Tagged: (DUNE)Deep Underground Neutrino Experiment Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:02 pm on September 5, 2018 Permalink | Reply
    Tags: (DUNE)Deep Underground Neutrino Experiment, , , ,   

    From Fermi National Accelerator Lab: “DUNE scientists receive NSF grant to tackle mass production of detector components for massive neutrino experiment” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    September 5, 2018

    1
    An anode plane assembly module for the ProtoDUNE detector is under construction at the Physical Sciences Lab at the University of Wisconsin. Photo: Reidar Hahn

    How can you build 150 particle detector assemblies in less than three years if the completion of one assembly takes almost two months?

    This is one of the big questions that scientists and engineers working on the international Deep Underground Neutrino Experiment have to answer to meet the ambitious goal of starting data taking in 2026.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    And the National Science Foundation just awarded a $1.6 million grant to four U.S. universities to develop the plan.

    “Building an experiment of this scale requires years of research and development,” said Denise Caldwell, director of NSF’s Division of Physics. “We are pleased that this award will enable NSF collaborators to contribute to the planning of this truly international effort.”

    While this is an NSF planning award for DUNE, the foundation has a long history of investments in major particle physics experiments, including research to uncover the mysteries of neutrinos. NSF is the primary funding source of the IceCube Neutrino Observatory, located at the South Pole. The IceCube collaboration recently announced the first evidence of a source of high-energy cosmic neutrinos, giving us a more complete understanding of the universe.

    The NSF grant for DUNE expands the foundation’s pioneering and significant investments in liquid-argon neutrino detectors and physics, including early investments in the ArgoNeuT, MicroBooNE and Short-Baseline Near Detector experiments.

    DUNE, supported by the U.S. Department of Energy Office of Science and hosted by the DOE’s Fermilab, will use four gigantic particle detector modules filled with a total of 70,000 tons of liquid argon to look for tracks created by neutrinos to learn more about these elusive particles and the role they play in the universe. A crucial building block of these modules are large, rectangular frames with four layers of wires on each side, called anode plane assemblies. Each APA comprises 24,000 meters of wire, wound in straight lines to record the signals created by neutrino collisions in liquid argon.

    Over the past two years, DUNE collaborators have built six of these APAs, each about 6 meters long and 2.3 meters wide, for a prototype detector the size of a two-story building, assembled at CERN.

    CERN Proto DUNE Maximillian Brice

    The final DUNE detectors, to be installed a mile underground at the Sanford Underground Research Facility in South Dakota, each will be 20 times larger.

    DUNE will need 300 APAs: half of them are expected to be built by a consortium of universities at Daresbury Laboratory in the UK, which already manufactured modules for the prototype at CERN; and the other half is expected to be built at facilities in the United States.

    Now with support from the NSF, scientists and engineers from the University of Chicago, Yale, Syracuse and the Physical Sciences Laboratory at the University of Wisconsin are taking the lead to finalize the design of the APAs for DUNE and figure out how a broad consortium of U.S. universities—including many more institutions than the four receiving the initial NSF grant—could collectively build 150 APAs and ship them to South Dakota for installation underground.

    “Once we have finalized the design and production plan, we will submit a proposal from a broad consortium of US universities to build the 150 APAs,” said University of Chicago’s Ed Blucher, who is the lead investigator on the NSF grant and co-spokesperson of the DUNE collaboration. “It will secure a leading role for NSF-supported university groups in constructing and ultimately in extracting physics from DUNE.”

    The four institutions have extensive expertise in the design and production of wire planes for liquid-argon neutrino detectors, starting more than a decade ago.

    “Now it is the technology of choice for many neutrino experiments,” said Bonnie Fleming, who served as the founding spokesperson for the ArgoNeuT and MicroBooNE experiments.

    Fermilab ArgoNeuT

    FNAL/MicroBooNE

    “At Yale’s Wright Lab, we are winding wire planes for the Short-Baseline Near Detector at Fermilab. This effort is led by Syracuse and funded by the NSF, and students and postdocs from collaborating institutions are engaged in the process.”

    FNAL Short-Baseline Near Detector

    The four institutions also have facilities that are big enough to set up the large assembly lines for the wiring and mass production of the APAs. In fact, the Physical Sciences Laboratory built four of the six APAs installed in the first DUNE prototype detector at CERN.

    “There are not many institutions that have facilities with enough floor space for this kind of work,” Blucher said. “The NSF grant allows us to figure out how to put the APA production facilities into existing buildings, how to run those factories, how to integrate students and postdocs into the project, and how to plan for the work flow.”

    So how do you produce 150 APAs in less than three years?

    “Setting up multiple assembly lines and increasing the efficiency of winding each APA are part of the answer,” Blucher explained. “Ultimately, the assembly of each APA must be faster while maintaining superb quality control.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 2:01 pm on August 16, 2018 Permalink | Reply
    Tags: (DUNE)Deep Underground Neutrino Experiment, , , , Hunt for the sterile neutrino, , , , , , , , Short-Baseline Neutrino experiments   

    From Fermi National Accelerator Lab: “ICARUS neutrino detector installed in new Fermilab home” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    August 16, 2018
    Leah Hesla

    For four years, three laboratories on two continents have prepared the ICARUS particle detector to capture the interactions of mysterious particles called neutrinos at the U.S. Department of Energy’s Fermi National Accelerator Laboratory.

    On Tuesday, Aug. 14, ICARUS moved into its new Fermilab home, a recently completed building that houses the large, 20-meter-long neutrino hunter. Filled with 760 tons of liquid argon, it is one of the largest detectors of its kind in the world.

    With this move, ICARUS now sits in the path of Fermilab’s neutrino beam, a milestone that brings the detector one step closer to taking data.

    It’s also the final step in an international scientific handoff. From 2010 to 2014, ICARUS operated at the Italian Gran Sasso National Laboratory, run by the Italian National Institute for Nuclear Physics. Then the detector was sent to the European laboratory CERN, where it was refurbished for its future life at Fermilab, outside Chicago. In July 2017, ICARUS completed its trans-Atlantic trip to the American laboratory.

    1
    The second of two ICARUS detector modules is lowered into its place in the detector hall. Photo: Reidar Hahn

    “In the first part of its life, ICARUS was an exquisite instrument for the Gran Sasso program, and now CERN has improved it, bringing it in line with the latest technology,” said CERN scientist and Nobel laureate Carlo Rubbia, who led the experiment when it was at Gran Sasso and currently leads the ICARUS collaboration. “I eagerly anticipate the results that come out of ICARUS in the Fermilab phase of its life.”

    Since 2017, Fermilab, working with its international partners, has been instrumenting the ICARUS building, getting it ready for the detector’s final, short move.

    “Having ICARUS settled in is incredibly gratifying. We’ve been anticipating this moment for four years,” said scientist Steve Brice, who heads the Fermilab Neutrino Division. “We’re grateful to all our colleagues in Italy and at CERN for building and preparing this sophisticated neutrino detector.”

    Neutrinos are famously fleeting. They rarely interact with matter: Trillions of the subatomic particles pass through us every second without a trace. To catch them in the act of interacting, scientists build detectors of considerable size. The more massive the detector, the greater the chance that a neutrino stops inside it, enabling scientists to study the elusive particles.

    ICARUS’s 760 tons of liquid argon give neutrinos plenty of opportunity to interact. The interaction of a neutrino with an argon atom produces fast-moving charged particles. The charged particles liberate atomic electrons from the argon atoms as they pass by, and these tracks of electrons are drawn to planes of charged wires inside the detector. Scientists study the tracks to learn about the neutrino that kicked everything off.

    Rubbia himself spearheaded the effort to make use of liquid argon as a detection material more than 25 years ago, and that same technology is being developed for the future Fermilab neutrino physics program.

    “This is an exciting moment for ICARUS,” said scientist Claudio Montanari of INFN Pavia, who is the technical coordinator for ICARUS. “We’ve been working for months choreographing and carrying out all the steps involved in refurbishing and installing it. This move is like the curtain coming down after the entr’acte. Now we’ll get to see the next act.”

    ICARUS is one part of the Fermilab-hosted Short-Baseline Neutrino program, whose aim is to search for a hypothesized but never conclusively observed type of neutrino, known as a sterile neutrino. Scientists know of three neutrino types. The discovery of a fourth could reveal new physics about the evolution of the universe. It could also open an avenue for modeling dark matter, which constitutes 23 percent of the universe’s mass.

    ICARUS is the second of three Short-Baseline Neutrino detectors to be installed. The first, called MicroBooNE, began operating in 2015 and is currently taking data. The third, called the Short-Baseline Near Detector, is under construction. All use liquid argon.

    FNAL/MicroBooNE

    FNAL Short-Baseline Near Detector

    Fermilab’s powerful particle accelerators provide a plentiful supply of neutrinos and will send an intense beam of the particle through the three detectors — first SBND, then MicroBooNE, then ICARUS. Scientists will study the differences in data collected by the trio to get a precise handle on the neutrino’s behavior.

    “So many mysteries are locked up inside neutrinos,” said Fermilab scientist Peter Wilson, Short-Baseline Neutrino coordinator. “It’s thrilling to think that we might solve even one of them, because it would help fill in our frustratingly incomplete picture of how the universe evolved into what we see today.”

    2
    Members of the crew that moved ICARUS stand by the detector. Photo: Reidar Hahn

    The three Short-Baseline Neutrino experiments are just one part of Fermilab’s vibrant suite of experiments to study the subtle neutrino.

    NOvA, Fermilab’s largest operating neutrino experiment, studies a behavior called neutrino oscillation.


    FNAL/NOvA experiment map


    FNAL NOvA detector in northern Minnesota


    FNAL Near Detector

    The three neutrino types change character, morphing in and out of their types as they travel. NOvA researchers use two giant detectors spaced 500 miles apart — one at Fermilab and another in Ash River, Minnesota — to study this behavior.

    Another Fermilab experiment, called MINERvA, studies how neutrinos interact with nuclei of different elements, enabling other neutrino researchers to better interpret what they see in their detectors.

    Scientists at Fermilab use the MINERvA to make measurements of neutrino interactions that can support the work of other neutrino experiments. Photo Reidar Hahn

    FNAL/MINERvA


    “Fermilab is the best place in the world to do neutrino research,” Wilson said. “The lab’s particle accelerators generate beams that are chock full of neutrinos, giving us that many more chances to study them in fine detail.”

    The construction and operation of the three Short-Baseline Neutrino experiments are valuable not just for fundamental research, but also for the development of the international Deep Underground Neutrino Experiment (DUNE) and the Long-Baseline Neutrino Facility (LBNF), both hosted by Fermilab.

    DUNE will be the largest neutrino oscillation experiment ever built, sending particles 800 miles from Fermilab to Sanford Underground Research Facility in South Dakota. The detector in South Dakota, known as the DUNE far detector, is mammoth: Made of four modules — each as tall and wide as a four-story building and almost as long as a football field — it will be filled with 70,000 tons of liquid argon, about 100 times more than ICARUS.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    The knowledge and expertise scientists and engineers gain from running the Short-Baseline Neutrino experiments, including ICARUS, will inform the installation and operation of LBNF/DUNE, which is expected to start up in the mid-2020s.

    “We’re developing some of the most advanced particle detection technology ever built for LBNF/DUNE,” Brice said. “In preparing for that effort, there’s no substitute for running an experiment that uses similar technology. ICARUS fills that need perfectly.”

    Eighty researchers from five countries collaborate on ICARUS. The collaboration will spend the next year instrumenting and commissioning the detector. They plan to begin taking data in 2019.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: