Tagged: DNA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:13 am on March 9, 2017 Permalink | Reply
    Tags: , , DNA, Embryos can be repaired, in vitro fertilization, Triple helix,   

    From Yale: “Gene editing opens the door to a “revolution” in treating and preventing disease” 

    Yale University bloc

    Yale University

    March 8, 2017
    John Dent Curtis

    Today, in vitro fertilization provides a way for couples to avoid passing potentially disease-causing genes to their offspring. A couple will undergo genetic screening. Tests will determine whether their unborn children are at risk. If embryos created through IVF show signs of such a genetic mutation, they can be discarded.

    Flash forward a few years, and, instead of being discarded, those embryos can be repaired with new gene editing technologies. And those repairs will affect not only those children, but all their descendants.

    “This is definitely new territory,” said Pasquale Patrizio, M.D., director of the Yale Fertility Center and Fertility Preservation Program. “We are at the verge of a huge revolution in the way disease is treated.”

    We are at the verge of a huge revolution in the way disease is treated.”
    Pasquale Patrizio, M.D., director of the Yale Fertility Center and Fertility Preservation Program

    In a move that seems likely to help clear the path for the use of gene editing in the clinical setting, on February 14 the Committee on Human Gene Editing, formed by the National Academy of Medicine and the National Academy of Sciences, recommended that research into human gene editing should go forward under strict ethical and safety guidelines. Among their concerns were ensuring that the technology be used to treat only serious diseases for which there is no other remedy, that there be broad oversight, and that there be equal access to the treatment. These guidelines provide a framework for discussion of technology that has been described as an “ethical minefield” and for which there is no government support in the United States.

    A main impetus for the committee’s work appears to be the discovery and widespread use of CRISPR-Cas9, a defense that bacteria use against viral infection. Scientists including former Yale faculty member Jennifer Doudna, Ph.D., now at the University of California, Berkeley, and Emmanuelle Charpentier, Ph.D., of the Max Planck Institute for Infection Biology in Berlin, discerned that the CRISPR enzyme could be harnessed to make precision cuts and repairs to genes. Faster, easier, and cheaper than previous gene editing technologies, CRISPR was declared the breakthrough of the year in 2015 by Science magazine, and has become a basic and ubiquitous laboratory research tool. The committee’s guidelines, said scientists, physicians, and ethicists at Yale, could pave the way for thoughtful and safe use of this and other human gene editing technologies. In addition to CRISPR, the committee described three commonly used gene editing techniques; zinc finger nucleases, meganucleases, and transcription activator-like effector nucleases.

    Patrizio, professor of obstetrics, gynecology, and reproductive sciences, said the guidelines are on the mark, especially because they call for editing only in circumstances where the diseases or disabilities are serious and where there are not alternative treatments. He and others cited such diseases as cystic fibrosis, sickle cell anemia, and thalassemia as targets for gene editing. Because they are caused by mutations in a single gene, repairing that one gene could prevent disease.

    Peter Glazer, M.D. ’87, Ph.D. ’87, HS ’91, FW ’91, chair and the Robert E. Hunter Professor of Therapeutic Radiology and professor of genetics, said, “The field will benefit from guidelines that are thoughtfully developed. This was a step in the right direction.”

    The panel recommended that gene editing techniques should be limited to deal with genes proven to cause or predispose to specific diseases. It should be used to convert mutated genes to versions that are already prevalent in the population. The panel also called for stringent oversight of the process and for a prohibition against use of the technology for “enhancements,” rather than to treat disease. “As physicians, we understand what serious diseases are. Many of them are very well known and well characterized on a genetic level,” Glazer said. “The slippery slope is where people start thinking about modifications in situations where people don’t have a serious disorder or disease.”

    Mark Mercurio, M.D., professor of pediatrics (neonatology), and director of the Program for Biomedical Ethics, echoed that concern. While he concurs with the panel’s recommendations, he urged a clear definition of disease prevention and treatment. “At some point we are not treating, but enhancing.” This in turn, he said, conjures up the nation’s own medical ethical history, which includes eugenics policies in the early 20th century that were later adopted in Nazi Germany. “This has the potential to help a great many people, and is a great advance. But we need to be cognizant of the history of eugenics in the United States and elsewhere, and need to be very thoughtful in how we use this technology going forward,” he said.

    The new technology, he said, can lead to uncharted ethical waters. “Pediatric ethics are more difficult,” Mercurio said. “It is one thing to decide for yourself–is this a risk I’m willing to take—and another thing to decide for a child. It is another thing still further, which we have never had to consider, to decide for future generations.”

    Myron Genel, M.D., emeritus professor of pediatrics and senior research scientist, served on Connecticut’s stem cell commission and four years on the Health and Human Services Secretary’s Advisory Committee on Human Research Protections. He believes that Connecticut’s guidelines on stem cell research provide a framework for addressing the issues associated with human gene editing. “There is a whole regulatory process that has been evolved governing the therapeutic use of stem cells,” he said. “There are mechanisms that have been put in place for effective local oversight and national oversight for stem cell research.”

    Although CRISPR has been the subject of a bitter patent dispute between Doudna and Charpentier and The Broad Institute in Cambridge, Mass., a recent decision by the U.S. Patent Trial and Appeal Board in favor of Broad is unlikely to affect research at Yale and other institutions. Although Broad, an institute of Harvard and the Massachusetts Institute of Technology, can now claim the patent, universities do not typically enforce patent rights against other universities over research uses.

    At Yale, scientists and physicians noted that gene editing is years away from human trials, and that risks remain. The issue now, said Glazer, is “How do we do it safely? It is never going to be risk-free. Many medical therapies have side effects and we balance the risks and benefits.” Despite its effectiveness, CRISPR is also known for what’s called “off-target risk,” imprecise cutting and splicing of genes that could lead to unforeseen side effects that persist in future generations. “CRISPR is extremely potent in editing the gene it is targeting,” Glazer said. “But it is still somewhat promiscuous and will cut other places. It could damage a gene you don’t want damaged.”

    Glazer has been working with a gene editing technology called triple helix that hijacks DNA’s own repair mechanisms to fix gene mutations. Triple helix, as its name suggests, adds a third strand to the double helix of DNA. That third layer, a peptide nucleic acid, binds to DNA and provokes a natural repair process that copies a strand of DNA into a target gene. Unlike CRISPR and other editing techniques, it does not use nucleases that cut DNA. “This just recruits a process that is natural. Then you give the cell this piece of DNA, this template that has a new sequence,” Glazer said, adding that triple helix is more precise than CRISPR and leads to fewer off-target effects, but is a more complex technology that requires advanced synthetic chemistry.

    Along with several scientists across Yale, Glazer is studying triple helix as a potential treatment for cystic fibrosis, HIV/AIDS, spherocytosis, and thalassemia.

    Adele Ricciardi, a student in her sixth year of the M.D./Ph.D. program, is working with Glazer and other faculty on use of triple helix to make DNA repairs in utero. She also supports the panel’s decision, but believes that more public discussion is needed to allay fears of misuse of the technology. In a recent presentation to her lab mates, she noted that surveys show widespread public concern about such biomedical advances. One study found that most of those surveyed felt it should be illegal to change the genes of unborn babies, even to prevent disease.

    “There is, I believe, a misconception of what we are using gene editing for,” Ricciardi said. “We are using it to edit disease-causing mutations, not to improve the intelligence of our species or get favorable characteristics in babies. We can improve quality of life in kids with severe genetic disorders.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Yale University Campus

    Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

     
  • richardmitnick 2:45 pm on February 24, 2017 Permalink | Reply
    Tags: , , DNA, Nucleotides, Seesaw Compiler   

    From Caltech: “Computing with Biochemical Circuits Made Easy” 

    Caltech Logo
    Caltech

    1
    Detail from painting “What Dreams Are Made Of.” Credit: Ann Erpino

    Electronic circuits are found in almost everything from smartphones to spacecraft and are useful in a variety of computational problems from simple addition to determining the trajectories of interplanetary satellites. At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA.

    The Qian group has made the technology of DNA circuits accessible to even novice researchers—including undergraduate students—using a software tool they developed called the Seesaw Compiler. Now, they have experimentally demonstrated that the tool can be used to quickly design DNA circuits that can then be built out of cheap “unpurified” DNA strands, following a systematic wet-lab procedure devised by Qian and colleagues.

    A paper describing the work appears in the February 23 issue of Nature Communications.

    Although DNA is best known as the molecule that encodes the genetic information of living things, they are also useful chemical building blocks. This is because the smaller molecules that make up a strand of DNA, called nucleotides, bind together only with very specific rules—an A nucleotide binds to a T, and a C nucleotide binds to a G. A strand of DNA is a sequence of nucleotides and can become a double strand if it binds with a sequence of complementary nucleotides.

    DNA circuits are good at collecting information within a biochemical environment, processing the information locally and controlling the behavior of individual molecules. Circuits built out of DNA strands instead of silicon transistors can be used in completely different ways than electronic circuits. “A DNA circuit could add ‘smarts’ to chemicals, medicines, or materials by making their functions responsive to the changes in their environments,” Qian says. “Importantly, these adaptive functions can be programmed by humans.”

    To build a DNA circuit that can, for example, compute the square root of a number between 0 and 16, researchers first have to carefully design a mixture of single and partially double-stranded DNA that can chemically recognize a set of DNA strands whose concentrations represent the value of the original number. Mixing these together triggers a cascade of zipping and unzipping reactions, each reaction releasing a specific DNA strand upon binding. Once the reactions are complete, the identities of the resulting DNA strands reveal the answer to the problem.

    With the Seesaw Compiler, a researcher could tell a computer the desired function to be calculated and the computer would design the DNA sequences and mixtures needed. However, it was not clear how well these automatically designed DNA sequences and mixtures would work for building DNA circuits with new functions; for example, computing the rules that govern how a cell evolves by sensing neighboring cells, defined in a classic computational model called “cellular automata.”

    “Constructing a circuit made of DNA has thus far been difficult for those who are not in this research area, because every circuit with a new function requires DNA strands with new sequences and there are no off-the-shelf DNA circuit components that can be purchased,” says Chris Thachuk, senior postdoctoral scholar in computing and mathematical sciences and second author on the paper. “Our circuit-design software is a step toward enabling researchers to just type in what they want to do or compute and having the software figure out all the DNA strands needed to perform the computation, together with simulations to predict the DNA circuit’s behavior in a test tube. Even though these DNA strands are still not off-the-shelf products, we have now shown that they do work well for new circuits with user-designed functions.”

    “In the 1950s, only a few research labs that understood the physics of transistors could build early versions of electronic circuits and control their functions,” says Qian. “But today many software tools are available that use simple and human-friendly languages to design complex electronic circuits embedded in smart machines. Our software is kind of like that: it translates simple and human-friendly descriptions of computation to the design of complex DNA circuits.”

    The Seesaw Compiler was put to the test in 2015 in a unique course at Caltech, taught by Qian and called “Design and Construction of Programmable Molecular Systems” (BE/CS 196 ab). “How do you evaluate the accessibility of a new technology? You give the technology to someone who is intellectually capable but has minimal prior background,” Qian says.

    “The students in this class were undergrads and first-year graduate students majoring in computer science and bioengineering,” says Anupama Thubagere, a graduate student in biology and bioengineering and first author on the paper. “I started working with them as a head teaching assistant and together we soon discovered that using the Seesaw Compiler to design a DNA circuit was easy for everyone.”

    However, building the designed circuit in the wet lab was not so simple. Thus, with continued efforts after the class, the group set out to develop a systematic wet-lab procedure that could guide researchers—even novices like undergraduate students—through the process of building DNA circuits. “Fortunately, we found a general solution to every challenge that we encountered, now making it easy for everyone to build their own DNA circuits,” Thubagere says.

    The group showed that it was possible to use cheap, “unpurified” DNA strands in these circuits using the new process. This was only possible because steps in the systematic wet-lab procedure were designed to compensate for the lower synthesis quality of the DNA strands.

    “We hope that this work will convince more computer scientists and researchers from other fields to join our community in developing increasingly powerful molecular machines and to explore a much wider range of applications that will eventually lead to the transformation of technology that has been promised by the invention of molecular computers,” Qian says.

    The paper is titled, Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Other Caltech co-authors include graduate students Robert Johnson and Kevin Cherry, alumnus Joseph Berleant (BS ’16), and undergraduate Diana Ardelean. The work was funded by the National Science Foundation, the Banting Postdoctoral Fellowships program, the Burroughs Wellcome Fund, and Innovation in Education funds from Caltech.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Caltech campus
    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

     
  • richardmitnick 1:38 pm on January 9, 2017 Permalink | Reply
    Tags: DNA, , Skeletal muscle mass,   

    U Aberdeen: “Gene could play role in body’s muscle mass” 

    U Aberdeen bloc

    University of Aberdeen

    09 January 2017
    Euan Wemyss
    e.wemyss@abdn.ac.uk

    1
    Scientists at the University of Aberdeen identify gene which could play role in determining muscle mass. No image credit.

    “Our research suggests this gene could play a role in regulating muscle mass and the fact that drugs have already been developed to target the gene gives us an obvious focus for further research”
    Dr Arimantas Lionikas

    Scientists have identified a gene they think could play a role in determining a person’s muscle mass – which is linked to a number of health factors, including how long someone lives.

    Previous studies have shown a link between muscle mass and life expectancy in elderly people.

    Muscle is the most abundant tissue in the body and enables many functions from allowing us to move around to allowing us to breathe.

    The amount of skeletal muscle mass each person has can vary significantly.

    Skeletal muscle mass can be increased if a person undertakes strength exercise but genetic factors play an equally important role in determining how much muscle mass a person can have.

    Now, scientists at the University of Aberdeen, led by Dr Arimantas Lionikas, have identified a gene that appears to affect muscle mass in mice. The findings have been published in Nature Genetics.

    The same gene has previously been linked with the spread of cancer and drugs have been developed to target it.

    The team hope to study these drugs further to understand their effects on muscle tissue. If there are different drugs targeting the same gene, the research could uncover which drug has the less negative effect on muscle mass.

    “Skeletal muscle mass is incredibly important in humans, especially as they get older. We have already seen in older adults that statistically, those with lower muscle mass are more likely to die at a younger age.

    “Our research suggests this gene could play a role in regulating muscle mass and the fact that drugs have already been developed to target the gene gives us an obvious focus for further research.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Aberdeen Campus

    Founded in 1495 by William Elphinstone, Bishop of Aberdeen and Chancellor of Scotland, the University of Aberdeen is Scotland’s third oldest and the UK’s fifth oldest university.

    William Elphinstone established King’s College to train doctors, teachers and clergy for the communities of northern Scotland, and lawyers and administrators to serve the Scottish Crown. Much of the King’s College still remains today, as do the traditions which the Bishop began.

    King’s College opened with 36 staff and students, and embraced all the known branches of learning: arts, theology, canon and civil law. In 1497 it was first in the English-speaking world to create a chair of medicine. Elphinstone’s college looked outward to Europe and beyond, taking the great European universities of Paris and Bologna as its model.
    Uniting the Rivals

    In 1593, a second, Post-Reformation University, was founded in the heart of the New Town of Aberdeen by George Keith, fourth Earl Marischal. King’s College and Marischal College were united to form the modern University of Aberdeen in 1860. At first, arts and divinity were taught at King’s and law and medicine at Marischal. A separate science faculty – also at Marischal – was established in 1892. All faculties were opened to women in 1892, and in 1894 the first 20 matriculated female students began their studies. Four women graduated in arts in 1898, and by the following year, women made up a quarter of the faculty.

    Into our Sixth Century

    Throughout the 20th century Aberdeen has consistently increased student recruitment, which now stands at 14,000. In recent years picturesque and historic Old Aberdeen, home of Bishop Elphinstone’s original foundation, has again become the main campus site.

    The University has also invested heavily in medical research, where time and again University staff have demonstrated their skills as world leaders in their field. The Institute of Medical Sciences, completed in 2002, was designed to provide state-of-the-art facilities for medical researchers and their students. This was followed in 2007 by the Health Sciences Building. The Foresterhill campus is now one of Europe’s major biomedical research centres. The Suttie Centre for Teaching and Learning in Healthcare, a £20m healthcare training facility, opened in 2009.

     
  • richardmitnick 10:17 am on January 9, 2017 Permalink | Reply
    Tags: 16S rRNA sequencing, Archaea, DNA, , , Polymerase chain reaction, Prokaryotes, The Never-Ending Quest to Rewrite the Tree of Life   

    From NOVA: “The Never-Ending Quest to Rewrite the Tree of Life” 

    PBS NOVA

    NOVA

    04 Jan 2017
    Carrie Arnold

    The bottom of the ocean is one of the most mysterious places on the planet, but microbiologist Karen Lloyd of the University of Tennessee, Knoxville, wanted to go deeper than that. In 2010, she was a postdoc at Aarhus University in Denmark, and Lloyd wanted to see what microbes were living more than 400 feet beneath the sea floor.

    Like nearly all microbiologists doing this type of census, she relied on 16S rRNA sequencing to determine who was there. Developed by microbiologist Carl Woese in the late 1970s, the technique looks for variation in the 16S rRNA gene, one that’s common to all organisms (it’s key to turning DNA into protein, one of life’s of the most fundamental processes). When Lloyd compared what she had seen under the microscope to what her sequencing data said, however, she knew her DNA results were missing a huge portion of the life hidden underneath the ocean.

    “I had two problems with just 16S sequencing. One, I knew it would miss organisms, and two, it’s not good for understanding small differences between microbes,” Lloyd says.

    1
    Scientists use heat maps like these to visualize the diversity of bacteria in various environments. Credits below.

    Technology had made gene sequencing much quicker and easier compared to when Woese first started his work back in the 1970s, but the principle remained the same. The 16S rRNA gene codes for a portion of the machinery used by prokaryotes to make protein, which is a central activity in the cell. All microbes have a copy of this gene, but different species have slightly different copies. If two species are closely related, their 16S rRNA sequences will be nearly identical; more distantly related organisms will have a greater number of differences. It not only gave researchers a way to quantify evolutionary relationships between species, Woese’s work also revealed an entirely new branch on the tree of life—the archaea, a group of microscopic organisms distinct from bacteria.

    Woese’s success in using 16S rRNA to rewrite the tree of life no doubt encouraged its widespread use. But as Lloyd and other scientists began to realize, some microbes carry a version that is significantly different from that seen in other bacteria or archaea. Since biologists depended on this similarity to identify an organism, they began to realize that they were leaving out potentially significant portions of life from their investigations.

    These concerns culminated approximately ten years ago during a period when sequencing technologies were rapidly accelerating. During this time, researchers figured out how to prepare DNA for sequencing without needing to know anything about the organism you were studying. At the same time, scientists invented a strategy to isolate single cells. At her lab at the Joint Genome Institute outside San Francisco, microbiologist Tanja Woyke put these two strategies together to sequence the genomes of individual microbial cells. Meanwhile, Jill Banfield, across the bay at the University of California, Berkeley, used a different approach called metagenomics that sequenced genes from multiple species at once, and used computer algorithms to reconstruct each organism’s genome. Over the past several years, their work has helped illuminate the massive amount of microbial dark matter that comprises life on Earth.

    “These two strategies really complement each other. They have opened up our ability to see the true diversity of microbial life,” says Roger Lasken, a microbial geneticist at the J. Craig Venter Institute.

    Microbial Dark Matter

    When Woese sequenced the 16S genes of the microbes that would come to be known as archaea, they were completely different from most of the other bacterial sequences he had accumulated. They lacked a true nucleus, like other bacteria, but their metabolisms were completely different. These microbes also tended to favor extreme environments, such as those at high temperatures (hot springs and hydrothermal vents), high salt concentrations, or high acidity. Sensing their ancient origins, Woese named these microbes the archaea, and gave them their own branch on the tree of life.

    Woese did all of his original sequencing by hand, a laborious process that took years. Later, DNA sequencing machines greatly simplified the work, although it still required amplifying the small amount of DNA present using a technique known as polymerase chain reaction, or PCR, before sequencing. The utility of 16S sequencing soon made the technique one of the mainstays of the microbiology lab, along with the Petri dish and the microscope.

    The method uses a set of what’s known as universal primers—short strands of RNA or DNA that help jump start the duplication of DNA—to make lots of copies of the 16S gene so it can be sequenced. The primers bound to a set of DNA sequences flanking the 16S gene that were thought to be common to all organisms. This acted like a set of bookends to identify the region to be copied by PCR. As DNA sequencing technology improved, researchers began amplifying and sequencing 16S genes in environmental samples as a way of identifying the microbes present without the need to grow them in the lab. Since scientists have only been able to culture about one in 100 microbial species, this method opened broad swaths of biodiversity that would otherwise have remained invisible.

    “We didn’t know that these deep branches existed. Trying to study life from just 16S rRNA sequences is like trying to understand all animals by visiting a zoo,” says Lionel Guy, a microbiologist from Uppsala University in Sweden.


    Access mp4 video here .
    Discover how to interpret and create evolutionary trees, then explore the tree of life in NOVA’s Evolution Lab.

    It didn’t take long, however, for scientists to realize the universal primers weren’t nearly as universal as researchers had hoped. The use of the primers rested on the assumption that all organisms, even unknown ones, would have similar DNA sequences surrounding the 16S rRNA gene. But that meant that any true oddballs probably wouldn’t have 16S rRNA sequences that matched the universal primers—they would remain invisible. These uncultured, unsequenced species were nicknamed “microbial dark matter” by Stanford University bioengineer and physicist Stephen Quake in a 2007 PNAS paper.

    The name, he says, is analogous to dark matter in physics, which is invisible but thought to make up the bulk of the universe. “It took DNA technology to realize the depth of the problem. I mean, holy crap, there’s a lot more out there than we can discover,” Quake says.

    Quake’s snappy portmanteau translated into the Microbial Dark Matter project—an ongoing quest in microbiology, led by Woyke, to understand the branches on the tree of life that remain shrouded in mystery by isolating DNA from single bacterial and archaeal cells. These microbial misfits intrigued Lloyd as well, and she believed the subsurface had many more of them than anyone thought. Her task was to find them.

    “We had no idea what was really there, but we knew it was something,” Lloyd says.

    To solve her Rumsfeldian dilemma of identifying both her known and unknown unknowns, Lloyd needed a DNA sequencing method that would allow her to sequence the genomes of the microbes in her sample without any preconceived notions of what they looked like. As it turns out, a scientist in New Haven, Connecticut was doing just that.

    Search for Primers

    In the 1990s, Roger Lasken had recognized the problems with traditional 16S rRNA and other forms of sequencing. Not only did you need to know something about the DNA sequence ahead of time in order to make enough genetic material to be sequenced, you also needed a fairly large sample. The result was a significant limitation in the types of material that could be sequenced. Lasken wanted to be able to sequence the genome of a single cell without needing to know anything about it.

    Then employed at the biotech firm Molecular Staging, Lasken began work on what he called multiple displacement amplification (MDA). He built on a recently discovered DNA polymerase (the enzyme that adds nucleotides, one by one, to a growing piece of DNA) called φ29 DNA polymerase. Compared to the more commonly used Taq polymerase, the φ29 polymerase created much longer strands of DNA and could operate at much cooler temperatures. Scientists had also developed random primers, small pieces of randomly generated DNA. Unlike the universal primers, which were designed to match specific DNA sequences 20–30 nucleotides in length, random primers were only six nucleotides long. This meant they were small enough to match pieces of DNA on any genome. With enough random primers to act as starting points for the MDA process, scientists could confidently amplify and sequence all the genetic material in a sample. The bonus inherent in the random primers was that scientists didn’t need to know anything about the sample they were sequencing in order to begin work.

    “For the first time, you didn’t need to culture an organism or amplify its DNA to sequence it,” he says.

    The method had only been tested on relatively small pieces of DNA. Lasken’s major breakthrough was making the system work for larger chromosomes, including those in humans, which was published in 2002 in PNAS. Lasken was halfway to his goal—his next step was figuring out how to do this in a single bacterium, which would enable researchers to sequence any microbial cell they found. In 2005, Lasken and colleagues managed to isolate a single E. coli cell and sequence its 16S rRNA gene using MDA. It was a good proof of principle that the system worked, but to understand the range and depth of microbial biodiversity, researchers like Tanja Woyke, the microbiologist at the Joint Genome Institute, needed to look at the entire genome of a single cell. In theory, the system should work neatly: grab a single cell, amplify its DNA, and then sequence it. But putting all of the steps together and working on the kinks in the system would require years of work.

    Woyke had spent her postdoc at the Joint Genome Institute sequencing DNA from samples not grown in the lab, but drawn directly from the environment, like a scoop of soil. At the time, she was using metagenomics, which amplified and sequenced DNA directly from environmental samples, yielding millions of As, Ts, Gs, and Cs from even a thimble of dirt. Woyke’s problem was determining which genes belonged to which microbe, a key step in assembling a complete genome. Nor was she able to study different strains of the same microbe that were present in a sample because their genomes were just too similar to tell apart using the available sequencing technology. What’s more, the sequences from common species often completely drowned out the data from more rare ones.

    “I kept thinking to myself, wouldn’t it be nice to get the entire genome from just a single cell,” Woyke says. Single-cell genomics would enable her to match a genome and a microbe with near 100% certainty, and it would also allow her to identify species with only a few individuals in any sample. Woyke saw a chance to make her mark with these rare but environmentally important species.

    Soon after that, she read Lasken’s paper and decided to try his technique on microbes she had isolated from the grass sharpshooter Draeculacephala minerva, an important plant pest. One of her biggest challenges was contamination. Pieces of DNA are everywhere—on our hands, on tables and lab benches, and in the water. The short, random primers upon which single-cell sequencing was built could help amplify these fragments of DNA just as easily as they could the microbial genomes Woyke was studying. “If someone in the lab had a cat, it could pick up cat DNA,” Woyke says of the technique.

    In 2010, after more than a year of work, Woyke had her first genome, that of Sulcia bacteria, which had a small genome and could only live inside the grass sharpshooter. Each cell also carried two copies of the genome, which helped make Woyke’s work easier. It was a test case that proved the method, but to shine a spotlight on the world’s hidden microbial biodiversity, Woyke would need to figure out how to sequence the genomes from multiple individual microbes.

    Work with Jonathan Eisen, a microbiologist at UC Davis, on the Genomic Encyclopedia of Bacteria and Archaea Project, known as GEBA, enabled her lab to set up a pipeline to perform single cell sequencing on multiple organisms at once. GEBA, which seeks to sequence thousands of bacterial and archaeal genomes, provided a perfect entry to her Microbial Dark Matter sequencing project. More than half of all known bacterial phyla—the taxonomic rank just below kingdom—were only represented by a single 16S rRNA sequence.

    “We knew that there were far more microbes and a far greater diversity of life than just those organisms being studied in the lab,” says Matthew Kane, a program director at the National Science Foundation and a former microbiologist. Studying the select few organisms that scientists could grow in pure culture was “useful for picking apart how cells work, but not for understanding life on Earth.”

    GEBA was a start, but even the best encyclopedia is no match for even the smallest public library. Woyke’s Microbial Dark Matter project would lay the foundation for the first of those libraries. She didn’t want to fill it with just any sequences, however. Common bacteria like E. coli, Salmonella, and Clostridium were the Dr. Seuss books and Shakespeare plays of the microbial world—every library had copies, though they represented only a tiny slice of all published works. Woyke was after the bacterial and archaeal equivalents of rare, single-edition books. So she began searching in extreme environments including boiling hot springs of caustic acid, volcanic vents at the bottom of the ocean, and deep inside abandoned mines.

    Using the single-celled sequencing techniques that she had perfected at the Joint Genome Institute, Woyke and her colleagues ended up with exactly 201 genomes from these candidate phyla, representing 29 branches on the tree of life that scientists knew nothing about. “For many phyla, this was the first genomic data anyone had seen,” she says.

    The results, published in Nature in 2013, identified some unusual species for which even Woyke wasn’t prepared. Up until that study, all organisms used the same sequence of three DNA nucleotides to signal the stop of a protein, one of the most fundamental components of any organism’s genome. Several of the species of archaea identified by Woyke and her colleagues, however, used a completely different stop signal. The discovery was not unlike traveling to a different country and having the familiar red stop sign replaced by a purple square, she says. Their work also identified other rare and bizarre features of the organisms’ metabolisms that make them unique among Earth’s biodiversity. Other microbial dark matter sequencing projects, both under Woyke’s Microbial Dark Matter project umbrella and other independent ventures, identified microbes from unusual phyla living in our mouths.

    Some of the extremeophile archaea that Woyke and her colleagues identified were so unlike other forms of life that they grouped them into their own superset of phyla, known as DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota, and Nanoarchaeota). The only thing that scientists knew about these organisms were the genomes that Woyke had sequenced, isolated from individual organisms. These single-cell sequencing projects are key not just for filling in the foliage on the tree of life, but also for demonstrating just how much remains unknown, and Woyke and her team have been at the forefront of these discoveries, Kane says.

    Sequencing microbes cell by cell, however, isn’t the only method for uncovering Earth’s hidden biodiversity. Just a few miles from Woyke’s lab, microbiologist Jill Banfield at UC Berkeley is taking a different approach that also has also produced promising results.

    Studying the Uncultured

    Typically, to study microbes, scientists have grown them in a pure culture from a single individual. Though useful for studying these organisms in the laboratory, most microbes live in complex communities of many individuals from different species. Starting in the early 2000s, genetic sequencing technologies had advanced to the point where researchers could study the complex array of microbial genomes without necessarily needing to culture each individual organism. Known as metagenomics, the field began with scientists focused on which genes were found in the wild, which would hint at how each species or strain of microbe could survive in different environments.

    Just as Woyke was doubling down on single-cell sequencing, Banfield began using metagenomics to obtain a more nuanced and detailed picture of microbial ecology. The problems she faced, though very different from Woyke’s, were no less vexing. Like Woyke, Banfield focused on extreme environments: acrid hydrothermal vents at the bottom of the ocean that belched a vile mixture of sulfuric acid and smoke; an aquifer flowing through toxic mine tailings in Rifle, Colorado; a salt flat in Chile’s perpetually parched Atacama Desert; and water found in the Iron Mountain Mine in Northern California that is some of the most acidic found anywhere on Earth. Also like Woyke, Banfield knew that identifying the full range of microbes living in these hellish environments would mean moving away from using the standard set of 16S rRNA primers. The main issue Banfield and colleagues faced was figuring out how to assemble the mixture of genetic material they isolated from their samples into discrete genomes.

    2
    A web of connectivity calculated by Banfield and her collaborators shows how different proteins illustrate relationships between different microbes.
    Credit below.

    The solution wasn’t a new laboratory technique, but a different way of processing the data. Researchers obtain their metagenomic information by drawing a sample from a particular environment, isolating the DNA, and sequencing it. The process of sequencing breaks each genome down into smaller chunks of DNA that computers then reassemble. Reassembling a single genome isn’t unlike assembling a jigsaw puzzle, says Laura Hug, a microbiologist at the University of Waterloo in Ontario, Canada, and a former postdoc in Banfield’s lab.

    When faced with just one puzzle, people generally work out a strategy, like assembling all the corners and edges, grouping the remaining pieces into different colors, and slowly putting it all together. It’s a challenging task with a single genome, but it’s even more difficult in metagenomics. “In metagenomics, you can have hundreds or even thousands of puzzles, many of them might be all blue, and you have no idea what the final picture looks like. The computers have to figure out which blue pieces go together and try to extract a full, accurate puzzle from this jumble,” Hug says. Not surprisingly, the early days of metagenomics were filled with incomplete and misassembled genomes.

    Banfield’s breakthrough helped tame the task. She and her team developed a better method for binning, the formal name for the computer process that sorts through the pile of DNA jigsaw pieces and arranges them into a final product. As her lab made improvements, they were able to survey an increasing range of environments looking for rare and bizarre microbes. Progress was rapid. In the 1980s, most of the bacteria and archaea that scientists knew about fit into 12 major phyla. By 2014, scientists had increased that number to more than 50. But in a single 2015 Nature paper, Banfield and her colleagues added an additional 35 phyla of bacteria to the tree of life.

    4
    The latest tree of life was produced when Banfield and her colleagues added another 35 major groups, known as phyla. Credit below.

    Because researchers knew essentially nothing about these bacteria, they dubbed them the “candidate phyla radiation”—or CPR—the bacterial equivalent of Woyke’s DPANN. Like the archaea, these bacteria were grouped together because of their similarities to each other and their stark differences to other bacteria. Banfield and colleagues estimated that the CPR organisms may encompass more than 15% of all bacterial species.

    “This wasn’t like discovering a new species of mammal,” Hug says. “It was like discovering that mammals existed at all, and that they’re all around us and we didn’t know it.”

    Nine months later, in April 2016, Hug, Banfield, and their colleagues used past studies to construct a new tree of life. Their result reaffirmed Woese’s original 1978 tree, showing humans and, indeed, most plants and animals, as mere twigs. This new tree, however, was much fuller, with far more branches and twigs and a richer array of foliage. Thanks in no small part to the efforts of Banfield and Woyke, our understanding of life is, perhaps, no longer a newborn sapling, but a rapidly maturing young tree on its way to becoming a fully rooted adult.

    Photo credits: Miller et al. 2013/PLOS, Podell et al. 2013/PLOS, Hug et al. 2016/UC Berkeley

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NOVA is the highest rated science series on television and the most watched documentary series on public television. It is also one of television’s most acclaimed series, having won every major television award, most of them many times over.

     
  • richardmitnick 7:33 am on July 20, 2016 Permalink | Reply
    Tags: , DNA, ,   

    From Princeton: “Role for enhancers in bursts of gene activity (Cell)” 

    Princeton University
    Princeton University

    July 19, 2016
    Marisa Sanders for the Office of the Dean for Research

    A new study by researchers at Princeton University suggests that sporadic bursts of gene activity may be important features of genetic regulation rather than just occasional mishaps. The researchers found that snippets of DNA called enhancers can boost the frequency of bursts, suggesting that these bursts play a role in gene control.

    The researchers analyzed videos of Drosophila fly embryos undergoing DNA transcription, the first step in the activation of genes to make proteins. In a study published on July 14 in the journal Cell, the researchers found that placing enhancers in different positions relative to their target genes resulted in dramatic changes in the frequency of the bursts.

    “The importance of transcriptional bursts is controversial,” said Michael Levine, Princeton’s Anthony B. Evnin ’62 Professor in Genomics and director of the Lewis-Sigler Institute for Integrative Genomics. “While our study doesn’t prove that all genes undergo transcriptional bursting, we did find that every gene we looked at showed bursting, and these are the critical genes that define what the embryo is going to become. If we see bursting here, the odds are we are going to see it elsewhere.”

    The transcription of DNA occurs when an enzyme known as RNA polymerase converts the DNA code into a corresponding RNA code, which is later translated into a protein. Researchers were puzzled to find about ten years ago that transcription can be sporadic and variable rather than smooth and continuous.

    In the current study, Takashi Fukaya, a postdoctoral research fellow, and Bomyi Lim, a postdoctoral research associate, both working with Levine, explored the role of enhancers on transcriptional bursting. Enhancers are recognized by DNA-binding proteins to augment or diminish transcription rates, but the exact mechanisms are poorly understood.

    Until recently, visualizing transcription in living embryos was impossible due to limits in the sensitivity and resolution of light microscopes. A new method developed three years ago has now made that possible. The technique, developed by two separate research groups, one at Princeton led by Thomas Gregor, associate professor of physics and the Lewis-Sigler Institute for Integrative Genomics, and the other led by Nathalie Dostatni at the Curie Institute in Paris, involves placing fluorescent tags on RNA molecules to make them visible under the microscope.

    The researchers used this live-imaging technique to study fly embryos at a key stage in their development, approximately two hours after the onset of embryonic life where the genes undergo fast and furious transcription for about one hour. During this period, the researchers observed a significant ramping up of bursting, in which the RNA polymerase enzymes cranked out a newly transcribed segment of RNA every 10 or 15 seconds over a period of perhaps 4 or 5 minutes per burst. The genes then relaxed for a few minutes, followed by another episode of bursting.

    The team then looked at whether the location of the enhancer – either upstream from the gene or downstream – influenced the amount of bursting. In two different experiments, Fukaya placed the enhancer either upstream of the gene’s promoter, or downstream of the gene and saw that the different enhancer positions resulted in distinct responses. When the researchers positioned the enhancer downstream of the gene, they observed periodic bursts of transcription. However when they positioned the enhancer upstream of the gene, the researchers saw some fluctuations but no discrete bursts. They found that the closer the enhancer is to the promoter, the more frequent the bursting.

    To confirm their observations, Lim applied further data analysis methods to tally the amount of bursting that they saw in the videos. The team found that the frequency of the bursts was related to the strength of the enhancer in upregulating gene expression. Strong enhancers produced more bursts than weak enhancers. The team also showed that inserting a segment of DNA called an insulator reduced the number of bursts and dampened gene expression.

    In a second series of experiments, Fukaya showed that a single enhancer can activate simultaneously two genes that are located some distance apart on the genome and have separate promoters. It was originally thought that such an enhancer would facilitate bursting at one promoter at a time—that is, it would arrive at a promoter, linger, produce a burst, and come off. Then, it would randomly select one of the two genes for another round of bursting. However, what was instead observed was bursting occurring simultaneously at both genes.

    “We were surprised by this result,” Levine said. “Back to the drawing board! This means that traditional models for enhancer-promoter looping interactions are just not quite correct,” Levine said. “It may be that the promoters can move to the enhancer due to the formation of chromosomal loops. That is the next area to explore in the future.”

    The study was funded by grants from the National Institutes of Health (U01EB021239 and GM46638).

    Access the paper here:

    Takashi Fukaya, Bomyi Lim & Michael Levine. Enhancer Control of Transcriptional Bursting, Cell (2016), Published July 14. EPub ahead of print June 9. http://dx.doi.org/10.1016/j.cell.2016.05.025

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Princeton University Campus

    About Princeton: Overview

    Princeton University is a vibrant community of scholarship and learning that stands in the nation’s service and in the service of all nations. Chartered in 1746, Princeton is the fourth-oldest college in the United States. Princeton is an independent, coeducational, nondenominational institution that provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences and engineering.

    As a world-renowned research university, Princeton seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

    Today, more than 1,100 faculty members instruct approximately 5,200 undergraduate students and 2,600 graduate students. The University’s generous financial aid program ensures that talented students from all economic backgrounds can afford a Princeton education.

    Princeton Shield

     
  • richardmitnick 12:09 pm on June 8, 2016 Permalink | Reply
    Tags: , DNA, , Second layer of information in DNA confirmed   

    From phys.org: “Second layer of information in DNA confirmed” 

    physdotorg
    phys.org

    June 8, 2016
    Erik Arends

    1
    The rigid base-pair model is forced, using 28 constraints (indicated by red spheres), into a lefthanded superhelical path that mimics the DNA conformation in the nucleosome. Credit: Leiden Institute of Physics

    Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One.

    When James Watson and Francis Crick identified the structure of DNA molecules in 1953, they revealed that DNA information determines who we are. The sequence of the letters G, A, T and C in the famous double helix determines what proteins are made ny our cells. If you have brown eyes, for example, this is because a series of letters in your DNA encodes for proteins that build brown eyes. Each cell contains the exact same letter sequence, and yet every organ behaves differently. How is this possible?

    Mechanical cues

    Since the mid 1980s, it has been hypothesized that there is a second layer of information on top of the genetic code consisting of DNA mechanical properties. Each of our cells contains two meters of DNA molecules, and these molecules need to be wrapped up tightly to fit inside a single cell. The way in which DNA is folded determines how the letters are read out, and therefore which proteins are actually made. In each organ, only relevant parts of the genetic information are read. The theory suggests that mechanical cues within the DNA structures determine how preferentially DNA folds.

    Simulation

    For the first time, Leiden physicist Helmut Schiessel and his research group provide strong evidence that this second layer of information indeed exists. With their computer code, they have simulated the folding of DNA strands with randomly assigned mechanical cues. It turns out that these cues indeed determine how the DNA molecule is folded into so-called nucleosomes. Schiessel found correlations between the mechanics and the actual folding structure in the genome of two organisms—baker’s yeast and fission yeast. This finding reveals evolutionary changes in DNA—mutations—that have two very different effects: The letter sequence encoding for a specific protein can change, or the mechanics of the DNA structure can change, resulting in different packaging and levels of DNA accessibility, and therefore differing frequency of production of that protein.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
  • richardmitnick 8:49 am on April 9, 2016 Permalink | Reply
    Tags: , , DNA,   

    From AAAS: “Virus fighter may have played a key role in human evolution” 

    AAAS

    AAAS

    Apr. 7, 2016
    Elizabeth Pennisi

    1
    Some of the body’s antiviral proteins can mess with our DNA—for better or worse. iStock

    A virus-fighting protein in humans and other primates triggers an explosion in genetic mutations that may have sped up the evolution of our species, according to a new study.

    “In some sense, this is scary,” says Kelley Harris, a geneticist at Stanford University in Palo Alto, California, who was not involved with the work. Random mutations are often harmful. But there could be a silver lining: These changes also “provide raw material for evolution to happen” and that may enable individuals besieged by viruses to come up with better antiviral defenses, she says. “The paper doesn’t prove that it’s beneficial for humans to mutate their own DNA when they are infected by viruses, but it’s an interesting possibility.”

    Since the beginning of time, viruses have been inserting their genetic material into the genomes of their hosts, tricking the cell’s machinery into making more virus. Today, our genomes are riddled with these interlopers, called retroviruses and transposable elements, but many now just sit there, unable to generate additional copies of themselves. That’s because our bodies have a group of proteins that have mutated this DNA. These so-called APOBEC proteins seek out certain combinations of the letters that make up DNA (called bases), and, in DNA of viral origin, chemically convert the base cytosine into the base uracil—a change in the genetic alphabet from C to U that can disrupt a gene.

    In 2012, researchers discovered that certain APOBEC proteins do the same in some cancer cells. “You can see they are very active and affect the DNA in the tumor tremendously, causing lots of mutations that may further the cells’ uncontrolled growth, says Alon Keinan, a computational biologist at Cornell University. Because those cancer cells are part of the lungs, kidney, liver, or other organs, the mutations only affect those tissues. But if an APOBEC protein was active in germline cells—those destined to become eggs and sperm—then these mutations could possibly affect future generations, and ultimately alter the course of evolution.

    To see whether this has been the case with one APOBEC protein, APOBEC3G, Erez Levanon, a computational biologist at Bar-Ilan University in Ramat Gan, Israel, contacted Keinan, whose team specializes in comparing genomes to discern patterns of evolution. The group matched the genomes of a modern human, a Denisovan, a Neandertal, and a chimp up against genomes of a mouse, a rhesus macaque, and an orangutan to look for places in the human and chimp genomes with an unusual concentration of changes from a cytosine to another base. They focused only on changes along stretches of DNA with the APOBEC3G protein’s favorite sequence targets. For example, one such favorite is a series of three Cs in a row; the APOBEC3G protein frequently swaps out the third C for a different base.

    All together, the researchers found about 37,000 mutations* occurring in 10,000 clusters in the chimp and human genomes that they think were caused by these proteins, they report today in Genome Research. These mutations were Cs in the orangutan, macaque, and mouse, but a different base in each of the other four species. Many of the clusters were located in key places in the genome, such as regions important for regulating gene activity or protein-coding parts of genes. For example, more than 33% of the base changes they found in coding regions also alter its protein product. Many other changes likely happened in the germlines during the evolution of these species, detrimental ones likely disappeared, whereas those that provided some survival benefit persisted. “It shows that this primate-specific antiviral mechanism also led to the shaping of our and our relatives’ genomes,” Keinan says.

    “It’s surprising to see this impact on all these primate genomes,” says Jeffrey Kidd, a geneticist at the University of Michigan, Ann Arbor, who was not involved with the work. “It makes us realize that nothing comes for free,” and the trade-off of having a mechanism to thwart viral DNA is disruptions in our own DNA, he says. “It raises the question of how that balance is worked out.”

    There are related proteins that may likewise cause mutations; “this might just be the tip of the iceberg,” Keinan says. He and his colleagues are now calculating what percentage of the genetic changes that made us human were caused by APOBEC proteins. Typically, a newborn is expected to have 70 new mutations in its genome, but just one of these proteins “can introduce potentially thousands [of them]” in close proximity and in one generation, Keinan says.

    And that’s a lot of new material for evolution to work on.

    Science Paper:
    Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity

    Science team:
    Yishay Pinto1,3; Orshay Gabay 1,3; Leonardo Arbiza 2; Aaron J. Sams 2; Alon Keinan 2,4; and Erez Y. Levanon 1,4

    Author Affiliations

    1 Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
    2 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA

    3,4 not reported

    Corresponding authors: erez.levanon@biu.ac.il, alon.keinan@cornell.edu

    See the full article here .

    The American Association for the Advancement of Science is an international non-profit organization dedicated to advancing science for the benefit of all people.

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

     
  • richardmitnick 5:16 pm on March 23, 2016 Permalink | Reply
    Tags: , DNA, ,   

    From LBL: “Unlocking the Secrets of Gene Expression” 

    Berkeley Logo

    Berkeley Lab

    March 23, 2016
    Julie Chao (510) 486-6491
    JHChao@lbl.gov

    Your DNA governs more than just what color your eyes are and whether you can curl your tongue. Your genes contain instructions for making all your proteins, which your cells constantly need to keep you alive. But some key aspects of how that process works at the molecular level have been a bit of a mystery—until now.

    Using cryo-electron microscopy (cryo-EM), Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Eva Nogales and her team have made a significant breakthrough in our understanding of how our molecular machinery finds the right DNA to copy, showing with unprecedented detail the role of a powerhouse transcription factor known as TFIID.

    1
    Berkeley Lab scientists Eva Nogales and Robert Louder at the electron microscope. (Credit: Roy Kaltschmidt/Berkeley Lab)

    This finding is important as it paves the way for scientists to understand and treat a host of malignancies. “Understanding this regulatory process in the cell is the only way to manipulate it or fix it when it goes bad,” said Nogales. “Gene expression is at the heart of many essential biological processes, from embryonic development to cancer. One day we’ll be able to manipulate these fundamental mechanisms, either to correct for expression of genes that should or should not be present or to take care of malignant states where the process has gone out of control.”

    Their study has been published online in the journal Nature in an article titled, Structure of promoter-bound TFIID and insight into human PIC assembly. The lead author is Robert Louder, a biophysics graduate student in Nogales’ lab, and other authors are Yuan He, José Ramón López-Blanco, Jie Fang, and Pablo Chacón.

    Nogales, a biophysicist who also has appointments at Howard Hughes Medical Institute and UC Berkeley, has been studying gene expression for 18 years. While she and her team have made several significant findings in recent years, she calls this the biggest breakthrough so far. “This is something that will go in biochemistry textbooks,” she said. “We now have the structure of the whole protein organization that is formed at the beginning of every gene. This is something no one has come close to doing because it is really very difficult to study by traditional methodologies.”

    2
    Cryo-EM model of the human transcription pre-initiation complex. (Credit: Robert Louder/Berkeley Lab )

    How genetic information flows in living organisms is referred to as the “central dogma of molecular biology.” Cells are constantly turning genes on and off in response to what’s happening in their environment, and to do that, the cell uses its DNA, the big library of genetic blueprints, finds the correct section, and makes a copy in the form of messenger RNA; the mRNA is then used to produce the needed protein.

    The problem with this “library” is that it has no page numbers or table of contents. However, markers are present in the form of specific DNA sequences (called core promoter motifs) to indicate where a gene starts and ends. So how does the polymerase, the enzyme that carries out the transcription, know where to start? “DNA is a huge, huge molecule. Out of this soup, you have to find where this gene starts, so the polymerase knows where to start copying,” Nogales said. “This transcription factor, TFIID, is the protein complex that does exactly that, by recognizing and binding to DNA core promoter regions.”

    What Nogales and her team have been able to do is to visualize, with unprecedented detail, TFIID bound to DNA as it recognizes the start, or promoter, region of a gene. They have also found how it serves as a sort of landing pad for all the molecular machinery that needs to assemble at this position—this is called the transcription pre-initiation complex (PIC). This PIC ultimately positions the polymerase so it can start transcribing.

    3
    TFIID (blue) as it contacts the DNA and recruits the polymerase (grey) for gene transcription. The start of the gene is shown with a flash of light. (Credit: Eva Nogales/Berkeley Lab)

    “TFIID has to do not only the binding of the DNA, recruitment, and serving as landing pad, it has to somehow do all that differently for different genes at any given point in the life of the organism,” Nogales said.

    Added Louder: “We have generated the first ever structural model of the full human TFIID-based PIC. Our model yields novel insights into human PIC assembly, including the role of TFIID in recruiting other components of the PIC to the promoter DNA and how the long observed conformational flexibility of TFIID plays a role in the regulation of transcription initiation.”

    Proteins have traditionally been studied using X-ray crystallography, but that technique has not been possible for this kind of research. “TFIID has not been accessible to protein crystallography because there’s not enough material to crystallize it, it has very flexible elements, and it is of a huge size,” Nogales said. “All of those things we can overcome through cryo-EM.”

    Cryo-EM, in which samples are imaged at cryogenic temperatures without need for dyes or fixatives, has been used since the 1980s in structural biology. With extensive computational analysis of the images researchers are able to obtain three-dimensional structures. However, cryo-EM has undergone a revolution in the last few years with the advent of new detectors—developed, in fact, at Berkeley Lab—that improve resolution and reduce the amount of data needed by up to a hundred-fold.

    “Many biological systems we had thought were impossible to study at high resolution have become accessible,” she said. “Now the resolution allows us to get atomic details. This is an area in which Berkeley Lab has been one of the leaders.”

    While this study has revealed important new insights into gene expression, Nogales notes that much work remains to be done. Next she plans to investigate how TFIID is able to recognize different sequences for different gene types and also how it is regulated by cofactors and activators.

    “We are just at the beginning,” she said. “This complex, TFIID, is very, very critical. Now we have broken barriers in the sense that we can start generating atomic models and get into details of how DNA is being bound.”

    This research was supported by the National Institutes of Health’s National Institute of General Medical Sciences and by the Spanish Ministry of Economy and Competitiveness. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility hosted at Berkeley Lab. Nogales is a Senior Faculty Scientist in Berkeley Lab’s Molecular Biophysics and Integrated Bioimaging Division; additional information on her lab can be found here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 6:50 am on February 6, 2016 Permalink | Reply
    Tags: , , DNA,   

    From SPIE: “Tracking DNA damage with electrochemical sensing” 

    SPIE

    SPIE

    2.6.16
    Jason D. Slinker
    The University of Texas at Dallas
    Richardson, TX

    DNA, the fundamental biomolecule of life, is constantly subject to damage that threatens the vitality of cells and the integrity of the genome. Without enzymatic intervention, this damage can produce mutations that lead to cancerous tumors. Furthermore, many current and developing treatments of cancer and disease rely on the generation of DNA damage products, which—from a chemical standpoint—are very subtle. For example, 8-oxoguanine, the most prevalent oxidative DNA damage product, involves the addition of a single oxygen bond to a guanine base. Remarkably, enzymes in cells recognize and remove this damage and other products of degradation. Biological assays that follow repair of this subtle DNA damage assist cancer studies by advancing fundamental understanding of DNA-protein interactions, connecting damage to diagnosis, and informing options for treatment.

    We have demonstrated devices that follow DNA damage repair in real time, with a convenient, low-cost package (see Figure 1).1 In this device, DNA is bound to the circular electrodes of multielectrode chips, and a redox probe at the top of the DNA reports charge transfer through it. DNA is the natural recognition element not only for the binding of repair proteins but also for their repair activity, and it can be synthesized with or without damage/lesion sites to establish controls. Furthermore, DNA can also serve as an electrical transducing element when modified with a redox-active probe and self-assembled on a working electrode, as first demonstrated by the Barton group.2 We have combined these features of DNA, using them to form devices capable of selectively detecting oxidative DNA damage repair (see Figure 1) and changes in DNA stability.1 The devices give a direct measure of molecular-level repair, providing a window into intracellular DNA repair by DNA-binding proteins.

    DNA Device
    Figure 1. Top: Schematic of detection of oxidative damage removal. Bottom: Image of the device used to study DNA-damaging drugs. (Photo by Randy Anderson). FPG: Formamidopyrimidine DNA glycosylase. e-: Electron.

    Specifically, we have used our approach to show sensitive and selective electrochemical sensing of 8-oxoguanine and uracil repair glycosylase activity. We produced sensors on electrospun fibers as low-cost devices with improved dynamic range. Our experiments compared electroactive, probe-modified DNA monolayers containing a base defect with the rational control of defect-free monolayers. We found damage-specific limits of detection on the order of femtomoles of proteins, corresponding to mere nanograms of the enzymes. The DNA chips enabled the real-time observation of protein activity, and we observed base excision activity on the order of seconds. We also demonstrated damage-specific detection in a mixture of enzymes and in response to environmental oxidative damage. We showed how nanofibers may behave similarly to conventional gold-on-silicon devices, revealing the potential of these low-cost devices for sensing applications. This device approach enables sensitive, selective, and rapid assay of repair protein activity, allowing biological interrogation of DNA damage repair.

    Given the ability of these devices to follow induced oxidative damage, we are further using them to follow DNA-damaging anticancer drug activity. We are working with the group of David Boothman of the University of Texas Southwestern Medical Center to sense DNA repair activity in conjunction with a novel drug therapy that selectively produces oxidative damage of DNA in cancer cells, bringing about selective cancer cell death. We represent key features of a living system to reproduce DNA damaging and repair activity pathways on the chip. Recent results have shown that we can follow specific drug-induced DNA damage excision and subsequent DNA repair with our devices. Furthermore, the multiple electrodes of the chip allowed us to perform controls of each associated enzyme and to obtain high statistical confidence of results. Given this success, we have launched studies of other DNA damaging drugs to explore the generality of this technique.

    In summary, we have designed and fabricated low-cost devices that are capable of electrochemical sensing of 8-oxoguanine and uracil repair glycosylase activity. Ultimately, in addition to their utility in bioassays of DNA-protein interactions, our devices have potential in a number of applications for public health, and our future work will focus on realizing these. The prevalence of high damage repair sites can be an indication of cancers and disease states, and these devices could provide statistically significant diagnosis. Additionally, as a number of cancer treatments involve DNA-damaging agents, our devices can be used to improve treatment outcomes. These devices could be used to sample the activity of multiple drugs with a small volume patient sample, enabling a tailored treatment based on DNA-damaging effectiveness. Similarly, they may also be used to follow the course of cancer treatment through characteristic measures of enzymatic activity of cancer cells versus healthy cells.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:07 am on January 23, 2016 Permalink | Reply
    Tags: , DNA,   

    From Vanderbilt: “Faulty building blocks in DNA” 

    Vanderbilt U Bloc

    Vanderbilt University

    Jan. 22, 2016
    Bill Snyder

    Temp 1
    (iStock)

    Enzymes called DNA polymerases assemble DNA from 2´-deoxyribonucleoside triphosphate building blocks in the cell. Normally they can distinguish DNA building blocks from the ribonucleotides that make up RNA, but sometimes they misinsert ribonucleotides into DNA, generating “DNA lesions.”

    Yan Su, Ph.D., Martin Egli, Ph.D., and F. Peter Guengerich, Ph.D., have provided an important glimpse into how this happens. They studied human DNA polymerase eta (hpol-eta), which is directly related to a human genetic disorder, xeroderma pigmentosum, associated with an increased risk of skin and other cancers.

    In a paper published online this month by the Journal of Biological Chemistry, they show that hpol-eta can incorporate ribonucleotides into DNA with relatively high selectivity but low efficiency. They also crystallized the enzyme and obtained what appears to be the first crystal structure of an incoming ribonucleotide opposite a DNA lesion within a DNA polymerase. Based on these findings, “it is highly possible that hpol-eta inserts a considerable amount of ribonucleotides into DNA,” they conclude.

    This work was supported by National Institutes of Health.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Vanderbilt Campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: