Tagged: DOE’s Fermi National Accelerator Laboratory (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:57 am on August 30, 2021 Permalink | Reply
    Tags: "SQMS Center announces the addition of Rutgers University-New Brunswick to its growing collaboration", 3D superconducting qubit architecture, A primary focus of the SQMS Center is the extension of the lifetime of qubits., DOE's Fermi National Accelerator Laboratory (US), , Rutgers brings world-class expertise in the 3D superconducting quantum systems., The strength of SQMS is that it brings world experts in quantum information science together as one collaboration   

    From DOE’s Fermi National Accelerator Laboratory (US) : “SQMS Center announces the addition of Rutgers University-New Brunswick to its growing collaboration” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    August 30, 2021
    Hannah Adams

    The Superconducting Quantum Materials and Systems Center hosted by Fermilab is proud to announce the addition of a new contributing partner: Rutgers University-New Brunswick (US).

    The Superconducting Quantum Materials and Systems Center was established in September 2020 as a National Quantum Information Science Research Center. It comprises a diverse group of collaborators from a variety of disciplines and backgrounds.

    Following its inception, SQMS established a rigorous process to onboard new partner institutions into the collaboration. Rutgers-New Brunswick joins 19 other collaborating institutions, representing federal labs, academia and industry. To date, more than 275 members — both national and international — conduct center research activities.

    “Rutgers is extremely excited by this opportunity to collaborate with the efforts of SQMS. Quantum information science is a high-priority area for the university,” said Robert Bartynski, chair of the department of physics and astronomy at Rutgers-New Brunswick.

    Srivatsan Chakram, an assistant professor in the department of physics and astronomy at Rutgers-New Brunswick, will serve as one of the principal investigators in the SQMS technology thrust, specifically in the devices and materials focus areas.

    1
    Assistant Professor in the department of Physics and Astronomy Srivatsan Chakram

    “Having Professor Chakram as a principal investigator forms a natural bridge between the complementary expertise present at both organizations,” said Bartynski.

    “Rutgers brings world-class expertise in the 3D superconducting quantum systems,” said Alexander Romanenko, Fermilab chief technology officer and SQMS technology thrust leader. “Professor Chakram is one of the world experts on the 3D superconducting qubit architecture and specifically on cavity-based quantum processors, where he performed some recent pioneering work.”

    A primary focus of the SQMS Center is the extension of the lifetime of qubits, the foundational element of quantum computing. Extending the lifetime, or coherence time, of qubits increases the amount of time that they can exist in a quantum state and hold quantum information.

    “It’s great to be part of this collaboration, which I think will be very fruitful,” said Chakram. “Fermilab makes the best cavities in the world. The best cavities I have made can store single microwave photons for a few milliseconds. The cavities made at Fermilab have lifetimes approaching a second. Leveraging the extraordinary coherence of the Fermilab cavities should allow us to build better quantum processors. I have some expertise with designing and building these kinds of systems, so I think this collaboration will be mutually beneficial.”

    The addition of new collaborators requires review from the center’s leadership and must be approved by the Office of Science of the U.S. Department of Energy. New partners can be added to increase technical capabilities and strengthen the SQMS Center. The addition of a new partner often meets a specific need.

    “The strength of SQMS is that it brings world experts in quantum information science together as one collaboration,” said SQMS Director Anna Grassellino of Fermilab. “Professor Chakram is one such expert, and we are thrilled to welcome him to the SQMS Center.”

    The Superconducting Quantum Materials and Systems Center at Fermilab is supported by the DOE Office of Science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.

    FNAL Icon

     
  • richardmitnick 1:28 pm on August 4, 2021 Permalink | Reply
    Tags: "Drilling for neutrinos", , , DOE's Fermi National Accelerator Laboratory (US), ,   

    From DOE’s Fermi National Accelerator Laboratory (US): “Drilling for neutrinos” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US), an enduring source of strength for the US contribution to scientific research worldwide.

    August 4, 2021
    Mary Magnuson

    Nearly a mile belowground in South Dakota, there’s a flurry of activity. Three shifts of 30 construction workers labor around the clock, carving out subterranean space for science. It’s a huge effort centered around one of the tiniest things in nature: the neutrino.

    1
    Drilling the ventilation shaft. Fermilab’s Syd Devries (left) and James Rickard stand with the reamer. Photo: Andrew Hardy, Thyssen Mining.

    Neutrinos are fascinating particles. Trillions of them pass through you every second without a trace. They’re produced by almost everything: Earth, the sun, supernovae, bananas and people, to name a few. These bizarre building blocks could hold the key to understanding why matter exists in the universe, rather than antimatter — or nothing at all.

    To better study these elusive particles, an international collaboration of more than 1,000 scientists are building the Deep Underground Neutrino Experiment, or DUNE, hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory. Researchers will study a beam of neutrinos as it leaves Fermilab in Illinois and again when it reaches the Sanford Underground Research Facility in South Dakota.

    The particles will travel 800 miles (1,300 kilometers) straight through the earth to go from lab to lab — no tunnel needed.

    Space for four jumbo jets

    The DUNE detector in South Dakota will be the largest neutrino detector of its kind ever made. Each of the four detector modules will hold 17,000 tons of liquid argon, in which neutrinos will interact and leave their signature traces.

    Making space for these massive instruments and their support equipment is part of the work to create the Long-Baseline Neutrino Facility. It will require moving roughly 800,000 tons of rock, creating caverns big enough to hold the bodies of four jumbo jets.

    Thyssen Mining, the company carrying out the excavation, is one of two major contractors that are supporting the excavation phase of work.

    “It’s our first federal contract. We were interested in it because we do large-cavern excavation in hard rock, so we are well qualified for it,” Andrew Hardy of Thyssen Mining said. “It’s very exciting for us to be part of this massive team that will contribute towards the success of this project. We’re part of a great on-site team.”

    Before large-cavern excavation can begin, there is some prep work to do. The first step is widening existing underground tunnels, called drifts, and creating a quarter-mile-long vertical ventilation shaft. The opening will improve the flow of air needed for excavation a mile underground at the 4,850-foot level, where the main construction work will take place. The excavation of the main caverns will begin this fall.

    3
    On June 30, the drill head breaks through the roof at the 4,850-foot level to complete the pilot hole for the raise-bore ventilation. Photo: Fermilab.

    Excavating with precision

    To create the shaft, Thyssen is using a technique called “raise-bore drilling.” In June, construction workers drilled a 1,200-foot-long pilot hole about a foot in diameter from the 3,650-foot level down to the 4,850-foot level. The drill bit used sensors called inclinometers to detect any deviation from vertical, sending real-time data to a computer that issued corrections to the steering mechanism. The pilot hole was completed on June 30, with the drill emerging mere inches from its target in the cavern at the 4,850-foot level.

    With the pilot hole complete, workers at the 4,850-foot level replaced the drill bit with a large reamer. This circular tool is about 12 feet wide and spins as the construction crew pulls it up through the ceiling, chewing out rock as it goes. The debris falls down to the 4,850-foot level, where it is scooped up, transported to the Ross Shaft and taken for a mile-long ride to the surface. A conveyor system then brings the rock another three-quarters of a mile to a former open-pit mining site called the Open Cut. Crews expect to complete the ventilation shaft in the fall.

    The raise-bore technique “is probably the best method to build circular shafts,” said James Rickard, the Fermilab resident engineer managing the excavation. “And it’s very good for hard rock,” the type present at the facility.

    Along with excavation of the main caverns, crews will also enlarge some of the drifts and the area around the Ross Shaft to create more space for transporting the DUNE equipment. For this excavation as well as the eventual excavation of the main caverns, the teams will switch to the “drill and blast” technique, using explosive charges placed in small holes.

    Working underground isn’t always easy, but the crews are highly trained and work with state-of-the-art equipment.

    “It can be dark; it can be dirty; it can get hot,” Rickard said. “But it’s a way of life that these workers are used to. And we have everything modern — we’ve got modern equipment and good ventilation.”

    Driven by science

    When the space is ready, researchers will begin bringing all of the components needed for the massive experiment underground and assembling the detector, like a ship in a bottle.

    DUNE will address three major science goals: determine why matter exists in the universe; watch for neutrinos from a supernova in our galaxy; and look for unexpected subatomic processes, such as proton decay, a phenomenon that has never been observed before.

    Fermilab’s Elaine McCluskey, the project manager for LBNF/DUNE-US, said while the excavation process may take years, keeping the future science goals in mind helps her stay excited.

    “It feels like we’re actually accomplishing the goal that we all want to get to, which is to enable the scientists to take data,” McCluskey said. “Neutrinos will help us understand more about our universe and ourselves. People want to know why we’re here, why we exist. DUNE will bring us closer to the answers to these questions.”

    4
    The raise-bore drill rig stands at the ready. Photo: Nathan Strasbaugh.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Fermi National Accelerator Laboratory (US) , located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.

    Asteroid 11998 Fermilab is named in honor of the laboratory.

    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.

    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.

    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    FNAL Icon

     
  • richardmitnick 2:39 pm on July 18, 2021 Permalink | Reply
    Tags: "Fermilab and INFN sign 3 arrangements", , , DOE's Fermi National Accelerator Laboratory (US), FNAL Short Baseline Neutrino Program, , , , ,   

    From DOE’s Fermi National Accelerator Laboratory (US) : “Fermilab and INFN sign 3 arrangements” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    July 16, 2021
    Hema Ramamoorthi

    [I do not usually cover these sort of contractual news articles; but this is a big deal for both parties. This actually strengthens the U.S. position in Particle Physics and High Energy Physics which we ceded to Europe when our idiots cancelled the Superconducting Super Collider and allowed the finding of the Higgs Boson at the Large Hdron Collider, which was at 14TeV about one third the power the SSC would have achieved. Our overall position in HEP is still strong but under the radar: many of the superconducting magnets for the LHC are built at DOE’s Brookhaven, Lawrence Berkeley, and Fermi National Laboratories. Also, there are 600 scentists on the Atlas(CH) project at Brookhaven and 1,000 scientists on CMS[CH] at Fermilab, and there are other noted scientists in our universities who do work at and for the LHC. Sorry, for the editorial, but as a science commmunicator, keeping the record straight is my job. I do not write any science as I am not any kind of scientist, but I take science news to over 1,000 readers all over the world and I want to do a good and complete job. Keeping the U.S. position in the Basic and Applied Sciences portrayed accurately is my chosen field.

    This is a great contractual agreement for both parties, on a par with all of the contractual agreements surrounding the development of SKA and SARAO. ]

    1
    Fermilab Director Nigel Lockyer (left) and INFN President Antonio Zoccoli sign the three arrangements. Credit: Fermilab and INFN.

    The U.S. Department of Energy’s Fermi National Accelerator Laboratory signed three international arrangements in June with the National Institute for Nuclear Physics, known as INFN, the Italian research agency dedicated to the study of the fundamental constituents of matter and the laws that govern them. Under the supervision of the MIUR – Italian Ministry of Education, University and Research (IT), the INFN conducts theoretical and experimental research in the fields of subnuclear, nuclear, particle and astroparticle physics.

    The three arrangements include:

    a Multi-Institutional Memorandum of Understanding for the FNAL Short Baseline Neutrino Program hosted at Fermilab;
    a Project Planning Document for the PIP-II particle accelerator project at Fermilab; and
    a legally binding agreement with INFN -National Laboratory of Frascati [Laboratori Nazionali di Frascati] (IT) to develop a superconducting undulator for the EuPRAXIA advanced accelerator project.

    “Our INFN partners are internationally recognized leaders in advanced particle accelerator technologies in general and superconducting radio-frequency technology in particular,” said PIP-II Project Director Lia Merminga. “Fermilab and the PIP-II project are grateful to INFN for their expertise and contributions in building a state-of-the-art particle accelerator powering the world’s most intense neutrino beam. These contributions will help drive groundbreaking discoveries in particle physics for the next 50 years.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.

    FNAL Icon

     
  • richardmitnick 10:49 pm on June 30, 2021 Permalink | Reply
    Tags: "DUNE prototype detector ArgonCube crosses the globe", , DOE's Fermi National Accelerator Laboratory (US), DUNE/LBNF experiment (US),   

    From DOE’s Fermi National Accelerator Laboratory (US) : “DUNE prototype detector ArgonCube crosses the globe” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    June 30, 2021
    Brianna Barbu

    1
    The ArgonCube collaboration assembled the first of four prototype neutrino detector modules for the DUNE near detector at the University of Bern [Universität Bern](CH). The module now is on its way to Fermilab for testing with a neutrino beam. Photo: Igor Kreslo.

    Imagine you’re standing at one end of a long, windowless hallway. The only light is the beam from a flashlight in your hand, illuminating the length of the hall. In the beam’s path are two clear boxes: one right in front of you, the other at the far end of the hall. Because the beam’s light spreads out as it travels, the far box is lit only dimly, while the near box is blindingly bright.

    That, in a nutshell, is the difference between what the near and far detectors will see when the international Fermi National Accelerator Laboratory DUNE/LBNF experiment (US) hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory starts up later this decade.

    But instead of light from a flashlight, DUNE will send a particle beam through multiple detectors to tackle big mysteries in particle physics — including why the universe evolved the way it did.

    At the heart of the experiment are elusive particles called neutrinos, which scientists will study using detectors underground at Fermilab in Illinois and the Sanford Underground Research Facility, or SURF, in South Dakota.

    The far detector, 800 miles (1,300 kilometers) from the source of the beam, will detect about one neutrino for every four hours of data collection — the dim light in our analogy. The near detector, about 2,000 feet (600 meters) from the beam source, will be bombarded with neutrinos, capturing about a dozen every second.

    For the past six years, an international collaboration of more than 100 scientists and engineers from 31 institutions has been working on ArgonCube, a new type of detector that will make sure the near detector can successfully see all of the neutrino interactions clearly without “glare” from overlapping signals. A prototype is now traveling from the University of Bern in Switzerland to Fermilab for testing with the lab’s neutrino beams.

    “A lot of people were involved, including a lot of students and postdocs,” said Michele Weber, who leads the team at Bern working on the near detector. “We’re all very excited about creating something new.”

    Creating something new

    Neutrinos come in three varieties, called flavors. But thanks to some of nature’s quantum shenanigans known as oscillation, they change flavor as they travel. DUNE’s near and far detectors will record what flavors make up the beam at the beginning and end of their journey from Fermilab to SURF. Looking at how the neutrinos change during their journey will give scientists clues about the fundamental building blocks of matter and how the universe began.

    Two main innovations will help ArgonCube sort out a deluge of neutrino data. The first is a pixelated charge readout, which adds a third dimension to data collection. Current state-of-the art detectors such as ProtoDUNE, an enormous testbed for DUNE’s far detectors, use wires for charge collection.

    While powerful, these systems only create a 3D view of the particle interactions by overlaying several 2D images. In the flurry of chaotic and overlapping particle interactions in the near detector, the extra spatial dimension provided by ArgonCube will make it easier for scientists to tell apart near-simultaneous neutrino events. Each ArgonCube protype module has around 80,000 pixels.

    The other ArgonCube feature that will help scientists distinguish between multiple neutrino interactions in the near detector is modularity. The final detector will be made up of 35 independent ArgonCube modules sharing a single cryogenic argon bath.

    “Having multiple search volumes helps us see each single interaction separately,” said Weber. Despite the name, ArgonCube modules are actually rectangular. The prototype currently en route to Fermilab is nearly 6 feet tall with a 2.5-by-2.5-foot base (1.8 meters tall with about a three-quarter meter square base). The final modules for the near detector will be about twice as tall and 5 times bigger in volume.

    2
    Four ArgonCube prototype modules will undergo testing with the NuMI neutrino beam, powered by Fermilab’s Main Injector accelerator. Each module is nearly 6 feet tall. The DUNE near detector will feature 35 modules, each one five times larger in volume than a prototype module. Illustration: Gary Smith, Fermilab.

    The modular setup means the charge and light produced by neutrino interactions won’t have as far to travel to reach the electronics that record them. Hence, the electric field voltage doesn’t have to be as high to draw those particles along. This reduces the demand on high-voltage supply and makes the detector easier and safer to operate.

    ArgonCube also includes an improved light detection system, important for reconstructing the timing of particle interactions. It also features a new, more compact way of producing the internal electric field.

    Building blocks

    Researchers tested the first complete ArgonCube prototype module at Bern earlier this year. The prototype module successfully picked up particle tracks from cosmic ray muons, high-energy particles produced in Earth’s atmosphere. With that basic functionality confirmed, the team used cosmic rays to check that the detector’s charge and light detection systems work together to capture 3D particle trajectories.

    That same module, with its accompanying cryogenic system, is now on its journey by truck and ship to Fermilab for the next phase of testing. This will be the first large DUNE prototype module to arrive at Fermilab. A second module will come in early fall, followed by two more by the end of 2021.

    The Fermilab team plans to first test two ArgonCube modules side-by-side above ground at the Liquid Argon Test Facility. There they will check the cryogenic systems and do initial troubleshooting related to connecting the modules and combining their signals. Then the team needs to work out how best to install and operate modules in tandem. The next step is to take all four modules 300 feet (100 meters) underground to the refurbished MINOS hall for testing with a neutrino beam powered by Fermilab’s Main Injector accelerator, known as the NuMI beamline.

    “From one module to two and two to four is a big change,” said Ting Miao, the Fermilab scientist serving as project manager for the prototype installation and testing. “We want to flesh out all the details of operation and installation before we do things underground.”

    The NuMI beam will simulate the intense onslaught of neutrinos that the DUNE near detector will see and make sure the detector can disentangle overlapping signals. Beginning next year, these tests will look at every aspect of the detection process — including beam timing, event selection and data processing. The results will confirm whether the modular approach works. They will help the ArgonCube team prepare for analyzing the data from the 35 full-size modules that will go into the final DUNE near detector.

    Though it will be a few years before the ArgonCube technology fulfills its DUNE destiny, it’s already made remarkable strides since the idea for a next-generation modular neutrino detector was first sketched out during a coffee hour at Bern in 2014.

    “The most amazing thing is to see the journey of this detector, coming together from first ideas on a blackboard and pieces of paper to recording particle events,” said Weber.

    The international Deep Underground Neutrino Experiment hosted by Fermilab is supported by the DOE Office of Science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.[/caption]

    FNAL Icon

     
  • richardmitnick 10:17 pm on June 21, 2021 Permalink | Reply
    Tags: "What the Muon g-2 results mean for how we understand the universe", , , DOE's Fermi National Accelerator Laboratory (US), , If it’s really new physics we’ll be much closer to knowing in a year or two., , The result announced in April reached 4.2 sigma; the benchmark that means it’s almost certainly true is 5 sigma.,   

    From University of Chicago (US): “What the Muon g-2 results mean for how we understand the universe” 

    U Chicago bloc

    From University of Chicago (US)

    Jun 21, 2021
    Louise Lerner

    Experiment opens up field for new physics, say Fermilab, UChicago scientists.

    1
    Peering down a row of magnets leading to the particle storage ring at Fermilab’s Muon g-2 experiment. The results have theoretical physicists around the world frantically working through ideas for explanations.

    The news that muons have a little extra wiggle in their step sent word buzzing around the world this spring.

    The Muon g-2 experiment hosted at Fermi National Accelerator Laboratory announced April 7 that they had measured a particle called a muon behaving slightly differently than predicted in their giant accelerator. It was the first unexpected news in particle physics in years.

    Everyone’s excited, but few more so than the scientists whose job it is to spitball theories about how the universe is put together. For these theorists, the announcement has them dusting off old theories and speculating on new ones.

    “To a lot of us, it looks like and smells like new physics,” said Prof. Dan Hooper. “It may be that one day we look back at this and this result is seen as a herald.”

    Gordan Krnjaic, a fellow theoretical physicist, agreed: “It’s a great time to be a speculator.”

    The two scientists are affiliated with the University of Chicago and Fermilab; neither worked directly on the Muon g-2 experiment, but both were elated by the results. To them, these findings could be a clue that points the way to unraveling the last mysteries of particle physics—and with it, our understanding of the universe as a whole.

    2
    The Muon g-2 ring sits in its detector hall amidst electronics racks, the muon beamline, and other equipment. This impressive experiment operates at negative 450 degrees Fahrenheit and studies the precession, or “wobble,” of particles called muons as they travel through the magnetic field. Photo by Reidar Hahn/Fermilab.

    Setting the Standard

    The problem was that everything was going as expected.

    Based on century-old experiments and theories going back to the days of Albert Einstein’s early research, scientists have sketched out a theory of how the universe—from its smallest particles to its largest forces—is put together. This explanation, called the Standard Model, does a pretty good job of connecting the dots. But there are a few holes—things we’ve seen in the universe that aren’t accounted for in the model, like Dark Matter.

    No problem, scientists thought. They built bigger experiments, like the Large Hadron Collider in Europe, to investigate the most fundamental properties of particles, sure that this would yield clues.

    But even as they looked more deeply, nothing they found seemed out of step with the Standard Model. Without new avenues to investigate, scientists had no idea where and how to look for explanations for the discrepancies like dark matter.

    Then, finally, the Muon g-2 experiment results came in from Fermilab (which is affiliated with the University of Chicago). The experiment reported a tiny difference between how muons should behave according to the Standard Model, and what they were actually doing inside the giant accelerator.


    What is a muon, and how does the Muon g-2 experiment work? Fermilab scientists explain the significance of the result. Video by Fermilab.

    Murmurs broke out around the world, and the minds of Hooper, Krnjaic and their colleagues in theoretical physics began to race. Almost any explanation for a new wrinkle in particle physics would have profound implications for the history of the universe.

    That’s because the tiniest particles affect the largest forces in the universe. The minute differences in the masses of each particle affect the way that the universe expanded and evolved after the Big Bang. In turn, that affects everything from how galaxies are held together down to the nature of matter itself. That’s why scientists want to precisely measure how the butterfly flapped its wings.

    The likely suspects

    So far, there are three main possible explanations for the Muon g-2 results—if it is indeed new physics and not an error.

    One is a theory known as “supersymmetry,” which was very fashionable in the early 2000s, Hooper said. Supersymmetry suggests that that each subatomic particle has a partner particle. It’s attractive to physicists because it’s an overarching theory that explains several discrepancies, including dark matter; but the Large Hadron Collider hasn’t seen any evidence for these extra particles. Yet.

    Another possibility is that some undiscovered, relatively heavy form of matter interacts strongly with muons.

    Finally, there could also exist some other kinds of exotic light particles, as yet undiscovered, that interact weakly with muons and cause the wobble. Krnjaic and Hooper wrote a paper laying out what such a light particle, which they called “Z prime,” could mean for the universe.

    “These particles would have to have existed since the Big Bang, and that would mean other implications—for example, they could have an impact on how fast the universe was expanding in its first few moments,” Krnjaic said.

    That could dovetail with another mystery that scientists are pondering, called the Hubble constant. That number is supposed to indicate how fast the universe is expanding, but it varies slightly according to which way you measure it—a discrepancy which could indicate a missing piece in our knowledge.

    There are other, further-out possibilities, such as that the muons are being bumped by particles winking in and out of existence from other dimensions. (“One thing particle physicists are rarely accused of is a lack of creativity,” said Hooper.)

    But the scientists said it’s important not to dismiss theories out of hand, no matter how wild they may sound.

    “We don’t want to overlook something just because it sounded weird,” said Hooper. “We’re constantly trying to shake the trees to get every idea we can out there. We want to hunt this down everywhere it could be hiding.”

    Sigma steps

    The first step, however, is to confirm that the Muon g-2 result holds true. Scientists have a system to tell whether the results of an experiment are real and not just a blip in the data. The result announced in April reached 4.2 sigma; the benchmark that means it’s almost certainly true is 5 sigma.

    “If it’s really new physics we’ll be much closer to knowing in a year or two,” said Hooper. The Muon g-2 experiment has much more data to sift through. Meanwhile, the results of some very complicated theoretical calculations—so complex that even the most powerful supercomputers in the world need to chew on them for months to years—should be coming down the pike.

    Those results, if they get to a 5 sigma confidence level, will point scientists where to go next. For example, Krnjaic helped propose a Fermilab program called M3 that could narrow the possibilities by firing a beam of muons at a metal target—measuring the energy before and after the muons hit. Those results could indicate the presence of a new particle.

    Meanwhile, at the French-Swiss border, the Large Hadron Collider is scheduled to upgrade to a higher luminosity that will produce more collisions. New evidence for particles or other phenomena could pop up in their data.

    All this excitement over a wobble might seem like an overreaction. But tiny discrepancies can, and have, led to massive shakeups. Back in the 1850s, astronomers making measurements of Mercury’s orbit noticed it was off a little from what Newton’s theory of gravity would predict. “That anomaly, along with other evidence, eventually led us to the theory of general relativity,” said Hooper.

    “No one knew what it was about, but it got people thinking and experimenting. My hope is that one day we’ll look back at this muon result the same way.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago (US) has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory (US), DOE’s Fermi National Accelerator Laboratory (US), and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory(US) and DOE’s Argonne National Laboratory(US), as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL)(US). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics; establishing revolutionary theories of economics; and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 9:08 am on June 2, 2021 Permalink | Reply
    Tags: "ICARUS gets ready to fly", , DOE's Fermi National Accelerator Laboratory (US), , ,   

    From DOE’s Fermi National Accelerator Laboratory (US) : “ICARUS gets ready to fly” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    May 20, 2021
    Brianna Barbu

    The ICARUS detector [image below], part of Fermilab’s Short-Baseline Neutrino Program, will officially start its hunt for elusive sterile neutrinos this fall. The international collaboration led by Nobel laureate Carlo Rubbia successfully brought the detector online and is now collecting test data and making final improvements.

    When teams began cooling the ICARUS neutrino detector and filling it with 760 tons of liquid argon in early 2020, few people knew how much the world would change in the two months that the fill would take.

    “In an ideal world, as soon as the filling is complete and the cryogenic plant is stabilized, then we can activate the detector and start looking for particle tracks basically immediately,” said Angela Fava, the ICARUS commissioning coordinator and deputy technical coordinator.

    The ICARUS collaboration includes more than 150 scientists from 23 institutions in Italy, Mexico, Switzerland and the United States. The detector is located at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, located near Chicago.

    Restrictions on international travel instituted last year due to the COVID-19 pandemic meant that many European experts could not come to Fermilab in person as planned to start up the detector components. Researchers restructured their plans to get the detector up and running with much of the team working remotely.

    The collaboration successfully activated ICARUS in August 2020 and recorded the first particle tracks — from cosmic rays, particles from space that constantly bombard Earth — soon after. Exposed to both the Booster and NuMI neutrino beams at Fermilab, the ICARUS detector has recorded the first muon and electron neutrinos, demonstrating the high-level detection capabilities of the liquid-argon time projection chamber technique.

    1
    The ICARUS detector has been collecting test data in preparation for the official start of the physics data collection later this year. The left panel shows an electron neutrino interaction that produced a proton (top track) and an electron, which produced an electromagnetic shower with photons and electrons (bottom tracks). The right panel shows a muon neutrino interaction that produced a proton (short track, top left) and a muon (3.4-meter-long track); a cosmic-ray track independent of the muon neutrino interaction is also visible in the lower half of the image. In both panels, the neutrino beam came from left. Image credit: ICARUS collaboration.

    The team is now working on finishing the system to identify and exclude cosmic-ray signals. They are also making final improvements to the neutrino data acquisition system to prepare the detector for its official first data collection run in fall 2021.

    “We’ve been able to do our jobs with most people not moving from their local offices or homes,” said Claudio Montanari, the ICARUS technical coordinator. “Everybody contributed to the best of their ability, which was key to the success of the operation.”

    Searching for stealth particles

    When the ICARUS detector was originally assembled at the laboratories of the Italian National Institute for Nuclear Physics in Pavia in the early 2000s, it was the largest liquid-argon detector in the world. It began its neutrino-hunting career at Italy’s Gran Sasso National Laboratory in an experiment that ran between 2010 and 2014.

    After the experiment in Italy concluded, scientists realized that the ICARUS detector could have a second life at Fermilab, searching for a new type of particle: the sterile neutrino.

    2
    ICARUS will be the largest and farthest detector in the Short-Baseline Neutrino program at Fermilab, which examines neutrino oscillations over short distances and looks for hints of elusive sterile neutrinos. Graphic credit: Fermilab.

    Scientists already know of three types, or flavors, of neutrinos. The particles are notoriously hard to catch because they interact through only two of the four known forces: gravity and the weak force. But this potential fourth kind of neutrino — if it exists — may not even be sensitive to weak interaction, making detection even trickier. Scientists will have to look carefully at how the different flavors of neutrinos morph into one another, a phenomenon called neutrino oscillation.

    Previous experiments saw hints of unusual oscillation, but researchers need more data to determine if sterile neutrinos were responsible for the results. Finding evidence of sterile neutrinos would advance scientists’ knowledge about physics beyond the Standard Model, the theoretical framework that has accurately described almost all known subatomic particle interactions for over 50 years.

    To make this happen the ICARUS detector’s two school-bus-size modules were shipped from Gran Sasso to CERN for upgrades. In 2017, the two modules travelled by truck and ship to Fermilab, where they will soon begin hunting for ultra-elusive sterile neutrinos.

    ICARUS is one of three particle detectors at Fermilab that will look for indicators of sterile neutrinos as part of the laboratory’s Short-Baseline Neutrino Program, along with the Short-Baseline Neutrino Detector and MicroBooNE. Together, the detectors will analyze how neutrinos oscillate as they travel along their straight beamline path through these detectors.

    SBND, situated 110 meters from the start of the neutrino beamline, will provide a snapshot of the neutrinos right after they’re produced. MicroBooNE, located 360 meters farther down the beamline, will provide a second look at the beam composition. The final checkpoint is ICARUS, 600 meters from the start of the beamline. If ICARUS picks up fewer muon neutrinos and more electron neutrinos than expected based on data from SBND and MicroBooNE, “the combination of these things would be the unique signature of the oscillation and therefore of the existence of the sterile neutrino,” said Fava.

    Preflight checklist

    Getting ICARUS ready to search for signs of sterile neutrinos at Fermilab has involved three distinct stages: installation, activation and commissioning. Installation started in 2018 and included set up of the vacuum chambers, insulation, cryostats and various electronics used to power the detector and collect data.

    After electrical safety checks, making sure the vacuum chambers were leak-free and testing the components’ basic functionality, it was time to get the detector ready for activation. Technicians started up the filters, pumps and condensers for the cryogenic systems and began adding the liquid argon in early 2020.

    Collaborators from European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] and INFN with historical knowledge of the detector were present for the beginning of the fill. They left with plans to return to Fermilab in April 2020 to help wrap up the process and see the detector through to activation. While they were unable to return in person, the group successfully coordinated with the Fermilab branch of the team to complete the activation last summer.

    “We were lucky enough not to have any showstoppers,” said Montanari.

    With the detector activated, the international collaboration turned its attention to debugging and optimizing the equipment. For example: To capture good neutrino data, the liquid argon inside the detector has to be ultra-pure. When researchers found the argon was less pure than expected, they traced the problem back to slow gaseous argon movement through the recirculation system and took steps to address the flow.

    “That’s the life of a physicist — dealing with problems and finding a way of overcoming them,“ Fava said.

    Since last year, ICARUS has been in the commissioning phase. The team is testing all of the subsystems to make sure they are in sync and calibrated to collect quality data with minimal noise before the start of official data collection.

    Getting ready for takeoff

    ICARUS began taking test data from the booster neutrino beam in December 2020. That data is now being used to refine the triggers for deciding what type of signal constitutes a particle “event” worthy of recording.

    “The trigger system is one of the most critical components to commission, because it brings together all the other subsystems,” said Fava.

    The trigger rate — how frequently the system records an event — must be finely tuned. If it’s too high, the researchers end up sifting through more data than they need to, wasting time and computing power. Too low, and they might miss recording particle interactions that are crucial to making a discovery. The team plans to test the next iteration of trigger logic in May.

    In addition to refining the trigger, the ICARUS team will install a final set of cosmic-ray trackers. Roughly 10 cosmic rays hit the detector during each 1.6-millisecond time window used to record a potential neutrino interaction. The cosmic-ray trackers are used to sort out which signal is which.

    “If there is an external signal and the timing is correct, we can reject that event on the basis that it was induced by a particle that was coming from outside,” said Montanari. Trackers on the bottom and sides have already been installed — all that’s needed now is to finish the top.

    With everything expected to be in place this fall, the experiment will move into the next exciting stage: collecting high-quality data that will be used in scientists’ search for sterile neutrinos.

    “I’m really looking forward to making a nice data analysis and seeing what nature is willing to tell us,” Montanari said.

    CARUS is supported by the U.S. Department of Energy Office of Science, the Italian National Institute for Nuclear Physics (INFN) and CERN, the European Organization for Nuclear Research.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Icon

     
  • richardmitnick 11:58 am on May 26, 2021 Permalink | Reply
    Tags: "Fermilab launches new PIP-II website", DOE's Fermi National Accelerator Laboratory (US)   

    From DOE’s Fermi National Accelerator Laboratory (US) : “Fermilab launches new PIP-II website” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    May 26, 2021

    Fermilab has launched a new website at pip2.fnal.gov — same address, fresh new content. You can watch a full 3D rendering of the Proton Improvement Plan-II linear accelerator, learn in detail about the PIP-II vast research program, meet the international team, discover the components of the successful test facility and much more. Interested? Explore the new PIP-II website.

    2

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    FNAL Don Lincoln.

    FNAL Icon

     
  • richardmitnick 2:12 pm on May 24, 2021 Permalink | Reply
    Tags: "Construction crews start lowering equipment a mile underground for excavation for DUNE", DOE's Fermi National Accelerator Laboratory (US),   

    From DOE’s Fermi National Accelerator Laboratory (US) for Sanford Underground Research Facility-SURF: “Construction crews start lowering equipment a mile underground for excavation for DUNE” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    for

    SURF-Sanford Underground Research Facility, Lead, South Dakota, USA.

    Sanford Underground Research Facility-SURF

    May 24, 2021
    Brianna Barbu

    The Fermilab-hosted Deep Underground Neutrino Experiment is an enormous international scientific effort. More than a thousand researchers aim to shed light on elusive subatomic particles known as neutrinos — and possibly the nature of matter itself.

    It’s also going to be physically enormous. The experiment will send the world’s most intense high-energy neutrino beam from U.S. Department of Energy’s Fermilab in Illinois to huge particle detectors 800 miles away at the Sanford Underground Research Facility in South Dakota. Each of the four neutrino detector modules will be four-stories high and over 200 feet long. Construction crews will excavate almost 800,000 tons of rock to create the gigantic caverns of the Long-Baseline Neutrino Facility that will house these detectors.

    The challenge? Everything required to build the LBNF caverns in South Dakota, as well as the future particle detectors, must be lowered a mile below the surface of the Earth through a 13- by 5-foot shaft compartment and then assembled underground, like a ship in a bottle. Even the large machines necessary to remove the rock must follow the process.

    On April 5, Thyssen Mining, the company contracted to carry out the excavation, received the green light to start underground work. Thyssen will bring about 35 pieces of equipment underground — around 30 will need to be disassembled to some degree to fit down the shaft. It will take about three months to mobilize all of the heavy equipment underground.

    1
    These two jumbo drill rigs are some of the equipment that construction crews will use for the excavation of the caverns for the Deep Underground Neutrino Experiment. Before being lowered underground through the mile-deep Ross Shaft, they first need to be partially disassembled. Photo: Matthew Kapust, Sanford Underground Research Facility.

    “These machines are designed for mines, so they come in components, and the contractor looks at what size components can fit inside the hoist cage,” said James Rickard, the Fermilab resident engineer managing the excavation construction. “They try to break it down as minimally as possible” to fit the pieces into the 12-foot-tall cage. Long, narrow pieces are slung underneath the cage.

    2
    This drill rig has been disassembled to prepare it for delivery to the LBNF work area a mile underground. Prior to lowering any large piece of equipment, crews perform a test sling to understand how to rig the piece so it hangs properly while traveling through the shaft. Photo: Adam Gomez, SURF.

    One of the first machines that will be brought in pieces down the shaft is a raise bore machine. Starting in May, the raise bore will be used to drill a pilot hole for a 1,200-foot-long ventilation shaft to increase airflow and allow heat to escape from the underground lab. After the 13-inch pilot hole is drilled, the drill is attached to a 12-foot reamer that is then pulled back up the 1,200 feet creating the full-size shaft. The shaft will be completed in fall 2021.

    Other machines Thyssen will move underground include extendable forklifts called telehandlers; multifunctional skid steers; durable load, haul and dump machines; and jumbo drills that will create blasting holes. The equipment is coming to South Dakota from Thyssen’s headquarters in Nevada and Saskatchewan, as well as from project sites in the United States and Canada.

    An automated rock bolter is being shipped to the site directly from the manufacturer in Finland. Its role is to install 20-foot-long steel bolts into the cavern, reinforcing the roof and walls. The machine boasts an advanced computer control system to accurately position the bolts, as well as advanced safety features and lower emissions. It will be one of only two such machines in the world.

    Machines that have already arrived are being stored at an offsite yard, waiting their turn to be brought to the subterranean construction site. Once underground, the equipment will be stored in existing drifts and tunnels until an equipment and maintenance shop can be established.

    The first underground blast for LBNF by Thyssen is scheduled for June. The main cavern excavation work will begin in August and continue for two-and-a-half years.

    “It’s a pretty exciting time,” said Andrew Hardy, Thyssen’s project manager for the excavation. “We thought we already had a lot of activity up to this point, but now it really begins.”

    Once the subterranean work gets going, Thyssen will use the cage hoist daily to transport not only machinery but also materials, safety supplies, and people. The company has contracted 90 miners, mechanics and electricians split into three rotating crews, along with a surface support team of engineers, planners, buyers, safety coordinators and administrators, to keep the work going 24/7.

    There is much excitement about moving towards the more substantial construction work for LBNF after over three years of pre-excavation work and reliability projects such as refurbishing the nearly 90-year-old hoists.

    “I can’t wait,” said Fermilab’s Michael Gemelli, the LBNF Far-Site Conventional Facilities project manager. “I’m looking forward to the next stage of this project. The site project team has done so much great work to set the stage for the excavation work to commence.”

    Fermilab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Homestake Mining, Lead, South Dakota, USA.

    About us: The Sanford Underground Research Facility-SURF in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    [caption id="attachment_58377" align="alignnone" width="632"] The U Washington Large Underground Xenon at SURF, Lead, SD, USA dark matter detector mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    The LBNL LZ Dark Matter Experiment (US) Dark Matter project at SURF, Lead, SD, USA.

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC National Accelerator Laboratory(US) physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.

    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”

    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL DUNE LBNF (US) from FNAL to SURF ,Lead, South Dakota, USA.

    FNAL DUNE LBNF (US) Caverns at Sanford Lab.

    U Washington MAJORANA Neutrinoless Double-beta Decay Experiment (US) at SURF.

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with Germanium Detector Array (or GERDA) experiment is searching for neutrinoless double beta decay (0νββ) in Ge-76 at the underground Laboratori Nazionali del Gran Sasso (LNGS) for a future tonne-scale 76Ge 0νββ search.

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard..

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard.

    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.

    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    FNAL Don Lincoln.

    FNAL Icon

     
  • richardmitnick 1:20 pm on May 5, 2021 Permalink | Reply
    Tags: "Rock transportation system is ready for excavation of DUNE caverns", , , DOE's Fermi National Accelerator Laboratory (US),   

    From DOE’s Fermi National Accelerator Laboratory (US) and Sanford Underground Research Facility-SURF: “Rock transportation system is ready for excavation of DUNE caverns” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    Sanford Underground Research Facility-SURF

    May 5, 2021
    Brianna Barbu

    The Fermilab-hosted international Deep Underground Neutrino Experiment will shoot the world’s most powerful beam of neutrinos from the Department of Energy’s Fermilab in Illinois to detectors 800 miles (1,300 kilometers) away at the Sanford Underground Research Facility in South Dakota. Data collected from this ambitious experiment will help scientists answer such lofty questions as how black holes form and why the universe itself exists.

    But in order to make this groundbreaking project happen, a lot of literal ground will have to be broken.

    Now, Fermilab contractors working on the construction of the Long-Baseline Neutrino Facility in South Dakota have successfully tested a system that will move almost 800,000 tons of rock over the course of three years to make room for DUNE’s massive underground detectors. The system will use a combination of refurbished mining hoists and a new conveyor belt system to bring rock up from the LBNF excavation area nearly a mile underground and send it to a former open mining pit three-quarters of a mile away in Lead, South Dakota.

    “LBNF is a long project, and that’s why we’re excited to start the excavation work for the detector caverns. We want to start building the detectors as soon as possible,” said Chris Mossey, Fermilab deputy director for LBNF/DUNE-US.

    1
    The conveyor belt taking the rocks from the crusher to the Open Cut passes close to the town of Lead, South Dakota. Image: Fermilab.

    LBNF encompasses all of the infrastructure that will support the DUNE collaboration, including caverns for four liquid-argon detector modules, each as tall as a four-story building and as long as a football field.

    The detector modules will be installed 4,850 feet (1,480 meters) underground — the depth made possible by Sanford Lab’s former life as a gold mine — to shield the experiment from cosmic rays.

    Excavated rock from the LBNF construction will go through underground chutes into skips — essentially giant buckets — that will be hoisted up Sanford Lab’s Ross Shaft to a rock crusher in the Ross Headframe, on the surface. After being crushed, the rock will be dumped into a giant bin. The bin will feed the rock onto the first of two underground conveyor belts that will take it out of the mountain, down the mountainside and to the huge Open Cut. The entire system is designed to move about 3,000 tons of rock per day.

    The hoists, first built in 1934, were recently upgraded with new digital controls to get them ready for LBNF construction. The conveyor belts start off following the same path as an old mine tramway through the mountain but take a different path down the side of the mountain to bring the rock to a new destination.

    “The new thing is that we’re taking rock to the Open Cut. When the Open Cut was being mined in the 1980s, the miners were doing the opposite, bringing rock from the Open Cut over to the mill system,” said Josh Willhite, the Fermilab Long-Baseline Neutrino Facility far-site conventional facilities design manager.

    2
    This graphic shows the route that the rock will follow from the LBNF/DUNE excavation to the Open Cut pit. Image: Fermilab.

    Two different conveyor belts will transport the rock 4,200 feet (1,280 meters) from the crusher to the Open Cut. The first, covering about 60% of the total distance, runs entirely underground. The second is mostly aboveground, at one point passing over a state highway. Parts of the second belt curve to accommodate the mountain terrain while minimizing the number of times the rock is transferred to a new belt so that fewer noise and dust controls are needed.

    The fact that the conveyor system, built by contractor Kiewit Alberici Joint Venture, is in a populated town was taken into account in the conveyor design: It has controls for dust and noise, and the conveyor operates only during weekdays (though the hoists will bring rock up the shaft more or less constantly during the excavation).

    As enormous as 800,000 tons sounds — it’s twice the weight of the Empire State Building — the rocks from the LBNF excavation will fill less than 1% of the Open Cut, which is 1,200 feet deep.

    The first step in commissioning the rock transportation system was a dry run to make sure all of its parts work and to break in the conveyor belts. Now, the system has successfully been tested with 1,600 tons of rock dug up during pre-excavation projects. It’s the culmination of eight years of work for Willhite and the far-site conventional facilities team.

    “We’re thrilled to say, ‘Hey, this step is complete, and it’s a big deal!’ And more importantly, it allows us to do the main construction,” Willhite said.

    Thyssen Mining, the company contracted to excavate the main LBNF caverns, started moving their equipment underground in April. Their first scheduled blast for the main excavation will be in late June. It will take about three years to excavate the caverns before construction can begin on cryogenics for the neutrino detectors.

    Mossey said the investment that the Department of Energy is putting into constructing a huge facility 800 miles away from Fermilab speaks to the fact that the impact of LBNF/DUNE will go far beyond the lab hosting it.

    “This world-class facility will enable the world’s neutrino science community to research some of the fundamental unanswered questions in physics,” he said. “It’s a privilege to be a part of the team effort that is going to have that type of reach and impact.”

    The Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab is supported by the DOE Office of Science.

    Fermilab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us: The Sanford Underground Research Facility-SURF in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

    The LBNL LZ Dark Matter Experiment (US) Dark Matter project at SURF, Lead, SD, USA.

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe.

    The U Washington Large Underground Xenon at SURF, Lead, SD, USA dark matter detector | Sanford Underground Research Facility mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC National Accelerator Laboratory(US) physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.

    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”

    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL DUNE LBNF (US) from FNAL to SURF ,Lead, South Dakota, USA.

    FNAL DUNE LBNF (US) Caverns at Sanford Lab.

    U Washington MAJORANA Neutrinoless Double-beta Decay Experiment (US) at SURF.

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with Germanium Detector Array (or GERDA) experiment is searching for neutrinoless double beta decay (0νββ) in Ge-76 at the underground Laboratori Nazionali del Gran Sasso (LNGS) for a future tonne-scale 76Ge 0νββ search.

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard..

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard.

    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

    DOE’s Fermi National Accelerator Laboratory Wilson Hall (US).

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.

    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.

    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.

    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US) campus .

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA. Photo: Reidar Hahn.

    DOE’s Fermi National Accelerator Laboratory(US) DAMIC | Fermilab Cosmic Physics Center

    DOE’s Fermi National Accelerator Laboratory(US) Muon g-2 studio. As muons race around a ring at the Muon g-2 studio, their spin axes twirl, reflecting the influence of unseen particles..

    DOE’s Fermi National Accelerator Laboratory(US) Short-Baseline Near Detector under construction.

    DOE’s Fermi National Accelerator Laboratory(US) Mu2e solenoid

    Dark Energy Camera [DECam] built at DOE’s Fermi National Accelerator Laboratory(US)

    Fermi National Accelerator Laboratory DUNE/LBNF experiment (US) Argon tank at Sanford Underground Research Facility(US)

    DOE’s Fermi National Accelerator Laboratory(US) MicrobooNE

    FNAL Don Lincoln.

    DOE’s Fermi National Accelerator Laboratory(US) MINOS

    DOE’s Fermi National Accelerator Laboratory(US) Cryomodule Testing Facility

    DOE’s Fermi National Accelerator Laboratory(US) MINOS Far Detector

    FNAL DUNE LBNF (US) from FNAL to SURF Lead, South Dakota, USA .

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] (CH) ProtoDune.

    DOE’s Fermi National Accelerator Laboratory(US) NOvA experiment map.

    DOE’s Fermi National Accelerator Laboratory(US) NOvA Near Detector at Batavia IL, USA

    DOE’s Fermi National Accelerator Laboratory(US)ICARUS.

    DOE’s Fermi National Accelerator Laboratory(US) Holometer.

    DOE’s Fermi National Accelerator Laboratory(US) LArIAT.

    DOE’s Fermi National Accelerator Laboratory(US) ICEBERG particle detector.

    FNAL Icon

     
  • richardmitnick 4:11 pm on April 17, 2021 Permalink | Reply
    Tags: "German National Supercomputing Centre Provides Computational Muscle to Look for Cracks in the Standard Model of Physics", , DOE's Fermi National Accelerator Laboratory (US), , Gauss Centre for Supercomputing [Gauß-Zentrum für Supercomputing] (DE), Jülich Supercomputing Centre [Forschungszentrum Jülich ] (DE), Leibniz Supercomputing Centre [Leibniz-Rechenzentrum] (DE), Magnetic moment of subatomic particles called muons, Muon g-2 collaboration, , ,   

    From Gauss Centre for Supercomputing [Gauß-Zentrum für Supercomputing] (DE): “German National Supercomputing Centre Provides Computational Muscle to Look for Cracks in the Standard Model of Physics” 

    From Gauss Centre for Supercomputing [Gauß-Zentrum für Supercomputing] (DE)

    April 09, 2021
    Eric Gedenk

    Physicists have spent 20 years trying to more precisely measure the so-called “magnetic moment” of subatomic particles called muons. Findings published this week call into question long-standing assumptions of particle physics.

    1
    Does the magnetic moment of muons fit into our understanding of the laws governing the physical world around us? Credit: Uni Wuppertal / thavis gmbh.

    Since the 1970s, the Standard Model of Physics has served as the basis from which particle physics are investigated.

    Standard Model of Particle Physics, Quantum Diaries

    .

    Both experimentalists and theoretical physicists have tested the Standard Model of Particle Physics’s accuracy, and it has remained the law of the land when it comes to understanding how the subatomic world behaves.

    This week, cracks formed in that foundational set of assumptions. Researchers of the “Muon g-2” collaboration from the DOE’s Fermi National Accelerator Laboratory (US) published further experimental findings that show that muons—heavy subatomic relatives of electrons—may have a larger “magnetic moment” than earlier Standard Model estimates had predicted, indicating that an unknown particle or force might be influencing the muon. The work builds on anomalous results first uncovered 20 years ago at DOE’s Brookhaven National Laboratory, and calls into question whether the Standard Model needs to be rewritten.

    DOE’s Fermi National Accelerator Laboratory(US) Muon g-2 studio. As muons race around a ring at the Muon g-2 studio, their spin axes twirl, reflecting the influence of unseen particles.

    Meanwhile, researchers in Germany have used Europe’s most powerful high-performance computing (HPC) infrastructure to run new and more precise lattice quantum chromodynamics (lattice QCD) calculations of muons in a magnetic field. The team found a different value for the Standard Model prediction of muon behaviour than what was previously accepted. The new theoretical value is in agreement with the FNAL experiment, suggesting that a revision of the Standard Model is not needed. The results are now published in Nature.

    The team primarily used the supercomputer JUWELS at the Jülich Supercomputing Centre (JSC), with the computational time provided by the Gauss Centre for Supercomputing (GCS) as well at JSC’s JURECA system, along with extensive computations performed at the other two GCS sites—on Hawk at the High-Performance Computing Center Stuttgart (HLRS) and on SuperMUC-NG at the Leibniz Supercomputing Centre (LRZ).

    JURECA supercomputer at Jülich Supercomputing Centre [Forschungszentrum Jülich ] (DE)

    SuperMUC-NG, GCS@LRZ, Lenovo supercomputer at the Leibniz Supercomputing Centre [Leibniz-Rechenzentrum] (DE)

    SuperMUC-NG, GCS@LRZ, Lenovo supercomputer Germany at the Leibniz Supercomputing Centre [Leibniz-Rechenzentrum] (DE)

    Both the experimentalists and theoretical physicists agreed that further research must be done to verify the results published this week. One thing is clear, however: the HPC resources provided by GCS were essential for the scientists to achieve the precision necessary to get these groundbreaking results.

    “For the first time, lattice results have a precision comparable to these experiments. Interestingly our result is consistent with the new FNAL experiment, as opposed to previous theory results, that are in strong disagreement with it,” said Prof. Kalman Szabo, leader of the Helmholtz research group, “Relativistic Quantum Field Theory” at JSC and co-author of the Nature publication. “Before deciding the fate of the Standard Model, one has to understand the theoretical differences, and new lattice QCD computations are inevitable for that.”

    Minor discrepancies, major implications

    When DOE’s Brookhaven National Laboratory(US) researchers recorded unexplained muon behaviour in 2001, the finding left physicists at a loss—the muon, a subatomic particle 200 times heavier than an electron, showed stronger magnetic properties than predicted by the Standard Model of Physics. While the initial finding suggested that muons may be interacting with previously unknown subatomic particles, the results were still not accurate enough to definitely claim a new finding.

    Over the next 20 years, heavy investments in new, hyper-sensitive experiments done at particle accelerator facilities as well as increasingly sophisticated approaches based in theory have sought to confirm or refute the BNL group’s findings. During this time, a research group led by the University of Wuppertal [Universität Wuppertal] (DE)’s Prof. Zoltan Fodor, another co-author of the Nature paper, was progressing with big steps in lattice QCD simulations on the supercomputers provided by GCS. “Though our results on the muon g-2 are new, and have to be thoroughly scrutinized by other groups, we have a long record of computing various physical phenomena in quantum chromodynamics.” said Prof. Fodor. “Our previous major achievements were computing the mass of the proton, the proton-neutron mass difference, the phase diagram of the early universe and a possible solution for the dark matter problem. These paved the way to our most recent result.”

    Lattice QCD calculations allow researchers to accurately plot subatomic particle movements and interactions with extremely fine time resolution. However, they are only as precise as computational power allows—in order to perform these calculations in a timely manner, researchers have had to limit some combination of simulation size, resolution, or time. As computational resources have gotten more powerful, researchers have been able to do more precise simulations.

    “This foundational work shows that Germany’s world-class HPC infrastructure is essential for doing world-class science in Europe”, said Prof. Thomas Lippert, Director of the Jülich Supercomputing Centre, Professor for Quantum Computing and Modular Supercomputing at Goethe University [Goethe-Universität] Frankfurt(DE), current Chairman of the GCS Board of Directors, and also co-author of the Nature paper. “The computational resources of GCS not only play a central role in deepening the discourse on muon measurements, but they help European scientists and engineers become leaders in many scientific, industrial, and societal research areas.”

    While Fodor, Lippert, Szabo, and the team who published the Nature paper currently use their calculations to cool the claims of physics beyond the Standard Model, the researchers are also excited to continue working with international colleagues to definitively solve the mystery surrounding muon magnetism. The team anticipates that even more powerful HPC systems will be necessary to prove the existence of physics beyond the Standard Model. “The DOE’s Fermi National Accelerator Laboratory(US) experiment will increase the precision by a factor of four in two years. We theorists have to keep up with this pace if we want to fully exploit the new physics discovery potential of muons.” Szabo said.

    Further Information:
    Physical Review Letters

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Gauss Centre for Supercomputing (DE) combines the three national supercomputing centres HLRS (High Performance Computing Center Stuttgart [Hochleistungsrechnungszentrum Stuttgart] (DE), JSC (Jülich Supercomputing Centre [Forschungszentrum Jülich ] (DE)), and LRZ (Leibniz Supercomputing Centre [Leibniz-Rechenzentrum](DE) into Germany’s Tier-0 supercomputing institution. Each GCS member centre host supercomputers well beyond the 1 Petaflops performance mark. Concertedly, the three centres provide the largest and most powerful supercomputing infrastructure in all of Europe to serve a wide range of industrial and research activities in various disciplines. They also provide top-class training and education for the national as well as the European High Performance Computing (HPC) community.

    GCS is the German member of PRACE (Partnership for Advance Computing in Europe), an international non-profit association consisting of 25 member countries, whose representative organizations create a pan-European supercomputing infrastructure, providing access to computing and data management resources and services for large-scale scientific and engineering applications at the highest performance level.

    Gauss Centre for Supercomputing LRZ – Leibniz Supercomputing Centre Garching

    GCS is jointly funded by the German Federal Ministry of Education and Research and the federal states of Baden-Württemberg, Bavaria and North Rhine-Westphalia.

    GCS has its headquarters in Berlin, Germany.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: