Tagged: Earth Sciences Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:27 am on June 23, 2022 Permalink | Reply
    Tags: "Lost Continents Could Be Hidden Inside Earth", At mid-ocean ridges bubbling magma escapes through rifts in the sea floor to form new crust., Convection currents in the mantle can transport large blocks of the earth’s crust-called cratons-over vast distances., , , Earth Sciences, , , , Rocks are perhaps up to 2.7 billion years old., The Chinese Academy of Sciences, The Kaapvaal craton in South Africa, The Kaapvaal craton is the closest ancient continental crust to the Southwest Indian Ridge. But it’s also a whopping 1200 miles away., The Woods Hole Oceanographic Institute, There are a lot of plumes under Africa because it was the center of the supercontinent Pangea.   

    From “Discover Magazine” : “Lost Continents Could Be Hidden Inside Earth” 


    From “Discover Magazine”

    Jun 16, 2022
    Theo Nicitopoulos

    Silfra Fissure, located at Thingvellir National Park in Iceland, lies on the mid-Atlantic ridge. (Credit: VicPhotoria/Shutterstock)

    At mid-ocean ridges bubbling magma escapes through rifts in the sea floor to form new crust. Below, partially melted, taffy-like mantle rock spreads in opposite directions — stretching the new crust until it forms an extensive valley system surrounded by ridges of hills and mountains.

    These abyssal seascapes, not unlike landscapes found above sea level, are the last places that pieces of continents would be expected to turn up. Yet in a recent study published in Science Advances, researchers have discovered that it is indeed possible: Newly dated rocks from the Southwest Indian Ridge, located between Africa and Antarctica, are not only remnants of a continent; they are also old enough to support the hypothesis that much of Earth’s continents formed early on and became “lost” or hidden deep below Earth’s ocean crust.

    Chuan-Zhou Liu, a marine geologist at the Chinese Academy of Sciences in Beijing, visited the Woods Hole Oceanographic Institute in 2017 to collect the rock samples dredged from the ridge previously. “I wouldn’t have suspected the rocks are from continents,” he says, “because they look like the ones you would typically find on the sea floor.”

    His analysis showed the rocks are perhaps up to 2.7 billion years old — old enough to have been around when Earth’s first continents formed. Finding out which ancient continent they came from, however, is difficult.

    Credit: Liu et al. Science Advances.

    Liu says convection currents in the mantle can transport large blocks of the earth’s crust-called cratons-over vast distances. One particular craton caught the researcher’s attention: “There is evidence that the ‘keel’ of the Kaapvaal craton in South Africa has been dislodged,” he says.

    The Kaapvaal craton is the closest ancient continental crust to the Southwest Indian Ridge. But it’s also a whopping 1,200 miles away.

    To have reached the ridge, Liu and his colleagues propose that plumes of hot, rising mantle rock beneath South Africa eroded the bottom of the craton, dislodging pieces that were then transported by convection currents to the ocean ridge. “There are a lot of plumes under Africa because it was the center of the supercontinent Pangea that heated the mantle,” says co-author Ross Mitchell, a geophysicist at the same academy as Liu.

    The researchers performed computer simulations and found that up to 20 percent of the Kaapvaal craton could have been removed in this way and recycled to the ocean rift in as little as 100 million years.

    A Game of Hide and Seek

    The discovery also provides insight into the evolution of Earth’s other continents. Traditionally, because there are few very old rocks at the surface, the continents are thought to have grown gradually. But now there’s another explanation: Maybe much of the continents formed early on and were recycled back into the mantle.

    “If Earth once had voluminous continents, surely these ‘lost continents’ are hidden below the crust,” says Mitchell. The recycling of lost continents into the depths may have been possible thanks to plumes that were even hotter during Earth’s early history, he adds. “If it’s happening today, it would have really been happening back then.”

    If these rocks are from lost continents, the researchers’ computer simulations suggest that there could be more at mid-ocean ridges. “Perhaps we haven’t discovered more because we didn’t know to look for them,” says Mitchell. For him, ocean ridges have suddenly become more attractive in the study of the evolution of continents. “I couldn’t imagine I would have a reason to go out to the middle of the ocean,” he says.

    Even better, the ocean around the Southwest Indian Ridge is particularly rough. “Ross, get ready to pack your suitcase,” says Liu.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 9:27 pm on June 3, 2022 Permalink | Reply
    Tags: "'Landslide Graveyard' Holds Clues to Long-Term Tsunami Trends", "Megablocks", 2018 eruption of Anak Krakatau in Indonesia, , , Earth Sciences, , , , How can we assess the modern potential for hazardous tsunamis based only on these ancient buried remnants?, Subduction zone processes and their associated seismic activity, The underwater Hunga Tonga Hunga Ha’apai volcano, These key questions and issues are currently being addressed by a trans-Tasman team of researchers- including us-from Australia and New Zealand under the “Silent Tsunami” project., Tsunami originating from Hunga Tonga–Hunga Ha’apai in early 2022., Underwater landslides,   

    From Eos: “‘Landslide Graveyard’ Holds Clues to Long-Term Tsunami Trends” 

    Eos news bloc

    From Eos



    3 June 2022
    Suzanne Bull

    Sally J. Watson
    Jess Hillman
    Hannah E. Power
    Lorna J. Strachan

    The Sun rises over the Tasman Sea and Mount Taranaki (at left on the horizon), as seen from R/V Tangaroa during research voyage TAN2111 in October 2021 to map part of New Zealand’s northwestern continental margin. Credit: Jess Hillman.

    “Ka mua, ka muri.” We walk backward into the future, with our eyes on the past. This whakataukī (proverb) represents a New Zealand Māori perspective that has much in common with the way Earth scientists study natural hazards. Understanding and learning from historical events inform our preparedness for and increase resilience against future disasters. Studying past tsunami events, for example, is an important part of better understanding the diverse and complex mechanisms of tsunami generation and for improving natural hazard assessments.

    Tsunamis are dangerous natural hazards and are most often caused by earthquakes. Consequently, coseismic tsunamis have drawn most of the focus from researchers and hazard planners.

    In September 2009, American Samoa felt the effects of a powerful magnitude 8.1 earthquake that originated in the Tonga Trench, some 240 kilometers away. Only 15 minutes after earthquake shaking stopped, a large tsunami hit the Samoan archipelago, inundating coastal communities (Pago is shown here), catching many islanders off guard, and killing 35 people. Credit: National Park of American Samoa (NPSA)

    However, several recent tsunamis have been attributed to other sources on which less research has been done, including underwater landslides, as in the case of the Palu, Indonesia, event in 2018, and volcanic eruptions in the case of the tsunami originating from Hunga Tonga–Hunga Ha’apai in early 2022.

    The landslide and tsunami associated with the 2018 eruption of Anak Krakatau, Indonesia, were responsible for more than 400 deaths. Credit: ESA.

    In this satellite photo taken by Planet Labs PBC, an island created by the underwater Hunga Tonga Hunga Ha’apai volcano is seen smoking Jan. 7, 2022. An undersea volcano erupted in spectacular fashion near the Pacific nation of Tonga on Saturday, Jan. 15, sending large tsunami waves crashing across the shore and people rushing to higher ground. A tsunami advisory was in effect for Hawaii, Alaska and the U.S. Pacific coast, with reports of waves pushing boats up in the docks in Hawaii. (Planet Labs PBC via AP)

    The Tasman Sea, located between Australia and New Zealand and known for its notorious storms amid the “roaring forties” latitudes, may have witnessed a series of devastating tsunamis during the past 5 million years (i.e., in the Pliocene and Pleistocene, or Plio-Pleistocene, epochs). These tsunamis likely originated near New Zealand’s western coast and traveled more than 2,000 kilometers to also affect Australia, yet intriguingly, there is little easily observable evidence of these events. This tumultuous history is surprising considering that western New Zealand is not especially exposed to subduction zone processes and their associated seismic activity; such exposure is often the main indicator of how vulnerable a coastline is to a tsunami. However, New Zealand is surrounded by steep and, in some cases, tectonically active submarine slopes, where landslides can occur.

    The study area of the Silent Tsunami project is shown here, along with seafloor bathymetry and existing seismic reflection data. The outline of the most recent giant landslide from the Pleistocene is also shown and is overlain by the ship track from the TAN2111 voyage in October 2021.

    In the past few decades, evidence of six giant underwater landslides dating from the Plio-Pleistocene has been discovered beneath the modern seafloor in the eastern Tasman Sea (Figure 1). The most recent, thought to have occurred about 1 million years ago, is the largest documented landslide in New Zealand, covering more than 22,000 square kilometers—an area larger than Wales. With a volume of about 3,700 cubic kilometers, this landslide was bigger than the famous tsunamigenic Storegga Slide, which involved massive collapses of the continental shelf off the coast of Norway roughly 8,200 years ago.

    Much of the Norwegian coastline was at-risk because of the Storegga slide.


    Can scientists use these landslide deposits to derive credible indications of past tsunamis? If so, how can we assess the modern potential for hazardous tsunamis based only on these ancient, buried remnants? Underwater landslides are not comprehensively included as tsunami sources in New Zealand’s hazard assessments. This data gap exists largely because of a lack of research into underwater landslide return rates (a statistical measure of how often these events are likely to recur) and tsunamigenic mechanisms, as well as of uncertainties introduced by errors in available dating methods and the difficulty and expense of obtaining samples. These key questions and issues are currently being addressed by a trans-Tasman team of researchers, including us, from Australia and New Zealand under the Silent Tsunami project (officially named Assessing Risk of Silent Tsunami in the Tasman Sea/Te Tai-o-Rēhua), which began in 2021.

    Search Strategy for Landslide Evidence

    Throughout the Plio-Pleistocene, a vast volume of material was eroded from the rapidly uplifting Southern Alps, on New Zealand’s South Island, and delivered to the coast by river networks. Powerful ocean currents then transported the sediment north to the country’s northwestern continental margin. The ocean basin duly accommodated the relentless influx of material, and the margin rapidly prograded (built outward toward the sea) via a series of spectacular, steeply dipping depositional surfaces (up to 1,500 meters tall) called sigmoidal clinoforms, which are the building blocks of deltas and basin margins. The unstable sediment piles, perched precariously at the edge of the tectonically hyperactive interface between the Pacific and Australian plates, inevitably then collapsed in catastrophic fashion several times over.

    However, evidence of these Tasman Sea landslides cannot be readily observed, in part because of a lack of detailed seafloor mapping in the area but also because the slides were quickly buried under other sediment. Compounding the difficulty are the erosion and uplift of New Zealand’s dynamic coastline, which have erased potential land-based geological evidence in the form of tsunami deposits. Only past seismic reflection surveying in the area enabled the discovery of evidence for these events (Figure 1), with geologists documenting the landslide deposits while mapping New Zealand’s offshore sedimentary basins.

    The new project takes a three-pronged approach to carry earlier findings forward. First, we’re combining tools and techniques from the playbook used to analyze the formation and evolution of sedimentary basins, especially how the basin filling process interacts with tectonic processes. These methods include the conversion of time series seismic reflection data into depth measurements using seismic wave velocities measured from drill holes (meaning the depth for each data point is known) and virtually stripping away overlying sediments (back stripping) using computational models. This approach allows us to unearth accurate original volumes (areal extent and thickness) of the landslides before their burial and compaction.

    Second, we’re applying these new physical descriptions of landslides, along with knowledge of where they occurred, to inform computational models. The models, run using the cutting-edge fluid dynamics modeling tool Basilisk, simulate landslide motion, tsunami generation, and hazard metrics like inundation extents, wave amplitudes, wave arrival times, and current velocities.

    Third, during two research voyages, we have collected new geophysical data—multibeam bathymetry, subbottom profiles, and high-resolution multichannel seismic reflection profiles—and sediment samples from rock dredges and sediment cores from the site of the landslides. Data from the voyages are perhaps most critical to the outcomes of the project. The modeling builds a picture of the likely impacts of the Tasman Sea landslides, but probing the sites of their origin in the real world draws tangible ties between these ancient events and the present day.

    So what about the present day? During sea level highstands, when sea levels rise above the edge of a continental shelf, as is the case today, delivery of sediment to the deep ocean is thought to decrease. However, a paucity of information from the Tasman Sea region means that no one knows how much, how fast, and exactly where sediment is accumulating at present. It is not clear whether the conveyor belt of northward sediment delivery is still operating or what could trigger a future landslide event.

    Setting Sail

    In October 2021, on the first of the two research voyages, a small science party of five boarded the R/V Tangaroa for an 11-day voyage to map some 5,000 square kilometers of the Tasman Sea for the first time and to identify targets for a sampling campaign to be conducted during the second voyage (Figure 1). The preexisting seismic reflection data set for the region (Figure 2), comprising data gathered during numerous explorative surveys over several decades, appeared to show evidence of “megablocks” peeking up through the modern seabed from within the most recent Tasman Sea landslide deposit. These megablocks are large clasts or “rafts” of material that were transported within a landslide and that have remained mostly intact. Such blocks often form highly irregular seafloor topography in the immediate aftermath of an underwater landslide and can create localized sediment traps when normal sedimentation resumes. Heading into the voyage, it was uncertain whether these features would be visible or prominent on the seafloor or whether we could identify viable targets for sampling.

    Fig. 2. Ancient landslide deposits beneath the modern seafloor are evident in this seismic reflection profile produced from data collected prior to the Silent Tsunami project.

    True to form for the Tasman Sea, after leaving the shelter of Wellington Harbour, a howling southerly wind and 8-meter swells pummeled our ship during the 20-hour transit. Once on site, however, about 100 kilometers off New Zealand’s North Island, above the continental shelf break and rise, conditions calmed, allowing the ship’s multibeam echo sounders to run—and map the seafloor at high resolution—uninterrupted.

    Fig. 3. Perspective views from the newly acquired bathymetric data set show shelf-slope canyons, pockmarks, and evidence of small, recent slope failures (top), as well as the tops of megablocks from the most recent ancient landslide rising above the modern seafloor of the continental rise at water depths of 1,500–1,700 meters (bottom).

    As the data came in, we spent long hours poring over them in the bathymetry lab aboard the Tangaroa. The time was highly rewarding. First came images of canyons, numerous pockmarks, and evidence of recent small-scale slope failures as the ship passed over the shelf break and traversed the continental slope (Figure 3). Then we saw an astonishing area of deep seafloor littered with numerous angular, often elongated ridges and peaks up to 100 meters in relief, some with surrounding “moats” winnowed by the action of recent ocean currents. These ridges are the exposed tops of megablocks from the most recent Tasman Sea landslide, still making their mark on the seafloor roughly 1 million years later.

    We decided the megablocks, now that we’d observed them firsthand, were viable targets for rock dredging, offering the tantalizing possibility of sampling landslide material itself. If we could achieve it, this sampling could allow us to characterize the sedimentology and physical properties of the landslide and thus to refine our fluid dynamics models. In addition, areas between blocks would be good targets to sample covering sediments to help constrain the minimum age of the most recent and largest landslide and to determine the rate and patterns of modern sediment accumulation.

    We set off on the 3-week-long second voyage, again aboard the Tangaroa, on 15 March 2022. Taking advantage of a spell of calm weather, we deployed the ship’s brand-new 96-channel solid seismic streamer to collect reflection data, then waited anxiously for the first data. Our worry was unnecessary, as the data looked beautiful, with much-improved resolution compared with the preexisting data set.

    The biggest highlights from this voyage came as we turned our attention to sediment sampling and targeted several megablocks with the rock dredge. We recovered a lot of sticky mud thought to be the “mud drape” formed by the continuous rain of fine-grained sediment that accumulates normally over many years. We also recovered fist- to paving slab–sized clasts of more consolidated mud and fine sand, which we cautiously assumed to be landslide material.

    After deciding to target a flat-topped megablock at roughly 1,500 meters depth for coring, we again waited nervously to see what, if anything, we’d recover. To the team’s excitement, we indeed recovered a 4-meter core from the megablock. Does it contain landslide material, or is it all mud drape? Time will tell. Now back on dry land, we are awaiting the results of nondestructive preliminary scanning before we split and subsample the core to determine in detail what we recovered. In all, 79 meters of core were successfully recovered on the voyage, including from the areas between megablocks, which we are confident will enable us to characterize modern sediment deposition and properties.

    From Data to Knowledge to Application

    We expect our project to generate new knowledge that builds a picture of modern-day conditions at the site of the Tasman Sea landslides; to refine our understanding of the return rate of large, potentially tsunami-generating landslides; and to develop credible scenarios of the specific hazards related to them. Pathways to assessing the usefulness of the information gained and to guide its uptake in national hazard assessments involve working with a hazard scientists’ advisory group, territorial authorities, and civil defense agencies.

    Fig. 4. This depiction of the New Zealand National Tsunami Hazard Model shows expected tsunami heights along the country’s coastline. Although formally published in 2013, the model is continually updated as more information becomes available.

    The most likely conduit to implementation in New Zealand is the Review of Tsunami Hazard in New Zealand, a probabilistic risk assessment that quantitively estimates maximum tsunami heights along the country’s coastlines (Figure 4). The model underpins more detailed site-specific hazard assessments and emergency management planning and is continually refined and updated with new information. In Australia, new information from this project could be incorporated into state-based hazard assessments and education programs led by the country’s Emergency Management authorities.

    An exciting prospect is the potential to apply the same approaches used in our project to other areas of New Zealand, Australia, and elsewhere. Many of the world’s continental margins have been imaged using seismic reflection surveying—often during exploration for offshore energy resources—creating a vast repository of information about the subsurface. Most of what is known about tsunamis generated by underwater landslides comes from computational models, with few observed examples of such slides to validate them. But existing data sets may hold a wealth of data related to numerous examples of ancient underwater landslides now buried beneath the seafloor.

    Translating knowledge from examples of subsurface landslides into information to support hazard assessment is rarely done because of a lack of information on the ages of the landslides and the complexities of assessing their size introduced by their burial, compaction, and incomplete preservation. We hope that results and learning from our early-stage research will help scientists better understand regional tsunami hazards. We also hope that these results will pave the way for future endeavors to develop constructive tools to support refined tsunami hazard assessment and emergency management planning, helping safeguard people around and beyond the Tasman Sea.


    The project described above is funded by the New Zealand Ministry of Business, Innovation and Employment Endeavour Fund, with additional support from the New Zealand Strategic Science Investment Fund, the Tangaroa Reference Group, and the University of Newcastle, Australia.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 1:17 pm on May 28, 2022 Permalink | Reply
    Tags: "In wake of hurricane microbial ecosystem remarkably resilient", , , , , Earth Sciences, , , , Microbial mats, ,   

    From Johns Hopkins University via phys.org : “In wake of hurricane microbial ecosystem remarkably resilient” 

    From Johns Hopkins University



    May 27, 2022

    Photos taken before and after the hurricane demonstrate the resilience of the microbial mats. Credit: Johns Hopkins University.

    After sustaining seemingly catastrophic hurricane damage, a primordial groundcover vital to sustaining a multitude of coastal lifeforms bounced back to life in a matter of months.

    The finding, co-led by a Johns Hopkins University geochemist and published today in Science Advances, offers rare optimism for the fate of one of Earth’s most critical ecosystems as climate change alters the global pattern of intense storms.

    “The good news is that in these types of environments, there are these mechanisms that can play an important role in stabilizing the ecosystem because they recover so quickly,” said Maya Gomes, a Johns Hopkins assistant professor of Earth & Planetary Sciences. “What we saw is that they just started growing again and that means that as we continue to have more hurricanes because of climate change these ecosystems will be relatively resilient.”

    The team, co-led by California Institute of Technology and University of Colorado, Boulder, researchers, had been studying Little Ambergris Cay, an uninhabited island in Turks and Caicos, in particular the island’s microbial mats. Microbial mats are a squishy, spongey ecosystems that for eons have sustained a diverse array of life from the microscopic organisms that that make a home in the upper oxygenated layers to the mangroves it helps root and stabilize, which in turn provide habitats for even more species. Mats can be found all over the world in wildly different environments, but the variety this team studied are commonly found in tropical, saltwater-oriented places, exactly the coastal locations most vulnerable to severe storms.

    In September 2017, the eyewall of Category 5 Hurricane Irma directly hit the island the team had been working on.

    For eons microbial mats have hosted a diverse array of life from the microscopic organisms vital to the survival of the ecosystem. Credit: Johns Hopkins University.

    “Once we learned everyone was OK, we were uniquely well-poised to investigate how the mat communities responded to such a catastrophic disturbance,” Gomes said.

    The tropical cyclone’s impact was immediately devastating, choking the mats with a blanket of sandy sediment that decimated new growth. However, as the team checked on the site first in March 2018, then again in July 2018 and June 2019, they were excited to see the mats regrowing, with new mats visibly sprouting from the sand layer in as little as 10 months.

    New mat growth proceeded rapidly and suggested that storm perturbation may facilitate these ecosystems adapting to changing sea levels.

    “For islands and tropical locations with this type of geochemistry, Florida Keys would be one in the United States, this is sort of good news in that we think that the mangrove ecosystem as well as the microbial maps are pretty well stabilized and resilient,” said lead author Usha F. Lingappa, a postdoctoral scholar at the University of California-Berkeley.

    The team also included: Co-senior author Woodward W. Fischer, Nathaniel T. Stein, Kyle S. Metcalfe, Theodore M. Present, Victoria J. Orphan and John P. Grotzinger, all of California Institute of Technology’s Division of Geological and Planetary Sciences; Andrew H. Knoll of Harvard University; and co-senior author Elizabeth J. Trower of the University of Colorado-Boulder.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

    The Johns Hopkins University is a private research university in Baltimore, Maryland. Founded in 1876, the university was named for its first benefactor, the American entrepreneur and philanthropist Johns Hopkins. His $7 million bequest (approximately $147.5 million in today’s currency)—of which half financed the establishment of the Johns Hopkins Hospital—was the largest philanthropic gift in the history of the United States up to that time. Daniel Coit Gilman, who was inaugurated as the institution’s first president on February 22, 1876, led the university to revolutionize higher education in the U.S. by integrating teaching and research. Adopting the concept of a graduate school from Germany’s historic Ruprecht Karl University of Heidelberg, [Ruprecht-Karls-Universität Heidelberg] (DE), Johns Hopkins University is considered the first research university in the United States. Over the course of several decades, the university has led all U.S. universities in annual research and development expenditures. In fiscal year 2016, Johns Hopkins spent nearly $2.5 billion on research. The university has graduate campuses in Italy, China, and Washington, D.C., in addition to its main campus in Baltimore.

    Johns Hopkins is organized into 10 divisions on campuses in Maryland and Washington, D.C., with international centers in Italy and China. The two undergraduate divisions, the Zanvyl Krieger School of Arts and Sciences and the Whiting School of Engineering, are located on the Homewood campus in Baltimore’s Charles Village neighborhood. The medical school, nursing school, and Bloomberg School of Public Health, and Johns Hopkins Children’s Center are located on the Medical Institutions campus in East Baltimore. The university also consists of the Peabody Institute, Applied Physics Laboratory, Paul H. Nitze School of Advanced International Studies, School of Education, Carey Business School, and various other facilities.

    Johns Hopkins was a founding member of the American Association of Universities. As of October 2019, 39 Nobel laureates and 1 Fields Medalist have been affiliated with Johns Hopkins. Founded in 1883, the Blue Jays men’s lacrosse team has captured 44 national titles and plays in the Big Ten Conference as an affiliate member as of 2014.


    The opportunity to participate in important research is one of the distinguishing characteristics of Hopkins’ undergraduate education. About 80 percent of undergraduates perform independent research, often alongside top researchers. In FY 2013, Johns Hopkins received $2.2 billion in federal research grants—more than any other U.S. university for the 35th consecutive year. Johns Hopkins has had seventy-seven members of the Institute of Medicine, forty-three Howard Hughes Medical Institute Investigators, seventeen members of the National Academy of Engineering, and sixty-two members of the National Academy of Sciences. As of October 2019, 39 Nobel Prize winners have been affiliated with the university as alumni, faculty members or researchers, with the most recent winners being Gregg Semenza and William G. Kaelin.

    Between 1999 and 2009, Johns Hopkins was among the most cited institutions in the world. It attracted nearly 1,222,166 citations and produced 54,022 papers under its name, ranking No. 3 globally [after Harvard University and the Max Planck Society (DE)] in the number of total citations published in Thomson Reuters-indexed journals over 22 fields in America.

    In FY 2000, Johns Hopkins received $95.4 million in research grants from the National Aeronautics and Space Administration, making it the leading recipient of NASA research and development funding. In FY 2002, Hopkins became the first university to cross the $1 billion threshold on either list, recording $1.14 billion in total research and $1.023 billion in federally sponsored research. In FY 2008, Johns Hopkins University performed $1.68 billion in science, medical and engineering research, making it the leading U.S. academic institution in total R&D spending for the 30th year in a row, according to a National Science Foundation ranking. These totals include grants and expenditures of JHU’s Applied Physics Laboratory in Laurel, Maryland.

    The Johns Hopkins University also offers the “Center for Talented Youth” program—a nonprofit organization dedicated to identifying and developing the talents of the most promising K-12 grade students worldwide. As part of the Johns Hopkins University, the “Center for Talented Youth” or CTY helps fulfill the university’s mission of preparing students to make significant future contributions to the world. The Johns Hopkins Digital Media Center (DMC) is a multimedia lab space as well as an equipment, technology and knowledge resource for students interested in exploring creative uses of emerging media and use of technology.

    In 2013, the Bloomberg Distinguished Professorships program was established by a $250 million gift from Michael Bloomberg. This program enables the university to recruit fifty researchers from around the world to joint appointments throughout the nine divisions and research centers. For The American Academy of Arts and Sciences each professor must be a leader in interdisciplinary research and be active in undergraduate education. Directed by Vice Provost for Research Denis Wirtz, there are currently thirty-two Bloomberg Distinguished Professors at the university, including three Nobel Laureates, eight fellows of the American Association for the Advancement of Science, ten members of the American Academy of Arts and Sciences, and thirteen members of the National Academies.

  • richardmitnick 9:55 am on May 5, 2022 Permalink | Reply
    Tags: , "Topographies that talk", , , Earth Sciences, , Geomorphology: how landscapes form and evolve both on Earth and on other planets., Professor of Geology Taylor Perron, Understanding landscapes’ past is essential to navigating our precarious present as climate change imperils both natural and man-made environments.   

    From The MIT Technology Review: “Topographies that talk” 

    From The MIT Technology Review

    April 27, 2022
    Richard Byrne

    Credit: Taylor Perron.

    Dense, lush rainforests in the Amazon. Rivers and streams running through Appalachia’s green hills and mountains. Rocky coasts of the Hawaiian islands battered by seas. Each of these landscapes poses mysteries that inspire Taylor Perron’s research. What he sees as “whodunits” about the Earth itself require investigations into how past climate, erosion, and plate tectonics can explain the present topography of the planet’s surface—and even help predict its future.

    “As early as I was interested in Earth science, I think I had that sense,” says Perron, a professor of geology in the MIT department of Earth, Atmospheric, and Planetary Sciences (EAPS) who specializes in geomorphology, studying how landscapes form and evolve both on Earth and on other planets.

    Many geomorphological whodunits begin in simple observation. For instance: One can observe that rivers all over the planet flow in branched patterns, but why?

    Perron’s research group at MIT discovered that a competition between two erosional mechanisms—the gradual movement of soil down slopes and the carving of valleys by rivers as they flow through a landscape over eons—creates these identifiable patterns. In a 2012 paper in Nature, they described the “erosional mechanics” at work, presenting a mathematical model that predicts both the pattern of river branches and their size—down to the smallest tributaries—based on a landscape’s climate and the strength of the rock or soil the waters are cutting into.

    That willingness to get to the bottom of big questions, applying tools from multiple disciplines to deduce the history of Earth’s landscapes and predict how they might respond to further environmental changes, earned Perron a 2021 MacArthur Foundation fellowship, better known as a “genius grant.”

    Many researchers see Perron as “the leading architect of a renaissance in geomorphology, transitioning the field from emphasis on qualitative descriptions toward physics-based modeling,” says Robert van der Hilst, Schlumberger Professor of Earth and Planetary Sciences and head of EAPS. And that renaissance is much needed. “Some of the most common patterns in landscape evolution, and the underlying processes that control them, have long remained stubbornly enigmatic,” he says.

    A stark difference in rainfall between opposite sides of volcanic islands like Kauai creates a “natural experiment” for understanding climate’s influence on landscapes. Credit: Taylor Perron.

    That’s because Earth’s dynamic and complex landscapes are not static masses but shifting environments that emerge as multiple forces, both natural and human-directed, at work upon the planet’s varied surfaces.

    To articulate the complexities of Earth’s physical processes and figure out how they shape the landscape, Perron and his team analyze a lot of data—from field observations, remote sensing instruments, high-resolution topographic surveys, and space missions. Then they use that data to develop and refine sophisticated quantitative models and computer simulations of landscape evolution. Perron also embraces interdisciplinary collaborations to add new detail and nuance to his research.

    “If you have to piece together what happened to the Earth—or even to another planet—or try to forecast what might happen in the future,” he says, “it is to your advantage to draw on as many different kinds of evidence as you can.”

    He has also found that a close analysis of Earth’s landscapes can deepen our understanding of the new worlds opened up by interplanetary exploration. The cold deserts of Mars and the methane atmosphere of Saturn’s moon Titan may be distant from our own world, but Perron and his team can discern dynamics similar to those on Earth, as well as key differences. Knowing the mechanics of our own planet’s rivers, for instance, suggests that the essential role of plate tectonics in shaping Earth’s landscapes had not been replicated on Mars or Titan.

    Understanding landscapes past is essential to navigating our precarious present as climate change imperils both natural and man-made environments. It also gives us tools to model and perhaps even shape our uncertain future as well.

    The Blue Ridge Mountains in Virginia, where Perron’s group is investigating how changes in the landscape through time have influenced the biodiversity of fish and other freshwater organisms. Credit: Taylor Perron.

    “Many of the landscapes we study have formed over thousands or millions of years,” Perron says. “Our work to measure how climate shapes landscapes helps give us an idea of what to expect as we continue to change Earth’s climate.

    “Looking into the past, even over pretty long periods into the past,” he continues, “is really important and relevant to what’s happening now and to what might happen in the near future—even over human time scales.”

    A river runs through it

    Perron’s work explores landscapes from the Amazon to Mars, but his journey began in New England. Even as a child in rural Vermont, he was curious about the whodunits glimpsed in the visible landscape.

    “One of the first times I remember thinking about science and the landscape in the same context,” he says, “was learning that the mountains that I could see when I was on my way to school had been underneath hundreds of meters of ice at some point.”

    Perron was left with a “sense that there was this enormous part of Earth’s history that wasn’t directly accessible to us,” he says. “You’re going to have to piece it together from whatever nature left around for you.”

    He delved into Earth and planetary sciences and archaeology as an undergrad at Harvard University, spent a year at the US Geological Survey, and got a PhD in Earth and planetary sciences at The University of California-Berkeley in 2006. After postdoctoral studies at Harvard, Perron joined the faculty at MIT, where he’s been piecing together Earth’s history since 2009.

    “We’re mostly interested in how rivers, mountains, and other landforms change over time,” says Perron of his research group’s focus. “That is the common thread—especially rivers—that runs through most, if not all, of our research.”

    Perron’s team has uncovered how bedrock rivers shape landscapes—and how the landscape’s evolution can reshape the networks rivers create. These rivers that flow over beds of rock, he says, drive topographical changes by creating steep-sloped valleys where surface material must fall downward: “Think about these networks of rivers, these spindly, branching treelike networks, as carving down into the rock and just dragging the rest of the surface along with them.”

    His research has expanded our understanding of the formation and substance of the so-called “critical zone”—a thin layer a few feet below Earth’s surface where rocks break down to form soil.

    To study how the complex variables of climate shape the landscape, his group is exploring such things as how extreme rainfall might affect the location, frequency, and severity of landslides, or how wave climate (wave intensity averaged over a year) affects the rate of coastal retreat or erosion. By looking at the varying wave climates on the Hawaiian islands, Perron and colleagues have measured how much faster a coast with larger waves erodes than a coast with smaller waves does.

    Nature itself has conducted vast and useful long-term experiments that can shed light on landscape evolution. “Complicated systems have so many different factors that can change and influence them,” he says. “We like to try to identify natural experiments. And that can include natural experiments in climate, where we try to find landscapes where nature has controlled for a number of key factors and changed one that is especially important, and we can study that.” For example, again looking at Hawaii, the side of the islands exposed to the trade winds is rainier and wetter, allowing researchers to gauge how rainfall influences river erosion.

    Lunar landscapes and lost lakes

    Perron’s work on the role of Earth’s rivers has also laid a foundation for his research on planetary landscapes. The same tools that allow us to read Earth’s history backward through its landscapes also help us understand more about the fate of now-vanished lakes and rivers on Mars, or how the methane rivers and lakes of Saturn’s moon Titan work.

    “The uptick in planetary exploration starting around 25 years ago has had a huge impact on my work,” he says. “I realized as a graduate student that many of the things I was learning as an Earth scientist could be applied to [other] planets.” His decision to expand his research beyond Earth was inspired in part by the global digital topographic map of Mars developed by MIT’s vice president for research Maria Zuber in the late 1990s, as well as the discovery of Titan’s active rivers.

    “It’s incredible how much we humans have learned about the solar system in such a short time,” he says. He also realized that studying other planets could inform his research on Earth. “Seeing Earthlike landforms on other planets is also a great opportunity to analyze experiments that nature has done for us,” he says.

    Obviously, scientists cannot do fieldwork on Mars or Titan. (“For now,” quips Perron.) “If we wanted to know how much water and sediment a river on Earth carries, we’d measure the size of the sediment on the riverbed and survey a cross-section of the river channel,” he says. “If we want to know how fast a mountain range is rising up or eroding away on Earth, we go collect samples there and bring them back to the lab. We can’t do any of those things on Mars or Titan. So we have to get creative.”

    Perron and his team blend information from planetary missions with their work on Earth’s surfaces to paint a picture of faraway landscapes. He says, “We know it rains methane on Titan, but we can’t see it happening—so my group estimated how hard it rains based on measurements of river networks in pictures from the Cassini-Huygens spacecraft mission. We also came up with a way to calculate how much water an ancient Martian river carried, or how much methane a modern Titan river carries, using only dimensions we can measure from orbit.”

    But Perron concedes that a lack of field samples means some questions must remain open for now: “How long did it take for Titan’s landscapes to form? Have they been active for billions of years? We don’t know yet.”

    Getting granular

    Perron sees collaboration with researchers in other disciplines as essential to answering foundational questions and expanding the boundaries of his research.

    “We’ve worked with colleagues at MIT who study everything from the carbon cycle to the physics of granular materials,” he says. “We’ve worked with colleagues at other institutions who study the genetics of fish, or the archeology of the ancient Amazon.”

    One important example is his work with mechanical engineering professor Ken Kamrin, who specializes in the mechanics and physics of granular materials, to study the movement of gravel and sand in rivers (known as sediment transport) that leads to erosion.

    “People have been studying how rivers move sediment for many years,” says Perron. “Ken has a fresh take on rivers and has opened my eyes to things that have been overlooked by people in my own field.”

    Their collaboration focuses particularly on how the size and shape of sediment grains affect sediment transport. “This is an interesting problem from the geophysical standpoint,” Kamrin says, “because more-sensitive modeling tools will lead to better predictions of bed erosion.”

    “Granular media is a notoriously difficult material to model,” he adds, but this research may even “lead to breakthroughs in modeling granular flow that apply beyond the riverbed context.”

    Perron also sees a bigger picture. “Ken’s approach to understanding the behavior of individual sediment grains, and then developing ways to scale that up to entire landforms, is inspiring,” he says. “One colleague recently summarized [the collaboration] as a ‘gift that keeps on giving.’ We just keep discovering new aspects of granular dynamics in landscapes to explore together.”

    Studying landscapes’ effects on biodiversity is another interdisciplinary area attracting graduate students and postdocs to Perron’s team. Instead of asking the usual questions about how species are lost, they look at why some landscapes retain or enhance biodiversity.

    That biodiversity is under threat adds urgency to this research. “If you can understand what influences biodiversity and why some parts of Earth’s surface are much more diverse than others,” Perron says, “then hopefully we can do a better job of conserving it.”

    Other collaborations help when traditional geomorphological research hits a dead end. “Landscapes that form through erosion are hard to trace through time, because the erosion destroys the evidence of what they looked like in the past,” he says.

    Perron is intrigued by the work of Greg Fournier, an EAPS colleague who studies the genetic record of life on Earth. “Organisms that live in a landscape—and whose evolution depends on the landscape’s topography—might have preserved a more persistent record of a landscape’s past,” Perron says. Their DNA can serve as what he calls a molecular clock, giving geologists a new way to measure time.

    “If you can take advantage of this genetic data, in addition to geological data, you have really expanded your arsenal … to figure out what happened to the landscape—and how those two things might have influenced each other,” says Perron.
    Landscapes and life

    Maya Stokes, PhD ’21, tackled one aspect of the biodiversity question at Perron’s urging. “When I was deciding on where to go for graduate school,” Stokes recalls, “I was looking for research that involved mountains and rivers. But when he suggested we throw fish into the mix, I couldn’t resist.”

    Stokes’s dissertation examines how changes to river landscapes influence the evolution and distribution of aquatic organisms. Perron “pushed me to simultaneously consider big, generalizable scientific questions while also making sure I was focused on unraveling specific mechanisms and problems,” she says.

    Now a postdoctoral fellow in ecology and evolutionary biology at Yale University, Stokes is using geomorphic research methods to collect and analyze DNA sequence data so she can piece together the intertwined histories of the fish and rivers of the Appalachian Mountains.

    “Scientists have long suggested that Earth processes have fundamentally altered the evolution of life,” says Stokes, “but with the advent of next-generation DNA sequencing techniques and ever-improving methods for piecing together the physical history of landscapes, we are now poised to understand the exact mechanisms that govern such links.”

    Perron plans to use his $625,000 MacArthur grant to collaborate with other researchers without having to wait for federal grant funding.

    The award won’t alter his course, however. “I really do think that the answers to some of the big questions about Earth and the solar system are recorded in landscapes,” he says.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The mission of The MIT Technology Review is to equip its audiences with the intelligence to understand a world shaped by technology.

  • richardmitnick 12:45 pm on May 3, 2022 Permalink | Reply
    Tags: "Geophysics- Better insights into Earth’s interior", , , Earth Sciences, , Knowledge about the structure and composition of the Earth’s crust is important for understanding the dynamics of the Earth., LMU geophysicist Max Moorkamp has developed a new method whereby electrical conductivity and density in the Earth’s crust is combined and processed using a method derived from medical imaging., , The presence or absence of melt or fluids plays a major role in plate tectonic processes.   

    From Ludwig Maximilian University of Munich [Ludwig-Maximilians-Universität München] (DE) : “Geophysics- Better insights into Earth’s interior” 

    From Ludwig Maximilian University of Munich [Ludwig-Maximilians-Universität München] (DE)

    29 Apr 2022

    LMU geophysicist Max Moorkamp has developed a method that allows us to investigate the composition of the Earth with better results.

    Conductive structures at depths between 28 and 39 km, corresponding to the lower crust and uppermost mantle, colored by density anomaly. Red indicates below average density at this depth indicating a liquid conductive phase, blue indicates neutral to above average density, associated with a solid conductive phase or dry melt. The location of the Yellowstone Hotspot is marked by a yellow star. Credit: Geophysical Research Letters (2022).

    Knowledge about the structure and composition of the Earth’s crust is important for understanding the dynamics of the Earth. For example, the presence or absence of melt or fluids plays a major role in plate tectonic processes. Most our knowledge in this area comes from geophysical surveys. However, the relationship between measurable geophysical parameters and the actual conditions in the Earth’s interior is often ambiguous. To improve this state of affairs, LMU geophysicist Max Moorkamp has developed a new method, whereby data on the distribution of electrical conductivity and density in the Earth’s crust is combined and processed using a method derived from medical imaging. “The advantage is that the relationships between the two parameters are part of the analysis,” says Moorkamp. “For geophysical applications, this is completely new.”

    Using the new method, Moorkamp was able to show that previous assumptions about the spatial distribution of magma and fluids in the western United States may be overly simplified. Based on measurements of electrical conductivity, researchers had previously assumed that molten rock (magma) and fluids are widespread in geologically young and active regions, whereas older and stable regions are virtually fluid free. “However, the new results show a more complicated picture,” says Moorkamp. The electrical conductivity of molten rock and fluids is very similar to that of solid graphite and sulfides – in contrast to melts and fluids, however, these are a sign of old geologic activity.

    By virtue of his method, Moorkamp was able to distinguish between the two for the first time and so demonstrate that even in the very active region around Yellowstone, there are fluid-dominated structures directly adjacent to fluid-free areas with graphite and sulfides. From these findings, the geophysicist concludes that compared to current geologic activity, geologic history – i.e. earlier plate tectonic processes – have much greater influence on the location of fluids than previously assumed. This could require a revision of previous results not only in the United States but around the globe. In addition, the technique could be very useful in the search for geothermal energy or mineral deposits.

    Science paper:
    Geophysical Research Letters

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Ludwig Maximilian University of Munich [Ludwig-Maximilians-Universität München] (DE) – the University in the heart of Munich. LMU is recognized as one of Europe’s premier academic and research institutions. Since our founding in 1472, LMU has attracted inspired scholars and talented students from all over the world, keeping the University at the nexus of ideas that challenge and change our complex world.

    Ludwig Maximilian University of Munich [Ludwig-Maximilians-Universität München] (DE) is a public research university located in Munich, Germany.

    The University of Munich is Germany’s sixth-oldest university in continuous operation. Originally established in Ingolstadt in 1472 by Duke Ludwig IX of Bavaria-Landshut, the university was moved in 1800 to Landshut by King Maximilian I of Bavaria when Ingolstadt was threatened by the French, before being relocated to its present-day location in Munich in 1826 by King Ludwig I of Bavaria. In 1802, the university was officially named Ludwig-Maximilians-Universität by King Maximilian I of Bavaria in his as well as the university’s original founder’s honour.

    The University of Munich is associated with 43 Nobel laureates (as of October 2020). Among these were Wilhelm Röntgen, Max Planck, Werner Heisenberg, Otto Hahn and Thomas Mann. Pope Benedict XVI was also a student and professor at the university. Among its notable alumni, faculty and researchers are inter alia Rudolf Peierls, Josef Mengele, Richard Strauss, Walter Benjamin, Joseph Campbell, Muhammad Iqbal, Marie Stopes, Wolfgang Pauli, Bertolt Brecht, Max Horkheimer, Karl Loewenstein, Carl Schmitt, Gustav Radbruch, Ernst Cassirer, Ernst Bloch, Konrad Adenauer. The LMU has recently been conferred the title of “University of Excellence” under the German Universities Excellence Initiative.

    LMU is currently the second-largest university in Germany in terms of student population; in the winter semester of 2018/2019, the university had a total of 51,606 matriculated students. Of these, 9,424 were freshmen while international students totalled 8,875 or approximately 17% of the student population. As for operating budget, the university records in 2018 a total of 734,9 million euros in funding without the university hospital; with the university hospital, the university has a total funding amounting to approximately 1.94 billion euros.


    LMU’s Institute of Systematic Botany is located at Botanischer Garten München-Nymphenburg
    Faculty of chemistry buildings at the Martinsried campus of LMU Munich

    The university consists of 18 faculties which oversee various departments and institutes. The official numbering of the faculties and the missing numbers 06 and 14 are the result of breakups and mergers of faculties in the past. The Faculty of Forestry Operations with number 06 has been integrated into the Technical University of Munich [Technische Universität München] (DE) in 1999 and faculty number 14 has been merged with faculty number 13.

    01 Faculty of Catholic Theology
    02 Faculty of Protestant Theology
    03 Faculty of Law
    04 Faculty of Business Administration
    05 Faculty of Economics
    07 Faculty of Medicine
    08 Faculty of Veterinary Medicine
    09 Faculty for History and the Arts
    10 Faculty of Philosophy, Philosophy of Science and Study of Religion
    11 Faculty of Psychology and Educational Sciences
    12 Faculty for the Study of Culture
    13 Faculty for Languages and Literatures
    15 Faculty of Social Sciences
    16 Faculty of Mathematics, Computer Science and Statistics
    17 Faculty of Physics
    18 Faculty of Chemistry and Pharmacy
    19 Faculty of Biology
    20 Faculty of Geosciences and Environmental Sciences

    Research centres

    In addition to its 18 faculties, the University of Munich also maintains numerous research centres involved in numerous cross-faculty and transdisciplinary projects to complement its various academic programmes. Some of these research centres were a result of cooperation between the university and renowned external partners from academia and industry; the Rachel Carson Center for Environment and Society, for example, was established through a joint initiative between LMU Munich and the Deutsches Museum, while the Parmenides Center for the Study of Thinking resulted from the collaboration between the Parmenides Foundation and LMU Munich’s Human Science Center.

    Some of the research centres which have been established include:

    Center for Integrated Protein Science Munich (CIPSM)
    Graduate School of Systemic Neurosciences (GSN)
    Helmholtz Zentrum München – German Research Center for Environmental Health
    Nanosystems Initiative Munich (NIM)
    Parmenides Center for the Study of Thinking
    Rachel Carson Center for Environment and Society

  • richardmitnick 8:26 pm on April 20, 2022 Permalink | Reply
    Tags: "Eclogite samples found in China push modern-type subduction events back to 2.5 billion years ago", , , , Earth Sciences, ,   

    Fromphys.org: “Eclogite samples found in China push modern-type subduction events back to 2.5 billion years ago” 


    April 20, 2022
    Bob Yirka

    Outcrop of Archean eclogite (dark layer, with red garnet and green pyroxene) interlayered with garnet-bearing metagabbro from the Shangying location. Credit: Lu Wang.

    A team of researchers from The China University of Geosciences[中国地质大学(武汉)](CN), has concluded that eclogite samples found at the northern Central Orogenic Belt within the North China Craton, show that modern-type subduction events occurred on Earth as far back as 2.5 billion years ago. They published their work in PNAS.

    As the researchers note, Earth scientists have not been able to pinpoint the time period when modern-type subduction events began occurring. Many have suggested that it likely began approximately 2.1 billion years ago because no evidence of it occurring any earlier than that has been found. In this new effort, the researchers have found evidence showing that it goes back at least 2.5 billion years.

    Prior research has shown that eclogite forms when one of the planet’s tectonic plates slides under another. Researchers at China University of Geosciences have been studying Archean eon rocks in the Central Orogenic Belt for approximately 20 years. The site runs for approximately 1,600 kilometers. Such work has shown that the mountain belt was formed due to subduction events. Researchers there have, for example, found ophiolites in the rock—evidence that the material once resided on the ocean floor. They have also found mélanges in spots that appear to be the meeting point between plates. But it was study of eclogites found at the site by this most recent team that showed evidence of modern-type subduction events occurring at least 2.5 billion years ago. Analysis of the samples also showed evidence of metamorphosis as the rock changed due to the heat and pressure of the subduction event.

    Cut slab of Archean eclogite with red garnet and green pyroxene from the Shangying location. Credit: Lu Wang.

    The researchers found that the eclogite samples were originally formed as part of an ocean ridge that moved until reaching the subduction zone. After being pushed under a plate, the rock was exposed to temperatures between 792 and 890 C° and pressure as high as 19.8 to 24.5 kilobars. Such numbers suggested the rock had been pushed as far down as 65 km below the surface before later being pushed back up to the surface.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Science X in 100 words
    Science X is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    Mission 12 reasons for reading daily news on Science X Organization Key editors and writers include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

  • richardmitnick 5:07 pm on January 20, 2022 Permalink | Reply
    Tags: "Research in Colorado mountains takes students’ environmental immersion to new heights", , , Bringing the research alive and painting a more holistic picture of what Earth processes are happening., , Communication of Science and Technology, , Earth Sciences, , , Environmental Sociology, , , Glaciers are disappearing.,   

    From Vanderbilt University (US): “Research in Colorado mountains takes students’ environmental immersion to new heights” 

    Vanderbilt U Bloc

    From Vanderbilt University (US)

    Jan. 20, 2022
    Amy Wolf

    Research trip to Colorado takes students’ environmental immersion experience to new heights.

    Vanderbilt junior Callie Hilgenhurst and a dozen of her classmates took their research to a new immersive level, collecting soil and rock samples 9,000 feet up in the Sawatch Mountain Range of Colorado. Their work in the mountains and then in the lab helped show the movement of glaciers, ultimately giving clues about the impact of climate change.

    “This trip to Colorado was really incredible,” said Hilgenhurst, an Earth and environmental sciences major from Nashville. “Going out and being part of the scientific method—literally taking samples that we get to bring back to the lab—and experiencing the research on such a grand scale was awesome.”

    Students in the new Glacial Geology class. From left to right: Miquéla Thornton, Genna Chiaro, Sophia Wang, Courtney Howarth, Easton Maxey, Alex Xu, Kevin Chen, behind him is Ellie Miller, and to the right of her is Estelle Shaya, and Bryce Belanger; on the bottom is Rachel Brewer, Callie Hilgenhurst and Kristin Sequeira.

    The immersive trip was part of a new class in the College of Arts and Science called Glacial Geology.

    “It’s designed to help students think about the landforms and landscapes that glaciers create and leave behind,” said Dan Morgan, associate dean in the College of Arts and Science and principal senior lecturer in Earth and environmental sciences. “Then we analyze what drives those advances and retreats in glaciers and put that in the context of global climate change.”


    Many of the students in the class said making an impact on climate change is crucial. That’s why faculty designed the class with only one prerequisite, allowing students with diverse majors to take the course.

    “Fighting climate change is very big in my heart, and it’s really important that we do everything we can to maintain the 1.5 degrees Celsius of warming as much as we can. I also took the class because I know that glacial geology isn’t always going to be around in the future because glaciers are disappearing,” Hilgenhurst said.

    Fellow student Ellie Miller has dedicated a great amount of energy to Earth sciences as a triple major in Earth and environmental sciences, environmental sociology and communication of science and technology. She jumped at the chance to gather data in the field and learn more about glacial environments.

    “I was so ready to get my hands dirty and actually see where my samples are coming from—and then carry that all back to the lab and be able to run procedures,” said the Olathe, Kansas, resident. “Being able to see the connection between our field site and the data that we’re producing here at Vanderbilt brings the research alive and paints a more holistic picture of what Earth processes are happening.”

    This trip was Miquéla Thornton’s first experience out west. The communication of science and technology and creative writing double major from Richton Park, Illinois, said she loved observing her fellow students and then writing about the experience.

    “In my time at Vanderbilt, I’ve taken both environmental science and psychology classes, which really sparked an interest in science writing because everyone needs to understand what’s going on with climate change and what’s happening with our Earth,” she said.

    Dan Morgan (far right) teaches as part of his Glacial Geology class during an immersive trip in Colorado.


    Morgan, who has led Vanderbilt undergraduates on expeditions to places as remote as Antarctica, said bringing students into the field is invaluable in connecting them to the research.

    “This is something that’s fun and makes Vanderbilt a really special place because we’re educating and expanding the living-learning experience all the way to this mountain.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University (US) in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities (US). In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

  • richardmitnick 10:44 am on November 30, 2021 Permalink | Reply
    Tags: "To advance geothermal systems EGS Collab maps the hidden fractures behind a wall of rock", A series of sensors called wireline geophysical logs, After examining both the core and the void it left behind researchers combine the information to get a more complete picture of their testbed., Before natural fractures can be propped open however researchers first must locate them., Earth Sciences, EGS Collab is investigating ways to maximize the usefulness of natural fractures that exist in rock formations., Geothermal energy extraction requires three things: hot rock; permeable pathways through the rock; and fluid to extract the heat., Researchers drilled nine boreholes which will be used later in the experiment to stimulate and monitor the rock’s response to hydraulic shearing., SURF’s Core Archive: a library of rock samples collected over several decades from underground., The 4100 Level of Sanford Underground Research Facility, The EGS Collaboration is contributing to the nationwide goal of extracting clean renewable energy from the ground beneath our feet., The Enhanced Geothermal Systems (EGS) Collaboration, The information EGS Collab gathers will has real-world applications beyond the 4100 Level., , Turning the rocks inside-out   

    From The Sanford Underground Research Facility-SURF (US): “To advance geothermal systems EGS Collab maps the hidden fractures behind a wall of rock” 

    SURF-Sanford Underground Research Facility, Lead, South Dakota, USA.

    From The Sanford Underground Research Facility-SURF (US)

    Homestake Mining, Lead, South Dakota, USA.
    Homestake Mining Company

    November 29, 2021
    Erin Lorraine Broberg

    In 2021, the EGS Collaboration began outfitting a drift on the 4100 Level of Sanford Underground Research Facility for geothermal research. Photo by Adam Gomez.

    Picture this: you’re standing in a drift, 4,100 feet below the Black Hills of South Dakota. Wrinkled rock arches over you. At first, the rock appears gray and featureless. But as you peer through the net-like metal mesh of ground support, you notice something interesting: a thick stripe of white quartz then faint, hairlike veins swirling like loose cursive against the dark, amphibolite rock.

    The drift you’re imagining is a research testbed on the 4100 Level of Sanford Underground Research Facility (SURF) and home base for The Enhanced Geothermal Systems (EGS) Collaboration, a research group interested in extracting renewable energy from Earth’s deep, hot rocks.

    “Geothermal energy extraction requires three things: hot rock; permeable pathways through the rock; and fluid to extract the heat,” said Tim Kneafsey, a staff earth scientist at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) who leads the EGS Collaboration research group. “Hot rock is an abundant resource in the U.S., but it is often missing open pathways that allow you to extract the heat.”

    Because pathways are often the limiting factor in geothermal systems, EGS Collaboration is investigating ways to maximize the usefulness of natural fractures that exist in rock formations.

    While rock on the 4100 Level isn’t hot, it gives the EGS Collaboration a place to test a method called “hydraulic shearing” to open, or stimulate, a matrix of preexisting natural fractures in their testbed.

    “By opening them and causing them to shift slightly, the roughness of the fractures keeps them propped open,” Kneafsey said. “This self-propping allows water to flow through and–in hot rock environments–transfer heat.”

    Before natural fractures can be propped open however researchers first must locate them.

    A library of rock

    At their testbed on the 4100 Level of SURF, researchers drilled nine boreholes which will be used later in the experiment to stimulate and monitor the rock’s response to hydraulic shearing.

    The boreholes, which measure four inches in diameter, vary in depth, the shallowest measuring 180 feet and the deepest measuring 265 feet.. When the rock, or core, is removed from these boreholes, it is carefully boxed and delivered to SURF’s Core Archive, a library of rock samples collected over several decades from underground.

    The Core Archive was originally created by the geologists at Homestake Gold Mine. The core samples allowed them to probe the boundaries of gold, silver and copper ore bodies throughout the mine.

    Earth scientists, however, are more interested in fractures than precious metals.

    Megan Smith, an Earth scientist at The DOE’s Lawrence Livermore National Laboratory (LLNL), and Bill Roggenthen, a research scientist at The South Dakota School of Mines and Technology(US), laid out the recently drilled core samples, each representing the length of one borehole.

    Megan Smith, an Earth scientist at DOE’s Lawrence Livermore National Laboratory (LLNL), examines recently drilled core samples. Each column represents the length of one borehole. Photo by Adam Gomez.

    On the surface, Smith and Roggenthen spent two days meticulously inspecting more than 1,000 feet of core, seeking natural fractures in the rock. Optimally, they look for fractures that span the length of the testbed, cutting through several boreholes that could be propped open using the hydraulic shearing technique.

    It wasn’t an easy task.

    “The vast majority of the breaks are from the drilling process, and we are looking for the ones that aren’t. And that’s a difficult interpretation,” said Smith. “The drilling process will break rocks along weaker planes, right where natural fractures might be, too. When the breaks are perpendicular through the core sample, we can tell that the drilling process caused that break. But if there’s a break that follows along a mineralized zone, that’s something we have to pay more attention to.”

    When cracks run perpendicular through the core samples, researchers can assume those breaks were created during the drilling process. Those breaks are ruled out as researchers search for patterns of natural fractures in the rock formation. Photo by Adam Gomez.

    Turning the rocks inside-out

    Back underground, other researchers use the now-vacant boreholes to further probe their testbed. Lowering a series of sensors called wireline geophysical logs, into the borehole, researchers explore the rock formation from the inside-out.

    Researchers with the EGS Collaboration perform “logs” of the boreholes, gathering data to create a clear picture of the rock formations they will study. Photo courtesy Timothy Kneafsey.

    Perhaps the most straightforward of these sensors is called an “optical log,” which takes images from inside the borehole. These high-resolution images offer a 360-degree view of the borehole. The optical log alone, however, yields limited information.

    “The rock is nearly black in some areas, and when you have a dark, shadowed fracture in a section of dark rock, all you get is a dark image, which doesn’t tell us much,” said Jeff Burghardt, lead geomechanic at Pacific Northwest National Laboratory (PNNL).

    Other wireline logs can complete the picture. The “acoustic log,” for example, uses ultrasonic frequencies to map the borehole.

    “We are making a series of snaps—short, sharp sounds—that reflect off of different materials in the borehole,” said Paul Schwering, senior geoscientist at Sandia National Laboratories. “If the snap hits solid rock, it will reflect really fast. But it it’s softer rock or if it’s been gouged out, then that response slows down.”

    These reflected acoustic signals can flag fractures the optical log cannot.

    The list of wireline logs continues—and gets increasingly complex. The logs take measurements of geomechanical properties; monitor fluid and temperature conductivity; and even test electrical conductivity that yield insights into permeability, porosity and water quality. Using these tests, the researchers can infer information about the routes water takes as it flows through the rock.

    Data from the wireline geophysical logs is represented on a computer screen. Photo by Adam Gomez.

    Completing the map

    After examining both the core and the void it left behind researchers combine the information to get a more complete picture of their testbed.

    “If we see something promising when we evaluate the core, we can correlate it to the wireline logs that were performed after the cores were drilled,” Smith said. If they see a correlation, they can be relatively certain of a fracture in that location.

    If a specific section of core is promising, they use photography of the core to render a 3D model of that section.

    “With the 3D model, we can rotate the core, move it around and even orient it back into the borehole, the way it was originally oriented, and measure directions and angles from that core very easily,” said Roggenthen.

    A 3D model of a core sample is examined on a computer screen. GIF courtesy Timothy Kneafsey.

    The challenge

    Having mapped the invisible landscape behind a wall of rock, what have researchers learned?

    “These wells are what we would call very ‘tight,’ meaning they hold the water very well. The hydraulic permeability—how well water can flow through rock—is very, very low in most of these wells,” Burghardt said. “The challenge before us is to enhance the permeability of this testbed.”

    To test hydraulic shearing techniques, the EGS Collaboration will need to zero in on the few fractures that were located.

    The boreholes will be outfitted with equipment that stimulates the rock with pressurized water, opening and propping the fractures, in an attempt to create an interconnected network. All the while, researchers will closely monitor changes in the rock and water flow between boreholes.

    The information EGS Collaboration gathers will has real-world applications beyond the 4100 Level.

    Every byte of data will inform expansive field experiments, like the Department of Energy’s FORGE laboratory in Milford, Utah. This field laboratory hopes to develop techniques that will enable powering 100 million American homes through geothermal energy.

    “Getting EGS [Enhanced Geothermal Systems] demonstrations all the way through to commercialization and understanding how geothermal energy can be used to produce electricity—that’s the bottom line,” said Hunter Knox, a geophysicist at PNNL.

    By mapping, stimulating and monitoring the subsurface at SURF, the EGS Collaboration is contributing to the nationwide goal of extracting clean renewable energy from the ground beneath our feet.

    The EGS Collaboration includes researchers from ten national labs—DOE’s Lawrence Berkley National Laboratory (US); DOE’s Sandia National Laboratory (US); DOE’s Lawrence Livermore National Laboratory (US); DOE’s Pacific Northwest National Laboratory (US); DOE’s Idaho National Laboratory (US), DOE’s Los Alamos National Laboratory (US); DOE’s National Renewable Energy Laboratory (US); DOE’s National Energy Technology Laboratory (US); DOE’s Brookhaven National Laboratory (US); and DOE’s Oak Ridge National Laboratory (US); and seven universities— The South Dakota School of Mines & Technology (US); Stanford University (US); The University of Wisconsin (US); The University of Oklahoma (US); The Colorado School of Mines (US) The Pennsylvania State University (US); Rice University (US), and The Texas A&M University (US).

    This EGS Collaboration Project is supported by the U.S. Department of Energy, Geothermal Technologies Office; part of the Office of Energy Efficiency and Renewable Energy (EERE).

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us: The Sanford Underground Research Facility-SURF (US) in Lead, South Dakota advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

    The LBNL LZ Dark Matter Experiment (US) Dark Matter project at SURF > , Lead, SD, USA </a.

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe.

    The U Washington MAJORANA Neutrinoless Double-beta Decay Experiment Demonstrator experiment (US), also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    The LUX Xenon dark matter detector | Sanford Underground Research Facility mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC National Accelerator Laboratory(US) physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.

    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”

    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL DUNE LBNF (US) from FNAL to SURF >, Lead, South Dakota, USA

    FNAL DUNE LBNF (US) Caverns at Sanford Lab.

    U Washington MAJORANA Neutrinoless Double-beta Decay Experiment (US) at SURF.

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with Germanium Detector Array (or GERDA) experiment is searching for neutrinoless double beta decay (0νββ) in Ge-76 at the underground Laboratori Nazionali del Gran Sasso (LNGS) for a future tonne-scale 76Ge 0νββ search.

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard.

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard.

    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

  • richardmitnick 9:17 am on August 13, 2021 Permalink | Reply
    Tags: "From detecting earthquakes to preventing disease- 27 U of T research projects receive CFI funding", Aerospace Studies and Engineering, , Baby Brain and Behaviour, , Cellular and Biomolecular Research, Chemical Engineering & Applied Chemistry, Civil and Mineral engineering, Dynamic Emotional Behavior, Earth Sciences, Macromolecular bioelectronics encoded for self-assembly, Mechanical & Industrial Engineering, Medical Biophysics and Cancer studies, Multi-organ repair and regeneration after lung injury, Nutritional sciences, Pharmacology and Toxicology, Radiation Oncology, Stem cell models, , Sustainable Water Management and Resource Recovery, Targeted brain tumour therapies,   

    From University of Toronto (CA) : “From detecting earthquakes to preventing disease- 27 U of T research projects receive CFI funding” 

    From University of Toronto (CA)

    August 12, 2021
    Tyler Irving

    In a U of T Engineering lab, rock samples are subjected to the stress, fluid pressure and temperature conditions they experience in nature. Photo courtesy of Sebastian Goodfellow.

    Sebastian Goodfellow, a researcher at the University of Toronto (CA), listens for hidden signals that the ground is about to move beneath our feet.

    That includes so-called “induced” earthquakes that stem from human activities such as hydraulic fracturing (‘fracking’) and enhanced geothermal systems.

    “Think of the cracking sounds a cube of ice makes when you drop it in a cup of warm water, or the sound a wooden stick makes when you bend it until it breaks,” says Goodfellow, an assistant professor in the department of civil and mineral engineering in the Faculty of Applied Science & Engineering.

    “This occurs as a consequence of sudden localized changes in stress, and we study these microfracture sounds in the lab to understand how rock responds to changes in stress, fluid pressure and temperature.”

    While the frequency of these sonic clues is beyond the range of human hearing, they can be picked up with acoustic emission sensors. The challenge, however, is that scientists must listen continuously for hours in the absence of a method to predict when they will occur.

    “We’re talking about more than a terabyte of data per hour,” says Goodfellow. “We use a form of artificial intelligence called machine learning to extract patterns from these large waveform datasets.”

    Goodfellow’s study of induced seismicity project is one of 27 at U of T – and nine from U of T Engineering – to share more than $8.2 million in funding from the Canada Foundation for Innovation’s John R. Evans Leaders Fund (Read the full list of researchers and their projects).

    Named for the late U of T President Emeritus John R. Evans, the fund equips university researchers with the technology and infrastructure they need to remain at the forefront of innovation in Canada and globally. It also helps Canadian universities attract top researchers from around the world.

    “From sustainable electric transportation and engineering of novel materials to non-invasive neuro-imaging and applications of AI in public health, U of T researchers across our three campuses are advancing some of the most important discoveries of our time,” said Leah Cowen, U of T’s associate vice-president, research.

    “Addressing such complex challenges often requires cutting-edge technology, equipment and facilities. The support provided by the Canada Foundation for Innovation will go a long way towards enabling our researchers’ important work.”

    Goodfellow’s team will use the funding to buy a triaxial geophysical imaging cell fitted with acoustic emissions sensors as well as hardware for high-frequency acquisition of acoustic emissions data. The equipment will enable them to carry out controlled experiments in the lab, test better algorithms and develop new techniques to turn the data into insights – all to better understand processes that lead to induced earthquakes.

    By learning more about how these tiny cracks and pops are related to larger seismic events such as earthquakes, the team hopes to help professionals in a wide range of sectors make better decisions. That includes industries that employ underground injection technologies – geothermal power, hydraulic fracturing and carbon sequestration, among others – along with the bodies charged with regulating them.

    “Up until now, our poor understanding of the causal links between fluid injection and large, induced earthquakes limited the economic development of these industries,” says Goodfellow.

    “Our research will help mitigate the human and environmental impacts, leading to new economic growth opportunities for Canada.”


    Here is the full list of 27 U of T researchers who received support for their projects:

    Cristina Amon, department of mechanical & industrial engineering in the Faculty of Applied Science & Engineering: Enabling sustainable e-mobility through intelligent thermal management systems for EVs and charging infrastructure.

    Jacqueline Beaudry, department of nutritional sciences in the Temerty Faculty of Medicine and Lunenfeld-Tannenbaum Research Institute at Sinai Health: Role of pancreatic and gut hormones in energy metabolism.

    Swetaprovo Chaudhuri, U of T Institute for Aerospace Studies in the Faculty of Applied Science & Engineering: Kinetics-transport interaction towards deposition of carbon particulates in meso-channel supercritical fuel flows.

    Mark Currie, department of cell and systems biology in Faculty of Arts & Science: Structural Biology Laboratory.

    Marcus Dillon, department of biology at U of T Mississauga: The evolutionary genomics of infectious phytopathogen emergence.

    Landon Edgar, department of pharmacology and toxicology in the Temerty Faculty of Medicine: Technologies to interrogate and control carbohydrate-mediated immunity.

    Gregory Fairn, department of biochemistry in the Temerty Faculty of Medicine and St. Michael’s Hospital: Advanced live cell imaging and isothermal calorimetry for the study immune cell dysfunction and inflammation.

    Kevin Golovin, department of mechanical and industrial engineering in the Faculty of Applied Science & Engineering: Durable Low Ice Adhesion Coatings Laboratory.

    Sebastian Goodfellow, department of civil and mineral engineering in the Faculty of Applied Science & Engineering: A study of induced seismicity through novel triaxial experiments and data analysis methodologies.

    Giovanni Grasselli, department of civil and mineral engineering in the Faculty of Applied Science & Engineering: Towards the sustainable development of energy resources – fundamentals and implications of hydraulic fracturing technology.

    Kristin Hope, department of medical biophysics in the Temerty Faculty of Medicine and Princess Margaret Cancer Centre, University Health Network: Characterizing and unlocking the therapeutic potential of stem cells and the leukemic microenvironment.

    Elizabeth Johnson, department of psychology at U of T Mississauga: Baby Brain and Behaviour Lab (BaBBL) – electrophysiological measures of infant speech and language development.

    Omar Khan, Institute of Biomedical Engineering in the Faculty of Applied Science & Engineering and department of immunology in the Temerty Faculty of Medicine: Combination ribonucleic acid treatment technology lab.

    Marianne Koritzinsky, department of radiation oncology in the Temerty Faculty of Medicine and Princess Margaret Cancer Centre, University Health Network: Targeted therapeutics to enhance radiotherapy efficacy and safety in the era of image-guided conformal treatment.

    Christopher Lawson, department of chemical engineering & applied chemistry in the Faculty of Applied Science & Engineering: The Microbiome Engineering Laboratory for Resource Recovery.

    Fa-Hsuan Lin, department of medical biophysics in the Temerty Faculty of Medicine and Sunnybrook Research Institute: Integrated non-invasive human neuroimaging and neuromodulation platform.

    Vasanti Malik, department of nutritional sciences in the Temerty Faculty of Medicine: Child obesity and metabolic health in pregnancy – a novel approach to chronic disease prevention and planetary health.

    Rafael Montenegro-Burke, Donnelly Centre for Cellular and Biomolecular Research and department of molecular genetics in the Temerty Faculty of Medicine: Mapping the dark metabolome using click chemistry tools.

    Robert Rozeske, department of psychology at U of T Scarborough: Neuronal mechanisms of dynamic emotional behavior.

    Karun Singh, department of laboratory medicine and pathobiology in the Temerty Faculty of Medicine and Toronto Western Hospital, University Health Network: Stem cell models to investigate brain function in development and disease.

    Corliss Kin I Sio, department of Earth sciences in the Faculty of Arts & Science: Constraining source compositions and timescales of mass transport using femtosecond LA-MC-ICPMS.

    Helen Tran, department of chemistry in the Faculty of Arts & Science: Macromolecular bioelectronics encoded for self-assembly, degradability and electron transport.

    Andrea Tricco, Dalla Lana School of Public Health: Expediting knowledge synthesis using artificial intelligence – CAL®-Synthesi.SR Dashboard.

    Jay Werber, department of chemical engineering and applied chemistry in the Faculty of Applied Science & Engineering: The Advanced Membranes (AM) Laboratory for Sustainable Water Management and Resource Recovery.

    Haibo Zhang, department of physiology in the Temerty Faculty of Medicine and St. Michael’s Hospital: Real time high-resolution imaging and cell sorting for studying multi-organ repair and regeneration after lung injury.

    Gang Zheng, department of medical biophysics in the Temerty Faculty of Medicine and Princess Margaret Cancer Centre, University Health Network: Preclinical magnetic resonance imaging for targeted brain tumour therapies.

    Shurui Zhou, department of electrical and computer engineering in the Faculty of Applied Science & Engineering: Improving collaboration efficiency for fork-based software development.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities (US) outside the United States, the other being McGill(CA).

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.


    Since 1926 the University of Toronto has been a member of the Association of American Universities (US) a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

  • richardmitnick 8:38 pm on June 16, 2021 Permalink | Reply
    Tags: "Imagining the distant past — and finding keys to the future", , EAPS: MIT’s Department of Earth Atmospheric and Planetary Sciences, , Earth Sciences, , , , MIT Terrascope, , Terrascope is one of four learning communities offered to first-year MIT students., Working with cores of sediment drilled from the Earth that hold clues to our planet’s climate long before there were records created by humans., You’re able to go basically from mud to a coherent picture of what the atmosphere was doing in the past-what the ocean was doing in the past.   

    From Massachusetts Institute of Technology (US) : “Imagining the distant past — and finding keys to the future” 

    MIT News

    From Massachusetts Institute of Technology (US)

    June 16, 2021
    Michaela Jarvis

    MIT earth science professor David McGee studies the atmosphere’s response to paleoclimate changes. “A really basic message that comes from the study of paleoclimate is the sensitivity of the Earth’s system,” he says. “A few degrees of warming or cooling is a really big deal.” Credit: Adam Glanzman.

    The most dramatic moments of David McGee’s research occur when he is working with cores of sediment drilled from the Earth that hold clues to our planet’s climate long before there were records created by humans.

    “Some of the biggest excitement I have,” says McGee, an associate professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), “is when we’re working with sediments that have been taken from 2,000 meters down in the Atlantic Ocean, for example. You’re performing various geochemical measurements on the sediments, you’re using radiocarbon dating to figure how old a core is, and you’re developing records of how the climate has changed over the past thousands of years. You’re able to go basically from mud to a coherent picture of what the atmosphere was doing in the past-what the ocean was doing in the past.”

    Imagining the natural world as it was in the distant past, when no people were around to directly observe or write about it, always fascinated McGee. As a child, before it even occurred to him that there was such a thing as an Earth scientist, he was “constantly wondering about what mountains and beaches would have looked like millions of years ago and what they might look like a million years from now.” Recently, while going through the artifacts of his childhood, he found a rock collection and a creative writing project focused on time travel back to the Precambrian Era. He recalls that once when he was set loose in the school library to find a science project topic, he chose a book on ice ages and tried to develop related hypotheses that he could test.

    Later, stumbling into a geology class in college, as he describes it, McGee was completely taken in by the idea that Earth science involved a sort of detective work to uncover history out in the natural world, using the tools of modern science, such as geochemistry, computation, and close observation.

    “I really fell for it,” he says.

    McGee’s focus on studying paleoclimate and the atmosphere’s response to past climate changes satisfies his lifelong curiosity — and it yields important insights into the climate change the planet is currently undergoing.

    “A really basic message that comes from the study of paleoclimate is the sensitivity of the Earth’s system,” says McGee. “A few degrees of warming or cooling is a really big deal.”

    From the start of his career, McGee has been dedicated to sharing his love of exploration with students. He earned a master’s degree in teaching and spent seven years as a teacher in middle school and high school classrooms before earning his PhD in Earth and environmental sciences from Columbia University. He joined the MIT faculty in 2012 and in 2018 received the Excellence in Mentoring Award from MIT’s Undergraduate Advising and Academic Programming office. In 2019, he was granted tenure.

    In 2016, McGee became the director of MIT’s Terrascope first-year learning community, where he says he has been able to continue to pursue his interest in how students learn.

    MIT Terrascope

    “Part of why Terrascope has been so important to me is it’s a place where there is a lot of great thinking about what makes a meaningful educational experience,” he says.

    Terrascope is one of four learning communities offered to first-year MIT students, allows them to address real-world sustainability issues in interdisciplinary, student-led teams. The projects the students undertake connect them to related experts and professionals, in part so the students can figure out what blend of areas of expertise — such as technology, policy, economics, and human behaviors — will serve them as they head toward their life’s work.

    “Students are often asking themselves, ‘How do I connect what I really like to do, what I’m good at, and what the world actually needs?’” McGee says. “In Terrascope, we try to provide a space for that exploration.”

    McGee’s work with Terrascope was, in part, the basis for his September 2020 appointment to the role of associate department head for diversity, equity, and inclusion within EAPS. On the occasion of McGee’s appointment, EAPS department head Rob van der Hilst said, “David has proven he is a dedicated and compassionate leader, able to build a robust community around collaboration, shared purpose, and deep respect for the strengths each member brings.”

    McGee says Earth science is often unwelcoming to women, members of racial or ethnic minoritized groups, and people who are LGBTQ+. Improved recruitment and retention policies are needed to diversify the field, he says.

    “Earth science is a very white science,” McGee says. “And yet we’re working on problems that affect everyone and disproportionately affect communities of color — things like climate change and natural disasters. It’s really important that the future of Earth science look different than the present in terms of the demographics.”

    One of the things McGee takes from his research experience as he approaches students is his observation that being an Earth scientist represents many different approaches and avenues of study — inherently, the field can extend itself to a wide diversity of talent.

    “The thing I try to make clear to students is there’s no way to be the expert in every aspect of even one Earth science study,” he says. “With the study of paleoclimate, for instance, there’s field geology, careful analytical chemistry, data analysis, computation, the physics of climate systems. You’re constantly on the edge of your learning and working with people who know more than you about a certain aspect of a study. Students are not coming to Earth science to become a carbon copy of any of us.”

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratoryfacility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation (US) .

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: