From The ARC Centres of Excellence for All Sky Astrophysics in 3D (AU) Via phys.org : “Dozens of newly discovered gravitational lenses could reveal ancient galaxies and the nature of dark matter” 

arc-centers-of-excellence-bloc

From The ARC Centres of Excellence for All Sky Astrophysics in 3D (AU)

Via

phys.org

9.26.22

1
Pictures of gravitational lenses from the AGEL survey. The pictures are centred on the foreground galaxy and include the object name. Each panel includes the confirmed distance to the foreground galaxy (zdef) and distant background galaxy (zsrc). Credit: Kim-Vy H. Tran et al, The Astronomical Journal (2022)

[Many more images are available in the science paper.]

Earlier this year a machine learning algorithm identified up to 5,000 potential gravitational lenses that could transform our ability to chart the evolution of galaxies since the Big Bang.

Now astronomer Kim-Vy Tran from ASTRO 3D and UNSW Sydney and colleagues have assessed 77 of the lenses using the Keck Observatory in Hawai’i and the Very Large Telescope in Chile. She and her international team confirmed that 68 out of the 77 are strong gravitational lenses spanning vast cosmic distances.

This success rate of 88% suggests that the algorithm is reliable and that we could have thousands of new gravitational lenses. To date, gravitational lenses have been hard to find and only about a hundred are routinely used.

Kim-Vy Tran’s paper published today in The Astronomical Journal [below] presents spectroscopic confirmation of strong gravitational lenses previously identified using Convolutional Neural Networks, developed by data scientist Dr. Colin Jacobs at ASTRO 3D and Swinburne University.

The work is part of the ASTRO 3D Galaxy Evolution with Lenses (AGEL) survey.

“Our spectroscopy allowed us to map a 3D picture of the gravitational lenses to show they are genuine and not merely chance superposition,” says corresponding author Dr. Tran from the ARC Centre of Excellence for All Sky Astrophysics in 3-Dimensions (ASTRO3D) and the University of NSW (UNSW).

“Our goal with AGEL is to spectroscopically confirm around 100 strong gravitational lenses that can be observed from both the Northern and Southern hemispheres throughout the year,” she says.

The paper is the result of a collaboration spanning the globe with researchers from Australia, the United States, the United Kingdom, and Chile.

The work was made possible by the development of the algorithm to look for certain digital signatures.

“With that we could identify many thousands of lenses compared to just a few handfuls,” says Dr. Tran.

Gravitational lensing was first identified as a phenomenon by Einstein who predicted that light bends around massive objects in space in the same way that light bends going through a lens.

In doing so, it greatly magnifies images of galaxies that we would not otherwise be able to see.

While it has been used by astronomers to observe far away galaxies for a long time, finding these cosmic magnifying glasses in the first place has been hit and miss.

“These lenses are very small so if you have fuzzy images, you’re not going to really be able to detect them,” says Dr. Tran.

While these lenses let us see objects that are millions of light years away more clearly, it should also let us “see” invisible dark matter that makes up most of the Universe.

“We know that most of the mass is dark,” says Dr. Tran. “We know that mass is bending light and so if we can measure how much light is bent, we can then infer how much mass must be there.”

Having many more gravitational lenses at various distances will also give us a more complete image of the timeline going back almost to the Big Bang.

“The more magnifying glasses you have, the better chance you can try to survey these more distant objects. Hopefully, we can better measure the demographics of very young galaxies,” says Dr. Tran.

“Then somewhere between those really early first galaxies and us there’s a whole lot of evolution that’s happening, with tiny star forming regions that convert pristine gas into the first stars to the sun, the Milky Way.”

“And so with these lenses at different distances, we can look at different points in the cosmic timeline to track essentially how things change over time, between the very first galaxies and now.”

Dr. Tran’s team spanned the globe, with each group providing different expertise.

“Being able to collaborate with people, at different universities, has been so crucial, both for setting the project up in the first place, and now continuing with all of the follow-up observations,” she says.

Professor Stuart Wyithe of the University of Melbourne and Director of the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (Astro 3D) says each gravitational lens is unique and tells us something new.

“Apart from being beautiful objects, gravitational lenses provide a window to studying how mass is distributed in very distant galaxies that are not observable via other techniques. By introducing ways to use these new large data sets of the sky to search for many new gravitational lenses, the team opens up the opportunity to see how galaxies get their mass,” he says.

Professor Karl Glazebrook of Swinburne University, and Dr. Tran’s Co-Science Lead on the paper, paid tribute to the work that had gone before.

“This algorithm was pioneered by Dr. Colin Jacobs at Swinburne. He sifted through tens of millions of galaxy images to prune the sample down to 5,000. Never did we dream that the success rate would be so high,” he says.

“Now we are getting images of these lenses with the Hubble Space Telescope, they range from jaw-droppingly beautiful to extremely strange images that will take us considerable effort to figure out.”

Associate Professor Tucker Jones of UC Davis, another co-science lead on the paper, described the new sample as “a giant step forward in learning how galaxies form over the history of the Universe.”

“Normally these early galaxies look like small fuzzy blobs, but the lensing magnification allows us to see their structure with much better resolution. They are ideal targets for our most powerful telescopes to give us the best possible view of the early universe,” he says.

“Thanks to the lensing effect we can learn what these primitive galaxies look like, what they are made of, and how they interact with their surroundings.”

Science paper:
The Astronomical Journal

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The ARC Centre of Excellence in All Sky Astrophysics in 3 Dimensions (AU)

Unifies over 200 world-leading astronomers to understand the evolution of the matter, light, and elements from the Big Bang to the present day.

We are combining Australian innovative 3D optical and radio technology with new theoretical supercomputer simulations on a massive scale, requiring new big data techniques.

Through our nationwide training and education programs, we are training young scientific leaders and inspiring high-school students into STEM sciences to prepare Australia for the next generation of telescopes: the Square Kilometre Array and the Extremely Large Optical telescopes.

The objectives for the ARC Centres of Excellence (AU) are to to:

Undertake highly innovative and potentially transformational research that aims to achieve international standing in the fields of research envisaged and leads to a significant advancement of capabilities and knowledge.

Link existing Australian research strengths and build critical mass with new capacity for interdisciplinary, collaborative approaches to address the most challenging and significant research problems.

Develop relationships and build new networks with major national and international centres and research programs to help strengthen research, achieve global competitiveness and gain recognition for Australian research

Build Australia’s human capacity in a range of research areas by attracting and retaining, from within Australia and abroad, researchers of high international standing as well as the most promising research students.

Provide high-quality postgraduate and postdoctoral training environments for the next generation of researchers.

Offer Australian researchers opportunities to work on large-scale problems over long periods of time.

Establish Centres that have an impact on the wider community through interaction with SKA Murchison Widefield Array (AU), Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO), on the traditional lands of the Wajarri peoples.

The Murchison Radio-astronomy Observatory,on the traditional lands of the Wajarri peoples, in outback Western Australia will house up to 130,000 antennas like these and the associated advanced technologies.

EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.

SKA ASKAP Pathfinder Radio Telescopehigher education institutes, governments, industry and the private and non-profit sector.