Catcher Network
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
    and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:
    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
    _____________________________________________________________________________________

     
  • richardmitnick 11:57 am on May 30, 2021 Permalink | Reply
    Tags: "Weird Electromagnetic Bursts Appear Before Earthquakes – And We May Finally Know Why", , , Brief subtle anomalies in underground electrical fields lead up to an earthquake, , , Earthquake Alert system, , , , , , ,   

    From Science Alert (AU) : “Weird Electromagnetic Bursts Appear Before Earthquakes – And We May Finally Know Why” 

    ScienceAlert

    From Science Alert (AU)

    30 MAY 2021
    DAVID NIELD

    1
    Credit: jamievanbuskirk/E+/Getty Images.

    For some time, seismologists have been aware of brief subtle anomalies in underground electrical fields leading up to an earthquake, sometimes occurring as soon as a few weeks before the quake happens.

    It’s tempting to think these electromagnetic bursts could be used to predict when a quake will strike. Up until now, however, the cause of the strange bursts hasn’t been clear.

    New research suggests that the key lies in the gases that get trapped in what’s known as a fault valve and can build up ahead of an earthquake. These impermeable layers of rock can slip across a fault, effectively creating a gate that blocks the flow of underground water.

    When the fault valve eventually cracks and pressure decreases, carbon dioxide or methane dissolved in the trapped water is released, expanding in volume and pushing the cracks in the fault. As the gas emerges, it also gets electrified, with electrons released from the cracked surfaces attaching themselves to gas molecules and generating a current as they move upwards.

    “The results supported the validity of the present working hypothesis, that coupled interaction of fracturing rock with deep Earth gases during quasi-static rupture of rocks in the focal zone of a fault might play an important role in the generation of pre- and co-seismic electromagnetic phenomena,” write the researchers in their published paper .

    1
    From the cited science paper.

    Using a customized lab setup, the team was able to test the reactions of quartz diorite, gabbro, basalt, and fine-grained granite in scaled-down earthquake-like simulations. They showed that electrified gas currents could indeed be linked to rock fracture.

    The type of rock does make a difference, the scientists found. Rocks including granite have lattice defects that capture unpaired electrons over time through natural radiation rising from below the surface, and that leads to a larger current.

    And the type of fault seems to have an effect as well. The study backs up previous research [Scientific Reports] from the same scientists into seismo-electromagnetics, showing how carbon dioxide released from an earthquake fault could be electrified and produce magnetic fields.

    Other hypotheses [Science] about the electromagnetic bursts include the idea that the rocks themselves could become semiconductors under enough strain and with enough heat, while other experts don’t think these weird bursts are predictors at all.

    Until an earthquake is actually predicted by unusual electromagnetic activity – activity that happens a lot on our planet as a matter of course anyway – the jury is still out. But if this idea is backed up by future research, it could give us a life-saving method for getting a heads up on future quakes.

    “As a result of this laboratory experiment, it might be possible to detect the electric signal accompanying an earthquake by observing the telluric potential/current induced in a conductor, such as a steel water pipe buried underground,” conclude the researchers.

    “Such an approach is now undergoing model field tests.”

    The research has been published in Earth, Planets and Space.

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)

    _____________________________________________________________________________________

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 7:04 am on April 28, 2021 Permalink | Reply
    Tags: "Overdue? The future of large earthquakes in California", , , , Earthquake Alert system, , , , , ,   

    From temblor : “Overdue? The future of large earthquakes in California” 

    1

    From temblor

    April 21, 2021
    Krystal Vasquez (@CaffeinatedKrys)

    With hundreds of known faults running through the state, California is no stranger to earthquakes. In fact, one occurs about every three minutes, though the majority of these are too small to be felt. But even with all this seismic activity, the state’s three major fault lines have remained eerily quiet. Evidence shows that the San Andreas Fault (US), San Jacinto and Hayward faults should produce a major earthquake roughly three or four times per century (Biasi and Scherer, 2019). Yet, the last one struck in 1918.

    This might not seem like a bad thing. After all, no one wants to experience a big earthquake. But seismologists know that with each passing year, these faults will continue to accumulate stress. Eventually, this stress will be released through a major earthquake — or maybe even several of them. It’s not a matter of if, but rather when this will happen. And given the state’s unusual shortage of large earthquakes, one could easily surmise that California’s well overdue.

    However, David Jackson, a geophysicist at the University of California-Los Angeles (US), is not quite convinced. “It may be just luck” that there has not been a major earthquake, he admits. Alternatively, there might be some unknown interaction between the fault lines that has gifted the state with a relatively peaceful century. But at the 2021 Seismological Society of America (US) Annual Meeting today, Jackson advocated for another possibility: perhaps this so-called “anomalous hiatus” doesn’t actually exist.

    Digging into Earth’s past

    The oft-spoken phrase, “Those who do not learn history are doomed to repeat it,” applies to earthquakes, too. Studying California’s past earthquakes can help scientists get a better idea of how much shaking the state might see in the future.

    They do this by digging trenches along active fault lines and searching for evidence of ground displacements or marks left behind on the shaken landscape. The gaps between these displacements tell a “micro-geologic story,” says Glenn Biasi, a geophysicist from the U.S. Geological Survey (USGS), who was not involved with the study. In other words, these trenches are used to reconstruct a timeline of past seismic events, which scientists can then use to calculate the likelihood that a major earthquake could occur within a subsequent time frame.

    1
    Digging a paleoseismic trench along the Hayward Fault. Credit: USGS.

    That’s why scientists have dug numerous trenches along California faults. “We have 31 places where we think we know about past earthquakes,” Biasi explains. “Those places have not produced an earthquake in 100 years.” Based on the data from these locations, it turns out the likelihood that there would be no evidence of a major earthquake in these locations during this timeframe is extremely low. “Many of us think that must mean something.”

    But in his presentation, Jackson casts some doubt on these “paleoseismological” studies. He says that not all earthquakes leave their marks and, on the flip side, “there may be other things that also give you a similar kind of displacement.” He specifically points to a study led by Nathan Onderdonk, a geologist at California State University-Long Beach (US), where Onderdonk concludes that one particular displacement might have been the result of a nearby earthquake or groundwater movement, among several other possibilities (Onderdonk et al., 2013). Based on this, Jackson argues that some displacements might be attributed to earthquakes even though weren’t actually caused by them. This would, in turn, cause scientists to overestimate the rate these events occurred in the past. “If, say the rate is only once a century or maybe once every 75 years, then if you go 100 years without having any event” our earthquake hiatus makes a lot more sense.

    His main conclusion, though, is that large earthquakes never stopped occurring. By combining instrumental seismic data (e.g. seismographs) and personal accounts of shaking, Jackson points out that there have actually been nine magnitude-7.0 earthquakes in the state since 1918 — they just don’t show up in the paleoseismic records. Biasi, however, says that comparing these different types of data is like comparing “apples and oranges” and explains that paleoseismic data look at specific points on the fault line, whereas the data Jackson used describes a much broader area.

    “We said that these [specific] sites on our biggest faults have a hiatus, not that there’s a general hiatus…These places haven’t broken in 100 years. Over there,” Biasi points to somewhere in the distance, “I don’t know.”

    2
    Annotated photograph (left) and cartoon (right) of offset sedimentary layers in a paleoseismic trench wall that cuts through a section of the San Andreas Fault. Credit: Kate Scharer, USGS.

    Don’t get complacent

    It seems the jury might still be out on what this gap in the paleoseismic record might mean. Are the California fault lines overdue? Maybe. But maybe “overdue” is the wrong way to frame this question.

    “The potential for strong shaking over most of California is real,” says Biasi, “and the probabilities are high enough that you can’t discount that it will happen in your lifetime.”

    Similarly, Jackson ends his presentation with: “We don’t need the compelling word ‘overdue’ to compel action,” and separately says that he doesn’t want to be interpreted as saying there’s no danger. Instead, he offers the following advice: “Make a plan…and then every time you hear the word earthquake, or you feel an earthquake, look at your plan and make an improvement… If you hear the word earthquake, and you don’t do something, then you’re overdue.”

    References

    Biasi, G. P., & Scharer, K. M. (2019). The Current Unlikely Earthquake Hiatus at California’s Transform Boundary Paleoseismic Sites. Seismological Research Letters, 90(3), 1168-1176

    Onderdonk, N. W., Rockwell, T. K., McGill, S. F., & Marliyani, G. I. (2013). Evidence for Seven Surface Ruptures in the Past 1600 Years on the Claremont Fault at Mystic Lake, Northern San Jacinto Fault Zone, California. Bulletin of the Seismological Society of America, 103(1), 519–541

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    _____________________________________________________________________________________

     
  • richardmitnick 4:15 pm on April 20, 2021 Permalink | Reply
    Tags: , "Was Cascadia's 1700 earthquake part of a sequence of earthquakes?", , , Earthquake Alert system, , , , , ,   

    From Seismological Society of America via phys.org : “Was Cascadia’s 1700 earthquake part of a sequence of earthquakes?” 

    From Seismological Society of America

    via

    phys.org

    April 20, 2021

    2
    Cascadia’s 1700 earthquake. Credit: https://www.wired.com/2010/01/0126northwest-quake-japan-tsunami/

    The famous 1700 Cascadia earthquake that altered the coastline of western North America and sent a tsunami across the Pacific Ocean to Japan may have been one of a sequence of earthquakes, according to new research presented at the Seismological Society of America (SSA)’s 2021 Annual Meeting.

    Evidence from coastlines, tree rings and historical documents confirm that there was a massive earthquake in the Cascadia Subduction Zone (US) on January 26, 1700. The prevailing hypothesis is that one megathrust earthquake, estimated at magnitude 8.7 to 9.2 and involving the entire tectonic plate boundary in the region, was responsible for the impacts recorded on both sides of the Pacific.

    But after simulating more than 30,000 earthquake ruptures within that magnitude range using software that models the 3-D tectonic geometry of the region, Diego Melgar, the Ann and Lew Williams Chair of Earth Sciences at the University of Oregon (US), concluded that those same impacts could have been produced by a series of earthquakes.

    Melgar’s analysis suggests that a partial rupture of as little as 40% of the megathrust boundary in one magnitude 8.7 or larger earthquake could explain some of the North American coastal subsidence and the January 26, 1700 Japan tsunami. But there could have also been as many as four more earthquakes, each magnitude 8 or smaller, that could have produced the rest of the subsidence without causing a tsunami large enough to be recorded in Japan.

    His findings do not rule out the possibility that the 1700 Cascadia earthquake was a stand-alone event, but “the January 26, 1700 event, as part of a longer-lived sequence of earthquakes potentially spanning many decades, needs to be considered as a hypothesis that is at least equally likely,” he said.

    Knowing whether the 1700 earthquake is one in a sequence has implications for how earthquake hazard maps are created for the region. For instance, calculations for the U.S. Geological Survey hazard maps are based on the Cascadia fault zone fully rupturing about half the time and partially rupturing the other half of the time, Melgar noted.

    “But are we really sure that that’s real, or maybe it’s time to revisit that issue?” said Melgar. “Whether there was a partial or full rupture fundamentally drives everything we put on the hazard maps, so we really need to work on that.”

    Since the first analyses of the 1700 earthquake, there have been more data from the field, repeated earthquake modeling of the Cascadia Subduction Zone and a better understanding of the physics of megathrust earthquakes—all of which allowed Melgar to revisit the possibilities behind the 1700 earthquake. Researchers also have been writing code for years now to simulate earthquakes and tsunamis in the region, in part to inform earthquake early warning systems like ShakeAlert.

    If there was a sequence of earthquakes instead of one earthquake, this might help explain why there is little good geologic evidence of the 1700 event in places such as the Olympic Mountains in Washington State and in southern Oregon, Melgar said.

    He noted, however, that these specific areas are difficult to work in, “and may not necessarily be good recorders of the geological signals that paleoseismologists look for.”

    Melgar’s models show that even a smaller Cascadia earthquake could cause a tsunami energetic enough to reach Japan. These smaller earthquakes could still pose a significant tsunami risk to North America as well, he cautioned. “They might be less catastrophic, because they don’t affect such a wide area because the rupture is more compact, but we’d still be talking a mega-tsunami.”

    He suggested that it could be valuable to revisit and re-do old paleoseismological analyses of the 1700 event, to gain an even clearer picture of how it fits into the overall earthquake history of the region.

    “Cascadia actually records earthquake geology much better than many other parts of the world,” Melgar said, “so I think that just going back with modern methods would probably yield a lot of new results.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Seismological Society of America (SSA) is an international scientific society devoted to the advancement of seismology and the understanding of earthquakes for the benefit of society. Founded in 1906, the society has members throughout the world representing seismologists and other geophysicists, geologists, engineers, insurers, and policy-makers in preparedness and safety.

    The society was established by academic, government, and other scientific and engineering professionals in the months following the April 18th San Francisco earthquake, with the first meeting of the Board of Directors taking place on December 1, 1906.

    The Seismological Society of America publishes the Bulletin of the Seismological Society of America (BSSA), a journal of research in earthquake seismology and related disciplines since 1911, and Seismological Research Letters (SRL), which serves as a forum for informal communication among seismologists, as well as between seismologists and those non-specialists interested in seismology and related disciplines.

    ________________________________________________________________________________________

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 9:41 pm on March 12, 2021 Permalink | Reply
    Tags: "New Zealand sees exotic earthquake sequence", Earthquake Alert system, , , QuakeAlertUSA-Early Warning Labs LLC, ,   

    From temblor: “New Zealand sees exotic earthquake sequence” 

    1

    From temblor

    March 12, 2021
    Hector Gonzalez-Huizar, Ph.D.,Center for Scientific Research and Higher Education at Ensenada [Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE]
    Shinji Toda, Ph.D., IRIDeS, Tohoku University

    A mystifying series of earthquakes that struck north of New Zealand last week may have resulted from a unique form of seismic triggering.

    On March 4, 2021, a series of three large earthquakes struck within six hours of one another in the South Pacific. The earthquakes struck along 560 miles (900 kilometers) of the Kermadec trench, where the Pacific and Australian tectonic plates converge. The first shock — a magnitude-7.3 — struck at 2:27 am local time in the southern part of the trench, just off the northeastern coast of New Zealand’s North Island (Te Ika-a-Māui). The resulting pattern of seismic waves suggests that it was a complex rupture along multiple adjacent faults.

    Large earthquakes usually trigger aftershocks on nearby faults and in general, the largest aftershock is one unit of magnitude smaller than its mainshock — a magnitude-6.3 in this case. However, this earthquake was instead followed by both a magnitude-7.4 and a magnitude-8.1 earthquake along the same trench, just four and six hours later, respectively.

    This progressive increase in magnitude with time is rare for an individual sequence, particularly for earthquakes this large. When this occurs, the events are simply renamed and we call the largest earthquake in the sequence the mainshock (in this case the magnitude-8.1), and those preceding it are named foreshocks.

    1
    Red stars in the map represent the epicenters of the magnitude-7.3, 7.4 and 8.1 earthquakes that occurred on Mach 4, 2021. The blue arrow represents the direction of motion of the Pacific Plate relative to the Australian Plate. The inset figure shows a seismogram for that day, recorded by station ARMA.AU in Australia, highlighting the timing of the three earthquakes.

    The short time between the three earthquakes suggests that they were part of a same foreshock-mainshock-aftershock sequence; however, the large distance between the first and the other two earthquakes — more than 560 miles (900 kilometers) — makes it difficult to establish a clear connection.

    Triggering of earthquakes

    When a fault slips, or ruptures, during an earthquake, rock masses on either side of the fault are displaced. This shifting of mass results in a redistribution of stress within the crust. Ruptures occur because of stress applied to the fault surface and when stress changes, new earthquakes are sometimes triggered on nearby faults. The potential for this so-called “static triggering” following a large earthquake can be quantified using a parameter called Coulomb stress change. In general, a stress change greater than 0.1 bars imposed on a particular fault suggests a high probability that an earthquake will occur within a relatively short period of time (Hill, 2008).

    We estimate that the stress change imparted by the first of the earthquakes (the magnitude-7.3) on the rupture surface of the subsequent earthquakes (magnitude-7.4 and magnitude-8.2) was less than 0.01 bars. Therefore, it is very unlikely that the first earthquake caused the other two by static triggering. However, there are other mechanisms that might explain how the first earthquake could have indirectly triggered the other two, regardless of the large distance between them. One of these mechanisms is known as dynamic triggering.

    Dynamic triggering of the magnitude-7.4 earthquake

    When a fault slips, seismic waves radiate outward from the ruptured area. You feel these waves passing when the ground shakes during an earthquake. Not only can they damage buildings, but these waves can temporally increase the stress on other faults and trigger more earthquakes. Unlike static stress changes, these “dynamic” stress changes are transient, but they can be much larger at great distances.

    It is possible that the passing of the seismic waves generated by the magnitude-7.3 caused temporary changes on faults several hundred miles to the north, resulting in their triggering. Given their depth and location relative to known geologic features, the magnitude-8.1 likely occurred on the interface between the two tectonic plates (the so-called “megathrust surface”) and the magnitude-7.4 likely struck on a tear fault in the descending Pacific Plate. We estimate the dynamic stress change imparted by the seismic waves from the magnitude-7.3 on the tear of the rupture area of the magnitude-7.4.

    According to our calculations, stress change temporarily alternated between -0.1 to +0.1 bars as the seismic “wavetrain” from the magnitude-7.3 passed over the tear fault. This suggests that these passing seismic waves had a high potential to trigger the magnitude-7.4.

    3
    Model shows the temporal (dynamic) Coulomb stress change caused by the passing of the Rayleigh surface seismic waves, from the magnitude-7.3 earthquake, on a tear in the descending slab where the magnitude-7.4 earthquake occurred four hours later. Stress was obtained as in Hill (2008) and Gonzalez-Huizar and Velasco (2011).

    The seismic surface waves — a specific type of seismic wave that travels only along earth’s surface — generated by the magnitude-7.3 took only around four minutes to arrive at the location of the magnitude-7.4. Yet the magnitude-7.4 occurred around four hours later. In general, instances of dynamic triggering are difficult to prove, especially when the triggered earthquake does not occur instantaneously with the arrival of the seismic waves. However, cases of “delayed” dynamic triggering are well documented. Seismologists think that in these instances, the stress changes caused by the passing of seismic waves cause permanent damage to fault contacts, a slow slip event or the intrusion of fluids into the faults, resulting in a slowly progressing process that ends with the earthquake triggering (Parsons, 2005; Shelly et al., 2011; Castro et al., 2015).

    Interestingly, we found that this area has experienced several instanced of delayed dynamic triggering in the past. We found that at least four other remote, large (greater than magnitude-8.0), recent earthquakes potentially triggered moderate (greater than magnitude-5.0) earthquakes in this area. At least one of these moderate earthquakes occurred within 15 hours after the seismic waves from the triggering earthquakes passed through the area. By comparison, there were no moderate magnitude earthquakes there in the previous three days.

    Our preliminary results suggest that earthquakes at the Kermadec trench can be triggered by the small stress fluctuations, like those generated by the passing of seismic waves. Previous studies show that even the small stress changes generated by Earth tides are capable of controlling seismicity along the trench (Hirose et al., 2019), suggesting a high triggering susceptibility.

    4
    Map showing the epicenter (black stars) of recent large (greater than magnitude-8.0) earthquakes that potentially triggered moderate (greater than magnitude-5.0) earthquakes near the source of the magnitude-7.4 earthquake (within the area limited by the red square). Also, the epicenter of the three earthquakes discussed in this study are shown (red stars).

    Static triggering of the magnitude-8.1 earthquake

    The magnitude-7.4 earthquake appears to have triggered the magnitude-8.1 earthquake by static triggering. The distance between their epicenters is only about 30 miles (50 kilometers) and they occurred about 100 minutes apart. In order to investigate how the magnitude-7.4 and magnitude-8.1 earthquakes increased the probability of future earthquakes, we estimated the stress transferred by these two earthquakes to nearby faults. This requires knowing the location, geometry and orientation of the faults — information that can be obtained from the analysis of the seismic waves of past earthquakes that occurred on those faults. Faults or fault segments are represented in maps using focal mechanisms, often referred to as “beachballs,” which indicate the orientation and direction of slip of the fault section that generated the earthquake. A long fault is more accurately represented by a series of slightly different beachballs rather than by a simple plane. We calculated the stress imparted by the magnitude-7.4 and magnitude-8.1 earthquakes on surrounding beachballs. For the magnitude-7.4 earthquake, we find a dense ‘halo’ of red beachballs near the epicenter, indicating that this earthquake transferred significant stress to surrounding active faults, bringing them closer to failure. A simpler way of looking at the static stress transfer is shown in the inset in the lower right. The future magnitude-8.1 rupture surface has a larger area of red than blue, indicating a net increase in its failure stress.

    Below, we can see that after the magnitude-8.1, a core of blue beachballs highlights where the stress has dropped. But there are plenty of red beachballs as well, particularly north and south of the ruptured area. So, this sequence might not be over.

    5
    Map shows stress transferred to beachballs by the magnitude-7.4 (left panel) and the magnitude-8.1 earthquakes (right panel). The orientation of each beachball provides information on the orientation of the fault (or fault section) to which the stress is transferred, and the direction of the potential slip if an earthquake is triggered. Color represents the amount of stress transferred. Inset shows the stress resolved on the future plane of the magnitude-8.1 caused by the magnitude-7.4 earthquake.

    ________________________________________________________________________________________________________________________________________________

    References

    Parsons, T. (2005). A hypothesis for delayed dynamic earthquake triggering. Geophysical Research Letters, 32(4). doi:10.1029/2004GL021811.

    Hill, D. P. (2008). Dynamic stresses, Coulomb failure, and remote triggering. Bulletin of the Seismological Society of America, 98(1), 66-92. doi:10.1785/0120070049.

    Gonzalez‐Huizar, H., & Velasco, A. A. (2011). Dynamic triggering: Stress modeling and a case study. Journal of Geophysical Research: Solid Earth, 116(B2). doi:10.1029/2009JB007000.

    Shelly, D. R., Peng, Z., Hill, D. P., & Aiken, C. (2011). Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nature Geoscience, 4(6), 384-388. https://doi.org/10.1038/ngeo1141.

    Castro, R. R., González‐Huízar, H., Ramón Zúñiga, F., Wong, V. M., & Velasco, A. A. (2015). Delayed dynamic triggered seismicity in northern Baja California, México caused by large and remote earthquakes. Bulletin of the Seismological Society of America, 105(4), 1825-1835. doi:10.1785/0120140310.

    Hirose, F., Maeda, K., & Kamigaichi, O. (2019). Tidal forcing of interplate earthquakes along the Tonga‐Kermadec Trench. Journal of Geophysical Research: Solid Earth, 124(10), 10498-10521. https://doi.org/10.1029/2019JB018088.

    Further Reading

    Stein, R. S., Rollins, C., Sevilgen, V., and Hobbs, T. (2019), M 7.1 SoCal earthquake triggers aftershocks up to 100 mi away: What’s next?, Temblor, http://doi.org/10.32858/temblor.038.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map

    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 2:04 pm on February 21, 2021 Permalink | Reply
    Tags: "An Innovative Approach for Investigating Subduction Slip Budgets", A new 3D model offers a state-of-the-art look at the full spectrum of slip behaviors in the Nankai subduction zone off Japan., Earthquake Alert system, , , Nankai subduction zone is one of the most seismologically active regions on the planet., , ,   

    From Eos: “An Innovative Approach for Investigating Subduction Slip Budgets” 

    From AGU
    Eos news bloc

    From Eos

    19 February 2021
    David Shultz

    A new 3D model offers a state-of-the-art look at the full spectrum of slip behaviors in the Nankai subduction zone off Japan.

    1
    Shikoku Island (bottom center) in Japan is seen in this photo taken from the International Space Station in 2015. Credit: NASA.

    The Nankai subduction zone hugs the southeastern curve of Japan and is one of the most seismologically active regions on the planet. The combination of the region’s short seismic cycle—great earthquakes (magnitude 8 or greater) occurring roughly every 100–150 years—and its superb history of geophysical observations makes it an attractive natural observatory for scientists looking to study the evolution of subduction zones during and between great earthquakes. The last major quakes in the region occurred in the mid-1940s, and the decades since have offered opportunities for researchers to pursue innovative geodetic monitoring and modeling.

    In a new study, Sherrill and Johnson [Journal of Geophysical Research: Solid Earth] provide the most complete 3D coseismic and postseismic model of the Nankai subduction zone yet, using a new approach that relies on iteratively inverting vertical surface displacement data to characterize movement, or slip, along the fault. Slip at subduction zones displays a range of complex behaviors, such as slip during earthquakes, afterslip following major earthquakes, and episodic tremor and slow slip (ETS) events. Understanding the distribution of these slip behaviors in space and time relative to the area of a fault where earthquakes occur is crucial for assessing seismic hazards at subduction zones.

    For Nankai, the researchers teased apart the types of slip that have contributed most to the total slip budget (the amount of slip that must be accommodated in a subduction zone because of tectonic plate convergence). The model also offers new insights into the last large earthquakes at Nankai, allowing the researchers to estimate that the maximum slip during the 1940s events was 7.5 meters. Since then, afterslip has reached a maximum of 2.6 meters, they report.

    The slip budget at Nankai comprises coseismic slip, afterslip, short-term and long-term slow slip, and interseismic creep. Below eastern Shikoku Island, the researchers report that the slip budget is nearly met. However, below western Shikoku, there is a considerable deficit—about half the total budget—implying the potential for significant future earthquakes in that area. The study also revealed that long-duration afterslip occurred in the same area of the fault as ETS, an observation that provides new constraints on the frictional properties of this part of the subduction zone.

    Beyond what the research reveals about Nankai specifically, the work also offers a state-of-the-art approach for modeling geodetic data across a complete seismic cycle—a feat necessary for improving risk assessments and related policy decisions—that should be applicable to subduction zones around the world.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 9:32 am on February 18, 2021 Permalink | Reply
    Tags: "Q&A- ShakeAlert earthquake early warning system arriving in Pacific Northwest", , , Earthquake Alert system, , , , , ,   

    From University of Washington: “Q&A- ShakeAlert earthquake early warning system arriving in Pacific Northwest” 

    From University of Washington

    ShakeAlert earthquake early warning system arriving in Pacific Northwest.

    After years in development, an earthquake early warning system known as ShakeAlert is on the cusp of being released in Oregon and Washington. The system that spans the West Coast was launched in California in late 2019. It launches to the public in Oregon on March 11, the 10th anniversary of the Tohoku earthquake and tsunami, and in Washington in May.
    ________________________________________________________________________________________________________________________________________________
    February 17, 2021
    Hannah Hickey

    More Information
    Harold Tobin
    htobin@uw.edu

    Bill Steele,
    communications director at
    Pacific Northwest Seismic Network, at
    wsteele@uw.edu
    206-685-5880.

    After years in development, an earthquake early warning system known as ShakeAlert is on the cusp of being released in Oregon and Washington. The system that spans the West Coast was launched in California in late 2019. It launches to the public in Oregon on March 11, the 10th anniversary of the Tohoku earthquake and tsunami, and in Washington in May.

    The system was developed through a partnership between the University of Washington and other West Coast universities and the USGS working with state emergency management districts. The system uses ground sensors across the region to detect the first signals from a rupturing earthquake and then sends that information to computers and phones, providing seconds to tens of seconds of warning of an imminent earthquake.

    UW News sat down with Harold Tobin, professor of Earth and space sciences and director of the Pacific Northwest Seismic Network, to learn more.

    1
    Karl Hagel and Pat McChesney, field engineers with the Pacific Northwest Seismic Network team at the University of Washington, install earthquake monitoring equipment on the slopes of Mount St. Helens, with Mount Hood in the distance. Credit: Marc Biundo/University of Washington.

    How can people in the Puget Sound sign up for the test taking place in late February? And how can Washingtonians sign up for the actual earthquake early warning system when it goes live in May?

    Washington EMD and USGS have developed a simulated earthquake warning test message they will broadcast Feb. 25 on the Wireless Emergency Alert system, the nation’s universal alerting system. The test will evaluate how the WEA system performs for earthquake early warning in the Puget Sound area. For technical reasons, WEA does not distribute alerts as fast as we’d like for earthquake warnings. A delay of 30 seconds might not matter for an Amber Alert, but for earthquake warning systems that would mean many alerts would arrive after the strong shaking has begun.

    You have to opt in for the test, which is for users in Pierce, King and Thurston counties. Once ShakeAlert goes live in May, earthquake alerts will go to anyone in Washington who hasn’t opted out of the Wireless Emergency Alert system.

    There will be two other ways to get earthquake alerts. If you have an Android phone device, Google has embedded it in the mobile operating system in late 2020. So those devices in California are getting alerts now, and we expect Android alerts will go live in Washington in May. We hope other phone operating systems will follow suit. Another option will be to install on your device an app, like QuakeAlertUSA, built by one of the licensed ShakeAlert partners. We hope several of these apps will be available by the end of the year.

    Washington ShakeAlert is a collaboration between the USGS, Washington Emergency Management and the Pacific Northwest Seismic Network[PNSN]. Can you explain how the three groups collaborate?

    ShakeAlert is operated by the USGS in partnership with the PNSN and California seismic networks. The data that is generated to detect the earthquakes in Washington and Oregon comes from the PNSN, the seismic network operated out of the UW and the University of Oregon. We are direct partners in the research and development of this system. At the UW, we operate one of three computer systems that ingest the data and issue the alert messages; the others are at UC Berkeley and Caltech. There’s a strong partnership between the PNSN and the USGS on earthquake detection and the continuing development of the system that issues the warnings. Washington Emergency Management is responsible for public safety, and so they are determining the types of public alerts that will be released, the messaging, public education and appropriate responses.

    This is a great example of a partnership among all those entities. We are all working toward this same goal, of increasing earthquake awareness and public safety.

    The PNSN began testing the system back in 2015 with early adopters. What have you learned from that experience?

    A system like this is complicated, and will reach everyone, so we have to test it really extensively. We’re decreasing the number of false or missed alerts in our beta system. Just seeing more and more events has allowed us to improve the algorithms, to distinguish between a false alarm and a real signal, and to better pinpoint the magnitude and location of the earthquake. A typical time frame is now 2 seconds for our computers to decide on the location and magnitude of the earthquake and to generate the alert — the pace that that happens is unbelievable.

    Now that the system is about to go public, how will other businesses, schools, organizations or agencies be able to incorporate these alerts into their emergency plans?

    The USGS licenses partners to develop products that take the ShakeAlert message and can connect to other systems.

    ShakeAlert® License to Operate Partners

    Below is a list of License to Operate partners. They are currently the only partners with a License to Operate (e.g. have commercially or non-commercially available products or services that are powered by ShakeAlert®.

    Early Warning Labs: Josh Bashioum – info@earlywarninglabs.com

    Google: The Android Earthquake Alerts team – android-usgs-external@google.com

    MyShake™: Richard Allen – rallen@berkeley.edu

    RH2 Engineering: Rick Ballard – rballard@rh2.com

    San Francisco Bay Area Rapid Transit District (BART): Chung-Soo Doo – cdoo@bart.gov

    SkyAlert: Alejandro Cantu – alejandro@skyalertusa.com

    Valcom: Roger Steinberg – rsteinberg@valcom.com

    Varius: Dan Ervin – dan.ervin@variusinc.com

    Note: The USGS does not directly or indirectly endorse any product or service provided, or to be provided, by these Licensees.

    A number of those licensed partners offer systems that can be adopted, such as a box that can be hooked up to a school PA system and automatically issue a prerecorded message that alerts students to drop, cover and hold on. Any business that has staff in a facility can think about how they can incorporate earthquake early warnings into their own facility. ShakeAlert messages can also trigger automated actions to pause manufacturing processes, move elevators to the next floor and open the doors, close valves on reservoirs, and initiate other loss-reduction actions.

    What should someone do when they get their first “real” alert?

    When someone gets an alert, the appropriate action to take is to drop, cover and hold on. It’s important to get under a protective cover. Most injuries from earthquakes in the U.S. are not from the catastrophic collapse of a building but from falling objects – lights, ceiling tiles, etc.

    If you’re driving in a car, the appropriate action would be to pull over and stop the car, if possible. If you’re in a building, stay in a building. The message is really to brace yourself — drop, cover and hold on. That message, to pause and protect yourself, is key. (Washington Emergency Management has more tips here.)

    What about British Columbia? Will the earthquake early warning system extend across the border?

    Natural Resources Canada is working in parallel to develop an earthquake early warning system. We already use data from seismometers in Canada, and we incorporate that information in our alerts — earthquake waves don’t stop at the border.

    Can we expect any improvements or changes coming down the line?

    Yes, we’re improving the system all the time. We are going live with this system because we know that it works, but we’re also continuously improving the system. We have hundreds of seismic stations in place but we’re adding dozens more, so that we can optimize the network to detect earthquakes wherever they occur within the region.

    We’re also continuously improving the computer algorithms that detect the raw data and decide where and how big the earthquake is. Once it goes live, there will be no pause in improving the system. We would also love to add more offshore detection systems, since offshore quakes are a challenge to detect accurately.

    For me, this is an exciting example of science to action, of things that are driven by fundamental science and research in seismology that show the way to something that can do some tangible good for society — to increase public safety. It’s exciting to see that happening with the ShakeAlert system.

    ________________________________________________________________________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA mobile app

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: