Tagged: DOE’s Brookhaven National Laboratory (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:25 am on September 17, 2021 Permalink | Reply
    Tags: "BNL’s Zhangbu Xu and others prove 87-year-old theories of famous physicists", , Breit and Wheeler suggested that colliding light particles could create pairs of electrons and their antimatter opposites known as positrons., DOE’s Brookhaven National Laboratory (US), , This is the first experiment on Earth that demonstrates experimentally that polarization affects the interactions of light with the magnetic field in a vacuum.,   

    From DOE’s Brookhaven National Laboratory (US) : “BNL’s Zhangbu Xu and others prove 87-year-old theories of famous physicists” 

    From DOE’s Brookhaven National Laboratory (US)

    August 21, 2021
    Daniel Dunaief

    2
    Zhangbu Xu at the STAR detector.

    1
    Zhangbu Xu in front of the time-of-flight detector, which is important for identifying the electrons and positrons the STAR Collaboration measured. Photo from BNL.

    Gregory Breit and John Wheeler were right in the 1930s and Werner Heisenberg and Hans Heinrich Euler in 1936 and John Toll in the 1950s were also right.

    Breit, who was born in Russia and came to the United States in 1915, and Wheeler, who was the first American involved in the theoretical development of the atomic bomb, wrote a paper that offered theoretical ideas about how to produce mass from energy.

    Breit and Wheeler suggested that colliding light particles could create pairs of electrons and their antimatter opposites known as positrons. This idea was an extension of one of Albert Einstein’s most famous equations, E=mc2, converting pure energy into matter in its simplest form.

    Working at the Relativistic Heavy Ion Collider (RHIC)[below] at Brookhaven National Laboratory, a team of scientists in the STAR Collaboration [below] has provided experimental proof that the ideas of some of these earlier physicists were correct.

    “To create the conditions which the theory predicted, even that process is quite exhausting, but actually quite exciting,” said Zhangbu Xu, a senior scientist at BNL in the physics department.

    The researchers published their results recently in Physics Review Letters, which provides a connection to Breit and Wheeler, who published their original work in a predecessor periodical called Physics Review.

    While Breit and Wheeler wrote that the probability of two gamma rays colliding was “hopeless,” they suggested that accelerated heavy ions could be an alternative, which is exactly what the researchers at RHIC did.

    The STAR team, for Solenoidal Tracker at RHIC, also proved another theory proposed decades ago by physicists Heisenberg, who also described the Heisenberg Uncertainty Principle, and Hans Heinrich Euler in 1936 and John Toll, who would later become the second president at Stony Brook University (US), in the 1950s.

    These physicists predicted that a powerful magnetic field could polarize a vacuum of empty space. This polarized vacuum should deflect the paths of photons depending on photon polarization.

    Researchers had never seen this polarization-dependent deflection, called birefringence, in a vacuum on Earth until this set of experiments.

    Creating mass from energy

    Xu and others started with a gold ion. Without its electrons, the 79 protons in the gold ion have a positive charge, which, when projected at high speeds, triggers a magnetic field that spirals around the particle as it travels.

    Once the ion reaches a high enough speed, the strength of the magnetic field equals the strength of the perpendicular electric field. This creates a photon that hovers around the ion.

    The speeds necessary for this experiment is even closer to the speed of light, at 99.995%, than ivory soap is to being pure, at 99.44%.

    When the ions move past each other without colliding, the photon fields interact. The researchers studied the angular distribution patterns of each electron and its partner positron.

    “We also measured all the energy, mass distribution, and quantum numbers of the system,” Daniel Brandenburg, a Goldhaber Fellow at BNL who analyzed the STAR data, said in a statement.

    Even in 1934, Xu said, the researchers realized the cross section for the photons to interact was so small that it was almost impossible to create conditions necessary for such an experiment.

    “Only in the last 10 years, with the new angular distribution of e-plus [positrons] and e-minus [electrons] can we say, ‘Hey, this is from the photon/ photon creation,’” Xu said.

    Bending light in a vacuum

    Heisenberg and Euler in 1936 and Toll in the 1950’s theorized that a powerful magnetic field could polarize a vacuum, which should deflect the paths of photons. Toll calculated in theory how the light scatters off strong magnetic fields and how that connects to the creation of the electron and positron pair, Xu explained. “That is exactly what we did almost 70 years later,” he said.

    This is the first experiment on Earth that demonstrates experimentally that polarization affects the interactions of light with the magnetic field in a vacuum.

    Xu explained that one of the reasons this principle hasn’t been observed often is that the effect is small without a “huge magnetic field. That’s why it was predicted many decades ago, but we didn’t observe it.”

    Scientists who were a part of this work appreciated the connection to theories their famous and successful predecessors had proposed decades earlier.

    “Both of these findings build on predictions made by some of the great physicists in the early 20th century,” Frank Geurts, a professor at Rice University (US), said in a statement.

    The work on bending light through a vacuum is a relatively new part of the research effort.

    Three years ago, the scientists realized they could study this, which was a surprising moment, Xu said.

    “Many of our collaborators (myself included) did not know what vacuum birefringence was a few years ago,” he said. “This is why scientific discovery is exciting. You don’t know what nature has prepared for you. Sometimes you stumble on something exciting. Sometimes, there is a null set (empty hand) in your endeavor.

    Xu lives in East Setauket. His son Kevin is earning his bachelor’s degree at The University of Pennsylvania (US), where he is studying science and engineering. His daughter Isabel is a junior at Ward Melville High School.

    As for the recent work, Xu, who earned his PhD and completed two years of postdoctoral research at Yale Unversity (US) before coming to BNL, said he is pleased with the results.

    “I’ve been working on this project for 20 years,” he said. “I have witnessed and participated in quite a few exciting discoveries RHIC has produced. These are very high on my list.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Brookhaven Campus.

     
  • richardmitnick 10:20 am on September 16, 2021 Permalink | Reply
    Tags: "How to Catch a Perfect Wave-Scientists Take a Closer Look Inside the Perfect Fluid", BNL Relative Heavy Ion Collider (US), DOE’s Brookhaven National Laboratory (US), ,   

    From DOE’s Lawrence Berkeley National Laboratory (US) : “How to Catch a Perfect Wave-Scientists Take a Closer Look Inside the Perfect Fluid” 

    From DOE’s Lawrence Berkeley National Laboratory (US)

    September 16, 2021
    Theresa Duque
    tnduque@lbl.gov

    1
    This time-lapse video clip shows a supersonic Mach wave as it evolves in an expanding quark-gluon plasma. The computer simulation provides new insight into how matter formed during the birth of the early universe. (Credit: Berkeley Lab)

    Scientists have reported new clues to solving a cosmic conundrum: How the quark-gluon plasma – nature’s perfect fluid – evolved into matter.

    A few millionths of a second after the Big Bang, the early universe took on a strange new state: a subatomic soup called the quark-gluon plasma.

    And just 15 years ago, an international team including researchers from the Relativistic Nuclear Collisions (RNC) group at Lawrence Berkeley National Laboratory (Berkeley Lab) discovered that this quark-gluon plasma is a perfect fluid – in which quarks and gluons, the building blocks of protons and neutrons, are so strongly coupled that they flow almost friction-free.

    Scientists postulated that highly energetic jets of particles fly through the quark-gluon plasma – a droplet the size of an atom’s nucleus – at speeds faster than the velocity of sound, and that like a fast-flying jet, emit a supersonic boom called a Mach wave. To study the properties of these jet particles, in 2014 a team led by Berkeley Lab scientists pioneered an atomic X-ray imaging technique called jet tomography. Results from those seminal studies revealed that these jets scatter and lose energy as they propagate through the quark-gluon plasma.

    But where did the jet particles’ journey begin within the quark-gluon plasma? A smaller Mach wave signal called the diffusion wake, scientists predicted, would tell you where to look. But while the energy loss was easy to observe, the Mach wave and accompanying diffusion wake remained elusive.


    Hot Quark Soup Produced at DOE’s Brookhaven National Laboratory (US) Relative Heavy Ion Collider (US).

    Now, in a study published recently in the journal Physical Review Letters, the Berkeley Lab scientists report new results from model simulations showing that another technique they invented called 2D jet tomography can help researchers locate the diffusion wake’s ghostly signal.

    “Its signal is so tiny, it’s like looking for a needle in a haystack of 10,000 particles. For the first time, our simulations show one can use 2D jet tomography to pick up the tiny signals of the diffusion wake in the quark-gluon plasma,” said study leader Xin-Nian Wang, a senior scientist in Berkeley Lab’s Nuclear Science Division who was part of the international team that invented the 2D jet tomography technique.

    To find that supersonic needle in the quark-gluon haystack, the Berkeley Lab team culled through hundreds of thousands of lead-nuclei collision events simulated at the Large Hadron Collider (LHC) at European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]., and gold-nuclei collision events at the Relativistic Heavy Ion Collider (RHIC) at DOE’s Brookhaven National Laboratory. Some of the computer simulations for the current study were performed at Berkeley Lab’s DOE’s NERSC National Energy Research Scientific Computing Center (US) supercomputer user facility [below].

    Wang says that their unique approach “will help you get rid of all this hay in your stack – help you focus on this needle.” The jet particles’ supersonic signal has a unique shape that looks like a cone – with a diffusion wake trailing behind, like ripples of water in the wake of a fast-moving boat. Scientists have searched for evidence of this supersonic “wakelet” because it tells you that there is a depletion of particles. Once the diffusion wake is located in the quark-gluon plasma, you can distinguish its signal from the other particles in the background.

    Their work will also help experimentalists at the LHC and RHIC understand what signals to look for in their quest to understand how the quark-gluon plasma – nature’s perfect fluid – evolved into matter. “What are we made of? What did the infant universe look like in the few microseconds after the Big Bang? This is still a work in progress, but our simulations of the long-sought diffusion wake get us closer to answering these questions,” he said.

    Additional co-authors were Wei Chen, University of The Chinese Academy of Sciences [中国科学院] (CN); Zhong Yang, Central China Normal University[ 华中师范大学](CN); Yayun He, Central China Normal University and South China Normal University [华南师范大学](CN); Weiyao Ke, Berkeley Lab and UC Berkeley; and Longgang Pang, Central China Normal University.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) (US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences (US), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering (US), and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (US) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley (US) physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.


    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory (US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy (US). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory (US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy (US), with management from the University of California (US). Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science (US):

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    LBNL/ALS


    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The DOE Joint Genome Institute (US) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory (US), DOE’s Oak Ridge National Laboratory (US)(ORNL), DOE’s Pacific Northwest National Laboratory (US) (PNNL), and the HudsonAlpha Institute for Biotechnology (US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry (US) [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center (US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center(US) at Lawrence Berkeley National Laboratory

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network (US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory (US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science (US), and DOE’s Lawrence Livermore National Laboratory (US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology (US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory (US) leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 9:58 am on September 3, 2021 Permalink | Reply
    Tags: "Increasing Sugar Availability for Oil Synthesis", , , , , DOE’s Brookhaven National Laboratory (US), Higher potential for biofuel crops, Renewable Oil Generated with Ultra-productive Energycane (ROGUE) at University of Illinois (US)   

    From DOE’s Brookhaven National Laboratory (US) : “Increasing Sugar Availability for Oil Synthesis” 

    From DOE’s Brookhaven National Laboratory (US)

    August 30, 2021
    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    1
    Brookhaven Lab studies using the fast-growing plant Arabidopsis are helping to identify strategies for getting plants to produce and accumulate more oil. The goal is to transfer these approaches to energy crop plants such as energycane and Miscanthus.

    The following news release about research results from the U.S. Department of Energy’s Brookhaven National Laboratory was issued today by a University of Illinois (US)-led biosystems design project called Renewable Oil Generated with Ultra-productive Energycane (ROGUE). Scientists from Brookhaven Lab’s Biology Department are partners in ROGUE. For more information about Brookhaven’s role in this work, contact Karen McNulty Walsh, (631) 344-8350, kmcnulty@bnl.gov.

    Findings could lead to higher potential for biofuel crops.

    A team from the U.S. Department of Energy’s Brookhaven National Laboratory (BNL) has bred a plant that produces more oil by manipulating the availability of sugar for oil synthesis. The team, led by BNL’s John Shanklin, achieved these results in using leaves of the fast-growing plant Arabidopsis, to mimic stem cells of plants like energycane and Miscanthus.

    The work is part of a University of Illinois (US)-led biosystems design project called Renewable Oil Generated with Ultra-productive Energycane (ROGUE) to engineer two of the most productive American biomass crops—energycane and Miscanthus—to accumulate an abundant and sustainable supply of oil that can be used to produce biodiesel, biojet fuel, and bioproducts.

    The current project, “Mobilizing vacuolar sugar increases vegetative triacylglycerol accumulation,” [Frontiers in Plant Science] builds on earlier work the Shanklin group published in 2017 [Plant Physiology]. That work showed that simultaneously impairing the export of sugar from leaves while blocking starch synthesis diverts sugars produced by photosynthesis towards fatty acid and oil synthesis.

    “The novel aspect of this work was to minimize sugar accumulation in a large cellular storage compartment called the vacuole,” said Sanket Anaokar, a research associate at BNL. “Our approach was to block sugar movement into the vacuole and maximize its export. When these genetic manipulations were made to plants that are also blocked in starch synthesis, the cell channeled the extra sugar into oil.”

    1
    This scheme shows how research, like that conducted by Shanklin and his group, moves through the ROGUE research pipeline.

    Anaokar went on to explain that an unexpected benefit of the approach the group took was that some of the remobilized sugar lessened the growth delays usually seen when the amount of exported sugar from the leaves and starches is decreased. The group will take what they’ve learned in their work with Arabidopsis and share it with other ROGUE researchers, speeding up the innovation cycle.

    “It is far more difficult and time consuming to make multiple gene manipulations in energycane, whereas with Arabidopsis we can rapidly develop and test different genetic and molecular biology modifications to identify the most effective combinations,” said Shanklin, BNL Biology Department Chair and ROGUE researcher. “Once we validate an approach using our model system, we can move that knowledge over to fellow ROGUE researchers to deploy in the slower-growing biomass crop plants.”

    Shanklin’s research is just one of the ways ROGUE is working to increase the availability of sustainable biofuels and reduce the use of petrochemicals.

    “This proof of concept in the model plant Arabidopsis now shows us this is well worth moving into energycane and Miscanthus as a key step in making these viable sources of large amounts of oil for conversion into biodiesel and biojet fuel,” said ROGUE Director Stephen Long, Ikenberry Endowed University Chair of Crop Sciences and Plant Biology at Illinois’ Carl R. Woese Institute for Genomic Biology.

    This study is published in Frontiers in Plant Science [above]. ROGUE is supported by the DOE Office of Biological and Environmental Research (BER) and the DOE Division of Chemical Sciences and Geoscience and Biological Science divisions of the U.S. Department of Energy.

    Renewable Oil Generated with Ultra-productive Energycane (ROGUE) is led by the University of Illinois in partnership with Brookhaven National Laboratory, The Mississippi State University (US), and The University of Florida (US) with support from The Office of Biological and Environmental Research in The Office of Science in The Department of Energy (US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 9:05 am on September 3, 2021 Permalink | Reply
    Tags: "Toward Scaling Up Nanocages to Trap Noble Gases", , , DOE’s Brookhaven National Laboratory (US),   

    From DOE’s Brookhaven National Laboratory (US) : “Toward Scaling Up Nanocages to Trap Noble Gases” 

    From DOE’s Brookhaven National Laboratory (US)

    September 1, 2021
    Ariana Manglaviti
    amanglaviti@bnl.gov
    (631) 344-2347

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Commercially available materials could bring a method for confining noble gases inside tiny cage-like structures from the lab to industrial scale for nuclear energy, health, and other applications.

    1
    (Left to right) Anibal Boscoboinik, Yixin Xu, Shruti Sharma, Alejandro Boscoboinik, and Dario Stacchiola with the ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) instrument at the Center for Functional Nanomaterials [below]. The team used this lab-based AP-XPS instrument to characterize silica (silicon and oxygen) nanocages deposited on thin films of ruthenium metal and to test treatments designed to activate the samples for noble gas trapping. Then, using the synchrotron-based AP-XPS instrument at the National Synchrotron Light Source II [below], they performed experiments to see whether the nanocages would effectively trap xenon. Team members not pictured: Matheus Dorneles de Mello, Chen Zhou, Burcu Karagoz, Ashley Head, Zubin Darbari, Iradwikanari Waluyo, Adrian Hunt, Sergio Manzi, and Victor Pereyra.

    Over the past few years, scientists have demonstrated how cage-like, porous structures made of silicon and oxygen and measuring only billionths of a meter in size can trap noble gases like argon, krypton, and xenon. However, for these silica nanocages to be practically useful—for example, to improve the efficiency of nuclear energy production—they need to be scaled up from their lab versions. The scientists have now taken a step forward in bringing this technology out of the lab and into the real world. As they recently reported in Small, commercially available materials may provide a potentially scalable platform for trapping noble gases.

    “Making one square centimeter of our lab-scale nanocages, which can trap only nanograms of gas, takes us a couple weeks and requires expensive starting components and equipment,” said co-corresponding author Anibal Boscoboinik, a materials scientist in the Interface Science and Catalysis Group at the Center for Functional Nanomaterials (CFN), a Department of Energy (US) Office of Science User Facility at Brookhaven National Laboratory. “There are commercial processes to synthesize tons of these silica nanocages, which are so inexpensive they’re used as additives in concrete. However, these commercial materials do not trap noble gases, so a challenge for scaling our technology was to understand what is special about our nanocages.”

    An unexpected discovery

    Boscoboinik has been leading the nanocages research at the CFN since 2014, following an act of serendipity. He and colleagues had just finished a catalysis experiment with silica nanocages deposited on top of a single crystal of ruthenium metal when they noticed individual atoms of argon gas had become trapped inside the structure’s nanosized pores. With this accidental finding, they became the first group to trap a noble gas inside a two-dimensional (2-D) porous structure at room temperature. In 2019, they trapped two other noble gases inside the cages: krypton and xenon. In this second study [Advanced Functional Materials], they learned that for the trapping to work, two processes needed to happen: gas atoms had to be converted into ions (electrically charged atoms) before entering the cages, and the cages had to be in contact with a metallic support to neutralize the ions once inside the cages—effectively trapping them in place.

    With this understanding, in 2020, Boscoboinik and his team filed a patent application, now pending. That same year, through its Technology Commercialization Fund (TCF), the DOE Office of Technology Transitions selected a research proposal submitted by the CFN in collaboration with the Brookhaven Nuclear Science and Technology Department and Forge Nano to scale up the lab-developed nanocages. The goal of this scale-up is to maximize the surface area for trapping krypton and xenon, both products of the nuclear fission of uranium. Capturing them is desirable to improve the efficiency of nuclear reactors, prevent operational failures due to increasing gas pressures, reduce radioactive nuclear waste, and detect nuclear weapons tests.

    A start to scale-up

    2
    A representation of silica nanocages on a thin film of ruthenium trapping atoms of xenon (blue).

    In parallel to the TCF effort, the CFN team independently began to explore how they could scale the nanocages for practical applications, nuclear and beyond. During their explorations, the CFN team found the company that makes large volumes of the silica nanocages, in the form of a powder. Instead of depositing the nanocages on single crystals of ruthenium, the team deposited them on thin films of ruthenium, which are less costly. Unlike the lab-based nanocages, these nanocages have organic (carbon-containing) components. So, after depositing the cages on the thin films, they heated up the material in an oxidizing environment to burn off these components. However, the cages wouldn’t trap any gases.

    “We found that the metal has to be in the metallic state,” said first author Yixin Xu, a graduate student in the Materials Science and Chemical Engineering Department at Stony Brook University-SUNY (US). “While burning the organic components, we partially oxidize ruthenium. We need to heat up the material again in hydrogen or another reducing environment to get the metal back to its metallic state. Then, the metal can act as an electron source to neutralize the gas inside the cages.”

    Next, the CFN scientists and their collaborators from Stony Brook University tested whether the new material would still trap the gases. To do so, they performed ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at the In situ and Operando Soft X-ray Spectroscopy (IOS) beamline at the National Synchrotron Light Source II (NSLS-II), another DOE Office of Science User Facility at Brookhaven Lab. In AP-XPS, x-rays excite a sample, causing electrons to be emitted from the surface. A detector records the number and kinetic energy of emitted electrons. By plotting this information, scientists can infer the sample’s chemical composition and chemical bonding states. In this study, the x-rays were not only important for the measurements but also in ionizing the gas—here, xenon. They started the experiment at room temperature and gradually increased the temperature, finding the optimal range for trapping (350 to 530 degrees Fahrenheit). Outside this range, the efficiency starts decreasing. At 890 degrees Fahrenheit, the trapped xenon is completely released. Boscoboinik likens this complex temperature-dependent process to an elevator door opening and closing.

    “Imagine the door is opening and closing extremely fast,” said Boscoboinik. “You would need to be running extremely fast to get inside. Like an elevator, the nanocages have a pore “mouth” that opens and closes. The rate at which the cages open and close needs to be a good match to the rate at which heated gas ions are moving to maximize the chance of ions getting into the cages and becoming neutralized.”

    Following these experiments, scientists from National University of San Luis [Universidad Nacional de San Luis](AR) and University of Pennsylvania (US) validated this elevator door hypothesis. Applying Monte Carlo methods—mathematical techniques for estimating possible outcomes of uncertain events—they modeled the most probable speed of the ions at different gas temperatures. Another collaborator at the Catalysis Center for Energy Innovation calculated the energies required for xenon to exit the cages.

    “These studies gave us information on the mechanistic aspects of the process, especially on thermal effects,” explained co-corresponding author and CFN postdoctoral researcher Matheus Dorneles de Mello.

    Successive steps for scaling

    Now, the scientists will make the materials with a high surface area (a couple hundred square meters) and see whether they continue to function as desired. They will also investigate more practical ways of ionizing the gas.

    The team is considering several potential applications for their technology. For example, the nanocages may be able to trap noble gases like xenon and krypton from the air in a more energy-efficient way. Currently, these gases are separated from the air using an energy-intensive process in which the air must be cooled to extremely low temperatures.

    Xenon and krypton are used to manufacture many products, such as lighting. One of the main uses of xenon is in high-intensity discharge lamps, including some bright white car headlights. Likewise, krypton is used for airport runway lights and photographic flashes for high-speed photography.

    Given previous theoretical calculations, the team believes their process should also be able to trap radioactive noble gases, including radon. Commonly found in basements and lower levels of buildings, radon can damage lung cells, potentially leading to cancer. This capability to trap radioactive noble gases would be relevant to several applications, such as mitigating released radioactive gases, monitoring nuclear nonproliferation, and producing medically relevant isotopes. The CFN team is exploring the medical application in collaboration with the Medical Isotope Research and Production Program at Brookhaven.

    “In surface science, fundamental studies don’t often lead to useful products right away,” said Boscoboinik. “We’re trying to quickly move into doing something impactful with these materials by increasing the level of complexity one step at a time.”

    This CFN-led research was supported by the DOE Office of Science and American Chemical Society Petroleum Research Fund. The CFN is a DOE Nanoscale Science Research Center. The AP-XPS instrument at the IOS beamline at NSLS-II was built through a partnership between NSLS-II and CFN. The Catalysis Center for Energy Innovation – University of Delaware (US) is an Energy Frontier Research Center located at the University of Delaware and funded by the DOE Office of Science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 1:03 pm on August 31, 2021 Permalink | Reply
    Tags: "Results from Search for 'Chiral Magnetic Effect' at RHIC", DOE’s Brookhaven National Laboratory (US), If the Big Bang produced equal amounts of matter and antimatter these opposites would annihilate leaving only radiation and we would not exist., In a somewhat indirect way probing RHIC’s broken symmetries could offer clues to one of the biggest questions in physics: why the universe is made only of matter., Nuclear physicists suspect RHIC’s charge-separation asymmetry to be caused-in part-by an interaction of the magnetic field generated in off-center collisions with each particle’s chirality., Physicists compared collisions of isobars-which are ions that have the same overall mass but different numbers of protons—zirconium (96Zr) with 40 protons and ruthenium (96Ru) with 44 protons., , Results from off-center collisions of gold ions at RHIC revealed an intriguing asymmetric separation of charged particles., Since 2000 RHIC has collided a wide variety of ions—the positively charged naked nuclei that remain when atoms are stripped of their electrons., The big puzzle is to explain the asymmetry between matter and antimatter-what tipped the balance in favor of matter., The experiment was designed to look for evidence of a predicted physics phenomenon known as the “chiral magnetic effect.” It didn’t come out as initially predicted., The STAR physicists devised a clever way to search for such a signal by colliding “isobars”—two sets of ions with the same mass but different numbers of positively charged protons.   

    From DOE’s Brookhaven National Laboratory (US) : “Results from Search for ‘Chiral Magnetic Effect’ at RHIC” 

    From DOE’s Brookhaven National Laboratory (US)

    August 31, 2021

    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    1
    Physicists compared collisions of two different sets of isobars-which are ions that have the same overall mass but different numbers of protons—zirconium (96Zr) with 40 protons and ruthenium (96Ru) with 44 protons. The higher proton number (and thus electric charge) in ruthenium should generate a stronger magnetic field during collisions than zirconium (indicated by size of gray arrows). Scientists expected the stronger magnetic field of ruthenium collisions to result in greater separation of charged particles emerging from those collisions than seen in zirconium collisions.

    Physicists from the STAR Collaboration [below] of the Relativistic Heavy Ion Collider (RHIC) [below], a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at DOE’s Brookhaven National Laboratory, presented long-awaited results from a “blind analysis” of how the strength of the magnetic field generated in certain collisions affects the particles streaming out. The experiment was designed to look for evidence of a predicted physics phenomenon known as the “chiral magnetic effect.” It didn’t come out as initially predicted.

    But even without a definitive signal supporting the existence of the chiral magnetic effect (CME), the experiment provides useful information, such as clues about where to look— including in other RHIC data.

    “If there had been a modestly strong signal, we would have been able to see that,” said Evan Finch, a STAR collaborator from Southern Connecticut State University (US) and a co-chair of the group involved in the CME search. “So, our blind analysis—where none of us knew key details related to the magnetic field in a given event as we were analyzing the data—succeeded in ruling out that kind of signal.

    “Going ahead to look for a more subtle signal will depend on improving our understanding of the background conditions in these collisions, which will rely on contributions from theorists. We are not closing the door on anything,” Finch said.

    To get insight into this result and why it matters, we have to take a step back—both to the beginning of research at RHIC, which has been operating at Brookhaven Lab since 2000, and to the very early universe, nearly 14 billion years ago!

    2
    Earlier results from off-center collisions of gold ions at RHIC revealed an intriguing asymmetric separation of charged particles. In a given event, positively charged particles would emerge along the magnetic field (gray arrow) and negatively charged particles emerged in the opposite direction (other collisions produced the opposite separation). Scientists suspected this charge separation might be a hint of a “broken symmetry” within the hot matter, triggered through a process called the chiral magnetic effect. The collisions of isobars reported on today were designed to search for evidence of this effect by varying the strength of the magnetic field.

    Back to the beginning

    Since 2000 RHIC has collided a wide variety of ions—the positively charged naked nuclei that remain when atoms are stripped of their electrons. The energetic collisions “melt” the ions’ protons and neutrons, setting free their inner building blocks—quarks and gluons. Tracking particles that emerge from the quark-gluon plasma (QGP) created in these collisions gives scientists a way to learn about the early universe as it existed a fraction of a second after the Big Bang. QGP mimics what the universe was like before quarks and gluons coalesced to form the protons and neutrons that make up essentially everything we see in the universe today.

    Results from off-center collisions of gold ions at RHIC revealed an intriguing asymmetric separation of charged particles. In a given event, positively charged particles emerged along the magnetic field generated by the swirling mass of the colliding ions, while negatively charged particles emerged in the opposite direction. The results were a hint that more types of “broken symmetry” existed, at least in localized “bubbles” within the quark-gluon plasma.

    In a somewhat indirect way probing RHIC’s broken symmetries could offer clues to one of the biggest questions in physics: why the universe is made only of matter.

    Brookhaven Lab and Stony Brook University-SUNY (US) nuclear physics theorist Dmitri Kharzeev explains:

    “If the Big Bang produced equal amounts of matter and antimatter these opposites would annihilate leaving only radiation and we would not exist—no galaxies, no planets, no humans,” he said. “The big puzzle is to explain this asymmetry between matter and antimatter”—what tipped the balance in favor of matter.

    The collisions at RHIC won’t answer that question directly. But exploring asymmetries in the QGP gives scientists a way to test ideas about how a symmetry violation underlying the matter-antimatter asymmetry arises at a fundamental level.

    Nuclear physicists suspect RHIC’s charge-separation asymmetry might be caused-at least in part-by an interaction of the magnetic field generated in off-center collisions with each individual particle’s chirality. Chirality is a particle’s right- or left-handedness—determined by whether the particle is spinning clockwise or counterclockwise relative to its direction of motion. In order for the quarks that make up protons to exhibit definite chirality, they have to be nearly massless and allowed to “roam free”—as they are in the QGP, deconfined from the larger particles. The charge asymmetry suggested that tiny bubbles within the plasma might exhibit an asymmetry in the number of left- and right-handed particles.

    “The interaction of those chirally imbalanced “bubbles” with the magnetic field produced by the colliding ions would induce a strong electric current—the chiral magnetic effect that results in the separation of electric charges,” said Brookhaven Lab physicist Aihong Tang, the other co-chair of the CME search group.

    Based on this understanding, if the chiral magnetic effect is real, the separation of charges should become more apparent as the strength of the magnetic field increases.

    Colliding isobars

    The STAR physicists devised a clever way to search for such a signal by colliding “isobars”—two sets of ions with the same mass but different numbers of positively charged protons. The swirl of those positive charges in off-center collisions is what generates the magnetic field. Changing the proton and neutron mix in the colliding ions is a way to turn the magnetic field strength “dial.”

    Specifically, collisions of ruthenium ions (mass number 96 with 44 protons) should generate a stronger magnetic field than collisions of zirconium ions (mass number 96 with only 40 protons). Observing more charge separation in the ruthenium collisions than in the weaker-field zirconium collisions would be clear evidence of the chiral magnetic effect.

    RHIC scientists conducted these collisions in 2018, taking care to control everything they could. This included switching back and forth between the two types of collisions, sometimes even in the same day.

    “Physicists and engineers in Brookhaven’s Collider-Accelerator Department worked with us to switch isobars without the collision rate dropping,” said STAR/Brookhaven physicist Prithwish Tribedy, who leads one of five groups of analyzers spread around the globe. “This was a remarkable accomplishment, which helped us to collect a huge amount of data and achieve the precision of our result.”

    Blinded analysis

    The STAR physicists also took great care to define the criteria they would follow to search for the expected signal, and analyzed the data blindly—that is, not knowing which data were from zirconium collisions and which were from ruthenium.

    “We have been analyzing data for three years,” said Tang. “There were multiple measurements, five independent analysis groups, and a committee that kept secret how the blinding ‘recipe’ was done. There was also a committee that oversaw the analysis and reviewed the result. It required lots of coordination.”

    This blinding was done to eliminate any bias in the measurements and in interpreting the results.

    The unblinded results presented today and submitted for publication in the journal Physical Review C did not show evidence that ruthenium’s stronger magnetic field increased charge separation as predefined prior to the blind analysis.

    The reason, the scientists suspect, is that their incredibly controlled experiment held a few surprises. Things beyond their control—like the shape of the colliding ions and different arrangements of the protons and neutrons within—could have affected the results. These differences between the two isobars would add to the “background” making the “signal” driven by magnetic field strength harder to detect.

    “These are all very subtle effects, but because it’s a very high-precision measurement at sub-percent level, they matter,” said James Dunlop, a STAR physicist and the Brookhaven Lab Physics Department’s Associate Chair for Nuclear Physics, who oversaw the analysis. “Turning that precision into its maximum sensitivity requires better modeling of what these background differences are.”

    Theorist Kharzeev, who first predicted the existence of the chiral magnetic effect in 2004 and has been looking for its signatures in heavy ion collisions and in condensed matter, said he would not be disappointed if the signal failed to appear. (We spoke to him before he knew the result.)

    “Fortunately, this is not the end because the theory now indicates that the magnitude of the CME is larger at smaller collision energies. This means we still have a good chance of observing this effect by analyzing the data from lower-energy RHIC collisions,” he said.

    “For this effect to be observed you need the magnetic field. And when the collision energy is too high, the nuclei pass through each other so quickly that the magnetic field has a very short lifetime. At lower energy, the created magnetic field ‘lives’ longer and there should be a larger charge separation,” he explained.

    The data from the isobar run will help guide that search by providing information about the signal-to-background ratio.

    “We will know the precision we have to shoot for in future analysis,” Kharzeev said.

    Additional contributors to the analyses that led to these results include: Subikash Choudhury (Fudan University [復旦大學](CN)), Yicheng Feng (Purdue University (US)), Yu Hu (Fudan University/Brookhaven Lab), Roy Lacey (Stony Brook University), Niseem Magdy (University of Illinois-Chicago (US)), Takafumi Niida (University of Tsukuba [筑波大学] (JP)), Maria Sergeeva (The University of California-Los Angeles (US)), Paul Sorensen (formerly Brookhaven Lab, now Department of Energy (US) ), Sergei Voloshin (Wayne State University (US)), Fuqiang Wang (Purdue University (US)), Gang Wang (University of California at Los Angeles (US)), Haojie Xu (Huzhou University [湖州大学] (CN)), Jie Zhao (Purdue University (US)).

    The CME analyzers also acknowledged the contributions of their software and computing colleagues and the computational resources at Brookhaven Lab’s Scientific Data and Computing Center (SDCC), the National Energy Research Scientific Computing Center (NERSC) at DOE’s Lawrence Berkeley National Laboratory, and the Open Science Grid consortium.

    “Our colleagues’ efforts and these resources were essential to our ability to analyze such a large volume of data. In particular, for the last phase of the analysis this June and July, we made use of all the computer nodes of the SDCC to finish the analysis in time for this announcement. We are also grateful to a dedicated team that determined centrality (how off-center a collision is) so we could conveniently conduct our study,” Tribedy said.

    Science paper submitted

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 9:36 am on August 11, 2021 Permalink | Reply
    Tags: "Physicists Detect Strongest Evidence Yet of Matter Generated by Collisions of Light", , According to theory if you smash two photons together hard enough you can generate matter: an electron-positron pair-the conversion of light to mass as per Einstein's theory of special relativity., , , Breit-Wheeler process-first laid out by Gregory Breit and John A. Wheeler in 1934., DOE’s Brookhaven National Laboratory (US), , ,   

    From DOE’s Brookhaven National Laboratory (US) via Science Alert (US) : “Physicists Detect Strongest Evidence Yet of Matter Generated by Collisions of Light” 

    From DOE’s Brookhaven National Laboratory (US)

    via

    ScienceAlert

    Science Alert (US)

    10 AUGUST 2021
    MICHELLE STARR

    1
    Credit: sakkmesterke/iStock/Getty Images Plus.

    According to theory if you smash two photons together hard enough you can generate matter: an electron-positron pair, the conversion of light to mass as per Einstein’s theory of special relativity.

    It’s called the Breit-Wheeler process-first laid out by Gregory Breit and John A. Wheeler in 1934 [Physical Review Journals Archive], and we have very good reason to believe it would work.

    But direct observation of the pure phenomenon involving just two photons has remained elusive, mainly because the photons need to be extremely energetic (i.e. gamma rays) and we don’t have the technology yet to build a gamma-ray laser.

    Now, physicists at Brookhaven National Laboratory say they’ve found a way around this stumbling block using the facility’s Relativistic Heavy Ion Collider (RHIC) – resulting in a direct observation of the Breit-Wheeler process in action.

    DOE’s Brookhaven National Laboratory (US) Relative Heavy Ion Collider (US).

    “In their paper, Breit and Wheeler already realized this is almost impossible to do,” said physicist Zhangbu Xu of Brookhaven Lab.

    “Lasers didn’t even exist yet! But Breit and Wheeler proposed an alternative: accelerating heavy ions. And their alternative is exactly what we are doing at RHIC.”

    But what do accelerated ions have to do with photon collisions? Well, we can explain.

    The process involves, as the collider’s name suggests, accelerating ions – atomic nuclei stripped of their electrons. Because electrons have a negative charge and protons (within the nucleus) have a positive one, stripping it leaves the nucleus with a positive charge. The heavier the element, the more protons it has, and the stronger the positive charge of the resulting ion.

    The team used gold ions, which contain 79 protons, and a powerful charge. When gold ions are accelerated to very high speeds, they generate a circular magnetic field that can be as powerful as the perpendicular electric field in the collider. Where they intersect, these equal fields can produce electromagnetic particles, or photons.

    “So, when the ions are moving close to the speed of light, there are a bunch of photons surrounding the gold nucleus, traveling with it like a cloud,” Xu explained.

    At the RHIC, ions are accelerated to relativistic speeds – those that are a significant percentage of the speed of light. In this experiment, the gold ions were accelerated to 99.995 percent of light speed.

    This is where the magic happens: When two ions just miss each other, their two clouds of photons can interact, and collide. The collisions themselves can’t be detected, but the electron-positron pairs that result can.

    However, it’s not enough to just detect an electron-positron pair, either.

    2
    Diagram showing how the near-miss of gold ions produces photon collisions. Credit: Brookhaven Lab.

    That’s because the photons produced by the electromagnetic interaction are virtual photons, popping briefly in and out of existence, and without the same mass as their ‘real’ counterparts.

    To be a true Breit-Wheeler process, two real photons need to collide – not two virtual photons, nor a virtual and a real photon.

    At the ions’ relativistic speeds, the virtual particles can behave like real photons. Thankfully, there’s a way physicists can tell which electron-positron pairs are generated by the Breit-Wheeler process: the angles between the electron and the positron in the pair generated by the collision.

    Each type of collision – virtual-virtual, virtual-real and real-real – can be identified based on the angle between the two particles produced. So the researchers detected and analyzed the angles of over 6,000 electron-positron pairs generated during their experiment.

    They found that the angles were consistent with collisions between real photons – the Breit-Wheeler process in action.

    “We also measured all the energy, mass distributions, and quantum numbers of the systems. They are consistent with theory calculations for what would happen with real photons,” said physicist Daniel Brandenburg of Brookhaven Lab.

    “Our results provide clear evidence of direct, one-step creation of matter-antimatter pairs from collisions of light as originally predicted by Breit and Wheeler.”

    The argument could be very reasonably made that we won’t have a direct first detection of the pure, single photon-photon Breit-Wheeler process until we collide photons approaching the energy of gamma rays.

    Nevertheless, the team’s work is highly compelling stuff – at the very least, it shows that we are barking up the right tree with Breit and Wheeler.

    We’ll be continuing to watch this space, avidly.

    The research has been published in Physical Review Letters.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    [caption id="attachment_140028" align="alignnone" width="632"] BNL Cosmotron 1952-1966


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 1:34 pm on July 30, 2021 Permalink | Reply
    Tags: "Automatically Steering Experiments Toward Scientific Discovery", By leveraging AI and ML the algorithm determines the best next measurements to make while an experiment is ongoing., DOE’s Brookhaven National Laboratory (US), For an algorithm to start modeling a system it’s as simple as a user defining the inputs and outputs., Moving from a manual to automated experimentation approach enables scientists to more thoroughly explore parameter spaces., Scientists developed an automated approach for experiments to intelligently explore complex scientific problems with minimal human intervention., The team released their decision-making software “gpCAM v6” to the wider scientific community so anyone could set up their own autonomous experiments., This idea for a highly automated beamline that could intelligently explore scientific problems ended up becoming a long-term goal., When scientists were designing NSLS-II they had the foresight to incorporate automation enabled by machine learning (ML) and artificial intelligence (AI)., With artificial intelligence (AI) decision-making methods scientists can home in on key parts of the parameter space.   

    From DOE’s Brookhaven National Laboratory (US) : “Automatically Steering Experiments Toward Scientific Discovery” 

    From DOE’s Brookhaven National Laboratory (US)

    July 28, 2021
    Ariana Manglaviti
    amanglaviti@bnl.gov

    Scientists developed an automated approach for experiments to intelligently explore complex scientific problems with minimal human intervention.

    1
    Kevin Yager (front) and Masafumi Fukuto at Brookhaven Lab’s National Synchrotron Light Source II, where they’ve been implementing a method of autonomous experimentation.

    In the popular view of traditional science, scientists are in the lab hovering over their experiments, micromanaging every little detail. For example, they may iteratively test a wide variety of material compositions, synthesis and processing protocols, and environmental conditions to see how these parameters influence material properties. In each iteration, they analyze the collected data, looking for patterns and relying on their scientific knowledge and intuition to select useful follow-on measurements.

    This manual approach consumes limited instrument time and the attention of human experts who could otherwise focus on the bigger picture. Manual experiments may also be inefficient, especially when there is a large set of parameters to explore, and are subject to human bias—for instance, in deciding when one has collected enough data and can stop an experiment. The conventional way of doing science cannot scale to handle the enormous complexity of future scientific challenges. Advances in scientific instruments and data analysis capabilities at experimental facilities continue to enable more rapid measurements. While these advances can help scientists tackle complex experimental problems, they also exacerbate the human bottleneck; no human can keep up with modern experimental tools!

    Envisioning automation

    One such facility managing these types of challenges is the National Synchrotron Light Source II (NSLS-II)[below] at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory. By directing light beams, ranging from infrared to hard x-rays, toward samples at experimental stations (beamlines), NSLS-II can reveal the electronic, chemical, and atomic structures of materials. When scientists were designing these beamlines a decade ago they had the foresight to incorporate automation enabled by machine learning (ML) and artificial intelligence (AI)—now an exploding field—as part of their vision.

    “We thought, wouldn’t it be great if scientists could not only do measurements faster but also do intelligent exploration—that is, explore scientific problems in smarter, more efficient ways by leveraging modern computer science methods,” said Kevin Yager, leader of the Electronic Nanomaterials Group of the Center for Functional Nanomaterials (CFN) at Brookhaven Lab. “In fact, at the CFN, we’ve defined one of our research themes to be accelerated nanomaterial discovery.”

    This idea for a highly automated beamline that could intelligently explore scientific problems ended up becoming a long-term goal of the Complex Materials Scattering (CMS) beamline, developed and operated by a team led by Masafumi Fukuto.

    “We started by building high-throughput capabilities for fast measurements, like a sample-exchanging robot and lots of in-situ tools to explore different parameters such as temperature, vapor pressure, and humidity,” said Fukuto. “At the same time, we began thinking about automating not just the beamline hardware for data collection but also real-time data analysis and experimental decision making. The ability to take measurements very quickly is useful and necessary but not sufficient for revolutionary materials discovery because material parameter spaces are very large and multidimensional.”

    For example, one experiment may have a parameter space with five dimensions and more than 25,000 distinct points within that space to explore. Both the data acquisition and analysis software to deal with these large, high-dimensional parameter spaces were built in house at Brookhaven. For data collection, they built on top of Bluesky software, which NSLS-II developed. To analyze the data, Yager wrote code for an image-analysis software called SciAnalysis.

    Closing the loop

    In 2017, Fukuto and Yager began collaborating with Marcus Noack, then a postdoc and now a research scientist in the Center for Advanced Mathematics for Energy Research Applications (CAMERA) at DOE’s Lawrence Berkeley National Laboratory (US). During his time as a postdoc, Noack was tasked with collaborating with the Brookhaven team on their autonomous beamline concept. Specifically, they worked together to develop the last piece to create a fully automated experimental setup: a decision-making algorithm. The Brookhaven team defined their needs, while Noack provided his applied mathematics expertise and wrote the software to meet these needs.

    2
    Moving from a manual to automated experimentation approach enables scientists to more thoroughly explore parameter spaces. With artificial intelligence (AI) decision-making methods scientists can home in on key parts of the parameter space (here, composition and temperature) for accelerated material discovery.

    By leveraging AI and ML this algorithm determines the best next measurements to make while an experiment is ongoing. (AI refers to a machine simulating human behavior, while ML is a subfield of AI in which a machine automatically learns from past data.) For the algorithm to start modeling a system it’s as simple as a user defining the inputs and outputs: what are the variables I can control in the experiment, and what am I going to measure? But the more information humans provide ahead of time—such as the expected response of the system or known constraints based on the particular problem being studied—the more robust the modeling will be. Behind the scenes, a Gaussian process is at work modeling the system’s behavior.

    “A Gaussian process is a mathematically rigorous way to estimate uncertainty,” explained Yager. “That’s another way of saying knowledge in my mind. And that’s another way of saying science. Because in science, that’s what we’re most interested in: What do I know, and how well do I know it?”

    “That’s the ML part of it,” added Fukuto. “The algorithm goes one step beyond that. It automatically makes decisions based on this knowledge and human inputs to select which point would make sense to measure next.”

    In a simplistic case, this next measurement would be the location in the parameter space where information gain can be maximized (or uncertainty reduced). The team first demonstrated this proof of concept in 2019 at the NSLS-II CMS beamline, imaging a nanomaterial film made specifically for this demonstration.

    Since this initial success, the team has been making the algorithm more sophisticated, applying it to study a wide range of real (instead of contrived) scientific problems from various groups, and extending it to more experimental techniques and facilities.

    While the default version of the algorithm aims to minimize uncertainty or maximize knowledge gain in an iterative fashion, there are other ways to think about where to focus experimental attention to obtain the most value. For example, for some scientists, the cost of the experiment—whether its duration or amount of materials used—is important. In other words, it’s not just where you take the data but how expensive it is to take those data. Others may find value in homing in on specific features, such as boundaries within a parameter space or grain size of a crystal. The more sophisticated, flexible version of the algorithm that Noack developed can be programmed to have increased sensitivity to these features.

    “You can tune what your goals are in the experiment,” explained Yager. “So, it can be knowledge gain, or knowledge gain regulated by experimental cost or associated with specific features.”

    3
    (Clockwise left to right) Arkadiusz Leniart, Ruipeng Li, Marcus Noack, Esther Tsai, Gregory Doerk, Masafumi Fukuto, and Kevin Yager at the CMS beamline at NSLS-II. Here, the team applied autonomous methods to in situ photothermal annealing experiments on nanostructured polymer thin films, using the photothermal system shown on the left (big box with black enclosure). Leniart and Pawel Majewski (University of Warsaw [Uniwersytet Warszawski] (PL)) developed this system.

    Other improvements include the algorithm’s ability to handle the complexity of real systems, such as the fact that materials are inhomogeneous, meaning they are not the same at every point across a sample. One part of a sample may have a uniform composition, while another may have a variable composition. Moreover, the algorithm now takes into account anisotropy, or how individual parameters can be very different from each other in terms of how they affect a system. For example, “x” and “y” are equivalent parameters (they are both positional coordinates) but temperature and pressure are not.

    “Gaussian processes use kernels—functions that describe how data points depend on each other across space—for interpolation,” said Noack. “Kernels have all kinds of interesting mathematical properties. For instance, they can encode varying degrees of inhomogeneity for a sample.”

    Increasing the sophistication of the algorithm is only part of the challenge. Then, Fukuto and Yager have to integrate the updated algorithm into the closed-loop automated experimental workflow and test it on different experiments—not only those done in-house but also those performed by users.

    Deploying the method to the larger scientific community

    Recently, Fukuto, Yager, Noack, and colleagues have deployed the autonomous method to several real experiments at various NSLS-II beamlines, including CMS and Soft Matter Interfaces (SMI). Noack and collaborators have also deployed the method at LBNL’s Advanced Light Source (ALS) and the Laue – Langevin Institute [Institut Laue-Langevin (ILL)](FR), a neutron scattering facility in France.

    4
    Institut Laue-Langevin (ILL) – SNSS

    The team released their decision-making software, gpCAM v6 (Software) | OSTI.GOV, to the wider scientific community so anyone could set up their own autonomous experiments.

    5
    The autonomous experimental loop features automated software for data acquisition (Bluesky), data analysis (SciAnalysis), and decision making (gpCAM).

    In one experiment, in collaboration with the U.S. Air Force Research Laboratory (AFRL), they used the method in an autonomous synchrotron x-ray scattering experiment at the CMS beamline. In x-ray scattering, the x-rays bounce off a sample in different directions depending on the sample’s structure. The first goal of the experiment was to explore how the ordered structure of nanorod-polymer composite films depends on two fabrication parameters: the speed of film coating and the substrate’s chemical coating. The second goal was to use this knowledge to locate and home in on the regions of the films with the highest degrees of order.

    “These materials are of interest for optical coatings and sensors,” explained CMS beamline scientist Ruipeng Li. “We used a particular fabrication method that mimics industrial roll-to-roll processes to find out the best way to form these ordered films using industrially scalable processes.”

    In another x-ray scattering experiment, at the SMI beamline, the algorithm successfully identified regions of unexpected ordering in a parameter space relevant to the self-assembly of block copolymer films. Block copolymers are polymers made up of two or more chemically distinct “blocks” linked together. By identifying these features, the autonomous experiment illuminated a problem with the fabrication method.

    “It wasn’t hypothetical—we’ve been working on this project for many years,” said CFN materials scientist Gregory Doerk. “We had been iterating in the old way, doing some experiments, taking images at locations we arbitrarily picked, looking at the images, and being puzzled as to what’s going on. With the autonomous approach, in one day of experiments at the beamline, we were able to find the defects and then immediately fix them in the next round. That’s a dramatic acceleration of the normal cycle of research where you do a study, find out it didn’t work, and go back to the drawing board.”

    Noack and his collaborators also applied the method to a different kind of x-ray technique called autonomous synchrotron infrared mapping, which can provide chemical information about a sample. And they demonstrated how the method could be applied to a spectroscopy technique to autonomously discover phases where electrons behave in a strongly correlated manner and to neutron scattering to autonomously measure magnetic correlations.

    6
    The autonomous mapping of a processing parameter space for block copolymer films. The team collected x-ray scattering images as a function of (x,y) position coordinates across the sample surface. The resulting map of block copolymer scattering intensity (a) shows significant variation. Regions with surprising behavior are the bright spots. The decision-making algorithm homed in on areas of interest (green box, b) and stayed away from unimportant areas (red box, c). Follow-on scanning electron microscopy (SEM) experiments of select regions (d, e, f) identified through the autonomous mapping enabled the team to discover processing defects and optimize the fabrication method.

    Shaping the future of autonomous experimentation

    According to Yager, their method can be applied to any technique for which the data collection and data analysis are already automated. One of the advantages of the approach is that it’s “physics agnostic,” meaning it’s not tied to any particular kind of material, physical problem, or technique. The physically meaningful quantities for the decision making are extracted through the analysis of the raw data.

    “We wanted to make our approach very general so that it could be applied to anything and then down the road tailored to specific problems,” said Yager. “As a user facility, we want to empower the largest number of people to do interesting science.”

    In the future, the team will add functionality for users to incorporate physics awareness, or knowledge about the materials or phenomena they’re studying, if they desire. But the team will do so in a way that doesn’t destroy the general-purpose flexibility of the approach; users will be able to turn this extra knowledge on or off.

    Another aspect of future work is applying the method to control real-time processes—in other words, controlling a system that’s dynamically evolving in time as an experiment proceeds.

    7
    To design improved materials, scientists need to understand how material composition, processing conditions, structure, and functionality relate to each other. Autonomous experimentation can accelerate this materials discovery process.

    Up until this point, we’ve been concentrating on making decisions on how to measure or characterize prepared material systems,” said Fukuto. “We also want to make decisions on how to change materials or what kinds of materials we want to make. Understanding the fundamental science behind material changes is important to improving manufacturing processes.”

    Realizing this capability to intelligently explore materials evolving in real time will require overcoming algorithmic and instrumentation challenges.

    “The decision making has to be very fast, and you have to build sample environments to do materials synthesis in real time while you’re taking measurements with an x-ray beam,” explained Yager.

    Despite these challenges, the team is excited about what the future of autonomous experimentation holds.

    “We started this effort at a very small scale, but it grew into something much larger,” said Fukuto. “A lot of people are interested in it, not just us. The user community has been expanding, and with users studying different kinds of problems, this approach could have a great impact on accelerating a host of scientific discoveries.”

    “It represents a really big shift in thinking to go from the old way of micromanaging experiments to this new vision of automated systems running experiments with humans orchestrating them at a very high level because they understand what needs to be done and what the science means,” said Yager. “That’s a very exciting vision for the future of science. We’re going to be able to tackle problems in the future that 10 years ago people would have said are impossible.”

    This research is supported by the DOE Office of Science and the Laboratory Directed Research and Development Program. Portions of this work were supported by LBL “CAMERA”, which is jointly funded by Advanced Scientific Computing Research and Basic Energy Sciences. The ALS, CFN, and NSLS-II are all DOE Office of Science User Facilities. The CFN and NSLS-II operate the CMS and SMI beamlines in partnership. The experiment on the nanorod-polymer composite films received funding through AFRL’s Materials and Manufacturing Directorate and the Air Force Office of Scientific Research.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 12:51 pm on July 29, 2021 Permalink | Reply
    Tags: "Collisions of Light Produce Matter/Antimatter from Pure Energy", , , Both results depend on the ability of RHIC’s STAR detector., DOE’s Brookhaven National Laboratory (US), , RHIC: Relativistic Heavy Ion Collider, Study demonstrates a long-predicted process for generating matter directly from light — plus evidence that magnetism can bend polarized photons along different paths in a vacuum., The primary finding is that pairs of electrons and positrons—particles of matter and antimatter—can be created directly by colliding very energetic photons which are quantum “packets” of light, The second result shows that the path of light traveling through a magnetic field in a vacuum bends differently depending on how that light is polarized.   

    From DOE’s Brookhaven National Laboratory (US) : “Collisions of Light Produce Matter/Antimatter from Pure Energy” 

    From DOE’s Brookhaven National Laboratory (US)

    July 28, 2021
    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Study demonstrates a long-predicted process for generating matter directly from light — plus evidence that magnetism can bend polarized photons along different paths in a vacuum.

    1
    Making matter from light: Two gold (Au) ions (red) move in opposite direction at 99.995% of the speed of light (v, for velocity, = approximately c, the speed of light). As the ions pass one another without colliding, two photons (γ) from the electromagnetic cloud surrounding the ions can interact with each other to create a matter-antimatter pair: an electron (e-) and positron (e+).

    Scientists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC) [below]—a U.S. Department of Energy Office of Science user facility for nuclear physics research at DOE’s Brookhaven National Laboratory—have produced definitive evidence for two physics phenomena predicted more than 80 years ago. The results were derived from a detailed analysis of more than 6,000 pairs of electrons and positrons produced in glancing particle collisions at RHIC and are published in Physical Review Letters.

    The primary finding is that pairs of electrons and positrons—particles of matter and antimatter—can be created directly by colliding very energetic photons which are quantum “packets” of light. This conversion of energetic light into matter is a direct consequence of Einstein’s famous E=mc^2 equation, which states that energy and matter (or mass) are interchangeable. Nuclear reactions in the sun and at nuclear power plants regularly convert matter into energy. Now scientists have converted light energy directly into matter in a single step.

    The second result shows that the path of light traveling through a magnetic field in a vacuum bends differently depending on how that light is polarized. Such polarization-dependent deflection (known as birefringence) occurs when light travels through certain materials. (This effect is similar to the way wavelength-dependent deflection splits white light into rainbows.) But this is the first demonstration of polarization-dependent light-bending in a vacuum.

    Both results depend on the ability of RHIC’s STAR detector [below]—the Solenoid Tracker at RHIC—to measure the angular distribution of particles produced in glancing collisions of gold ions moving at nearly the speed of light.

    Colliding clouds of photons

    Such capabilities didn’t exist when physicists Gregory Breit and John A. Wheeler first described the hypothetical possibility of colliding light particles to create pairs of electrons and their antimatter counterparts, known as positrons, in 1934.

    “In their paper, Breit and Wheeler already realized this is almost impossible to do,” said Brookhaven Lab physicist Zhangbu Xu, a member of RHIC’s STAR Collaboration. “Lasers didn’t even exist yet! But Breit and Wheeler proposed an alternative: accelerating heavy ions. And their alternative is exactly what we are doing at RHIC.”

    An ion is essentially a naked atom, stripped of its electrons. A gold ion, with 79 protons, carries a powerful positive charge. Accelerating such a charged heavy ion to very high speeds generates a powerful magnetic field that spirals around the speeding particle as it travels—like current flowing through a wire.

    “If the speed is high enough, the strength of the circular magnetic field can be equal to the strength of the perpendicular electric field,” Xu said. And that arrangement of perpendicular electric and magnetic fields of equal strength is exactly what a photon is—a quantized “particle” of light. “So, when the ions are moving close to the speed of light, there are a bunch of photons surrounding the gold nucleus, traveling with it like a cloud.”

    At RHIC, scientists accelerate gold ions to 99.995% of the speed of light in two accelerator rings.

    “We have two clouds of photons moving in opposite directions with enough energy and intensity that when the two ions graze past each other without colliding, those photon fields can interact,” Xu said.

    STAR physicists tracked the interactions and looked for the predicted electron-positron pairs.

    But such particle pairs can be created by a range of processes at RHIC, including through “virtual” photons, a state of photon that exists briefly and carries an effective mass. To be sure the matter-antimatter pairs were coming from real photons, scientists have to demonstrate that the contribution of “virtual” photons does not change the outcome of the experiment.

    To do that, the STAR scientists analyzed the angular distribution patterns of each electron relative to its partner positron. These patterns differ for pairs produced by real photon interactions versus virtual photons.

    “We also measured all the energy, mass distributions, and quantum numbers of the systems. They are consistent with theory calculations for what would happen with real photons,” said Daniel Brandenburg, a Goldhaber Fellow at Brookhaven Lab, who analyzed the STAR data on this discovery.

    Other scientists have tried to create electron-positron pairs from collisions of light using powerful lasers—focused beams of intense light. But the individual photons within those intense beams don’t have enough energy yet, Brandenburg said.

    One experiment at the DOE’s SLAC National Accelerator Laboratory (US) in 1997 succeeded by using a nonlinear process. Scientists there first had to boost the energy of the photons in one laser beam by colliding it with a powerful electron beam. Collisions of the boosted photons with multiple photons simultaneously in an enormous electromagnetic field created by another laser produced matter and antimatter.

    “Our results provide clear evidence of direct, one-step creation of matter-antimatter pairs from collisions of light as originally predicted by Breit and Wheeler,” Brandenburg said. “Thanks to RHIC’s high-energy heavy ion beam and the STAR detector’s large acceptance and precision measurements, we are able to analyze all the kinematic distributions with high statistics to determine that the experimental results are indeed consistent with real photon collisions.”

    Bending light in a vacuum

    STAR’s ability to measure the tiny deflections of electrons and positrons produced almost back-to-back in these events also gave the physicists a way to study how light particles interact with the powerful magnetic fields generated by the accelerated ions.

    “The cloud of photons surrounding the gold ions in one of RHIC’s beams is shooting into the strong circular magnetic field produced by the accelerated ions in the other gold beam,” said Chi Yang, a long-time STAR collaborator from Shandong University who spent his entire career studying electron-positron pairs produced from various processes at RHIC. “Looking at the distribution of particles that come out tells us how polarized light interacts with the magnetic field.”

    3
    Bending polarized light: This illustration shows how light with different polarization directions (indicated by black arrows) passes through a material along two different paths (yellow beams). This is called the birefringence effect. Results from RHIC provide evidence that birefringence also happens in a magnetic field in a vacuum.

    Werner Heisenberg and Hans Heinrich Euler in 1936, and John Toll in the 1950s, predicted that a vacuum of empty space could be polarized by a powerful magnetic field and that such a polarized vacuum should deflect the paths of photons depending on photon polarization. Toll, in his thesis, also detailed how light absorption by a magnetic field depends on polarization and its connection to the refractive index of light in a vacuum. This polarization-dependent deflection, or birefringence, has been observed in many types of crystals. There was also a recent report of the light coming from a neutron star bending this way, presumably because of its interactions with the star’s magnetic field. But no Earth-based experiment has detected birefringence in a vacuum.

    At RHIC, the scientists measured how the polarization of the light affected whether the light was “absorbed” by the magnetic field.

    This is similar to the way polarized sunglasses block certain rays from passing through if they don’t match the polarization of the lenses, Yang explained. In the case of the sunglasses, in addition to seeing less light get through, you could, in principle, measure an increase in the temperature of the lens material as it absorbs the energy of the blocked light. At RHIC, the absorbed light energy is what creates the electron-positron pairs.

    “When we look at the products produced by photon-photon interactions at RHIC, we see that the angular distribution of the products depends on the angle of the polarization of the light. This indicates that the absorption (or passing) of light depends on its polarization,” Yang said.

    This is the first Earth-based experimental observation that polarization affects the interactions of light with the magnetic field in the vacuum—the vacuum birefringence predicted in 1936.

    “Both of these findings build on predictions made by some of the great physicists in the early 20th century,” said Frank Geurts, a professor at Rice University (US), whose team built and operated the state-of-the-art “Time-of-Flight” detector components of STAR that were necessary for this measurement. “They are based on fundamental measurements made possible only recently with the technologies and analysis techniques we have developed at RHIC.”

    Additional contributors to the analyses that led to these results include STAR co-spokesperson Lijuan Ruan of Brookhaven, Shuai Yang of Rice University, Janet Seger of Creighton University (US), and Wangmei Zha of the University of Science and Technology [中国科学技术大学] (CN) at Chinese Academy of Sciences [中国科学院](CN). The scientists made use of computational resources at Brookhaven’s Scientific Data and Computing Center, the DOE’s NERSC National Energy Research Scientific Computing Center (US) at DOE’s Lawrence Berkeley National Laboratory (US), and the Open Science Grid (US) consortium.

    Brookhaven Lab’s role in the work and operations at RHIC are supported by the DOE Office of Science (NP). Additional funders include the National Science Foundation (US) and a range of international agencies listed in the published paper.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 9:58 am on July 23, 2021 Permalink | Reply
    Tags: "Understanding the Physics in New Metals", , , Correlated metals, DOE’s Brookhaven National Laboratory (US), , , , Strongly correlated materials are candidates for novel high-temperature superconductors., These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers., Using inelastic resonant x-ray scattering to study quantum materials such as correlated metals.,   

    From DOE’s Brookhaven National Laboratory (US) and Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “Understanding the Physics in New Metals” 

    From DOE’s Brookhaven National Laboratory (US)

    and

    Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    July 19, 2021

    Barbara Vonarburg, Paul Scherrer Institute

    1
    Brookhaven Lab Scientist Jonathan Pelliciari now works as a beamline scientist at the National Synchrotron Light Source II (NSLS-II)[below], where he continues to use inelastic resonant x-ray scattering to study quantum materials such as correlated metals.

    Researchers from the Paul Scherrer Institute PSI and the Brookhaven National Laboratory (BNL), working in an international team, have developed a new method for complex X-ray studies that will aid in better understanding so-called correlated metals. These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers. Today the researchers present their work in the journal Physical Review X.

    In substances such as silicon or aluminium, the mutual repulsion of electrons hardly affects the material properties. Not so with so-called correlated materials, in which the electrons interact strongly with one another. The movement of one electron in a correlated material leads to a complex and coordinated reaction of the other electrons. It is precisely such coupled processes that make these correlated materials so promising for practical applications, and at the same time so complicated to understand.

    Strongly correlated materials are candidates for novel high-temperature superconductors, which can conduct electricity without loss and which are used in medicine, for example, in magnetic resonance imaging. They also could be used to build electronic components, or even quantum computers, with which data can be more efficiently processed and stored.

    “Strongly correlated materials exhibit a wealth of fascinating phenomena,” says Thorsten Schmitt, head of the Spectroscopy of Novel Materials Group at PSI: “However, it remains a major challenge to understand and exploit the complex behaviour that lies behind these phenomena.” Schmitt and his research group tackle this task with the help of a method for which they use the intense and extremely precise X-ray radiation from the Swiss Light Source SLS at PSI.

    4
    Swiss Light Source SLS Paul Scherrer Institut (PSI)

    This modern technique, which has been further developed at PSI in recent years, is called resonant inelastic X-ray scattering, or RIXS for short.

    2
    Thorsten Schmitt at the experiment station of the Swiss Light Source SLS, which provided the X-ray light used for the experiments. Credit: Mahir Dzambegovic/Paul Scherrer Institute.

    X-rays excite electrons

    With RIXS, soft X-rays are scattered off a sample. The incident X-ray beam is tuned in such a way that it elevates electrons from a lower electron orbital to a higher orbital, which means that special resonances are excited. This throws the system out of balance. Various electrodynamic processes lead it back to the ground state. Some of the excess energy is emitted again as X-ray light. The spectrum of this inelastically scattered radiation provides information about the underlying processes and thus on the electronic structure of the material.

    “In recent years, RIXS has developed into a powerful experimental tool for deciphering the complexity of correlated materials,” Schmitt explains. When used to investigate correlated insulators in particular, it works very well. Up to now, however, the method has been unsuccessful in probing correlated metals. Its failure was due to the difficulty of interpreting the extremely complicated spectra caused by many different electrodynamic processes during the scattering. “In this connection collaboration with theorists is essential,” explains Schmitt, “because they can simulate the processes observed in the experiment.”

    Calculations of correlated metals

    This is a specialty of theoretical physicist Keith Gilmore, formerly of the Brookhaven National Laboratory (BNL) in the USA and now at the Humboldt University of Berlin [Humboldt-Universität zu Berlin] (DE). “Calculating the RIXS results for correlated metals is difficult because you have to handle several electron orbitals, large bandwidths, and a large number of electronic interactions at the same time,” says Gilmore. Correlated insulators are easier to handle because fewer orbitals are involved; this allows model calculations that explicitly include all electrons. To be precise, Gilmore explains: “In our new method of describing the RIXS processes, we are now combining the contributions that come from the excitation of one electron with the coordinated reaction of all other electrons.”

    To test the calculation, the PSI researchers experimented with a substance that BNL scientist Jonathan Pelliciari had investigated in detail as part of his doctoral thesis at PSI: barium-iron-arsenide. If you add a specific amount of potassium atoms to the material, it becomes superconducting. It belongs to a class of unconventional high-temperature iron-based superconductors that are expected to provide a better understanding of the phenomenon. “Until now, the interpretation of RIXS measurements on such complex materials has been guided mainly by intuition. Now these RIXS calculations give us experimenters a framework that enables a more practical interpretation of the results. Our RIXS measurements at PSI on barium-iron-arsenide are in excellent agreement with the calculated profiles,” Pelliciari says.

    Combination of experiment and theory

    In their experiments, the researchers investigated the physics around the iron atom. “One advantage of RIXS is that you can concentrate on a specific component and examine it in detail for materials that consist of several elements,” Schmitt says. The well-tuned X-ray beam causes an inner electron in the iron atom to be elevated from the ground state in the core level to the higher energy valence band, which is only partially occupied. This initial excitation of the core electron can cause further secondary excitations and trigger many complicated decay processes that ultimately manifest themselves in spectral satellite structures. (See graphic.)

    3
    The graphic shows how an electron (blue dot) can be elevated to different energy levels (dotted arrows) or falls back to lower energy levels. Between the highest energy level and somewhat lower level, secondary processes take place. The curve in the background represents the iron electronic levels.
    Credit: Keith Gilmore/Paul Scherrer Institute.

    Since the contributions of the many reactions are sometimes small and close to one another, it is difficult to find out which processes actually took place in the experiment. Here the combination of experiment and theory helps. “If you have no theoretical support for difficult experiments, you cannot understand the processes, that is, the physics, in detail,” Schmitt says. The same also applies to theory: “You often don’t know which theories are realistic until you can compare them with an experiment. Progress in understanding comes when experiment and theory are brought together. This descriptive method thus has the potential to become a reference for the interpretation of spectroscopic experiments on correlated metals.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), PSI belongs to the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales](CH). The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

    Research and specialist areas

    PSI develops, builds and operates several accelerator facilities, e. g. a 590 MeV high-current cyclotron, which in normal operation supplies a beam current of about 2.2 mA. PSI also operates four large-scale research facilities: a synchrotron light source (SLS), which is particularly brilliant and stable, a spallation neutron source (SINQ), a muon source (SμS) and an X-ray free-electron laser (SwissFEL). This makes PSI currently (2020) the only institute in the world to provide the four most important probes for researching the structure and dynamics of condensed matter (neutrons, muons and synchrotron radiation) on a campus for the international user community. In addition, HIPA’s target facilities also produce pions that feed the muon source and the Ultracold Neutron source UCN produces very slow, ultracold neutrons. All these particle types are used for research in particle physics.

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 12:00 pm on July 16, 2021 Permalink | Reply
    Tags: "ATLAS Confirms Universality of Key Particle Interactions", Brookhaven Lab serves as the U.S. host laboratory for the ATLAS experiment., , DOE’s Brookhaven National Laboratory (US), LHC’s predecessor—the Large Electron-Positron (LEP) collider, , Tension with the Standard Model resolved.   

    From DOE’s Brookhaven National Laboratory (US) and From CERN (CH) ATLAS : “ATLAS Confirms Universality of Key Particle Interactions” 

    From DOE’s Brookhaven National Laboratory (US)

    and

    From CERN (CH) ATLAS

    July 9, 2021
    Karen McNulty Walsh
    kmcnulty@bnl.gov

    Test demonstrates “lepton flavor universality” for interactions of muon and tau leptons with W bosons.

    A new paper by the ATLAS collaboration at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) provides evidence that two different types of leptons interact in a universal way with particles called W bosons. This result, just published in Nature Physics, supports “lepton flavor universality,” a key prediction of the Standard Model of particle physics.

    Standard Model of Particle Physics, Quantum Diaries[/caption]

    The Standard Model of particle physics is the reigning theory describing all known particles and their interactions. It includes three flavors of leptons: the familiar electron—which is central to our understanding of electricity—and two heavier cousins known as muons and tau particles. According to the Standard Model, each of these leptons should “couple,” or interact, with a W boson with equal strength, commonly referred to as lepton-flavor universality.

    Finding an experimental result in agreement with that longstanding prediction may not seem all that newsworthy. But decades ago, experiments at the LHC’s predecessor—the Large Electron-Positron (LEP) collider—had reported a hint of a discrepancy in the way muon and tau leptons behaved.

    That result, from the 1990s, generated tension with the Standard Model.

    2
    Srini Rajagopalan, Program Manager for U.S. ATLAS and a physicist at Brookhaven National Laboratory.

    “The new ATLAS measurement, which has significantly higher precision than the LEP experiments, resolves the decades-old tension,” said Srini Rajagopalan, Program Manager for U.S. ATLAS and a physicist at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory. “It is an important measurement to demonstrate that different types of leptons behave in the same way.”

    Brookhaven Lab serves as the U.S. host laboratory for the ATLAS experiment. Brookhaven scientists play multiple roles in this international collaboration, from construction and project management to data storage, distribution, and analysis.

    The ATLAS team’s motivation for using the powerful LHC to study leptons’ interactions with the W boson stems from the earlier discrepancy at LEP, which was also located at CERN.

    LEP collided electrons and their anti-particles (positrons). These collisions provided a very clean environment for precision measurements of particle interactions and properties. The experiments measured a discrepancy in the frequency with which W bosons decayed to muon and tau leptons. The discrepancy suggested there was a difference in the strength of the W boson interactions with these two different flavor leptons—a violation of lepton flavor universality. But LEP produced a relatively low number of W bosons, which limited the measurement’s statistical precision.

    The LHC, in contrast, collides high-energy protons. Compared with simple electrons and positrons, protons are more complex composite particles. Each proton is made of many quarks and gluons and each collision between two of these composite particles produces many different types of particles. But among the multitudes, more than 100 million of these collisions produce pairs of so-called top quarks, which readily decay into pairs of W bosons, and subsequently, in some cases, into leptons. Thus, the LHC provides a huge dataset for measuring W boson-to-lepton decays/interactions.

    But there’s an added challenge: Some muons come directly from the decay of W bosons; and some come from a tau lepton itself decaying into a muon plus two invisible particles called neutrinos. Fortunately, these two sources of muons have different lifetimes, which lead to different signatures in the detector.

    3
    ATLAS Physics Coordinator Stephane Willocq, a physicist at the University of Massachusetts at Amherst (US). Credit: UMass Amherst.

    ATLAS is sensitive enough to search for these unique signatures and cancel out additional uncertainties in the process—a key feature that enables the high precision of the measurement.

    “This is a beautiful result that demonstrates that we can perform precision tests at the LHC, thanks to the huge datasets collected and the well-understood detector performance,” said ATLAS Physics Coordinator Stephane Willocq, a physicist at the University of Massachusetts at Amherst.

    The new result gives the ratio of a W boson decaying to a tau or muon to be very close to 1. Such a measurement signifies that the decay to each lepton occurs with equal frequency implying that Ws couple with each lepton with equal strength—just as the Standard Model predicts. With an uncertainty half the size of the LEP measurement, this new high-precision ATLAS measurement suggests the earlier tension between experiment and theory may have been due to a fluctuation.

    Brookhaven Lab’s role in this research was funded by the DOE Office of Science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    CERN Courier (CH)

    Quantum Diaries
    QuantumDiaries

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: