Tagged: Dwarf Planet Pluto Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:34 am on July 17, 2019 Permalink | Reply
    Tags: "This Is Everything That’s Wrong With Our Definition Of ‘Planet’", , , , , Dwarf Planet Pluto,   

    From Ethan Siegel: “This Is Everything That’s Wrong With Our Definition Of ‘Planet’” 

    From Ethan Siegel
    July 16, 2019

    1
    When we place the known objects in the Solar System in order, four inner, rocky worlds and four, outer, giant worlds stand out. Yet it’s 2019, and astronomers (and planetary scientists) are more divided than ever over the definition of planet. (NASA’S THE SPACE PLACE)

    Not only can’t astronomers and planetary scientists agree, but the IAU made it worse for everyone.

    If you were alive in 2006, you likely remember a momentous event in astronomy: the International Astronomical Union (IAU) took it upon themselves to redefine what it meant to be a planet. While eight of the nine classical planets in our Solar System were still in, from Mercury to Neptune, the smallest and most distant among them — Pluto — was out. Its demotion to the status of ‘dwarf planet’ was met with worldwide dismay, much to the chagrin of plutophiles everywhere.

    What most people don’t realize is that until this resolution was made 13 years ago, there was no universally agreed-upon definition of a planet at all. In an interesting perspective over at Scientific American, Chris Impey discusses the history of how this fateful decision was made at the time. But in many ways, the definition created more problems than it solved. Here’s the story behind what it truly means to be a planet.

    2
    The largest galaxy in the Local Group, Andromeda, appears small and insignificant next to the Milky Way, but that’s because of its distance: some 2.5 million light years away. The Moon, the stars and planets, the Milky Way, and various nebulae are all distinctly identifiable in Earth’s night sky. (SCIENCETV ON YOUTUBE / SCREENSHOT)

    Local Group. Andrew Z. Colvin 3 March 2011

    Andromeda Galaxy Adam Evans

    Milky Way NASA/JPL-Caltech /ESO R. Hurt. The bar is visible in this image

    Milkdromeda -Andromeda on the left-Earth’s night sky in 3.75 billion years-NASA

    When you look out at the points of light in the night sky, it’s pretty easy to see that there are multiple classes of object out there. There’s the Moon, clearly unique among the astronomical objects. There are the nebulae: faint, extended objects that look akin to clouds, only they never move or change in appearance. There’s the Milky Way, an enormous silhouette of light and dark bands extending across the entire sky. And, occasionally, there are comets and other transient sights that come and go in relatively short order.

    But most ubiquitous of all are the pinpoints of light dotting the night sky: stars and planets. Recognized to be different from one another thousands of years ago, stars twinkle and remain in the same relative position night after night, while planets don’t twinkle and wander through the sky from night-to-night. This wandering behavior — πλανήτης in Greek — is where the term ‘planet’ originates.

    3
    One of the great puzzles of the 1500s was how planets moved in an apparently retrograde fashion. This could either be explained through Ptolemy’s geocentric model (L), or Copernicus’ heliocentric one (R). However, getting the details right to arbitrary precision was something that would require theoretical advances in our understanding of the rules underlying the observed phenomena, which led to Kepler’s laws and eventually Newton’s theory of universal gravitation. (ETHAN SIEGEL / BEYOND THE GALAXY)

    For generations, there was no need to codify anything further. There were only a handful of planets: Mercury, Venus, Mars, Jupiter, and Saturn. Even after Copernicus, Kepler, and Galileo came along, demonstrating the validity of heliocentrism, the phases of Venus, and the moons of Jupiter, that only served to demonstrate that Earth was no more significant — at least in astronomical terms — than any of the other planets.

    The science of astronomy continued to develop, with larger, more advanced telescopes, the application of photography, and eventually the rise of modern computer systems, CCDs, and adaptive optics all increasing our knowledge and what we were capable of observing. The discovery of Uranus brought with it a 7th planet. Temporarily, Ceres became the 8th, although a deluge of small objects between Mars and Jupiter led to the general recognition that these objects were a new class unto themselves: the asteroids. Neptune became the permanent 8th planet, followed by Pluto in the 20th century becoming the 9th.

    4
    Clyde Tombaugh’s original images identifying Pluto in 1930. The tiny, faint dot moves very slightly relative to the background stars, but sufficiently so that we’ve been able to successfully reconstruct its orbit. (LOWELL OBSERVATORY ARCHIVES)

    For nearly all of the 20th century, that was the story of our Solar System. We had nine planets, with Pluto being the outlier: smaller, farther, and very different from the rest. With astronomical advances, though, the need to revise how we thought about things would become an inevitability. Some of the unanswered questions about the Universe from 30 years ago would have to point the way to a superior classification scheme. Consider the following mysteries:

    Do stars other than the Sun have worlds that orbit them, and should they be considered planets, too?
    If our Solar System previously had planets that orbited the Sun but were ejected by gravitational interactions, should those orphaned worlds be considered planets?
    Were there additional objects out there in our own Solar System beyond Neptune, and was Pluto typical of them?

    Fast forward from 1989 to 2019, and most of these questions — along with many others we might have asked — now have definitive, scientific answers.

    5
    The orbit of 2015 RR245, compared with the gas giants and the other known Kuiper Belt Objects. Note the relative insignificance of Pluto compared to the 8 major planets in the Solar System, as well as its insignificance compared to the other objects of the Kuiper Belt. (ALEX PARKER AND THE OSSOS TEAM)

    We’ve surveyed huge swaths of the outer Solar System, where we’ve discovered hundreds upon hundreds of trans-Neptunian objects out there. They have different colors from one another (with some redder and others bluer), a wide variety of orbital properties, and they appear to cluster into a disk-like configuration: the Kuiper belt.

    Kuiper Belt. Minor Planet Center

    Many of the largest objects are massive enough to pull themselves into hydrostatic equilibrium: the spheroidal shape a massive body takes on owing to its mass, angular momentum, and the presence of any satellites. One of them — now known as Eris — is even more massive than Pluto, while a former Kuiper belt object, Triton, is both more massive and larger than Pluto, but was captured by Neptune back in pre-Cambrian times.

    6
    The large moons of the solar system as compared with Earth in size. Mars is approximately the same size as Jupiter’s Ganymede. Note that pretty much all of these worlds would become planets under the geophysical definition alone, but that only Earth’s moon is comparable in size to its parent planet; the large moons of the gas giants pale in comparison. (NASA, VIA WIKIMEDIA COMMONS USER BRICKTOP; EDITED BY WIKIMEDIA COMMONS USERS DEUAR, KFP, TOTOBAGGINS)

    Meanwhile, our understanding of planet formation has advanced tremendously. We’ve been able to directly image newly-forming solar systems, discovering protoplanetary disks complete with gaps, hot spots, and other evidence for planets in the process of forming. At the same time, our simulation power has increased accordingly, enabling us to understand the presence of soot lines, frost lines, and how planets and moons form.

    The cores of planets form first, followed by material from the outer portions of early solar systems falling onto those cores, creating the mantles of planets. Finally, if a protoplanet has the right properties, it can hold onto a volatile atmosphere of mostly hydrogen and helium, leading to the formation of a gas giant world. Early planets merge, migrate, or gravitationally interact. When we look at a solar system today, all we see are the survivors.

    7
    Today, we know of over 4,000 confirmed exoplanets, with more than 2,500 of those found in the Kepler data.

    NASA/Kepler Telescope, and K2 March 7, 2009 until November 15, 2018


    These planets range in size from larger than Jupiter to smaller than Earth. Yet because of the limitations on the size of Kepler and the duration of the mission, the majority of planets are very hot and close to their star, at small angular separations. TESS has the same issue with the first planets it’s discovering: they’re preferentially hot and in close orbits.

    NASA/MIT TESS replaced Kepler in search for exoplanets


    Only through dedicates, long-period observations (or direct imaging) will we be able to detect planets with longer period (i.e., multi-year) orbits. (NASA/AMES RESEARCH CENTER/JESSIE DOTSON AND WENDY STENZEL; MISSING EARTH-LIKE WORLDS BY E. SIEGEL)

    In addition, our understanding of exoplanetary systems has literally exploded. We have now identified and confirmed thousands of worlds around stars other than the Sun, owing to a variety of techniques but most prolifically to the Kepler mission and its work on transiting planets.

    Today, we can look at this enormous suite of data and recognize that, of all the worlds we’ve discovered, the vast majority of them are also the easiest to discover: close-orbiting planets, mostly around low-mass stars. Even with that, we’ve come to understand that there are four categories of planet:

    the low-mass worlds that have either no atmospheres or thin atmospheres, including Earth-like worlds,
    the intermediate-mass worlds that can hold onto thicker atmospheres, from super-Earths up to Saturn-like worlds,
    the high-mass worlds that begin to experience gravitational self-compression, including Jupiter-like worlds,
    and the worlds that can begin fusing heavy isotopes of hydrogen in their core: brown dwarfs, which are also known as failed stars to astronomers.

    8
    The classification scheme of planets as either rocky, Neptune-like, Jupiter-like or stellar-like. The border between Earth-like and Neptune-like is murky, but direct imaging of candidate super-Earth worlds should enable us to determine whether there’s a gas envelope around each planet in question or not. Note that there are four main classifications of ‘world’ here, and that the cutoff for hydrostatic equilibrium is mass-dependent, but only around a few percent the physical size of planet Earth. (CHEN AND KIPPING, 2016, VIA ARXIV.ORG/PDF/1603.08614V2.PDF)

    Armed with all of this knowledge, what should we do? Where should we draw the line between planet and non-planet?

    It’s a complicated question with no easy answer.

    Some claim that any object massive enough to pull itself into hydrostatic equilibrium should be a planet. Although this is a common position among planetary scientists, it would add 107 additional planets to our Solar System, including 19 moons and 87 trans-Neptunian objects.

    Some claim that any object that formed similarly to our eight planets should remain a planet, regardless of its present location. But orbiting a star is a meaningful, important criteria, as is (potentially) orbiting with a certain set of physical parameters. Scientists are not unified.

    9
    Under a size cutoff of 10,000 kilometers, there are two planets, 18 or 19 moons, 1 or 2 asteroids, and 87 trans-Neptunian objects, most of which do not yet have names. All are shown to scale, keeping in mind that for most of the trans-Neptunian objects, their sizes are only approximately known. Pluto, to the best of our knowledge, would be the 10th largest of these worlds. (MONTAGE BY EMILY LAKDAWALLA. DATA FROM NASA / JPL, JHUAPL/SWRI, SSI, AND UCLA / MPS / DLR / IDA, PROCESSED BY GORDAN UGARKOVIC, TED STRYK, BJORN JONSSON, ROMAN TKACHENKO, AND EMILY LAKDAWALLA)



    9

    What the IAU decided back in 2006, however, may offer the worst of all worlds. The resolution they adopted held that if a body met the following three criteria, it was a planet.

    It needs to be in hydrostatic equilibrium, or have enough gravity to pull it into an ellipsoidal shape.
    It needs to orbit the Sun and not any other body.
    And it needs to clear its orbit of any planetesimals or planetary competitors.

    In other words, only the Sun can have planets; exoplanets would be excluded. “Clearing its orbit” is ambiguous and is extraordinarily difficult to assess for even our own Solar System. But there is a definition that would make sense, based on astronomically measurable parameters alone.

    10
    The scientific line between planetary (above) and non-planetary (below) status, for three potential definitions of an orbit-clearing phenomenon and a star equal to the mass of our Sun. This definition could be extended to every exoplanetary system we can imagine to determine whether a candidate body meets the criteria, as we’ve defined them, for being classified as a true planet or not. (MARGOT (2015), VIA ARXIV.ORG/ABS/1507.06300)

    Sure, pulling yourself into hydrostatic equilibrium is something most scientists can agree is necessary to be granted planetary status, but it’s hardly sufficient. Planetary scientists may be content with looking at the geophysical properties of a world in determining its planetary status, but astronomers demand more. A relatively recent study by Jean-Luc Margot put forth a definition that any object should be considered a planet if it meets the following requirements.

    They orbit their parent star.
    They dominate their orbits in terms of mass and orbital distance.
    They would clear out any debris in their orbit in well under 10 billion years.
    And their orbits, barring any outside influences, will be stable as long as their star exists.

    For our Solar System, this would yield 8 planets, would not be dependent on unobservable properties, and could be easily extended to exoplanetary systems.

    13
    Pluto’s atmosphere, as imaged by New Horizons when it flew into the distant world’s eclipse shadow. The atmospheric hazes are clearly visible, and these clouds lead to periodic snow on this outer, cold world. Pluto’s atmosphere changes as it moves from perihelion to aphelion, and can continue to be monitored through periodic occultations. It may be as geologically interesting a world as Mars. (NASA / JHUAPL / NEW HORIZONS / LORRI)

    NASA/New Horizons spacecraft

    There are many people who would love to see Pluto regain its planetary status, and there’s a part of me that grew up with planetary Pluto that’s extraordinarily sympathetic to that perspective. But including Pluto as a planet necessarily results in a Solar System with far more than nine planets. Pluto is only the 8th largest non-planet in our Solar System, and is clearly a larger-than-average but otherwise typical member of the Kuiper belt. It will never be the 9th planet again.

    But that’s not necessarily a bad thing. We may be headed towards a world where astronomers and planetary scientists work with very different definitions of what attains planethood, but we all study the same objects in the same Universe. Whatever we call objects — however we choose to classify them — makes them no less interesting or worthy of study. The cosmos simply exists as it is. It’s up to the very human endeavor of science to make sense of it all.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 1:06 pm on July 20, 2015 Permalink | Reply
    Tags: , , , Dwarf Planet Pluto,   

    From AAAS: “Potential geysers spotted on Pluto” 

    AAAS

    AAAS

    17 July 2015
    Eric Hand

    1
    Smooth plains of ice form polygons some 30 kilometers across in Sputnik Planum, the latest region revealed in close-up images by New Horizons. In the lower right, pits dot the landscape and dark hills protrude above the plains.

    Today, NASA’s New Horizons team unveiled the latest trove of geological goodies in close-up pictures of the surface of Pluto: hummocky hills that rise up above smooth plains of ice, patches of ice pocked by eroded pits, and troughs that form the boundaries of mysterious polygonal structures. Most tantalizing of all, the team has spotted streaks of material that may have blown downwind from dark spots. Although the team is not yet ready to declare that these spots are geysers shooting plumes above Pluto, scientists say the spots and streaks resemble actively spewing geysers on Neptune’s moon Triton that were discovered in 1989.

    The evidence is accumulating that Pluto is an active world, and not only as a place shaped by top-down atmospheric processes of frost and wind and sublimating ice. There also appear to be processes working from the bottom up: forces that lift up water ice mountains the size of the Rocky Mountains and allow them to sit next to smooth plains of ice that, the team suspects, have been resurfaced as recently as within the past 100 million years—or even last week.

    “Have a look at the icy frozen plains of Pluto,” said Alan Stern, the mission’s principal investigator at Southwest Research Institute (SwRI) in Boulder, Colorado, as he revealed a glimpse of a region named Sputnik Planum in a press conference today at NASA headquarters. “Who would have expected this kind of complexity?”

    The team released the first results from measurements made as the spacecraft passed behind Pluto into its shadow. By measuring the way sunlight was eclipsed around the rim of Pluto, the team was able to analyze its atmosphere—and rule out models showing a turbulent atmosphere in favor of one that is more sluggish. Even with a more stagnant atmosphere, the part of it closest to the surface could still harbor winds blowing at a meter per second or two—enough to move tiny particles of ice around, says Randy Gladstone, a mission co-investigator at SwRI in San Antonio, Texas.

    But the pictures, as usual, stole the show. Sputnik Planum is a region along the southern fringe of the left ventricle of the “heart,” now informally called Tombaugh Regio after Pluto’s discoverer. “I’m still having to remind myself to take deep breaths,” says Jeff Moore, a mission co-investigator at NASA’s Ames Research Center in Moffett Field, California. “The landscape is just astoundingly amazing.” To underscore the point, scientists used New Horizons’ terrain measurements to simulate a dramatic flyover video of the area and a nearby ice mountain range called Norgay Montes (see below).

    Moore says that one of the few terrains that invites a confident diagnosis are the pitted regions, which form as ice sublimates into the atmosphere. He cannot say whether the hills are features that were pushed up above the surrounding plains, or whether they are composed of tougher materials that resisted erosion as the rest of the region wore down. “They can either be popping up or emerging from an erosion-lowering process,” he says. The polygonal troughs are also mysterious, he says. He doesn’t know whether they result from convection in the interior—the large-scale patterns of heat upwelling in Pluto’s mantle—or from contracting ice, analogously to the way mud cracks form on Earth.

    Moore says it’s likely that the Sputnik Planum terrain—which also contains the geyser like spots—extends all the way up into the left ventricle of the heart. Stern presented chemical evidence that this entire region is enriched in carbon monoxide ice. It could be either a pool of very thick layers of ice that welled up from below, or just a centimeter-thick veneer of carbon monoxide snow from above. Moore says the jury is still out on whether Tombaugh Regio was emplaced from below or shaped from above. Quite possibly, he says, both processes are in play: The terrain may have been deposited in a bout of activity a long time ago, and since been eroded. “It could be there’s a source region there,” Stern says. “It’s a very special place on the planet.”

    New Horizons, a spacecraft the size of a baby grand piano, on Tuesday made its closest approach past Pluto, flying within 12,500 kilometers of its surface and making a first-ever reconnaissance of an object in the Kuiper belt, the region of icy worlds beyond Neptune.

    2
    Known objects in the Kuiper belt beyond the orbit of Neptune (scale in AU; epoch as of January 2015).

    But images from Pluto are being returned to Earth in a trickle over the course of 16 months, because of the vast distances and the modest power of New Horizon’s radio antenna. NASA Planetary Science Division Director Jim Green says the spacecraft has returned only 1% to 2% of the data so far.

    In pictures NASA released on Wednesday, the big surprise was mountains of water ice rising 3500 meters up from strikingly smooth, crater-free surfaces. The lack of craters—also seen on Charon, Pluto’s largest moon—is evidence for youthfulness, and geological activity that could pave over the surfaces in fresh icy materials. This was unexpected, because many thought that the internal heat sources within Pluto and Charon, leftover from their formation in a giant impact billions of years ago, would have dissipated long ago.

    Larry Soderblom, a retired scientist from the U.S. Geological Survey in Flagstaff, Arizona, who helped explore Neptune’s moon Triton on NASA’s Voyager mission, is impressed by both the similarities and differences between that world and Pluto. Pluto is the largest Kuiper belt object; Triton is thought to be a captured one. Both harbor smooth surfaces that suggest repaving driven by internal heating. But where that activity on Triton can be driven by the tidal pull of Neptune, scientists are scratching their heads over what could be driving it on Pluto. There are other differences between the worlds, Soderblom says: Triton lacks Pluto’s tall mountains and its rugged, ropy pits. “Everywhere we go, we’re surprised,” he says. “We should know better by now.”

    NASA is planning its next press conference on 24 July. After that, image retrievals from New Horizons’ cameras will pause for nearly 2 months while the team focuses on gathering data from its particle and plasma instruments. In August, the team plans to choose between two candidate Kuiper belt objects—far smaller than Pluto—and then steer the spacecraft to an encounter with it in 2019. The $720 million mission is being operated by Johns Hopkins University’s Applied Physics Laboratory in Laurel, Maryland.

    With additional reporting by Richard Kerr.

    See the full article here.

    The American Association for the Advancement of Science is an international non-profit organization dedicated to advancing science for the benefit of all people.

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

     
  • richardmitnick 1:25 pm on July 17, 2015 Permalink | Reply
    Tags: , , Dwarf Planet Pluto,   

    From NASA: “NASA’s New Horizons Discovers Frozen Plains in the Heart of Pluto’s ‘Heart’” 

    NASA

    NASA

    July 17, 2015

    Dwayne Brown / Laurie Cantillo
    Headquarters, Washington
    202-358-1726 / 202-358-1077
    dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov

    Mike Buckley
    Johns Hopkins University Applied Physics Laboratory, Laurel, Md.
    240-228-7536
    michael.buckley@jhuapl.edu

    Maria Stothoff
    Southwest Research Institute, San Antonio
    210-522-3305
    maria.stothoff@swri.org

    1
    In the center left of Pluto’s vast heart-shaped feature – informally named “Tombaugh Regio” – lies a vast, craterless plain that appears to be no more than 100 million years old, and is possibly still being shaped by geologic processes. This frozen region is north of Pluto’s icy mountains and has been informally named Sputnik Planum (Sputnik Plain), after Earth’s first artificial satellite. The surface appears to be divided into irregularly-shaped segments that are ringed by narrow troughs. Features that appear to be groups of mounds and fields of small pits are also visible. This image was acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as one-half mile (1 kilometer) across are visible. The blocky appearance of some features is due to compression of the image. Credits: NASA/JHUAPL/SWRI

    In the latest data from NASA’s New Horizons spacecraft, a new close-up image of Pluto reveals a vast, craterless plain that appears to be no more than 100 million years old, and is possibly still being shaped by geologic processes.

    NASA New Horizons spacecraft
    New Horizons

    This frozen region is north of Pluto’s icy mountains, in the center-left of the heart feature, informally named “Tombaugh Regio” (Tombaugh Region) after Clyde Tombaugh, who discovered Pluto in 1930.

    “This terrain is not easy to explain,” said Jeff Moore, leader of the New Horizons Geology, Geophysics and Imaging Team (GGI) at NASA’s Ames Research Center in Moffett Field, California. “The discovery of vast, craterless, very young plains on Pluto exceeds all pre-flyby expectations.”

    This fascinating icy plains region — resembling frozen mud cracks on Earth — has been informally named “Sputnik Planum” (Sputnik Plain) after the Earth’s first artificial satellite. It has a broken surface of irregularly-shaped segments, roughly 12 miles (20 kilometers) across, bordered by what appear to be shallow troughs. Some of these troughs have darker material within them, while others are traced by clumps of hills that appear to rise above the surrounding terrain. Elsewhere, the surface appears to be etched by fields of small pits that may have formed by a process called sublimation, in which ice turns directly from solid to gas, just as dry ice does on Earth.

    Scientists have two working theories as to how these segments were formed. The irregular shapes may be the result of the contraction of surface materials, similar to what happens when mud dries. Alternatively, they may be a product of convection, similar to wax rising in a lava lamp. On Pluto, convection would occur within a surface layer of frozen carbon monoxide, methane and nitrogen, driven by the scant warmth of Pluto’s interior.

    Pluto’s icy plains also display dark streaks that are a few miles long. These streaks appear to be aligned in the same direction and may have been produced by winds blowing across the frozen surface.

    The Tuesday “heart of the heart” image was taken when New Horizons was 48,000 miles (77,000 kilometers) from Pluto, and shows features as small as one-half mile (1 kilometer) across. Mission scientists will learn more about these mysterious terrains from higher-resolution and stereo images that New Horizons will pull from its digital recorders and send back to Earth during the next year.

    The New Horizons Atmospheres team observed Pluto’s atmosphere as far as 1,000 miles (1,600 kilometers) above the surface, demonstrating that Pluto’s nitrogen-rich atmosphere is quite extended. This is the first observation of Pluto’s atmosphere at altitudes higher than 170 miles above the surface (270 kilometers).

    The New Horizons Particles and Plasma team has discovered a region of cold, dense ionized gas tens of thousands of miles beyond Pluto — the planet’s atmosphere being stripped away by the solar wind and lost to space.

    “This is just a first tantalizing look at Pluto’s plasma environment,” said New Horizons co-investigator Fran Bagenal, University of Colorado, Boulder.

    “With the flyby in the rearview mirror, a decade-long journey to Pluto is over –but, the science payoff is only beginning,” said Jim Green, director of Planetary Science at NASA Headquarters in Washington. “Data from New Horizons will continue to fuel discovery for years to come.”

    Alan Stern, New Horizons principal investigator from the Southwest Research Institute (SwRI), Boulder, Colorado, added, “We’ve only scratched the surface of our Pluto exploration, but it already seems clear to me that in the initial reconnaissance of the solar system, the best was saved for last.”

    New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the mission, science team, payload operations and encounter science planning.

    Follow the New Horizons mission on Twitter and use the hashtag #PlutoFlyby to join the conversation. Live updates are also available on the mission Facebook page.

    For more information on the New Horizons mission, including fact sheets, schedules, video and new images, visit:

    http://www.nasa.gov/newhorizons

    and

    http://solarsystem.nasa.gov/planets/plutotoolkit.cfm

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 12:12 pm on July 17, 2015 Permalink | Reply
    Tags: , , , Dwarf Planet Pluto,   

    From AAAS: “Pluto is alive—but where is the heat coming from?” 

    AAAS

    AAAS

    15 July 2015
    Eric Hand

    1
    Mountains of water ice rise up from the surface of Pluto, in images released today by NASA’s New Horizons mission. Image credit NASA/JHU APL/SwRI

    Towering mountains of water ice rise up to 3500 meters tall on Pluto, above smooth plains covered in veneers of nitrogen and methane ice, NASA’s New Horizons team announced today.

    NASA New Horizons spacecraft
    New Horizons

    The discovery, along with the finding that parts of the dwarf planet’s surface are crater-free and therefore relatively young, points to a place that has been geologically reworked in the recent past. “It could even be active today,” said John Spencer, a New Horizons team member at Southwest Research Institute (SWRI) in Boulder, Colorado, at a press conference today at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

    The team also showed off new images of unexpectedly smooth surfaces on Pluto’s moon Charon—which, without an atmosphere, was expected to have an even more battered surface than Pluto. Radioactive elements in both bodies’ interiors could provide some of the heat needed for geological mountain building or ice flows that repave the surface. But Pluto, and especially Charon, are far too small for this heat to persist. The giant impact thought to have formed the two worlds could also provide a source of energy, but that probably happened billions of years ago.

    “It’s going to send a lot of scientists back to the drawing boards,” said Alan Stern, the mission’s principal investigator at SWRI, at the press conference. Scientists outside the team suggest that the puzzlingly youthful surfaces could be explained if the dwarf planet and its moon were formed in a far more recent impact event, or if their reservoirs of water ice were mixed with other compounds that can melt and flow and lower temperatures.

    Although the number of TV crews parked outside APL has diminished considerably since the historic flyby on 14 July, the power of Pluto to dazzle continues to grow. The New Horizons team still has not retrieved data from the moment of close approach, which came on Tuesday as the probe swooped within 12,500 kilometers of the surface, 33 times closer than the moon is to Earth. Those images will come much later, over the course of 16 months, after the spacecraft completes its observations and can devote itself to beaming back data. At distances of about 4.7 billion kilometers, it takes 4.5 hours for New Horizons to communicate with Earth, and the data returns in trickles of a few kilobits per seconds.

    But the early images are still providing scientists with plenty to chew on. One surprise was the discovery of the rugged water ice mountains in a dark, equatorial region next to a bright, heart-shaped region. (The team said it would informally name the “heart” Tombaugh Regio, after Pluto’s discoverer.) The frigid temperatures on Pluto mean that water ice is hard and doesn’t move or melt easily: It is Pluto’s bedrock. Seeing it protrude in mountains at the surface suggests that layers of other, more volatile ices—methane, nitrogen, and carbon monoxide—might only be a thin veneer of materials. Yet if these layers are too thin, they would be lost completely relatively quickly as they sublimate into the atmosphere and erode into space, Stern says. That means that there must be a way of replenishing these more volatile ices from within Pluto’s interior—perhaps through volcanoes of ice, called cryovolcanoes. “We haven’t found geysers and we haven’t found cryovolcanoes, but this is very strong evidence that will send us looking,” he says.

    2
    Smooth surfaces on Pluto’s moon Charon imply geological reworking in the recent past. Image credit NASA/JHU APL/SwRI

    Geoffrey Collins, a planetary scientist at Wheaton College in Norton, Massachusetts, unaffiliated with the team, is amazed by the images. “Clearly we’re seeing internal activity on the surface of Pluto and Charon,” he says. “Something is pulling apart their ice crusts.” Collins is excited because there is no way to explain the activity with conventional models of heat loss. “If the Charon-Pluto impact happened more recently, all the problems would be solved,” he says.

    Jonathan Lunine, a planetary scientist at Cornell University who is not affiliated with the mission, agrees that the most curious discovery is the youthful surfaces of both bodies. “How do you keep these things warm for so long?” he asks. But he would rather find a mechanism besides a more recent impact event, which he calls “special pleading.” A giant impact is more likely to have occurred near the start of the solar system 4.5 billion years ago, when the Kuiper belt—the distant shell of icy bodies in which Pluto resides—harbored more potential impactors than it does today.

    3
    Known objects in the Kuiper belt beyond the orbit of Neptune (scale in AU; epoch as of January 2015).

    But Lunine says it could be that the dynamics of the Kuiper belt are different from those in the rest of the solar system. Another mechanism to get water ice to move and flow more readily, he suggests, is to mix it with other compounds, such as ammonia. Ammonia-water mixes have been proposed for other icy bodies in the outer solar system, but they have never been identified directly, he says. “Maybe that’s happening here.”

    Nancy Chabot, another planetary scientist at APL who is not affiliated with the mission, says the most important discovery today will end up being the ice mountains. “It’s going to be something people talk about for a while,” she says. The mountains—and their implication of mountain-building activity—runs counter to the expectation that Kuiper belt objects are cold, pristine relics. “We talk about these things as time capsules from the early solar system,” she says. That notion must evolve, she says. “Even though they are primitive bodies, they are also active bodies.”

    NASA is planning to reveal more images at press conferences on Friday, 17 July, and a week later, on 24 July. After that, downloads of image data from the spacecraft will pause until September, while the mission concentrates on retrieving near real-time data from particle and plasma measuring instruments. Even once the full dataset is retrieved, sometime toward the end by 2016, the mission will not be over. In August, the team will choose between two small Kuiper belt objects for an extended mission. If granted funding, New Horizons will steer toward an encounter with one of those small bodies in 2019.

    See the full article here.

    The American Association for the Advancement of Science is an international non-profit organization dedicated to advancing science for the benefit of all people.

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

     
    • richardmitnick 2:05 pm on July 17, 2015 Permalink | Reply

      I am looking at the post with your comment approved. I do see the reblog button with the bunch of buttons below the “about these ads bloc.

      Thanks, I hope you do find it and share the post.

      Like

  • richardmitnick 8:16 am on July 16, 2015 Permalink | Reply
    Tags: , , Dwarf Planet Pluto,   

    From NASA: “The Women who Power NASA’s New Horizons Mission to Pluto” 

    NASA

    NASA

    Last Updated: July 16, 2015
    Editor: Tricia Talbert

    1
    Women make up approximately 25 percent of the New Horizons flyby team. The female team members were photographed at Johns Hopkins University Applied Physics Laboratory on July 11, 2015, just three days before the spacecraft’s closest approach to Pluto. Kneeling from left to right: Amy Shira Teitel, Cindy Conrad, Sarah Hamilton, Allisa Earle, Leslie Young, Melissa Jones, Katie Bechtold, Becca Sepan, Kelsi Singer, Amanda Zangari, Coralie Jackman, Helen Hart. Standing, from left to right: Fran Bagenal, Ann Harch, Jillian Redfern, Tiffany Finley, Heather Elliot, Nicole Martin, Yanping Guo, Cathy Olkin, Valerie Mallder, Rayna Tedford, Silvia Protopapa, Martha Kusterer, Kim Ennico, Ann Verbiscer, Bonnie Buratti, Sarah Bucior, Veronica Bray, Emma Birath, Carly Howett, Alice Bowman. Not pictured: Priya Dharmavaram, Sarah Flanigan, Debi Rose, Sheila Zurvalec, Adriana Ocampo, Jo-Anne Kierzkowsk Sheila Zurvaleci. Credits: SwRI/JHUAPL

    2
    Alice Bowman, the Mission Operations Manager, at work in the Mission Operations Center. On the job, Bowman is the “MOM” of the MOC. This photo was taken during the New Horizons (final) hibernation wake-up on December 6, 2014. Bowman said, “It looks like I was either asking for a different configuration or asking about the telemetry I was seeing on the displays.” Credits: SwRI/JHUAPL

    When Fran Bagenal began her career working on NASA’s Voyager mission to the outer planets, she was among just a handful of women on the team. But that didn’t phase her. “That’s just how it was,” she explains, adding that she was focused on particles and plasma. “Space physics was just my way of exploring the solar system.” Now, as the particles and plasma science team leader on the New Horizons mission to Pluto, her response to the relative abundance of women on the team is met mostly with a shrug. “This isn’t remarkable—it’s just how it is.”

    Bagenal’s attitude regarding the strong female presence on the New Horizons mission is mostly echoed by colleagues who were informally surveyed. “I’ve never really thought about it,” says Kim Ennico, a deputy project scientist on New Horizons who calibrates instruments on the spacecraft and monitors their status. “I’m really only conscious of it when there are only women in a meeting room.”

    In preparation for New Horizons’ Pluto flyby—the mission phase between July 7 and July 16—Ennico works with Leslie Young, another deputy project scientist who is also the encounter planning leader on the science team. Young is tasked with fitting all of New Horizons’ science goals into the precious few days the spacecraft will be in the near vicinity of Pluto. “I figure out the spacecraft’s priorities,” she says, describing the process as, “a job that means scheduling observations that can run simultaneously to gather the most data in a limited time.”

    Young’s flyby playbook for New Horizons is turned into spacecraft commands by the science operation team managed by Tiffany Finley, who calls the gender balance on the New Horizons team “refreshing.”

    Spacecraft commands are passed on to the mission operations team, managed by Alice Bowman. She personally reads every line of code before it’s sent on a four-and-a-half hour journey to New Horizons. “I’m the last one who signs off on everything we send to the spacecraft,” she explains. “I want to make sure it’s perfect.”

    Of course, the flyby science couldn’t happen without the spacecraft arriving at its target, a major challenge that falls to Yanping Guo. As the mission design leader, Guo configured the entire mission trajectory, including the Jupiter and Pluto flybys. In short, “My job is to get New Horizons to Pluto.”

    The dozens of women who are powering New Horizons to a history-making July 14 flyby of Pluto look forward to the day when the conversation about gender becomes irrelevant. “Girls will be inspired to be scientists and boys will grow up to be ‘gender blind,’ seeing women in science as the norm,” says Young.

    For deputy project scientist Cathy Olkin, it’s simple. “New Horizons is about a group of talented, smart people who are passionate about the mission. That’s what makes New Horizons awesome.”

    3
    Members of the New Horizons team are shown at the launch of the spacecraft, Kennedy Space Center, Cape Canaveral, Florida on January 19, 2006. From left to right: Leslie Young, Yanping Guo, Cathy Olkin, Jeanette Thorn, Debi Rose, Ann Harch, Heather Elliott, Fran Bagenal.
    Credits: KSC/NASA

    At 7:49 AM EDT on Tuesday, July 14 New Horizons will zip past Pluto at 30,800 miles per hour (49,600 kilometers per hour), with a suite of seven science instruments busily gathering data. The mission will complete the initial reconnaissance of the solar system with the first-ever look at the icy dwarf planet.

    Follow the path of the spacecraft in coming days in real time with a visualization of the actual trajectory data, using NASA’s online Eyes on Pluto.

    Stay in touch with the New Horizons mission with #PlutoFlyby and on Facebook at: https://www.facebook.com/new.horizons1

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 8:04 am on July 16, 2015 Permalink | Reply
    Tags: , , Dwarf Planet Pluto,   

    From NASA: “Pluto and Charon Shine in False Color” 

    NASA

    NASA

    July 14, 2015

    Last Updated: July 16, 2015
    Editor: Tricia Talbert

    1
    Pluto and Charon in False Color Show Compositional Diversity
    Image Credit: NASA/APL/SwRI

    NASA New Horizons spacecraft
    New Horizons

    New Horizons has obtained impressive new images of Pluto and its large moon Charon that highlight their compositional diversity. These are not actual color images of Pluto and Charon—they are shown here in exaggerated colors that make it easy to note the differences in surface material and features on each planetary body.

    The images were obtained using three of the color filters of the “Ralph” instrument on July 13 at 3:38 am EDT. New Horizons has seven science instruments on board the spacecraft—including “Ralph” and “Alice”, whose names are a throwback to the “Honeymooners,” a popular 1950s sitcom.

    “These images show that Pluto and Charon are truly complex worlds. There’s a whole lot going on here,” said New Horizons co-investigator Will Grundy, Lowell Observatory, Flagstaff, Arizona. “Our surface composition team is working as fast as we can to identify the substances in different regions on Pluto and unravel the processes that put them where they are.”

    The color data helps scientists understand the molecular make-up of ices on the surfaces of Pluto and Charon, as well as the age of geologic features such as craters. They can also tell us about surface changes caused by space “weather,” such as radiation.

    The new color images reveal that the “heart” of Pluto actually consists of two remarkably different-colored regions. In the false-color image, the heart consists of a western lobe shaped like an ice cream cone that appears peach color in this image. A mottled area on the right (east) side looks bluish. A mid-latitude band appears in shades ranging from pale blue through red. Even within the northern polar cap, in the upper part of the image, various shades of yellow-orange indicate subtle compositional differences. This image was obtained using three of the color filters of the Ralph instrument on July 13 at 3:38 am EDT and received on the ground on at 12:25 pm.

    Charon is Just as Colorful

    The surface of Charon is viewed using the same exaggerated color. The red on the dark northern polar cap of Charon is attributed to hydrocarbon and other molecules, a class of chemical compounds called tholins. The mottled colors at lower latitudes point to the diversity of terrains on Charon. This image was obtained using three of the color filters of the Ralph instrument on July 13 at 3:38 am EDT and received on the ground on at 12:25 pm.

    “We make these color images to highlight the variety of surface environments present in the Pluto system,” said Dennis Reuter, co-investigator with the New Horizons Composition Team. “They show us in an intuitive way that there is much still to learn from the data coming down.”

    Due to the three-billion-mile distance to Pluto, data takes 4 ½ hours to come to Earth, even at the speed of light. It will take 16 months for all of New Horizons’ science data to be received, and the treasure trove from this mission will be studied for decades to come.

    The image reveals that the bright heart-shaped region of Pluto includes areas that differ in color characteristics. The western lobe, shaped like an ice-cream cone, appears peach color in this image. A mottled area on the right (east) appears bluish. Even within Pluto’s northern polar cap, in the upper part of the image, various shades of yellow-orange indicate subtle compositional differences.

    The surface of Charon is viewed using the same exaggerated color. The red on the dark northern polar cap of Charon is attributed to hydrocarbon materials including a class of chemical compounds called tholins. The mottled colors at lower latitudes point to the diversity of terrains on Charon.

    This image was taken at 3:38 a.m. EDT on July 13, one day before New Horizons’ closest approach to Pluto.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 7:44 am on July 16, 2015 Permalink | Reply
    Tags: , , Dwarf Planet Pluto,   

    New Horizons and Pluto with Dr Stephen Hawking 

    NASA TV’s coverage of the historic New Horizons mission to Pluto included a the reaction to the transmission by the New Horizons spacecraft of a preprogrammed signal after its closest approach to Pluto.

    NASA New Horizons spacecraft

    NASA

    NASA

    See the full article here.
    Download of video available.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:11 pm on July 15, 2015 Permalink | Reply
    Tags: , , Dwarf Planet Pluto,   

    From NASA: “From Mountains to Moons: Multiple Discoveries from NASA’s New Horizons Pluto Mission” 

    NASA

    NASA

    July 15, 2015

    Dwayne Brown / Laurie Cantillo
    Headquarters, Washington
    202-358-1726 / 202-358-1077
    dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov

    Mike Buckley
    Johns Hopkins University Applied Physics Laboratory, Laurel, Md.
    240-228-7536
    michael.buckley@jhuapl.edu

    Maria Stothoff
    Southwest Research Institute, San Antonio
    210-522-3305
    maria.stothoff@swri.org

    NASA New Horizons spacecraft
    New Horizons

    1
    New close-up images of a region near Pluto’s equator reveal a giant surprise — a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body.
    Credits: NASA/JHU APL/SwRI

    Icy mountains on Pluto and a new, crisp view of its largest moon, Charon, are among the several discoveries announced Wednesday by NASA’s New Horizons team, just one day after the spacecraft’s first ever Pluto flyby.

    “Pluto New Horizons is a true mission of exploration showing us why basic scientific research is so important,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “The mission has had nine years to build expectations about what we would see during closest approach to Pluto and Charon. Today, we get the first sampling of the scientific treasure collected during those critical moments, and I can tell you it dramatically surpasses those high expectations.”

    “Home run!” said Alan Stern, principal investigator for New Horizons at the Southwest Research Institute (SwRI) in Boulder, Colorado. “New Horizons is returning amazing results already. The data look absolutely gorgeous, and Pluto and Charon are just mind blowing.”

    A new close-up image of an equatorial region near the base of Pluto’s bright heart-shaped feature shows a mountain range with peaks jutting as high as 11,000 feet (3,500 meters) above the surface of the icy body.

    The mountains on Pluto likely formed no more than 100 million years ago — mere youngsters in a 4.56-billion-year-old solar system. This suggests the close-up region, which covers about one percent of Pluto’s surface, may still be geologically active today.

    “This is one of the youngest surfaces we’ve ever seen in the solar system,” said Jeff Moore of the New Horizons Geology, Geophysics and Imaging Team (GGI) at NASA’s Ames Research Center in Moffett Field, California.

    Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape.

    “This may cause us to rethink what powers geological activity on many other icy worlds,” says GGI deputy team leader John Spencer at SwRI.

    The new view of Charon reveals a youthful and varied terrain. Scientists are surprised by the apparent lack of craters. A swath of cliffs and troughs stretching about 600 miles (1,000 kilometers) suggests widespread fracturing of Charon’s crust, likely the result of internal geological processes. The image also shows a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. In Charon’s north polar region, the dark surface markings have a diffuse boundary, suggesting a thin deposit or stain on the surface.

    New Horizons also observed the smaller members of the Pluto system, which includes four other moons: Nix, Hydra, Styx and Kerberos. A new sneak-peak image of Hydra is the first to reveal its apparent irregular shape and its size, estimated to be about 27 by 20 miles (43 by 33 kilometers).

    The observations also indicate Hydra’s surface is probably coated with water ice. Future images will reveal more clues about the formation of this and the other moon billions of years ago. Spectroscopic data from New Horizons’ Ralph instruments reveal an abundance of methane ice, but with striking differences among regions across the frozen surface of Pluto.

    The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland designed, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the mission, science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

    Follow the New Horizons mission on Twitter and use the hashtag #PlutoFlyby to join the conversation. Live updates also will be available on the mission Facebook page.

    For more information on the New Horizons mission, including fact sheets, schedules, video and all the new images, visit:

    http://www.nasa.gov/newhorizons

    and

    http://solarsystem.nasa.gov/planets/plutotoolkit.cfm

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 3:32 pm on July 14, 2015 Permalink | Reply
    Tags: , , Dwarf Planet Pluto,   

    From NASA: “NASA’s Three-Billion-Mile Journey to Pluto Reaches Historic Encounter” 

    NASA

    NASA

    Temp 0
    Pluto nearly fills the frame in this image from the Long Range Reconnaissance Imager (LORRI) aboard NASA’s New Horizons spacecraft, taken on July 13, 2015 when the spacecraft was 476,000 miles (768,000 kilometers) from the surface. This is the last and most detailed image sent to Earth before the spacecraft’s closest approach to Pluto on July 14. The color image has been combined with lower-resolution color information from the Ralph instrument that was acquired earlier on July 13. This view is dominated by the large, bright feature informally named the “heart,” which measures approximately 1,000 miles (1,600 kilometers) across. The heart borders darker equatorial terrains, and the mottled terrain to its east (right) are complex. However, even at this resolution, much of the heart’s interior appears remarkably featureless—possibly a sign of ongoing geologic processes.
    Credits: NASA/APL/SwRI

    NASA’s New Horizons spacecraft is at Pluto.

    After a decade-long journey through our solar system, New Horizons made its closest approach to Pluto Tuesday, about 7,750 miles above the surface — roughly the same distance from New York to Mumbai, India – making it the first-ever space mission to explore a world so far from Earth.

    “I’m delighted at this latest accomplishment by NASA, another first that demonstrates once again how the United States leads the world in space,” said John Holdren, assistant to the President for Science and Technology and director of the White House Office of Science and Technology Policy. “New Horizons is the latest in a long line of scientific accomplishments at NASA, including multiple missions orbiting and exploring the surface of Mars in advance of human visits still to come; the remarkable Kepler mission to identify Earth-like planets around stars other than our own; and the DSCOVR satellite that soon will be beaming back images of the whole Earth in near real-time from a vantage point a million miles away. As New Horizons completes its flyby of Pluto and continues deeper into the Kuiper Belt, NASA’s multifaceted journey of discovery continues.”

    Temp 1
    Members of the New Horizons science team react to seeing the spacecraft’s last and sharpest image of Pluto before closest approach later in the day, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.
    Credits: NASA/Bill Ingalls

    “The exploration of Pluto and its moons by New Horizons represents the capstone event to 50 years of planetary exploration by NASA and the United States,” said NASA Administrator Charles Bolden. “Once again we have achieved a historic first. The United States is the first nation to reach Pluto, and with this mission has completed the initial survey of our solar system, a remarkable accomplishment that no other nation can match.”

    Per the plan, the spacecraft currently is in data-gathering mode and not in contact with flight controllers at the Johns Hopkins University Applied Physical Laboratory (APL) in Laurel, Maryland. Scientists are waiting to find out whether New Horizons “phones home,” transmitting to Earth a series of status updates that indicate the spacecraft survived the flyby and is in good health. The “call” is expected shortly after 9 p.m. tonight.

    The Pluto story began only a generation ago when young Clyde Tombaugh was tasked to look for Planet X, theorized to exist beyond the orbit of Neptune. He discovered a faint point of light that we now see as a complex and fascinating world.

    “Pluto was discovered just 85 years ago by a farmer’s son from Kansas, inspired by a visionary from Boston, using a telescope in Flagstaff, Arizona,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “Today, science takes a great leap observing the Pluto system up close and flying into a new frontier that will help us better understand the origins of the solar system.”

    New Horizons’ flyby of the dwarf planet and its five known moons is providing an up-close introduction to the solar system’s Kuiper Belt, an outer region populated by icy objects ranging in size from boulders to dwarf planets. Kuiper Belt objects, such as Pluto, preserve evidence about the early formation of the solar system.

    New Horizons principal investigator Alan Stern of the Southwest Research Institute (SwRI) in Boulder, Colorado, says the mission now is writing the textbook on Pluto.

    “The New Horizons team is proud to have accomplished the first exploration of the Pluto system,” Stern said. “This mission has inspired people across the world with the excitement of exploration and what humankind can achieve.”

    New Horizons’ almost 10-year, three-billion-mile journey to closest approach at Pluto took about one minute less than predicted when the craft was launched in January 2006. The spacecraft threaded the needle through a 36-by-57 mile (60 by 90 kilometers) window in space — the equivalent of a commercial airliner arriving no more off target than the width of a tennis ball.

    Because New Horizons is the fastest spacecraft ever launched – hurtling through the Pluto system at more than 30,000 mph, a collision with a particle as small as a grain of rice could incapacitate the spacecraft. Once it reestablishes contact Tuesday night, it will take 16 months for New Horizons to send its cache of data – 10 years’ worth — back to Earth.

    New Horizons is the latest in a long line of scientific accomplishments at NASA, including multiple rovers exploring the surface of Mars, the Cassini spacecraft that has revolutionized our understanding of Saturn and the Hubble Space Telescope, which recently celebrated its 25th anniversary. All of this scientific research and discovery is helping to inform the agency’s plan to send American astronauts to Mars in the 2030’s.

    “After nearly 15 years of planning, building, and flying the New Horizons spacecraft across the solar system, we’ve reached our goal,” said project manager Glen Fountain at APL “The bounty of what we’ve collected is about to unfold.”

    APL designed, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the mission, science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

    Follow the New Horizons mission on Twitter and use the hashtag #PlutoFlyby to join the conversation. Live updates also will be available on the mission Facebook page.

    For more information on the New Horizons mission, including fact sheets, schedules, video and images, visit:
    http://www.nasa.gov/newhorizons
    and
    http://solarsystem.nasa.gov/planets/plutotoolkit.cfm
    -end-
    NASA news releases and other information are available automatically by sending an e-mail message with the subject line subscribe to hqnews-request@newsletters.nasa.gov.
    To unsubscribe from the list, send an e-mail message with the subject line unsubscribe to hqnews-request@newsletters.nasa.gov.

    This article was received by email subscription and I cannot provide a link. There may be future articles which can be of use.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 1:43 pm on June 3, 2015 Permalink | Reply
    Tags: , , Dwarf Planet Pluto,   

    From Hubble: “Hubble Finds Two Chaotically Tumbling Pluto Moons” 

    NASA Hubble Telescope

    Hubble

    1
    Pluto and its satellites

    Object Name: Nix, Hydra, Styx, Kerberos
    Object Description: Minor Moons of the Pluto-Charon System
    Properties:
    Discovery Year Semi-major axis (in km) Period (in days)
    Styx 2012 42,700 20.2
    Nix 2005 48,700 24.9
    Kerberos 2011 57,800 32.2
    Hydra 2005 64,800 38.2

    June 3, 2015
    CONTACT

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Felicia Chou
    NASA Headquarters, Washington, D.C.
    202-358-0257
    felicia.chou@nasa.gov

    Mark Showalter
    SETI Institute, Mountain View, California
    605-810-0234
    mshowalter@seti.org

    Doug Hamilton
    University of Maryland, College Park, Maryland
    301-405-1548
    dhamil@astro.umd.edu

    If you lived on one of Pluto’s moons Nix or Hydra, you’d have a hard time setting your alarm clock. That’s because you could not know for sure when, or even in which direction, the sun would rise.

    2
    Pluto photographed by the New Horizons spacecraft in May 2015

    A comprehensive analysis of all available Hubble Space Telescope data shows that two of Pluto’s moons, Nix and Hydra, are wobbling unpredictably. Scientists believe the other two small moons, Kerberos and Styx, are likely in a similar situation, pending further study.

    “Hubble has provided a new view of Pluto and its moons revealing a cosmic dance with a chaotic rhythm,” said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate in Washington, D.C. “When the New Horizons spacecraft flies through the Pluto system in July we’ll get a chance to see what these moons look like up close and personal.”

    NASA New Horizons spacecraft II
    New Horizons

    Why the chaos? Because the moons are embedded inside a dynamically shifting gravitational field caused by the system’s two central bodies, Pluto and Charon, whirling about each other. The variable gravitational field induces torques that send the smaller moons tumbling in unpredictable ways. This torque is strengthened by the fact the moons are football shaped rather than spherical.

    The surprising results of the Hubble research, conducted by Mark Showalter of the SETI Institute in Mountain View, California, and Doug Hamilton of the University of Maryland at College Park, are appearing in the June 4 issue of the British science journal Nature.

    “Prior to the Hubble observations nobody appreciated the intricate dynamics of the Pluto system,” Showalter said. “Our report provides important new constraints on the sequence of events that led to the formation of the system.”

    4
    Image of the Plutonian system

    Hubble’s monitoring of Pluto’s four outer moons has also revealed that three of them, Nix, Styx, and Hydra, are presently locked together in resonance where there is a precise ratio among their orbital periods. “This ties together their motion in a way similar to that of three of Jupiter’s large moons,” noted Hamilton. “If you were sitting on Nix you would see that Styx orbits Pluto twice for every three orbits made by Hydra.”

    Hubble provides observational evidence that the satellites are also orbiting chaotically. “However, that does not necessarily mean that the system is on the brink of flying apart,” Showalter added. “We need to know a lot more about the system before we can determine its long-term fate.”

    To the surprise of astronomers, Hubble also found that the moon Kerberos is as dark as a charcoal briquette, while the other satellites are as bright as white sand. It was predicted that pollution by dust blasted off the satellites by meteorite impacts should overcoat all the moons, giving their surfaces a homogeneous look. “This is a very provocative result,” Showalter said.

    NASA’s New Horizons probe, which will fly by the Pluto-Charon system in July 2015, may help settle the question of the asphalt-black moon as well as the other oddities uncovered by Hubble. These new discoveries are being used in the science planning for New Horizons’s observations.

    The chaos in the Pluto-Charon system offers insights into how planets orbiting a double-star might behave. “We are learning that chaos may be a common trait of binary systems,” Hamilton said. “It might even have consequences for life on planets in such systems.” NASA’s Kepler space observatory has found several planetary systems orbiting double stars.

    NASA Kepler Telescope
    Kepler

    Clues to the Pluto chaos first came when astronomers measured variations in the light reflected off of the two moons Nix and Hydra. Their brightness changed unpredictably. “The data were confusing; they made no sense at all. We had an inkling something was fishy,” Showalter said. His team analyzed Hubble images of Pluto taken during 2005-2012. They compared the unpredictable changes in the moons’ reflectivity to dynamical models of spinning bodies in complex gravitational fields.

    Virtually all large moons, as well as small moons in close-in orbits, keep one hemisphere facing their parent planet. This means that the satellite’s rotation is perfectly matched to the orbital period. This is not coincidental, but the consequence of gravitational tides between moon and planet. (Hyperion, which orbits Saturn, is the only other solar-system example of chaotic rotation; it is due to the combined gravitational tugs of the planet and it largest moon, Titan).

    Pluto’s moons are hypothesized to have formed by a collision between the dwarf planet and another similar-sized body early in the history of the solar system. The smashup flung material that coalesced into the family of satellites observed around Pluto today. Its large binary companion, Charon, was discovered in 1978. The object is almost half the size of Pluto. Hubble discovered Nix and Hydra in 2005, Kerberos in 2011, and Styx in 2012. These little moons, measuring just tens of miles across, were found as part of a Hubble search for potential hazards to the New Horizons spacecraft flyby.

    Pluto and Charon are called a double planet because they orbit about a common center of gravity that is located in the space between the bodies. Some regard the Earth-moon system as a double planet, too, although the center of gravity falls beneath Earth’s surface. (Our moon has 1/80th of Earth’s mass, whereas Charon has 1/8th of Pluto’s mass.)

    Researchers say that a combination of monitoring data from Hubble, New Horizons’s brief close-up look, and eventually, observations with the James Webb Space Telescope will help settle many mysteries of the Pluto-Charon system. No ground-based telescopes have yet been able to detect the smallest moons.

    NASA Webb Telescope
    Webb

    “Pluto will continue to surprise us when New Horizons flies past it in July,” Showalter said. “Our work with the Hubble telescope just gives us a foretaste of what’s in store.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
    • Matthew Wright 6:41 pm on June 3, 2015 Permalink | Reply

      Awesome stuff. It’s amazong what can be calculated from partial data. I figure this is a taster for the flood of info we’ll get about the Pluto system in a few months. And then will come the years of analysis which may well reveal other left-field discoveries about Pluto.

      Like

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: