Tagged: DOE’s Brookhaven National Laboratory (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:51 am on February 11, 2022 Permalink | Reply
    Tags: "Steering Conversion of CO2 and Ethane to Desired Products", , , , DOE’s Brookhaven National Laboratory (US)   

    From DOE’s Brookhaven National Laboratory (US): “Steering Conversion of CO2 and Ethane to Desired Products” 

    From DOE’s Brookhaven National Laboratory (US)

    February 9, 2022
    kmcnulty@bnl.gov
    Karen McNulty Walsh
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Study IDs key catalytic features that drive reaction specificity when transforming CO2 (a greenhouse gas) and an underutilized component of natural gas into higher-value chemicals.

    1
    Zhenhua Xie, a research associate in Brookhaven Lab’s Chemistry Division, holds precursor solutions for the synthesis of catalysts. He is first author on a paper describing the characteristics of a particular catalyst that determine its selectivity for converting CO2 and ethane to either syngas or ethylene.

    Converting carbon dioxide (CO2) and ethane—an underutilized component of natural gas—into things we need would be a great way to put a potent greenhouse gas and an unused reservoir of hydrocarbons to work. But driving such reactions specifically toward one desired product or another can be a challenge. Discovering the underlying principles that determine the behavior of catalysts—the chemical “deal makers” that bring reactants together—could provide the key to more selective reactions.

    In a study just published in the Journal of the American Chemical Society, chemists from the U.S. Department of Energy’s Brookhaven National Laboratory, Columbia University (US), and The University at Binghampton-(SUNY)(US) describe the features that determine catalytic selectivity for one set of reactions: transforming CO2 and ethane (C2H6) into synthesis gas (useful for generating electricity or making liquid fuels) or, alternatively, ethylene (a building block for making paints, plastics, and other polymers).

    “Both pathways are valuable, but you want to be able to drive the reaction selectively to one or the other to make it easier and more economical to extract the desired product,” said Jingguang Chen, a chemist with a joint appointment at Brookhaven and Columbia who led the research. “We were trying to identify the key catalytic principles that make it select one pathway or another, with the idea that these principles could then guide the design of catalysts for an even wider range of reactions.”

    To discover the key principles, the team conducted detailed studies of a series of bimetallic (two-metal) catalysts—using different metals paired with palladium. For each combination, they examined how the metals come together and measured how the mix of reactants and products changes during the reaction.

    1
    This schematic shows two possible reaction pathways for carbon dioxide (CO2) with ethane (C2H6), where carbon is black, oxygen is red, hydrogen is white. By studying catalysts pairing another metal with palladium, scientists identified two arrangements, or phases, that determine the reaction pathway. Top: If the metals form an alloy, the catalyst favors breaking carbon-carbon bonds to produce carbon monoxide and hydrogen gas—syngas. Bottom: If the metals segregate to form an oxide interface, the catalyst favors breaking carbon-hydrogen bonds and produces ethylene (C2H4), carbon monoxide, and water.

    They also studied the catalysts’ atomic structures and electronic properties using powerful x-rays at the National Synchrotron Light Source II (NSLS-II)[below] and the Advanced Photon Source—two DOE Office of Science user facilities at Brookhaven and The DOE’s Argonne National Laboratory(US), respectively.

    ANL DOE Argonne National Laboratory (US) Advanced Photo Source.

    And they ran computational modeling studies using computing clusters at Brookhaven’s Center for Functional Nanomaterials and supercomputers at The DOE’s NERSC National Energy Research Scientific Computing Center(US) at DOE’s Lawrence Berkeley National Laboratory (US)—two more DOE Office of Science user facilities.

    The modeling studies used “density functional theory” (DFT) to predict how the arrangement of atoms that make up the catalyst changes as the reaction progresses, based on things like the binding energies between different sets of atoms and the energies needed to break and remake chemical bonds.

    “For both theory and experiment, we looked not just at the catalyst samples as they were originally prepared, but also as they undergo phase transformations during the reaction,” said Ping Liu, an expert in DFT calculations in the Catalysis Reactivity and Structure group of Brookhaven’s Chemistry Division.

    “When we put two metals together,” Chen explained, “they stay in one structure we call a bulk alloy. But under reaction conditions, when you expose the catalyst to CO2 and ethane, those metals start to move. This is why a synchrotron like NSLS-II is really critical, because the high intensity photon source allows us to measure the electronic and physical structures of the active sites under reaction conditions,” he said.

    “The strong interaction among techniques—including controlled catalytic synthesis, synchrotron-based characterization studies, kinetic measurements, and theoretical modeling—was essential for this study, ” Liu said.

    Chen agreed. “Without any one of these techniques, we would not have reached our conclusions. And we can only really do this in a national laboratory setting where there are facilities and expertise across all these areas,” he said.

    So, what were those conclusions? The discovery of two key principles, or descriptors, that determine whether and how the metal atoms move, and how those shifts drive reaction selectivity.

    The key principles are: 1) the “formation energy” of the bimetallic catalyst—how tightly bound together the two metals are, and 2) the binding energy between the catalyst and oxygen released from the CO2 during the reaction.

    If the two metals are bound together strongly (e.g., when palladium is paired with cobalt), the catalyst won’t bind with the freed oxygen and will remain an alloy, as shown in the top half of the illustration. This catalytic arrangement favors the breaking of carbon-carbon bonds, selectively transforming CO2 and ethane into carbon monoxide and hydrogen gas—the components of syngas.

    But if the catalyst’s affinity for freed oxygen is strong enough to overcome the formation energy of the alloy—as is the case for palladium paired with indium—the paired metal will move to the surface of the catalyst to form an oxide shell. That configuration favors breaking carbon-hydrogen bonds, driving the pathway that produces ethylene.

    The other metals the scientists paired with palladium fell somewhere between these two extremes. Scientists used the full dataset to extract the two key principles.

    “By using the descriptors we’ve identified, now we can help guide the design of catalysts for either pathway—to make either syngas or ethylene,” Chen said.

    In addition, as Liu pointed out, “these are generalized descriptors, which means they are not only applicable for one or two specific catalysts. Our experiments and theory prove that this approach works for the palladium-based catalysts. We think that could be extended for other bimetallic catalysts, which is something we will be looking at in the future.

    Zhenhua Xie and Xuelong Wang (both of Brookhaven Lab) and Xiaobo Chen (Binghamton) were additional co-authors on this study. The work was funded by the DOE Office of Science (BES).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US). [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    Iconic view of the European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear] [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    Brookhaven Campus

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 4:07 pm on January 20, 2022 Permalink | Reply
    Tags: "Going beyond the exascale", , , Classical computers have been central to physics research for decades., , , DOE’s Brookhaven National Laboratory (US), Fermilab has used classical computing to simulate lattice quantum chromodynamics., , , , Planning for a future that is still decades out., Quantum computers could enable physicists to tackle questions even the most powerful computers cannot handle., , Quantum computing is here—sort of., , Solving equations on a quantum computer requires completely new ways of thinking about programming and algorithms., , , The biggest place where quantum simulators will have an impact is in discovery science.   

    From Symmetry: “Going beyond the exascale” 

    Symmetry Mag

    From Symmetry

    01/20/22
    Emily Ayshford

    1
    Illustration by Sandbox Studio, Chicago with Ana Kova.

    Quantum computers could enable physicists to tackle questions even the most powerful computers cannot handle.

    After years of speculation, quantum computing is here—sort of.

    Physicists are beginning to consider how quantum computing could provide answers to the deepest questions in the field. But most aren’t getting caught up in the hype. Instead, they are taking what for them is a familiar tack—planning for a future that is still decades out, while making room for pivots, turns and potential breakthroughs along the way.

    “When we’re working on building a new particle collider, that sort of project can take 40 years,” says Hank Lamm, an associate scientist at The DOE’s Fermi National Accelerator Laboratory (US). “This is on the same timeline. I hope to start seeing quantum computing provide big answers for particle physics before I die. But that doesn’t mean there isn’t interesting physics to do along the way.”

    Equations that overpower even supercomputers.

    Classical computers have been central to physics research for decades, and simulations that run on classical computers have guided many breakthroughs. Fermilab, for example, has used classical computing to simulate lattice quantum chromodynamics. Lattice QCD is a set of equations that describe the interactions of quarks and gluons via the strong force.

    Theorists developed lattice QCD in the 1970s. But applying its equations proved extremely difficult. “Even back in the 1980s, many people said that even if they had an exascale computer [a computer that can perform a billion billion calculations per second], they still couldn’t calculate lattice QCD,” Lamm says.

    Depiction of ANL ALCF Cray Intel SC18 Shasta Aurora exascale supercomputer, to be built at DOE’s Argonne National Laboratory (US).

    Depiction of ORNL Cray Frontier Shasta based Exascale supercomputer with Slingshot interconnect featuring high-performance AMD EPYC CPU and AMD Radeon Instinct GPU technology , being built at DOE’s Oak Ridge National Laboratory (US).

    But that turned out not to be true.

    Within the past 10 to 15 years, researchers have discovered the algorithms needed to make their calculations more manageable, while learning to understand theoretical errors and how to ameliorate them. These advances have allowed them to use a lattice simulation, a simulation that uses a volume of a specified grid of points in space and time as a substitute for the continuous vastness of reality.

    Lattice simulations have allowed physicists to calculate the mass of the proton—a particle made up of quarks and gluons all interacting via the strong force—and find that the theoretical prediction lines up well with the experimental result. The simulations have also allowed them to accurately predict the temperature at which quarks should detach from one another in a quark-gluon plasma.

    Quark-Gluon Plasma from BNL Relative Heavy Ion Collider (US).

    DOE’s Brookhaven National Laboratory(US) RHIC Campus

    The limit of these calculations? Along with being approximate, or based on a confined, hypothetical area of space, only certain properties can be computed efficiently. Try to look at more than that, and even the biggest high-performance computer cannot handle all of the possibilities.

    Enter quantum computers.

    Quantum computers are all about possibilities. Classical computers don’t have the memory to compute the many possible outcomes of lattice QCD problems, but quantum computers take advantage of quantum mechanics to calculate differently.

    Quantum computing isn’t an easy answer, though. Solving equations on a quantum computer requires completely new ways of thinking about programming and algorithms.

    Using a classical computer, when you program code, you can look at its state at all times. You can check a classical computer’s work before it’s done and trouble-shoot if things go wrong. But under the laws of quantum mechanics, you cannot observe any intermediate step of a quantum computation without corrupting the computation; you can observe only the final state.

    That means you can’t store any information in an intermediate state and bring it back later, and you cannot clone information from one set of qubits into another, making error correction difficult.

    “It can be a nightmare designing an algorithm for quantum computation,” says Lamm, who spends his days trying to figure out how to do quantum simulations for high-energy physics. “Everything has to be redesigned from the ground up. We are right at the beginning of understanding how to do this.”

    Just getting started

    Quantum computers have already proved useful in basic research. Condensed matter physicists—whose research relates to phases of matter—have spent much more time than particle physicists thinking about how quantum computers and simulators can help them. They have used quantum simulators to explore quantum spin liquid states [Science] and to observe a previously unobserved phase of matter called a prethermal time crystal [Science].

    “The biggest place where quantum simulators will have an impact is in discovery science, in discovering new phenomena like this that exist in nature,” says Norman Yao, an assistant professor at The University of California-Berkeley (US) and co-author on the time crystal paper.

    Quantum computers are showing promise in particle physics and astrophysics. Many physics and astrophysics researchers are using quantum computers to simulate “toy problems”—small, simple versions of much more complicated problems. They have, for example, used quantum computing to test parts of theories of quantum gravity [npj Quantum Information] or create proof-of-principle models, like models of the parton showers that emit from particle colliders [Physical Review Letters] such as the Large Hadron Collider.

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN].

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] map.

    CERN LHC tube in the tunnel. Credit: Maximilien Brice and Julien Marius Ordan.

    SixTRack CERN LHC particles.

    “Physicists are taking on the small problems, ones that they can solve with other ways, to try to understand how quantum computing can have an advantage,” says Roni Harnik, a scientist at Fermilab. “Learning from this, they can build a ladder of simulations, through trial and error, to more difficult problems.”

    But just which approaches will succeed, and which will lead to dead ends, remains to be seen. Estimates of how many qubits will be needed to simulate big enough problems in physics to get breakthroughs range from thousands to (more likely) millions. Many in the field expect this to be possible in the 2030s or 2040s.

    “In high-energy physics, problems like these are clearly a regime in which quantum computers will have an advantage,” says Ning Bao, associate computational scientist at DOE’s Brookhaven National Laboratory (US). “The problem is that quantum computers are still too limited in what they can do.”

    Starting with physics

    Some physicists are coming at things from a different perspective: They’re looking to physics to better understand quantum computing.

    John Preskill is a physics professor at The California Institute of Technology (US) and an early leader in the field of quantum computing. A few years ago, he and Patrick Hayden, professor of physics at Stanford University (US), showed that if you entangled two photons and threw one into a black hole, decoding the information that eventually came back out via Hawking radiation would be significantly easier than if you had used non-entangled particles. Physicists Beni Yoshida and Alexei Kitaev then came up with an explicit protocol for such decoding, and Yao went a step further, showing that protocol could also be a powerful tool in characterizing quantum computers.

    “We took something that was thought about in terms of high-energy physics and quantum information science, then thought of it as a tool that could be used in quantum computing,” Yao says.

    That sort of cross-disciplinary thinking will be key to moving the field forward, physicists say.

    “Everyone is coming into this field with different expertise,” Bao says. “From computing, or physics, or quantum information theory—everyone gets together to bring different perspectives and figure out problems. There are probably many ways of using quantum computing to study physics that we can’t predict right now, and it will just be a matter of getting the right two people in a room together.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 1:04 pm on December 30, 2021 Permalink | Reply
    Tags: " The search for error-free qubits", "Collisions create matter… and turbulence", "Enzymes and catalysts for greener chemistry", "Explorations of particle peculiarities", "Nanoscience discoveries with big commercial potential", "Top Areas of Amazing Science at Brookhaven Lab in 2021", , , , , DOE’s Brookhaven National Laboratory (US), , , FNAL MicroBooNE experiment, , , , , STAR detector at the Relativistic Heavy Ion Collider (RHIC)   

    From DOE’s Brookhaven National Laboratory (US) : “Top Areas of Amazing Science at Brookhaven Lab in 2021” 

    From DOE’s Brookhaven National Laboratory (US)

    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Explorations of particle peculiarities

    1
    Explorations of particle anomalies.

    Physicists at Brookhaven are heavily involved in two major experiments that reported results from explorations of particle anomalies this year. First, the new “Muon g-2” experiment at Fermi National Accelerator Laboratory confirmed a quirky behavior of muons initially observed in a Brookhaven experiment 20 years ago.

    DOE’s Fermi National Accelerator Laboratory(US) Muon g-2 studio. As muons race around a ring at the Muon g-2 studio, their spin axes twirl, reflecting the influence of unseen particles.

    This persistent discrepancy between the combined experimental results and the theoretical predictions of muons’ behavior suggests that muons may be interacting with yet-to-be-discovered particles.

    Scientists searching for a new particle to explain a different physics anomaly—in the predicted “oscillations” of neutrinos—say the MicroBooNE experiment, also at Fermilab, shows no evidence of a fourth “sterile” neutrino variety to add to the three known types.
    DOE’s Fermi National Accelerator Laboratory(US) MicrobooNE experiment.

    Standard Model of Particle Physics, Quantum Diaries.

    But the neutrino-tracking software/signal processing and detector technologies developed in large part by Brookhaven scientists will be key to future neutrino experiments, notably the Deep Underground Neutrino Experiment (DUNE).

    DOE’s Fermi National Accelerator Laboratory(US) DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA.

    DOE’s Fermi National Accelerator Laboratory(US) DUNE LBNF (US) Caverns at Sanford Underground Research Facility.

    Collisions create matter… and turbulence

    2
    STAR detector at the Relativistic Heavy Ion Collider (RHIC)

    Scientists tracking particle collisions using the STAR detector at the Relativistic Heavy Ion Collider (RHIC) created particles of matter and antimatter from light. It’s an illustration of Einstein’s famous E=mc2 equation. The results confirm a prediction made more than 80 years ago that such collisions of light particles surrounding accelerated ions could generate matter.

    STAR physicists also detected tantalizing signs of “turbulence” in RHIC collision data gathered at different energies. These fluctuations may indicate a change in the way nuclear matter transforms from nucleons (protons and neutrons) to a soup of those particles’ inner building blocks, quarks and gluons.

    Even as collisions continue, assembly of a new RHIC detector named sPHENIX made enormous progress this year. See updated photos and a time-lapse video.


    Timelapse video of crews carefully moving the magnet into place

    Electron-Ion Collider project [below] achieves major milestone

    4

    The plan to transform RHIC into the Electron-Ion Collider (EIC) received “Critical Decision 1” approval from DOE. This marks the next phase of translating the plans for the EIC into a state-of-the-art research facility that will open a new frontier in nuclear physics. Brookhaven project staff, physicists, and engineers are working with counterparts at Thomas Jefferson National Accelerator Facility and collaborators around the world to design the accelerator components while members of the EIC User Group lay out plans for possible detectors.

    Nanoscience discoveries with big commercial potential

    5
    Scientists at the Lab’s Center for Functional Nanomaterials (CFN)

    Scientists at the Lab’s Center for Functional Nanomaterials (CFN) made two discoveries related to making materials with possible commercial applications. One is a method for making extreme ultraviolet-sensitive photoresist “masks” by infusing existing organic materials with inorganic elements. The method could allow for etching smaller-scale features onto computer chips to increase their speed and efficiency.

    Another group of scientists from the CFN and the National Synchrotron Light Source II (NSLS-II) [below] used a range of methods, including x-ray studies, to discover how modifying an inexpensive commercially available porous material could trap noble gases within its nanoscale pores. If successful, the modified material could potentially capture rare noble gases such as krypton and xenon for use in specialized lighting, or to remove dangerous gases like radon from basements.

    The search for error-free qubits

    6
    Searching for materials that can reliably encode and store quantum information—an essential step toward developing quantum computers.

    Brookhaven scientists are among those searching for materials that can reliably encode and store quantum information—an essential step toward developing quantum computers. Superconductors—materials in which pairs of electrons carry electrical current with no resistance—are promising candidates because they’re protected from certain kinds of interference.

    In one study aimed at understanding these challenging materials, Brookhaven scientists mapped the magnetic and electronic properties of an exotic “topological” superconductor containing iron, tellurium, and selenium. Using neutron scattering at Oak Ridge National Laboratory and tools at Brookhaven’s Center for Functional Nanomaterials (CFN) [below] and within the Lab’s Condensed Matter and Materials Science Department, they zeroed in on how changes in local chemical composition affected the material’s properties.

    Another team including scientists at the National Synchrotron Light Source II (NSLS-II) and the CFN explored why a superconducting material made of niobium metal sometimes loses quantum information. They identified atomic-level structural and surface chemistry defects that might explain the loss. Both studies offer clues that could guide the design of reliable superconducting quantum information bits, or qubits.

    Magnetic materials can also exhibit quantum effects that can be used in the design of next-generation electronics. For example, researchers at NSLS-II discovered that the thickness of magnetic materials can act as a “knob” for fine-tuning spin dynamics, a property of electrons that can be harnessed for transmitting information more efficiently. This study offers new insight toward the development of smaller, more energy-efficient electronic devices.

    Also this year, a first-of-its-kind tool for automatically synthesizing quantum materials entered the commissioning phase at CFN. The Quantum Material Press (QPress) can synthesize, process, and characterize materials made of stacked two-dimensional sheets—and should help accelerate the discovery of new materials for applications in quantum information science.

    Enzymes and catalysts for greener chemistry

    7
    Biologists and chemists at Brookhaven have uncovered potential keys to greener chemistry in a string of successful studies this year.

    Plant biochemists in the Biology Department identified a sterol that plays a major role in the accumulation of oil in seeds, the plants’ normal oil-storage reservoir, as well as in stems and leaves. Oil-rich stems and leaves could be more easily harvested for producing biofuels. They also identified an enzyme that drives the production of p-hydroxybenzoic acid, a component of plant cell walls that could be used as a feedstock for making a wide range of industrial chemicals. And they found a way to dismantle a biochemical “roadblock” to producing a specialty fatty acid in plants. These studies suggest strategies for engineering plants to produce products that could replace petrochemicals, or to tailor plant biomass for improved bioenergy production and other applications.

    Chemistry Division scientists discovered the mechanistic details of two catalysts that could help convert potent greenhouse gases into useful products: one that transforms carbon dioxide into ethanol and another that converts methane to methanol. Both ethanol and methanol can be used directly as fuels or as building blocks for making a wide range of industrial chemicals.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 10:11 pm on December 13, 2021 Permalink | Reply
    Tags: "Start-up of 22nd Run at the Relativistic Heavy Ion Collider (RHIC)", , AGS: Alternating Gradient Synchrotron, , C-AD: Collider-Accelerator Department, CeC: coherent electron cooling, DOE’s Brookhaven National Laboratory (US), EIC:Electron-Ion Collider, , , , ,   

    From DOE’s Brookhaven National Laboratory (US) via Interactions.org : “Start-up of 22nd Run at the Relativistic Heavy Ion Collider (RHIC)” 

    From DOE’s Brookhaven National Laboratory (US)

    via

    Interactions.org

    13 December 2021

    Karen McNulty Walsh
    +1 (631) 344-8350
    kmcnulty@bnl.gov

    Peter Genzer
    +1 (631) 344-3174
    genzer@bnl.gov

    Physicists will try out innovative accelerator techniques and deliver high-energy polarized protons for explorations of protons’ inner structure using new detector components at the STAR detector.

    Particle smashups have begun for Run 22 at the Relativistic Heavy Ion Collider (RHIC)[below]. RHIC, a 2.4-mile-circumference particle collider at the U.S. Department of Energy’s Brookhaven National Laboratory, operates as a Department of Energy (US) Office of Science user facility, serving up data from particle collisions to nuclear physicists all around the world. On the menu this run: collisions between beams of polarized protons interspersed with tests of innovative accelerator techniques. During the run, RHIC’s recently upgraded STAR detector [original image below, no upgrade images made available by BNL] will track particles emerging from collisions at a wider range of angles than ever before.

    The new data will add to earlier RHIC datasets exploring the fundamental building blocks of visible matter. In addition, the physics findings, accelerator tests, and detector technologies will play important roles in the Electron-Ion Collider (EIC) [below]—DOE’s next planned nuclear physics facility, which will reuse key components of RHIC.

    Discovering the universal properties of protons and how they emerge from the interactions of quarks and gluons, the building blocks within protons, is a central goal of both facilities. RHIC’s proton-proton collisions could reveal unprecedented details and a preview of how certain characteristics depend on the dynamic motions of the quarks and gluons.

    “Our goal this run is basically doing EIC physics with proton-proton collisions,” said Brookhaven Lab physicist Elke-Caroline Aschenauer, a member of the STAR collaboration who is also involved in planning the experiments and scientific program at the EIC. “It’s important to do both [using RHIC and the EIC] because you have to verify that what you measure in electron-proton collisions at the EIC and in proton-proton events at RHIC is universal—meaning it doesn’t depend on which probe you use to measure it,” she explained.

    The measurements rely on RHIC’s ability to align the “spins” of protons in an upward pointing direction. This alignment, or polarization—a capability unique among colliders like RHIC—gives scientists a directional frame of reference for tracking how particles generated in the collisions move.

    “We are using polarization as a vehicle to study proton structure, and particularly the 3D structure, including how the internal particles (quarks and gluons) are moving inside the proton,” Aschenauer said.

    Delivering proton beams

    The physicists in Brookhaven Lab’s Collider-Accelerator Department (C-AD), who steer the beams around RHIC, are determined to give STAR what it needs.

    “For Run 22 we are going to focus on being as efficient as possible and racking up the collisions at the highest possible polarization,” said C-AD physicist Vincent Schoefer, this year’s run coordinator.

    When we spoke with Schoefer, he was busy “waking up” equipment that hasn’t been used since Run 17—the last time polarized protons were collided at RHIC. This equipment includes “helical dipole” magnets that help preserve the polarization of the protons as they make millions of turns around RHIC’s twin accelerator rings. This year’s run will take place at the highest collision energy: 500 billion electron volts (GeV) per colliding proton.

    The C-AD team was also preparing “polarimeters” to measure just how aligned those proton spins are.

    “It doesn’t matter how highly polarized your beam is if you can’t measure that. So, the polarimetry is really crucial,” Schoefer said.

    Accelerator physicists in C-AD and experimental physicists involved in making measurements that rely on polarized beams collaborated on the design of RHICs polarimeters.

    “This work is an example of the type of collaboration between groups that has been going on since the start of RHIC,” said C-AD physicist Haixin Huang.

    Pumping up polarization

    Keeping proton beams tightly packed helps preserve polarization. It also maximizes the likelihood that you get collisions when the beams cross. But keeping protons close together is a challenge.

    “They’re all positively charged particles, so they want to repel one another,” Schoefer explained. “The more tightly you pack them, the more they resist that packing.”

    The repulsion is particularly strong in the early stages of acceleration—before protons have been ramped up to full collision energy. So, this run, the C-AD team will try a technique that’s worked when RHIC accelerates larger particles but has never been used with protons before.

    “We are going to split each proton bunch into two when they’re still at low energy in the Booster, and accelerate those as two separate bunches,” Schoefer said. “That splitting will alleviate some of the stress during low energy, and then we can merge the bunches back together to put very dense bunches into RHIC.”

    This merging maneuver is challenging, Schoefer said, because it takes “a really long time—where a really long time is one second! For the protons, that’s 300,000 turns around the Alternating Gradient Synchrotron (AGS).” (The AGS is the link in the accelerator chain after the Booster that feeds particle beams into RHIC.) “During those 300,000 turns, we have to handle the protons very gently, so we don’t ruin the nice beams we have prepared.”

    The CA-D team will also calculate very careful trajectories for the particles’ paths through the collider. This step should help counteract the tendency of the accelerator’s magnetic fields (which physicists use to steer and focus the beams) to rotate the spins of protons away from ideal alignment.

    “We’re going to try different trajectories and see if we can learn something about what is making this misalignment happen,” Schoefer said.

    The combination of techniques is now delivering highly polarized proton beams to collide inside STAR.

    STAR upgrades

    When they analyze results from these collisions, STAR physicists will be looking for differences in the numbers of certain particles emerging to the left and right of the polarized protons’ upward pointing direction.

    For example, they want to test whether there’s a repulsive interaction between particles with like “color” charges that’s opposite to the attractive interaction observed between unlike color-charged particles. (Color charge is they type of charge through which quarks interact.) The opposite force should produce the opposite directional preference for certain particle decay products.

    STAR first saw hints of this effect in data collected in 2011, published in 2016 [Physical Review Letters]. A preliminary analysis of additional data collected in Run 17 indicates a small effect but with large uncertainties. Run 22 will help STAR reduce those uncertainties with larger data sets.

    In addition, the recently installed STAR upgrades will give physicists the ability to track particles at previously inaccessible angles toward the front and rear of the detector.

    “This is the region where we expect the left-right directional preference to be larger,” Aschenauer said.

    The upgrades include an inner Time Projection Chamber (iTPC), installed in 2019, which placed many more sensors in the inner sectors of the cylindrical STAR detector, close to the colliding particles. Then, earlier this year, the STAR team installed “forward” particle-tracking components outside one end of the detector.

    To picture how these upgrades increase STAR’s particle tracking range, think of STAR as a barrel lying on its side with colliding particles entering at each end. Ever since RHIC’s first collisions in 2000, STAR has tracked particles emerging perpendicular to the colliding particles’ path all around the barrel. The classic end-on views of STAR particle tracks showcase this 360-degree detection capability. But looking from the side, the original STAR detector could only track particles emerging at angles up to 45 degrees off vertical in either the forward or rearward direction.

    The upgrades “open wider the cone where the particles can go and be detected,” said Zhenyu Ye, a STAR collaborator from The University of Illinois-Chicago(US). Ye led the design and construction of the new silicon-based particle-tracking components installed at the forward end of STAR, working with scientists from The National Cheng Kung University [國立成功大學](TW) and Shandong University [山東大學](CN).

    These components give scientists the ability to detect particles emerging almost in line with the colliding beams, including jets of particles that reveal information about the colliding quarks’ energy, direction, and spin.

    “This information is essential for mapping the 3D arrangement of the proton’s inner building blocks,” said Chi Yang from Shandong University. Yang worked with colleagues from the The University of Electronic Science and Technology of China[电子科技大学](CN) and Brookhaven Lab to build additional subdetector systems for the forward tracking detector.

    “These upgrades cover exactly the angles where jets would go in the EIC,” said Brookhaven Lab physicist Prashanth Shanmuganathan. So, in addition to increasing the data set for exploring the color charge interactions, “Run 22 will help us learn about the detector technology and the behavior of nucleon structure so we can apply that knowledge to the EIC.”

    Cooling protons

    Interspersed with delivering proton-proton collisions for STAR’s Run 22 measurements, the C-AD team will also spend the equivalent of two weeks’ time testing a technique for keeping high-energy protons tightly packed.

    You’ll recall that keeping particles packed is important for maximizing collision rates and maintaining polarization. But particle spreading, or heating up, is a problem for all accelerated ion beams—from protons to uranium nuclei (the heaviest ions that have been collided at RHIC).

    “There’s no natural shrinking of these ion beams; they never get denser by accident,” Schoefer said.

    So RHIC accelerator physicists have developed a variety of successful techniques to keep ion beams “cool.” Some of these cooling methods involve delivering “kicks” to push particles closer together, while others literally use cool beams of other particles (electrons) to extract heat from circulating ions.

    Realizing that different cooling techniques work best for different types of particles at different energies, physicists are exploring several strategies for possible use at the EIC. In Run 22 they’ll test something called “coherent electron cooling” (CeC) on high energy polarized protons.

    Instead of just being cool in temperature, as described above, the negatively charged electrons in CeC play a more active role: They clump around each positively charged proton to create a “mold” of the proton beam.

    “It’s a little bit like getting braces when the orthodontist takes a mold of your teeth,” Schoefer said. “We take a mold of the proton beam and then we adjust the electron beam slightly to attract the protons closer to a central position. As the electrons move, their electrical attraction drags the protons with them.”

    In 36-hour stints, the C-AD physicists will test and try to fine-tune the technique.

    Measuring ion polarization

    In addition, every two weeks during Run 22, the C-AD team will stop proton acceleration for 12- to 16-hour stretches of accelerator R&D experiments. For one of these projects, they’ll ramp up beams of Helium-3 ions to work on methods for measuring the polarization of particles other than protons.

    “In RHIC, the only polarized species we’ve ever had is polarized protons. But EIC will do experiments with polarized ions such as Helium-3. That’s an entirely different beast,” Schoefer said.

    The C-AD team worked in collaboration with members of the “Cold-QCD” group in the Physics Department to design ways to measure the polarization of these more complicated ions.

    To measure polarization, physicists spray a gas through the beam to act as a target, and measure how the particles in the beam scatter.

    “For a proton, that’s already a challenge, but at least the proton stays a proton. When Helium-3 scatters off a target, it may break up into two protons and a neutron, or a proton and a deuteron. To accurately measure the polarization, we have to identify when breakup occurs,” said William Schmidke, a scientist in the physics department who’s been developing polarimetry detectors to make the measurements.

    During Run 22, physicists will test the components’ ability to accurately characterize scattering products using unpolarized beams of Helium-3.

    “We can do these tests, without measuring polarization, to develop the methods so we’ll be able to measure polarization when we eventually have polarized beams at the EIC,” said Brookhaven physicist Oleg Eyser, another member of the Cold-QCD team.

    “Many people made important contributions to the detector and accelerator components needed for Run 22 at RHIC. We are looking forward to the exciting opportunities for physics discoveries and for advancing the technologies and physics analysis methods we will need for the EIC,” said Haiyan Gao, Brookhaven’s Associate Laboratory Director for Nuclear and Particle Physics.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 10:30 am on December 3, 2021 Permalink | Reply
    Tags: "Researchers Team up to get a Clearer Picture of Molten Salts", , , , DOE’s Brookhaven National Laboratory (US), EXAFS: extended X-ray absorption fine structure spectroscopy   

    From DOE’s Brookhaven National Laboratory (US) and DOE’s Oak Ridge National Laboratory (US) : “Researchers Team up to get a Clearer Picture of Molten Salts” 

    From DOE’s Brookhaven National Laboratory (US)

    and

    DOE’s Oak Ridge National Laboratory (US)

    November 29, 2021

    Cara Laasch
    631-344-8458
    laasch@bnl.gov

    Ashley C Huff
    865.241.6451
    huffac@ornl.gov

    1
    Team at Brookhaven National Laboratory performed extended X-ray absorption fine structure spectroscopy at the National Synchrotron Light Source II [below]. From left to right: Yang Liu, Mehmet Topsakal, Denis Leshchev, Simerjeet Gill, Anatoly Frenkel, and James Wishart.

    2
    Collaborators at Idaho National Laboratory performed optical spectroscopic measurements. Credit: INL, U.S. Dept. of Energy.

    Researchers at the Department of Energy’s Oak Ridge, Brookhaven and DOE’s Idaho National Laboratory (US) and The University at Stony Brook-SUNY (US) have developed a novel approach to gain fundamental insights into molten salts, a heat transfer medium important to advanced energy technologies.

    Molten salts, or salt melts, remain liquid across a range of temperatures and offer stable thermal and conductive properties for some of the hottest applications. They can fuel and cool nuclear reactors, power high-temperature batteries and store energy for concentrated solar power plants. An experiment decades ago demonstrated their potential to produce safe, efficient and affordable nuclear energy.

    “There has been renewed interest in using molten salts to address current energy challenges, but we need a better fundamental understanding of salts and their interactions with structural materials to develop technologies around them,” said ORNL’s Vyacheslav Bryantsev. “By combining theory and experiment, we can create useful models that connect with the many physical properties engineers need to consider when they design molten salt systems.”

    The team collaborated as part of a DOE Energy Frontier Research Center (US) that investigates Molten Salts in Extreme Environments.

    Results published in the Journal of the American Chemical Society provide elusive information about the structure and dynamics of molten salts and their interactions with the alloys used to contain them.

    3
    Oak Ridge National Laboratory researchers (from left) Sheng Dai, Santanu Roy, Vyacheslav Bryantsev, and The University of Tennessee (US) student Phillip Halstenberg. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

    Corrosion is a known challenge for molten salts, but the process is not well understood because it is difficult to predict and probe experimentally. One reason is that molten salts are dynamic and changing, not only melting from a solid state to become liquid but also evolving with temperature and composition changes. Added to that complexity are corrosion products, such as nickel, chromium and other transition metals, that interact with salt mixtures in ways that are difficult to detect and interpret.

    The study set out to observe traces of nickel in chloride-based molten salts, ZnCl2–KCl. Collaborators at Brookhaven used the Inner Shell Spectroscopy beamline at the National Synchrotron Light Source II [below] to perform extended X-ray absorption fine structure spectroscopy, or EXAFS, a powerful technique that can single out specific elements to learn about their atomic structures. X-rays are sent through a sample and are absorbed by atoms. The irradiated atoms eject electrons that are scattered by the surrounding atoms or ions.

    Researchers can measure the scattering patterns to create a picture of the coordination structures present, that is, the way atoms and molecules are arranged around a central metal ion. In this case, the goal was to understand how nickel ions bond with chloride in coordinated networks that may be present in different forms.

    3
    Researchers combined experiment and theory to model the structure and dynamics of nickel as a corrosion product in the molten salt environment. Credit: Santanu Roy/ORNL, U.S. Dept. of Energy.

    A conventional approach that fits EXAFS theory to experimental data can create an average picture of the structures present but fails to capture the complexity of the molten salt environment. Nickel interacts with chloride to form multiple structures, each with different coordination numbers, that coexist and evolve independently. A new approach is needed to account for diversity.

    “We found that a conventional fitting method was inadequate to describe the coordination structure of nickel, which in turn made it difficult to interpret experimental data. You need an approach that can account for the highly disordered state of molten salts where elements appear in many different configurations simultaneously,” said Brookhaven National Laboratory scientists Simerjeet Gill and Anatoly Frenkel, who led the EXAFS data collection and analysis.

    Researchers developed a method to identify multiple coordination states adopted by nickel – different configurations of nickel ions – and to quantify those populations, a feat that has not previously been possible. The new model was validated using optical absorption spectroscopy performed by team members at Idaho National Laboratory.

    “Our first step was to understand how molten salt structural networks look at the atomic level and how nickel becomes a part of that network via chloride sharing. Typically, nickel and other cations (namely zinc) in the melt were found to share one or two chlorides between them in close-contact configurations,” said ORNL’s Santanu Roy.

    Once researchers determined which coordination structures were present, the next step was to understand why and how they form and evolve over time in the molten salt environment.

    “We know the structures that form in molten salts are dynamic and sensitive to changes in temperature and composition, but we wanted to quantify that relationship,” said Roy. “The nickel–chloride networks continue to evolve through a process of chloride exchange. Chloride ions move and trade places with other chloride ions, and when that happens, the whole network might adopt a new structure.”

    The team showed, as expected, that ions gain more kinetic energy as the salt melt temperature increases, leading to faster chloride exchange dynamics around nickel ions. A surprising result was that changes to the composition of the salt melt by adjusting the ratio of elements also had a significant impact on the chloride exchange dynamics, which became faster when more structural disorder was introduced. A key finding linked chloride exchange dynamics as function of melt composition to coordination structures adopted by nickel ions.

    The study revealed several critical aspects of the way ions interact in molten salts and described the rules governing how different coordination structures form.

    “These efforts combining theory and experiment make a significant leap in connecting fundamental insights to properties, such as ion solubility and transport, that could be optimized for specific applications,” said Bryantsev.

    The work was sponsored by the DOE Office of Science as part of the Molten Salts in Extreme Environments Energy Frontier Research Center.

    See the full BNL article here.
    See the full ORNL article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    Established in 1942, DOE’s Oak Ridge National Laboratory (US) is the largest science and energy national laboratory in the Department of Energy system (by size) and third largest by annual budget. It is located in the Roane County section of Oak Ridge, Tennessee. Its scientific programs focus on materials, neutron science, energy, high-performance computing, systems biology and national security, sometimes in partnership with the state of Tennessee, universities and other industries.

    ORNL has several of the world’s top supercomputers, including Summit, ranked by the TOP500 as Earth’s second-most powerful.

    ORNL OLCF IBM AC922 SUMMIT supercomputer, was No.1 on the TOP500..

    The lab is a leading neutron and nuclear power research facility that includes the Spallation Neutron Source and High Flux Isotope Reactor.

    ORNL Spallation Neutron Source annotated.

    It hosts the Center for Nanophase Materials Sciences, the BioEnergy Science Center, and the Consortium for Advanced Simulation of Light Water Nuclear Reactors.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    Areas of research

    ORNL conducts research and development activities that span a wide range of scientific disciplines. Many research areas have a significant overlap with each other; researchers often work in two or more of the fields listed here. The laboratory’s major research areas are described briefly below.

    Chemical sciences – ORNL conducts both fundamental and applied research in a number of areas, including catalysis, surface science and interfacial chemistry; molecular transformations and fuel chemistry; heavy element chemistry and radioactive materials characterization; aqueous solution chemistry and geochemistry; mass spectrometry and laser spectroscopy; separations chemistry; materials chemistry including synthesis and characterization of polymers and other soft materials; chemical biosciences; and neutron science.
    Electron microscopy – ORNL’s electron microscopy program investigates key issues in condensed matter, materials, chemical and nanosciences.
    Nuclear medicine – The laboratory’s nuclear medicine research is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology.
    Physics – Physics research at ORNL is focused primarily on studies of the fundamental properties of matter at the atomic, nuclear, and subnuclear levels and the development of experimental devices in support of these studies.
    Population – ORNL provides federal, state and international organizations with a gridded population database, called Landscan, for estimating ambient population. LandScan is a raster image, or grid, of population counts, which provides human population estimates every 30 x 30 arc seconds, which translates roughly to population estimates for 1 kilometer square windows or grid cells at the equator, with cell width decreasing at higher latitudes. Though many population datasets exist, LandScan is the best spatial population dataset, which also covers the globe. Updated annually (although data releases are generally one year behind the current year) offers continuous, updated values of population, based on the most recent information. Landscan data are accessible through GIS applications and a USAID public domain application called Population Explorer.

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 11:46 am on November 24, 2021 Permalink | Reply
    Tags: "Revolutionizing Data Access Through 'Tiled' ", "Tiled" aims to follow other NSLS-II software efforts in growing a friendly community of contributors and users., "Tiled" is a data access service for data-aware portals and data science tools., "Tiled" will enable a whole garden of useful tools to grow for a wide range of techniques., Building on open standard web protocols advances our scientific capabilities by making it easy to move data to where it’s needed., By using "Tiled" scientists can preview their data and access just the parts they want without a large download., DOE’s Brookhaven National Laboratory (US), NSLS-II scientists developed new data access software that paves the way for more discoveries., The new software even enables a form of “airplane mode” in which the data are stored on a user’s laptop so that researchers can continue to work on it offline or with a slow Internet connection., Working with data is a central part of all research and yet a challenge on its own.   

    From DOE’s Brookhaven National Laboratory (US) : “Revolutionizing Data Access Through Tiled“ 

    From DOE’s Brookhaven National Laboratory (US)

    November 24, 2021

    Cara Laasch
    laasch@bnl.gov
    (631) 344-8458

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    NSLS-II scientists developed new data access software that paves the way for more discoveries.

    1
    Scientists can use Tiled to seamlessly access data stores across various formats such as files, data bases or other data services. Tiled allows its users to see, slice, and study their data using the most convenient tool for them.

    Every time scientists study a new material for future batteries or investigate diseases to develop new drugs, they must wade through an ocean of data. Today, a whole ecosystem of scientific tools creates a wild variety of data to be explored. This exploration will now get a lot easier thanks to scientists at the National Synchrotron Light Source II (NSLS-II) [below], located at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory. Their freshly rolled-out software tool—called Tiled—allows researchers to see, slice, and study their data more conveniently than ever before. This new data access tool makes finding and analyzing the right piece of data a walk in the park compared to previous methods, paving the way for the next scientific breakthrough.

    As one of the 28 DOE Office of Science (US) user facilities across the Nation, NSLS-II welcomes nearly 2,000 scientists each year to use its ultrabright light, tackling the greatest challenges in materials and life science. These visiting researchers come from around the globe to collaborate with experts and use the one-of-a-kind research tools at NSLS-II. They zap their samples, ranging from ancient rocks to novel quantum materials, with intense x-rays and catch outgoing signals using advanced detectors. In turn, these detectors spit out streams of data, waiting to be analyzed by scientists.

    “Working with data is a central part of all research and yet a challenge on its own. It comes in a multitude of formats, in varying sizes and shapes, and not every piece of it is useful for the researchers. This is why developing a software tool that makes accessing, seeing, and sorting through data so important,” said Dan Allan, computational scientist at NSLS-II.

    Tiled is a data access service for data-aware portals and data science tools. This means that Tiled sits atop databases and file systems so that scientists can access their data through, for example, a web browser or data analysis software. While the Data Science and Systems Integration (DSSI) program rolled out Tiled to all experimental stations at NSLS-II, the service, just like its cousin project Bluesky (a data acquisition software also developed at NSLS-II), can be used in any research laboratory around the globe. This is possible because Tiled is published under a popular open-source software license.

    “Even though we developed Tiled in the programming language Python and, therefore, it integrates naturally with data science libraries based on Python, nothing about the service is Python-specific,” said Stuart Campbell, chief data scientist at NSLS-II. “The client uses an API, or application programming interface, to connect the user applications with the server. An API is basically a set of rules, or a contract that defines how different software pieces communicate with each other. The great thing about this approach is that once these rules and interfaces are defined, it provides users and developers the structure within which they can build some excellent tools and expand the functionality beyond that which we had originally imagined.”

    Tiled’s flexibility allows the service to seamlessly integrate with any database or collection of files so that it can be used on a wide range of experiments with very different techniques and data.

    Getting Your Data Needs Squared Away

    2
    This preview of the Tiled web client shows how different detector images from different measurements can be displayed at the same time. The preview shows the portal in dark mode.

    “In the past, I used to help my PhD advisor to download data from facilities like NSLS-II. It was tedious because we needed to download all of our data at once before we could sort out the useful parts. Additionally, the data were in the format of the detector – regardless of how we wanted to analyze it. This meant after a long download, we had to convert the data before we could even look at it,” Allan said.

    Campbell added, “If Dan had Tiled back then, he could have easily looked through the data on a web browser or data analysis application, sorted out the good parts, and shared only those of interest with his advisor through a single link.”

    By using Tiled, scientists can preview their data and access just the parts they want without a large download. They can also choose the format of their downloaded data or feed it directly into analysis software. At the same time, Tiled offers access control based on web security standards so that all data stay safe. Because setting up a new account can be a barrier, Tiled can be configured to allow third-party services for login, such as Google and ORCID.

    “Remote capabilities are more important than ever,” said Dylan McReynolds, computing systems engineer at the Advanced Light Source, a DOE Office of Science User Facility located at DOE’s Lawrence Berkeley National Laboratory (US), who has collaborated on Tiled.

    DOE’s Lawrence Berkeley National Laboratory (US) Advanced Light Source.

    “Building on open standard web protocols advances our scientific capabilities by making it easy to move data to where it’s needed.”

    The new software even enables a form of “airplane mode” in which the data are stored on a user’s laptop so that researchers can continue to work on it offline or with a slow Internet connection.

    “Our aim with Tiled is to simplify data access for everyone. If you don’t need to worry about converting data formats into other formats or picking information out of file names, you can think about the more important parts, like finding the answer to your research questions,” said Thomas Caswell, computational scientist at NSLS-II.

    Simplifying and standardizing data access is critical to both optimizing existing workflows and enabling future workflows centered on Machine Learning, AI, and other advanced analytics. These emerging technologies critically rely on frictionless access to data, regardless of how it was collected or stored, to unlock their full potential.

    3
    This Jupyter Notebook, a popular data analysis web application, is using Tiled to access data for calculations, processing, and visualization.

    Tiled – Fits Into Any Research Puzzle

    The first users of Tiled have already built some exciting and sophisticated tools to power their research.

    Tiled offers a completely new way to access the data that will simplify and streamline processing and analysis pipelines for experiments. No more clunky downloads or wasting time importing data from a dozen formats to analyze an experiment!” said Denis Leschev, assistant physicist at NSLS-II, who tested Tiled. “In addition, Tiled will enable a more straightforward way to share the data, paving the way for more open and transparent science in the future.”

    The new software is not only available for NSLS-II users: the team designed the software to be adaptable to any data source. It can be deployed at a large scale for facilities like NSLS-II, but it can run just as well on a student’s laptop or a research group’s workstation. Other laboratories and institutions already have the opportunity to adapt this software for their own needs.

    Peter Beaucage, a staff scientist at The National Institute of Standards and Technology (US), who is an early user of Tiled, has integrated it with his own scientific data analysis program, PyHyperScattering. He lets Tiled handle data transfer and security details, building on it to provide his users with the specific interface that they need for their work.

    “The volume of synchrotron data needed for a typical analysis has expanded dramatically in the last decade, rapidly scaling beyond the capabilities of existing data transfer platforms. Tiled and similar solutions promise to give users seamless access to the right data at the right time and accelerate discovery based on x-ray science,” Beaucage said.

    Beyond Beaucage, other users of Tiled also built data analysis pipelines, moving data from live experiments at NSLS-II to remote clusters and into custom software for visualizing and interrogating the data. Each step was supported by Tiled.

    “Overall, we are incredibly proud to roll out Tiled. It is the culmination of our work for the last six years. It combines all the features we want in modern data access tools, and it goes hand in hand with Bluesky,” said Campbell.

    The Road Ahead

    Tiled will enable a whole garden of useful tools to grow for a wide range of techniques. The team has set their eyes on building out various web applications focused on specific research techniques. The team also wants to design a public data interface so that anyone can explore real publicly available data using Tiled.

    “Grants often require open data access, but it is difficult for researchers to achieve that in a way that is practical and immediately useful. Tiled lays a track to researchers’ door, working with the tools they already use to help them make data findable, accessible, interoperable, and reusable, following the FAIR guiding principles for scientific data management and stewardship,” added Allan.

    By separating how data are stored from how they are accessed, Tiled unlocks a way to use cutting-edge storage and search technologies on the inside, while presenting researchers with time-tested and established standards. It meets them where they are and leaves them in charge of how to format and work with their data.

    Tiled aims to follow other NSLS-II software efforts in growing a friendly community of contributors and users. We are actively seeking collaboration with facilities and researchers around the world—whether in industry, academia, or government—who have similar challenges, and we are excited to see what we can build together on this platform,” said Allan.

    The development team of Tiled led by Daniel Allan included Thomas Caswell, Stuart Campbell, Marcus Hanwell, Garrett Bischof, and Juan Marulanda from the DSSI program at NSLS-II, and Dylan McReynolds and Joseph Kleinhenz from the Advanced Light Source at DOE’s Lawrence Berkeley National Laboratory. The project benefited from collaboration with the Intake software project led by Martin Durant of Anaconda, Inc. Additionally, there were many useful conversations with experts from other facilities and institutions, notably, Diamond Light Source (UK), European Spallation Source (SE), and The Institute for Research and Innovation in Software for High Energy Physics (US).

    Diamond Light Source, located at the Harwell Science and Innovation Campus in Oxfordshire U.K.

    ESS European Spallation Source in Lund, Sweden.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    Brookhaven Campus

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 10:31 am on November 19, 2021 Permalink | Reply
    Tags: "Successful RHIC Run 21 Completes Beam Energy Scan II", , , DOE’s Brookhaven National Laboratory (US),   

    From DOE’s Brookhaven National Laboratory (US) : “Successful RHIC Run 21 Completes Beam Energy Scan II” 

    From DOE’s Brookhaven National Laboratory (US)

    November 18, 2021
    Kelly Zegers
    kzegers@bnl.gov

    An efficient end to BES-II saved time for additional physics goals.

    In a smooth 21st run at the Relativistic Heavy Ion Collider (RHIC)[below], a Department of Energy (US) user facility for nuclear physics research at Brookhaven National Laboratory, scientists reached their goal to smash ions at the lowest—and most challenging—energy. And the STAR detector [below] completed the targeted collection of data ahead of schedule.

    An early wrap of the final phase of Beam Energy Scan II (BES-II) allowed time for STAR to grab important additional data as RHIC heads into the final years of its experimental program. After the completion of the RHIC physics program, some of RHIC’s foundational components will be used to construct a brand-new nuclear physics research facility—the Electron-Ion Collider (EIC)[below].

    “We exceeded our physics goals and took something extra for this year that wasn’t even on the original beam user request,” said Brookhaven physicist and STAR collaboration co-spokesperson Lijuan Ruan. “This outstanding run is thanks to a dedicated team and constant discussion between the Collider-Accelerator Department (C-AD) and STAR scientists, technicians, and engineers.”

    2
    Mapping nuclear phase changes is like studying how water changes under different conditions of temperature and pressure (net baryon density for nuclear matter). RHIC’s collisions “melt” protons and neutrons to create quark-gluon plasma (QGP). STAR physicists are exploring collisions at different energies, turning the “knobs” of temperature and baryon density, to look for signs of a “critical point.” That’s a set of conditions where the type of transition between ordinary nuclear matter and QGP changes from a smooth crossover observed at RHIC’s highest energies (gradual melting) to an abrupt “first order” phase change that’s more like water boiling in a pot.

    First, physicists completed the last stage of BES-II, a three-year systematic study of what happens when gold ions—gold atoms stripped of their electrons—collide at various energies. The experiment successfully captured measurements from collisions at the lowest energy of 3.85 billion electron volts (GeV) per nucleon (proton or neutron). Scientists also successfully collected data from fixed-target runs at 44.5, 70, 100 GeV/nucleon.

    The data collected using the STAR detector in this run could be key in the search for evidence of what nuclear physicists call the “critical point” in the transition of ordinary nuclear matter into a soup of free quarks and gluons, known as a quark-gluon plasma (QGP). This critical point marks a change in how that transition between the two phases happens.

    Delivering intense colliding ion beams at low energies is a challenge. The lower the energy, the tougher it is to maintain the quality of the beam. But improvements in anticipation of and during the run helped maximize the chances of collisions happening when the beams crossed at the center of RHIC’s STAR detector.

    One ingredient to a successful BES-II finale: the Low Energy RHIC Electron Cooling (LEReC) system. This system injects cool beams of electrons into the stream of accelerated ions to extract some of the heat. That cooling helps counteract the ions’ tendency to spread out, thus keeping them compact and more likely to collide.

    “All systems performed with high availability and reliability, and that was essential, without a doubt, to the success of the program,” said Michiko Minty, head of the Accelerator Division. “This run pushed the limits and was extraordinarily challenging because it had never been done before 2020. LEReC enabled science that could probably not otherwise have been done in a reasonable amount of time.”

    C-AD made additional upgrades to deliver more intense beams and maximize collision rates.

    2
    Physicists in the STAR experiment collaboration met their goal earlier than projected in RHIC Run 21 at the lowest energy of BES-II, reaching 98 million collisions in 13 weeks instead of the projected 20 weeks.

    Application of the third-harmonic radio frequency (RF) cavities installed in the RHIC rings raised the capacity to accommodate much higher beam intensity. These RF cavities create electromagnetic fields that help flatten the longitudional profile of the bunches to reduce the peak bunch intensity while keeping the ions tightly packed.

    A bunch-by-bunch damper system also helped nudge spreading ion bunches back toward the center of the beam pipe.

    “The collaboration between C-AD and STAR was extremely smooth,” said Brookhaven Lab accelerator physicist Chuyu Liu, the run coordinator. “We worked closely together to solve a few technical issues, resulting in performance improvements. We never stopped making improvements to the collider and LEReC and the beam injectors. When we look at data showing the performance during the run, we did better and better every day.”

    COVID-19 also added to the challenge this year. But the collaboration members successfully navigated safety protocols and adjusted to a “new normal” with limited crews on site.

    “C-AD delivered a good beam, which we used efficiently, and the detector worked well,” said STAR run coordinator J.H. Lee, “Everything was in harmony.”

    Beyond the BES-II finale

    With BES-II wrapped, physicists had beam time to devote to other priorities laid out in the proposed beam user request for Run 21. They also achieved an extra, but important, physics goal.

    As one of the additional priorities for Run 21, physicists ran collisions between oxygen ions. Over RHIC’s lifetime, experiments have included collisions between a range of heavy ions with other heavy ions, heavy with light, and intermediate elements. The oxygen-on-oxygen collisions represent a new species combination for the RHIC program. Oxygen is an intermediate element that is relatively light—much lighter than gold ions, explained C-AD chair Wolfram Fischer. So this dataset offers another comparison to use in the quest for more information on the building blocks of matter.

    In an exciting end to the run, RHIC scientists also had time for collisions between gold nuclei and deuterons—nuclei that consist of one proton and one neutron. Scientists will compare measurements collected in this run with data captured by the PHENIX and STAR detectors in previous deuteron-gold collisions, making use of significant upgrades in STAR that have taken place since.

    This is especially important with four more years left before RHIC’s experimental program is set to close out to focus on the transition to the EIC.

    “RHIC is in a state now where the end is visible,” Fischer said. “The available beam time becomes less and less over time and in that sense becomes more precious. We may never be able to repeat some things we do now.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 10:29 am on November 12, 2021 Permalink | Reply
    Tags: "Converting Methane to Methanol—With and Without Water", , , DOE’s Brookhaven National Laboratory (US)   

    From DOE’s Brookhaven National Laboratory (US) : “Converting Methane to Methanol—With and Without Water” 

    From DOE’s Brookhaven National Laboratory (US)

    November 8, 2021
    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Studies of common copper-zinc oxide catalyst suggest strategies for improving water-free conversion.

    1
    This scanning tunneling electron microscope image shows the structure of a copper-zinc oxide catalyst that converts methane to methanol with and without water. Triangular zinc-oxide “islands” rest on a copper-oxide thin film (flat background) over a copper substrate (not seen). The “step” edges between copper-oxide and zinc-oxide (A, where blue is zinc, red is oxygen) are the main active sites for producing methanol when no water is present. The semi-flat areas have a relatively perfect crystal structure (B) and are inert during the reaction. The very rough areas are likely associated with defects—in this case with fewer zinc atoms and an oxygen-rich crystal structure (C)—and are the most active sites for methanol production when water is present.

    Chemists have been searching for efficient catalysts to convert methane—a major component of abundant natural gas—into methanol, an easily transported liquid fuel and building block for making other valuable chemicals. Adding water to the reaction can address certain challenges, but it also complicates the process. Now a team at the U.S. Department of Energy’s Brookhaven National Laboratory has identified a new approach using a common industrial catalyst that can complete the conversion effectively both with and without water. The findings, published in the Journal of the American Chemical Society, suggest strategies for improving catalysts for the water-free conversion.

    “Water is like a trick that people have been using for a long time to get this reaction going—and it definitely helps. It improves the selectivity and it aids the ability to extract the methanol,” said José Rodriguez, a leader of Brookhaven Lab’s Catalysis Group, who has an adjunct appointment at The University at Stony Brook-SUNY (US) in the departments of Chemistry and Materials Science and Chemical Engineering.

    As shown in a recent related study by this group [Science], adding water keeps the reaction from running away to transform the desired product, methanol, into carbon monoxide (CO) and carbon dioxide (CO2). But adding water also adds complexity and cost. Plus, at the temperatures and in the amounts required for this reaction, the water exists as large quantities of steam, which would have to be controlled in an industrial setting.

    So, the Brookhaven team set out to explore if they could run the reaction without water by changing the catalyst—the substance that brings the reactants together and helps guide them along a particular reaction pathway.

    Catalytic conversion

    The new paper describes how a common copper-zinc oxide catalyst can steer the reaction along different pathways depending on whether water is present.

    “Copper-zinc oxide is a commercial catalyst that is readily available and not too expensive,” said Sanjaya Senanayake, one of the study co-authors. “We wanted to see whether it might work for methane-to-methanol conversion.”

    According to their study results, copper-zinc oxide has the best selectivity of any catalyst tested for this reaction without the addition of water—about 30%. That means methanol, the desired product (instead of CO or CO2), makes up 30% of the products of the reaction when it runs without water. (When run with water, the copper-zinc oxide catalyst had 80% selectivity for methanol production.)

    For comparison, the team’s earlier studies of this reaction using a cerium oxide catalyst produced almost no methanol without water.

    “One of the big challenges of this methanol synthesis reaction in the presence of just methane and oxygen (and no water) is overoxidation—the transformation of the methanol into carbon monoxide and carbon dioxide,” said study co-author Ping Liu. She noted how the earlier studies of the cerium catalyst revealed how water helped to block that overoxidation by removing the produced methanol before it could be further transformed.

    To find out how the copper-zinc catalyst achieves 80 and 30 percent specificity with and without water, respectively, the team conducted detailed studies using a variety of techniques that worked hand-in-hand with theoretical calculations to reveal crucial details of the reaction mechanism.

    X-ray studies

    “Two of our SBU graduate students, Ivan Orozco and Feng Zhang, and one of our postdocs, Zongyuan Liu, worked with Slavomír Nemšák, a long-time collaborator, at The LBNL Advanced Light Source (US)—a DOE Office of Science user facility at DOE’s Lawrence Berkeley National Laboratory (US)—to find evidence of methanol formation on the surface of the catalyst,” Senanayake said. “The technique, called ‘ambient-pressure x-ray photoemission spectroscopy (XPS),’ uses ALS’s bright beams of x-rays to detect the carbon, hydrogen, oxygen, and the metal-oxygen combinations at the active sites of the catalyst as the reaction is taking place.

    The scientists studied the samples under different reaction conditions. They varied the amount of methane, oxygen, and water (including no water), as well as the pressure and temperature—tracking which chemical species were present at different stages of the reaction.

    “Each compound has a unique ‘chemical fingerprint,’ so we can see how these reactants are transformed into intermediates and final products under different conditions,” Rodriguez said.

    The XPS fingerprints clearly showed that methanol was forming. But to find out exactly which sites on the catalyst were involved in the reactions, the team turned to theoretical modeling.

    Modeling atomic interactions

    The team used a scanning tunneling microscope in Brookhaven’s Chemistry Department to study the atomic-level structure of the catalyst, and then used those structural details to build computational models of the atomic arrangements.

    “There are many diverse active sites on the surface of the catalyst,” said Liu. To understand those sites and determine whether and how they interacted with the reactants and products, another SBU graduate student—Erwei Huang—and Liu ran “density functional theory” (DFT) calculations and kinetic modeling on computing clusters at Brookhaven Lab’s Center for Functional Nanomaterials (CFN)[below] and The DOE’s NERSC National Energy Research Scientific Computing Center (US) at DOE’s Lawrence Berkeley National Laboratory (US).

    DFT calculations identify how the reactants (methane, oxygen, and water) evolve as they interact with one another and the catalyst, as well as how much energy it takes to get from one atomic arrangement to the next. Kinetic modeling tries out all the possible pathways for those transformations to take place under reaction conditions.

    This combination of techniques allowed the team to identify the most energy-efficient (and therefore most likely) path for how methane is transformed into methanol with and without water. The results included details about which catalytic sites were involved and which intermediates should be present at different stages during the reaction. The team then verified these catalytic interactions and intermediates with “chemical fingerprinting” measurements at ALS.

    DOE’s Lawrence Berkeley National Laboratory (US) Advanced Light Source.

    Pathways to improvement

    Together, the data indicate that the reaction proceeds along two different pathways involving two different sites of the copper-zinc-oxide catalyst—one for the reaction with water and one for the reaction without water.

    “The particular configuration of active sites for the reaction with water is different from the configuration without water, and the mechanism is different, too—it’s practically two different processes,” Rodriguez said.

    But in both cases, even without water, “the binding between the methanol and the catalyst is strong enough to allow the methanol to form from methane, but weak enough to enable the methanol to come off the surface as a gas before it is further oxidized to CO or CO2,” Liu said.

    “As soon as the methanol goes into the gas phase you can condense the whole thing and then separate liquid methanol,” Rodriguez said.

    That quick “desorption” of methanol from the surface of the catalyst, which keeps the methanol from reacting further with oxygen, also eliminates a potentially explosive step.

    The team is already using their new knowledge of the reaction mechanisms to look for ways to further improve the catalyst. Their goal is to achieve a selectivity of at least 60-70% without water.

    “The atomic level understanding is much more advanced than what we’ve ever had before. We know really atom by atom that copper zinc oxide is much better for the preferred no-water reaction condition,” Senanayake said.

    In the next step, DFT calculations and kinetic modeling will start to test out other compositions, aiming to further improve the methane conversion and methanol selectivity.

    “We’ll use the theory to narrow down the candidates based on the mechanistic understanding acquired from the previous studies,” Liu said. “Then the experimentalists will do the synthesis and characterization studies to see if these other compositions will work.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 8:56 am on November 5, 2021 Permalink | Reply
    Tags: "Drone Flights Give Scientists Better Data on Vegetation in the Arctic Tundra", , DOE’s Brookhaven National Laboratory (US), , Osprey multi-sensor UAS   

    From DOE’s Brookhaven National Laboratory (US) : “Drone Flights Give Scientists Better Data on Vegetation in the Arctic Tundra” 

    From DOE’s Brookhaven National Laboratory (US)

    November 2, 2021

    Daniel Stover
    Department of Energy Office of Science, Office of Biological and Environmental Research, Earth and Environmental Systems Sciences Division
    Environmental System Science
    daniel.stover@science.doe.gov

    1
    Three-dimensional rendering of surface elevation and structure of an Arctic vegetation canopy from the aerial system. Highly detailed information like this yields new insights into the distribution and structure of plants at high latitudes.

    The Science

    Climate change is changing the health and distribution of plants around the world. Scientists use various satellite and airborne systems to monitor vegetation changes over space and time. However, these systems have low resolution. This limits their use in identifying fine-scale patterns and properties of plants. This problem is especially great in the Arctic, where vegetation is more mixed than in other ecosystems. Scientists recently adopted unoccupied aerial systems (UASs) for high-resolution monitoring of changes in vegetation through the Next Generation Ecosystem Experiment (NGEE)-Arctic. UASs provide high-resolution data on vegetation that improves scientists’ understanding of how plants respond to the environment. These data help scientists better predict how climate change affects ecosystems on Earth.

    The Impact

    Climate change affects the composition, structure, and function of vegetation in the Arctic. Most systems for remote sensing are currently not sensitive enough to characterize the fine-scale patterns of Arctic plants. Computer models need this fine-scale data to predict vegetation dynamics under different climate conditions. Researchers designed the Osprey multi-sensor UAS to collect spatial details at very high, centimeter-scale resolution. Osprey helps scientists identify the critical links between the environment and vegetation. Understanding these links enables scientists to build improved simulations of plants and their response to future climate change.

    Summary

    UASs fill a critical gap in the monitoring of ecosystems by providing very high-resolution observations. They can be deployed in remote areas with less effort than other airborne systems and can collect data on demand under different conditions. This study leveraged a novel UAS platform designed to collect fine-detail information on Arctic plant structure and functional properties. The researchers show that the use of the multi-sensor platform was effective for fine-scale mapping of vegetation patterns, properties, and health. The investigators also found that taller Arctic shrubs regulate the patterns of surface temperature and plant species composition and that these patterns could be mapped in fine detail with a UAS. Leveraging these platforms will allow scientists to understand the key features of Artic plants that facilitate acclimation to their environment, necessary information for modeling plants under future climate conditions.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 10:43 am on October 29, 2021 Permalink | Reply
    Tags: "Imaging the Chemical Fingerprints of Molecules", , , , , Combining experiment; theory; and simulation scientists from around the world discovered basic chemical properties of molecules are imprinted in atomic force microscope images., , DOE’s Brookhaven National Laboratory (US), HR-AFM: high-resolution AFM   

    From DOE’s Brookhaven National Laboratory (US) : “Imaging the Chemical Fingerprints of Molecules” 

    From DOE’s Brookhaven National Laboratory (US)

    October 25, 2021
    Ariana Manglaviti
    amanglaviti@bnl.gov

    Combining experiment; theory; and simulation scientists from around the world discovered basic chemical properties of molecules are imprinted in atomic force microscope images—a step in the ongoing quest to identify unknown molecules based on such images.

    1
    Jurek Sadowski (left) and Percy Zahl with the high-resolution atomic force microscope at the Center for Functional Nanomaterials [below].

    Flip through any chemistry textbook and you’ll see drawings of the chemical structure of molecules—where individual atoms are arranged in space and how they’re chemically bonded to each other. For decades, chemists could only indirectly determine chemical structures based on the response generated when samples interacted with x-rays or particles of light. For the special case of molecules on a surface, atomic force microscopy (AFM), invented in the 1980s, provided direct images of molecules and the patterns they form when assembling into two-dimensional (2D) arrays. In 2009, significant advances in high-resolution AFM (HR-AFM) allowed chemists for the first time to directly image the chemical structure of a single molecule with sufficient detail to distinguish different types of bonding inside the molecule.

    AFM “feels” the forces between a sharp probe tip and surface atoms or molecules. The tip scans over a sample surface, left to right and top to bottom, at a height of less than one billionth of a meter (nanometer), recording the force at each position. A computer combines these measurements to generate a force map, resulting in a snapshot of the surface. Found in laboratories worldwide, AFMs are workhorse instruments, with diverse applications in science and engineering.

    2
    An illustration of a high-resolution atomic force microscope probing the chemical properties of hydrogen-bonded trimesic acid (TMA) networks (overlaid on teal circle) on a copper surface. Key: copper atoms on metal tip apex (orange), carbon atoms (black), oxygen atoms (red), and hydrogen atoms (white). The single carbon monoxide (CO) molecule at the end of the tip apex, with the carbon attached to copper, is a bit bent in response to the repulsive forces from the nearby oxygen of the TMA molecule.

    Only a few HR-AFMs exist in the United States. One is located at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory. For several years, physicist Percy Zahl of the CFN Interface Science and Catalysis Group has been upgrading and customizing the CFN HR-AFM hardware and software, making it easier to operate and acquire images. As highly specialized instruments, HR-AFMs require expertise to use. They function at very low temperature (just above that required to liquify helium). Moreover, HR imaging depends on catching a single carbon monoxide molecule on the end of the tip.

    As challenging as preparing and operating the instrument for experiments can be, seeing what molecules look like is only the start. Next, the images need to be analyzed and interpreted. In other words, how do image features correlate with the chemical properties of molecules?

    Together with theorists from the CFN and universities in Spain and Switzerland, Zahl asked this very question for hydrogen-bonded networks of trimesic acid (TMA) molecules on a copper surface. Zahl began imaging these porous networks—made of carbon, hydrogen, and oxygen—a few years ago. He was interested in their potential to confine atoms or molecules capable of hosting electron spin states for quantum information science (QIS) applications. However, with experiment and basic simulations alone, he couldn’t explain their fundamental structure in full detail.

    “I suspected the strong polarity (regions of charge) of the TMA molecules was behind what I was seeing in the AFM images,” said Zahl. “But I needed more precise calculations to be sure.”

    In AFM, the total force between the probe tip and molecule is measured. However, for a precise match between experiment and simulation, each individual force at play must be accounted for. Basic models can simulate short-range forces for simple nonpolar molecules, where electrical charges are evenly distributed. But for chemically rich structures as found in polar molecules like trimesic acid, electrostatic forces (originating from the electronic charge distribution inside the molecule) and van der Waals forces (attraction between molecules) must also be considered. To simulate these forces, scientists need the exact molecular geometry showing how atoms are positioned in all three dimensions and the exact charge distributions inside the molecules.


    Structural Relaxation.
    Through DFT calculations at the Swiss National Supercomputing Center, Aliaksandr Yakutovich structurally relaxed the ring with six TMA molecules on a copper slab containing 1,800 copper atoms. In structural relaxation, a basic geometric or structural model is optimized to find the configuration of atoms with the lowest possible energy.

    In this study, Zahl analyzed the nature of the self-assembly of TMA molecules into honeycomb-like network structures on a clean copper crystal. Zahl initially imaged the structures on a large scale with a scanning tunneling microscope (STM). This microscope scans a metallic tip over a surface while applying an electrical voltage between them. To identify how the network structure aligned with the substrate, CFN materials scientist Jurek Sadowski bombarded the sample with low-energy electrons and analyzed the pattern of diffracted electrons. Finally, Zahl performed HR-AFM, which is sensitive to the height of surface features on a submolecular scale.

    “With STM, we can see the networks of TMA molecules but can’t easily see the orientation of copper at the same time,” said Zahl. “Low-energy electron diffraction can tell us how the copper and TMA molecules are oriented relative to each other. AFM allows us to see the detailed chemical structure of the molecules. But to understand these details, we need to model the system and determine exactly where the atoms of the TMA molecules sit on copper.”

    For this modeling, the team used density functional theory (DFT) to calculate the most energetically favorable arrangements of TMA molecules on copper. The idea behind DFT is that the total energy of a system is a function of its electron density, or the probability of finding an electron in a particular spot around an atom. More electronegative atoms (like oxygen) tend to pull electrons away from less electronegative atoms (like carbon and hydrogen) they are bonded to, similar to a magnet. Such electrostatic interactions are important to understanding chemical reactivity.

    Mark Hybertsen, leader of the CFN Theory and Computation Group, carried out initial DFT calculations for an individual TMA molecule and two TMA molecules joined by hydrogen bonds (a dimer). Aliaksandr Yakutovich from the nanotech@surfaces Laboratory of the Swiss Federal Laboratories for Materials Science and Technology (Empa) then ran DFT calculations of a larger TMA network made up of a complete ring of six TMA molecules.

    These calculations showed how the molecules’ inner carbon ring is distorted from a hexagonal to a triangular shape in the AFM image because of strong polarizations caused by three carboxyl groups (COOH). Additionally, any unbound oxygen atoms are pulled a bit down toward the surface copper atoms, where more electrons reside. They also calculated the strength of the two hydrogen bonds forming between two TMA molecules. These calculations showed each bond was about twice as strong as a typical single hydrogen bond.

    “By connecting atomic-scale models to the AFM imaging experiments, we can understand fundamental chemical features in the images,” said Hybertsen.

    “This capability may help us identify critical molecule properties, including reactivity and stability, in complex mixtures (such as petroleum) based on HR-AFM images,” added Zahl.

    To close the loop between modeling and experiment, collaborators in Spain inputted the DFT results into a computational code they developed to generate simulated AFM images. These images perfectly matched the experimental ones.

    “These accurate simulations unveil the subtle interplay of the original molecular structure, deformations induced by the interaction with the substrate, and the intrinsic chemical properties of the molecule that determine the complex, striking contrast that we observe in the AFM images,” said Ruben Perez of The Autonomous University of Madrid [Universidad Autónoma de Madrid](ES).

    From their combined approach, the team also showed that line-like features appearing between molecules in AFM images of TMA (and other molecules) are not fingerprints of hydrogen bonds. Rather, they are “artifacts” from bending of the AFM probe molecule.

    “Even though hydrogen bonding is very strong for TMA molecules, hydrogen bonds are invisible in the experiment and simulation,” said Zahl. “What’s visible is evidence of strong electron withdrawing by the carboxyl groups.”

    Next, Zahl plans to continue studying this model system for network self-assembly to explore its potential for QIS applications. He will use a new STM/AFM microscope with additional spectroscopic capabilities, such as those for controlling samples with a magnetic field and applying radio-frequency fields to samples and characterizing their response. These capabilities will allow Zahl to measure the quantum spin states of custom molecules arranged in a perfect array to form potential quantum bits.

    This research was supported by The Department of Energy (US) Office of Science. All imaging experiments were performed in the CFN Proximal Probes Facility. Initial computations at the CFN ran at the Scientific Data and Computing Center of the Computational Science Initiative at Brookhaven Lab. <a href="https://www.cscs.ch/”>The Swiss National Supercomputing Centre [Centro Svizzero di Calcolo Scientifico](CH) and The Spanish Supercomputing Network [RES – Red Española de Supercomputación](ES) supported the larger-scale computations. The other collaborating institutions are The EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH); Quasar Science Resources, SL; and Pablo de Olavide University [Universidad Pablo de Olavide](ES). Other funding was provided by the Spanish MINECO; Comunidad de Madrid; Quasar Science Resources, SL; and Spanish Ministerio de Ciencia e Innovación.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS)

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    BNL National Synchrotron Light Source (US).

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) (US) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY (US).

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] map

    Iconic view of the European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)CERN ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    DOE’s Oak Ridge National Laboratory(US) Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

    FNAL DUNE LBNF (US) from FNAL to Sanford Underground Research Facility, Lead, South Dakota, USA

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II(US).

    BNL NSLS II (US).

    BNL Relative Heavy Ion Collider (US) Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: