Tagged: Diagnostics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:32 am on November 23, 2022 Permalink | Reply
    Tags: "Neuromarker for ADHD could improve diagnosis of the disorder", , , Diagnostics, For children with attention-deficit/hyperactivity disorder (ADHD) timely intervention is key., , Yale researchers identified differences in brain structure and activity in children with ADHD that could serve as a more objective diagnostic tool in the future.,   

    From Yale University: “Neuromarker for ADHD could improve diagnosis of the disorder” 

    From Yale University

    11.23.22
    Mallory Locklear

    Media Contact
    Fred Mamoun
    fred.mamoun@yale.edu
    203-436-2643

    Yale researchers identified differences in brain structure and activity in children with ADHD that could serve as a more objective diagnostic tool in the future.

    1
    Illustration by Michael S. Helfenbein.

    For children with attention-deficit/hyperactivity disorder (ADHD), timely intervention is key. But diagnoses typically rely on questionnaires and observations of a child’s behavior, which are subjective and can lead to delays in treatment.

    Yale researchers aim to establish a more objective measure of ADHD, and in a new study, they report an important step in that direction. Using brain imaging data from children with and without ADHD, they identified differences in brain structure and activity in children with ADHD that could serve as a neuromarker for the disorder.

    They will present their findings Nov. 27 at the Radiological Society of North America annual meeting.

    The subjectivity of ADHD assessments can cause children to be misdiagnosed or remain undiagnosed, explained Huang Lin, a research fellow at Yale School of Medicine and lead author of the study. Questionnaires given to a child’s parent or caregiver can be influenced by life events or stress, for example. The questionnaires also require caregivers to have spent a sufficient amount of time with the child, meaning children with less stable care may go undiagnosed. And as people age, they tend to show different symptoms, making diagnosis more difficult in older individuals.

    “When people get older, the hyperactivity aspect of the disorder is decreased,” said Lin. “That can make it more difficult to diagnose observationally, and without a diagnosis, people with ADHD may assume that what they’re experiencing is standard.”

    Lin and her colleagues used data from the Adolescent Brain Cognitive Development (ABCD) Study, which includes nearly 12,000 children from across the United States. The participants joined the study at age 9 or 10; researchers will continue tracking their biological and behavioral development into young adulthood, which will yield new data over the next few years. The demographics of the study participants mirror those of the U.S. population.

    “That the study group is representative of the greater U.S. population means our findings will be generalizable to the U.S. population as well,” said Lin.

    The researchers conducted a whole-brain analysis using images that measured brain structure and function in 7,805 9- to 10-year-olds. They found that the frontal cortex of the brain — an area responsible for functions like impulse control, attention, and working memory — was thinner in children with ADHD than in those without the disorder. Brain networks related to memory processing, alertness, and auditory processing were also different in children with ADHD. Further, white matter, which is composed of nerve fibers that project from one part of the brain to another, was thinner in children with ADHD. This could have implications for how different brain regions communicate with each other.

    The pervasiveness of the differences was surprising, said Lin.

    “I expected some brain regions to stand out. But we saw a more overall change throughout the entire brain,” she said.

    The pattern the researchers uncovered was sufficiently stable across study participants that the research team used it to train a machine learning algorithm to predict who has ADHD based on brain images alone — meaning it holds promise as a diagnostic tool going forward, they said.

    “The algorithm still needs further validation,” said Lin. “But once it is ready for clinical use, combining this more objective measure with the assessments already in use could allow more children to be accurately diagnosed in the future.”

    The findings also emphasize that ADHD is not simply a disorder of behavior.

    “Externalized behavior is certainly a part of ADHD, but there’s also a neurological correlate,” said Sam Payabvash, assistant professor of radiology and biomedical imaging at Yale School of Medicine and senior author of the study. “Better understanding of the neurological component will help with diagnosis and treatment in the future.”

    It may also reduce the stigma attached to mental illness.

    “If you measured someone’s blood pressure and found it was high, nobody would question that it was a condition that should be addressed. But a lot of people question diagnoses of mental illness,” said Lin. “Being able to measure it like we can blood pressure could help address that stigma.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 9:04 am on November 23, 2022 Permalink | Reply
    Tags: "Accelerating 3D imaging", "Open-top light-sheet microscopy", 3D pathology could enable more accurate identification., , Currently most pathologists use a 2D method of imaging tissues allowing a view of only a small fraction of a sample in 2D and can lead to inaccurate diagnoses and suboptimal treatments., Diagnostics, , , , The Department of Mechanical Engineering,   

    From The Department of Mechanical Engineering In The College of Engineering At The University of Washington :”Accelerating 3D imaging” 

    From The Department of Mechanical Engineering

    In

    The College of Engineering

    At

    The University of Washington

    10.31.22 [Just now in social media.]

    In 2017, the Molecular Biophotonics Laboratory – led by ME professor Jonathan Liu – pioneered a now-patented technology called “open-top light-sheet microscopy”. The 3D imaging method enables clinicians to see a complete microscopic view of tissue specimens, such as a biopsy or surgically removed tumor, which could improve how diseases are diagnosed and treated.

    1
    A 3D pathology dataset of a prostate biopsy stained with a fluorescent analogue of H&E. Deep learning-based image translation was used to convert the H&E dataset into a synthetic dataset that looks like it has been immunolabeled to highlight a cytokeratin biomarker (brown) expressed by the epithelial cells in all prostate glands. In turn, this synthetically immunolabeled dataset allows for accurate 3D segmentation of the prostate gland epithelium (yellow) and lumen spaces (red). Quantitative features derived from these segmented 3D structures are used to train a machine classifier to stratify between recurrent versus non-recurrent cancer. Reference: W. Xie et al., Cancer Research, 2022.

    “What gets people excited at the end of day is how this is going to impact patient care,” Liu says.

    Currently most pathologists use a 2D method of imaging tissues, which involves cutting a small percentage of the tissue sample into thin slices and staining and viewing them on glass slides under a standard microscope to determine their level of abnormality. This traditional method allows them to see only a small fraction of a sample in 2D and can lead to inaccurate diagnoses and suboptimal treatments, such as a person receiving radiation or surgery although their cancer only requires periodic monitoring.

    The nondestructive 3D imaging method developed in Liu’s lab can rapidly image 100% of certain tissue samples such as needle biopsies and keeps the tissues intact so that they can be used for other tests.

    The open-top light-sheet microscopy device shines a sheet of light that optically “slices” through samples that are made transparent through a simple and gentle “optical clearing” process. All of the optical components in the microscope are positioned below a glass or plastic sample-holder platform, allowing for rapid and simple imaging of a wide range and number of clinical specimens. Researchers in the Liu lab then develop computational analysis methods to delineate and quantify key tissue structures to determine cancer aggressiveness.

    In 2022, the researchers published a study in the journal Cancer Research [below] showing that 3D pathology could enable more accurate identification of aggressive prostate cancer cases that could recur within five years. Prostate cancer is the most common cancer and the second leading cause of cancer death for U.S. men. Because it can be slow-growing, identifying which cases require monitoring or treatment is important. 3D pathology could also be used in other cancer treatments, such as predicting which cancer patients might respond to immunotherapy.

    “Better ways to determine which drugs a patient should take is a huge need,” Liu says. “Machine learning can find needles in a haystack that are hard for human observers to see within our large 3D datasets, which can be important for determining the aggressiveness of a disease or how likely the disease will respond to specific treatments.”

    Alpenglow Biosciences is a company co-founded by Liu that commercializes the lab’s technologies, such as the researchers’ newest and most versatile microscopy system, a hybrid open-top light sheet microscope. It can perform rapid, automated imaging of multiple specimens at various levels of magnification. Liu’s lab published this latest microscope system in a paper in Nature Methods in May.

    This year, the lab is scaling up its prostate cancer research to include collaborations with universities across the country and even internationally – pointing to a growing awareness and interest in open-top light-sheet microscopy.

    Projects include National Institutes of Health-funded research with Emory University to combine 3D tissue imaging with AI-powered diagnostic imaging to better determine prostate cancer risk and working with the University of Pennsylvania to compare the 3D pathology of specific populations to develop tailored AI methods. In October, the lab will host researchers from the University of Oxford and train them on 3D pathology methods. Through a project funded by Prostate Cancer U.K., the lab aims to ship a microscope to Oxford in 2023 so that U.K. researchers can use it to image tissues.

    “Oxford has one of the largest collections of prostate tissues in the world from patients in which outcomes are being tracked for 10 to 20 years,” Liu says. “Working with Oxford could really help us to show the value of our 3D pathology methods for predicting which patients have lethal versus slow-growing disease.”

    In addition, Liu is working with UW Medicine to create a hub for 3D pathology, and the lab will conduct smaller-scale clinical studies to show the feasibility of the 3D imaging method. The goal is to use AI to assist pathologists’ final diagnosis and to guide oncologists’ treatment recommendations.

    Science paper:
    Cancer Research
    See the science paper for instructive material with images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mechanical engineering is one of the broadest and oldest of the engineering disciplines and therefore provides some of the strongest interdisciplinary opportunities in the engineering profession. Power utilization (and power generation) is often used to describe the focus of mechanical engineering. Within this focus are such diverse topics as thermodynamics, heat transfer, fluid mechanics, machine design, mechanics of materials, manufacturing, stress analysis, system dynamics, numerical modeling, vibrations, turbomachinery, combustion, heating, ventilating, and air conditioning. Degrees in mechanical engineering open doors to careers not only in the engineering profession but also in business, law, medicine, finance, and other non-technical professions.

    About The University of Washington College of Engineering

    Mission, Facts, and Stats
    Our mission is to develop outstanding engineers and ideas that change the world.

    Faculty:
    275 faculty (25.2% women)
    Achievements:

    128 NSF Young Investigator/Early Career Awards since 1984
    32 Sloan Foundation Research Awards
    2 MacArthur Foundation Fellows (2007 and 2011)

    A national leader in educating engineers, each year the College turns out new discoveries, inventions and top-flight graduates, all contributing to the strength of our economy and the vitality of our community.

    Engineering innovation

    Engineers drive the innovation economy and are vital to solving society’s most challenging problems. The College of Engineering is a key part of a world-class research university in a thriving hub of aerospace, biotechnology, global health and information technology innovation. Over 50% of The University of Washington startups in FY18 came from the College of Engineering.

    Commitment to diversity and access

    The College of Engineering is committed to developing and supporting a diverse student body and faculty that reflect and elevate the populations we serve. We are a national leader in women in engineering; 25.5% of our faculty are women compared to 17.4% nationally. We offer a robust set of diversity programs for students and faculty.
    Research and commercialization

    The University of Washington is an engine of economic growth, today ranked third in the nation for the number of startups launched each year, with 65 companies having been started in the last five years alone by UW students and faculty, or with technology developed here. The College of Engineering is a key contributor to these innovations, and engineering faculty, students or technology are behind half of all UW startups. In FY19, UW received $1.58 billion in total research awards from federal and nonfederal sources.

    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So, what defines us —the students, faculty and community members at The University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, The University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, The University of Washington’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, The University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The University of Washington offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    The University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, The University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The University of Washington has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. The University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and The University of Washington had grown substantially. The University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by The University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, The University of Washington relocated to the new campus by moving into the newly built Denny Hall. The University of Washington Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of The University of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of The University of Washington’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with The University of Washington ‘s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for The University of Washington. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to The University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during The University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, The University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. The University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became The University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in The University of Washington. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying The University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, The University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, The University of Washington began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to The University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    The University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among The University of Washington students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities has consistently ranked The University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, The University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked The University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with The University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked The University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings The University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: