Tagged: DESY Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:01 pm on June 19, 2017 Permalink | Reply
    Tags: , , DESY, , First atomic structure of an intact virus deciphered with an X-ray laser, ,   

    From DESY: “First atomic structure of an intact virus deciphered with an X-ray laser” 

    DESY
    DESY

    2017/06/19

    Groundbreaking experimental method will speed up protein analysis substantially.

    1
    Surface structure of the bovine enterovirus 2, the three virus proteins are colour coded. Credit: Jingshan Ren, University of Oxford

    An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method used dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities, as the research team lead by DESY scientist Alke Meents reports in the journal Nature Methods.

    In the field known as structural biology, scientists examine the three-dimensional structure of biological molecules in order to work out how they function. This knowledge enhances our understanding of the fundamental biological processes taking place inside organisms, such as the way in which substances are transported in and out of a cell, and can also be used to develop new drugs.

    “Knowing the three-dimensional structure of a molecule like a protein gives great insight into its biological behaviour,” explains co-author David Stuart, Director of Life Sciences at the synchrotron facility Diamond Light Source in the UK and a professor at the University of Oxford. “One example is how understanding the structure of a protein that a virus uses to ‘hook’ onto a cell could mean that we’re able to design a defence for the cell to make the virus incapable of attacking it.”

    X-ray crystallography is by far the most prolific tool used by structural biologists and has already revealed the structures of thousands of biological molecules. Tiny crystals of the protein of interest are grown, and then illuminated using high-energy X-rays. The crystals diffract the X-rays in characteristic ways so that the resulting diffraction patterns can be used to deduce the spatial structure of the crystal – and hence of its components – on the atomic scale. However, protein crystals are nowhere near as stable and sturdy as salt crystals, for example. They are difficult to grow, often remaining tiny, and are easily damaged by the X-rays.

    “X-ray lasers have opened up a new path to protein crystallography, because their extremely intense pulses can be used to analyse even extremely tiny crystals that would not produce a sufficiently bright diffraction image using other X-ray sources,” adds co-author Armin Wagner from Diamond Light Source. However, each of these microcrystals can only produce a single diffraction image before it evaporates as a result of the X-ray pulse. To perform the structural analysis, though, hundreds or even thousands of diffraction images are needed. In such experiments, scientists therefore inject a fine liquid jet of protein crystals through a pulsed X-ray laser, which releases a rapid sequence of extremely short bursts. Each time an X-ray pulse happens to strike a microcrystal, a diffraction image is produced and recorded.

    This method is very successful and has already been used to determine the structure of more than 80 biomolecules. However, most of the sample material is wasted. “The hit rate is typically less than two per cent of pulses, so most of the precious microcrystals end up unused in the collection container,” says Meents, who is based at the Center for Free-Electron Laser Science (CFEL) in Hamburg, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. The standard method therefore typically requires several hours of beamtime and significant amounts of sample material.

    3
    Micrograph of the microstructured chip, loaded with crystals for the investigation. Each square is a tiny crystal. Credit: Philip Roedig, DESY

    n order to use the limited beamtime and the precious sample material more efficiently, the team developed a new method. The scientists use a micro-patterned chip containing thousands of tiny pores to hold the protein crystals. The X-ray laser then scans the chip line by line, and ideally this allows a diffraction image to be recorded for each pulse of the laser.

    The research team tested its method on two different virus samples using the LCLS X-ray laser at the SLAC National Accelerator Laboratory in the US, which produces 120 pulses per second.

    SLAC/LCLS

    They loaded their sample holder with a small amount of microcrystals of the bovine enterovirus 2 (BEV2), a virus that can cause miscarriages, stillbirths, and infertility in cattle, and which is very difficult to crystallise.

    In this experiment, the scientists achieved a hit rate – where the X-ray laser successfully targeted the crystal – of up to nine per cent. Within just 14 minutes they had collected enough data to determine the correct structure of the virus – which was already known from experiments at other X-ray light sources – down to a scale of 0.23 nanometres (millionths of a millimetre).

    “To the best of our knowledge, this is the first time the atomic structure of an intact virus particle has been determined using an X-ray laser,” Meents points out. “Whereas earlier methods at other X-ray light sources required crystals with a total volume of 3.5 nanolitres, we managed using crystals that were more than ten times smaller, having a total volume of just 0.23 nanolitres.”

    This experiment was conducted at room temperature. While cooling the protein crystals would protect them to some extent from radiation damage, this is not generally feasible when working with extremely sensitive virus crystals. Crystals of isolated virus proteins can, however, be frozen, and in a second test, the researchers studied the viral protein polyhedrin that makes up a viral occlusion body for up to several thousands of virus particles of certain species. The virus particles use these containers to protect themselves against environmental influences and are therefore able to remain intact for much longer times.

    4
    Schematic of the experimental set-up: The chip loaded with nanocrystals is scanned by the fine X-ray beam (green) pore by pore. Ideally, each crystal produces a distinctive diffraction pattern. Credit: Philip Roedig, DESY

    For the second test, the scientist loaded their chip with polyhedrin crystals and examined them using the X-ray laser while keeping the chip at temperatures below minus 180 degrees Celsius. Here, the scientists achieved a hit rate of up to 90 per cent. In just ten minutes they had recorded more than enough diffraction images to determine the protein structure to within 0.24 nanometres. “For the structure of polyhedrin, we only had to scan a single chip which was loaded with four micrograms of protein crystals; that is orders of magnitude less than the amount that would normally be needed,” explains Meents.

    “Our approach not only reduces the data collection time and the quantity of the sample needed, it also opens up the opportunity of analysing entire viruses using X-ray lasers,” Meents sums up. The scientists now want to increase the capacity of their chip by a factor of ten, from 22,500 to some 200,000 micropores, and further increase the scanning speed to up to one thousand samples per second. This would better exploit the potential of the new X-ray free-electron laser European XFEL, which is just going into operation in the Hamburg region and which will be able to produce up to 27,000 pulses per second.

    European XFEL

    Furthermore, the next generation of chips will only expose those micropores that are currently being analysed, to prevent the remaining crystals from being damaged by scattered radiation from the X-ray laser.

    Researchers from the University of Oxford, the University of Eastern Finland, the Swiss Paul Scherrer Institute, the Lawrence Berkeley National Laboratory in the US and SLAC were also involved in the research. Diamond scientists have collaborated with the team at DESY, with much of the development and testing of the micro-patterned chip being done on Diamond’s I02 and I24 beamlines.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

    Advertisements
     
  • richardmitnick 1:44 pm on May 31, 2017 Permalink | Reply
    Tags: , , DESY, ,   

    From SLAC: “The World’s Most Powerful X-ray Laser Beam Creates ‘Molecular Black Hole’” 


    SLAC Lab

    May 31, 2017
    Andrew Gordon
    agordon@slac.stanford.edu
    (650) 926-2282

    When the X-rays blast electrons out of one atom, stripping it from the inside out, it steals more from its neighbors – a new insight that could help advance high-res imaging of whole viruses, bacteria and complex materials.

    1
    In this illustration, an ultra-intense X-ray laser pulse from SLAC’s Linac Coherent Light Source knocks so many electrons out of a molecule’s iodine atom (right) that the iodine starts pulling in electrons from the rest of the molecule (lower left), like an electromagnetic version of a black hole. Many of the stolen electrons are also knocked out by the laser pulse; then the molecule explodes. (DESY/Science Communication Lab)

    When scientists at the Department of Energy’s SLAC National Accelerator Laboratory focused the full intensity of the world’s most powerful X-ray laser on a small molecule, they got a surprise: A single laser pulse stripped all but a few electrons out of the molecule’s biggest atom from the inside out, leaving a void that started pulling in electrons from the rest of the molecule, like a black hole gobbling a spiraling disk of matter.

    Within 30 femtoseconds – millionths of a billionth of a second – the molecule lost more than 50 electrons, far more than scientists anticipated based on earlier experiments using less intense beams or isolated atoms. Then it blew up.

    The results, published today in Nature, give scientists fundamental insights they need to better plan and interpret experiments using the most intense and energetic X-ray pulses from SLAC’s Linac Coherent Light Source (LCLS) X-ray free-electron laser.

    SLAC/LCLS

    Experiments that require these ultrahigh intensities include attempts to image individual biological objects, such as viruses and bacteria, at high resolution. They are also used to study the behavior of matter under extreme conditions, and to better understand charge dynamics in complex molecules for advanced technological applications.

    “For any type of experiment you do that focuses intense X-rays on a sample, you want to understand how it reacts to the X-rays,” said Daniel Rolles of Kansas State University. “This paper shows that we can understand and model the radiation damage in small molecules, so now we can predict what damage we will get in other systems.”

    Like Focusing the Sun Onto a Thumbnail

    The experiment, led by Rolles and Artem Rudenko of Kansas State, took place at LCLS’s Coherent X-ray Imaging instrument (CXI). It delivers X-rays with the highest possible energies achievable at LCLS, known as hard X-rays, and records data from samples in the instant before the laser pulse destroys them.

    How intense are those X-ray pulses?

    “They are about a hundred times more intense than what you would get if you focused all the sunlight that hits the Earth’s surface onto a thumbnail,” said LCLS staff scientist and co-author Sebastien Boutet.

    For this study, researchers used special mirrors to focus the X-ray beam into a spot just over 100 nanometers in diameter – about a hundredth the size of the one used in most CXI experiments, and a thousand times smaller than the width of a human hair. They looked at three types of samples: individual xenon atoms, which have 54 electrons each, and two types of molecules that each contain a single iodine atom, which has 53 electrons.

    Heavy atoms around this size are important in biochemical reactions, and researchers sometimes add them to biological samples to enhance contrast for imaging and crystallography applications. But until now, no one had investigated how the ultra-intense CXI beam affects molecules with atoms this heavy.

    X-rays Trigger Electron Cascades

    The team tuned the energy of the CXI pulses so they would selectively strip the innermost electrons from the xenon or iodine atoms, creating “hollow atoms.” Based on earlier studies with less energetic X-rays, they thought cascades of electrons from the outer parts of the atom would drop down to fill the vacancies, only to be kicked out themselves by subsequent X-rays. That would leave just a few of the most tightly bound electrons. And, in fact, that’s what happened in both the freestanding xenon atoms and the iodine atoms in the molecules.

    But in the molecules, the process didn’t stop there. The iodine atom, which had a strong positive charge after losing most of its electrons, continued to suck in electrons from neighboring carbon and hydrogen atoms, and those electrons were also ejected, one by one.

    Rather than losing 47 electrons, as would be the case for an isolated iodine atom, the iodine in the smaller molecule lost 54, including the ones it grabbed from its neighbors – a level of damage and disruption that’s not only higher than would normally be expected, but significantly different in nature.

    Results Feed Into Theory to Improve Experiments

    “We think the effect was even more important in the larger molecule than in the smaller one, but we don’t know how to quantify it yet,” Rudenko said. “We estimate that more than 60 electrons were kicked out, but we don’t actually know where it stopped because we could not detect all the fragments that flew off as the molecule fell apart to see how many electrons were missing. This is one of the open questions we need to study.”

    For the data analyzed to date, the theoretical model provided excellent agreement with the observed behavior, providing confidence that more complex systems can now be studied, said LCLS Director Mike Dunne. “This has important benefits for scientists wishing to achieve the highest-resolution images of biological molecules to inform the development of better pharmaceuticals, for example,” he said. “These experiments will also guide the development of a next-generation instrument for the LCLS-II upgrade project, which will provide a major leap in capability due to the increase in repetition rate from 120 pulses per second to 1 million.”

    SLAC LCLS-II

    The theory work for the study was led by Robin Santra of the Center for Free-Electron Laser Science at DESY and the University of Hamburg in Germany. Other research institutions contributing to the study were Tohoku University in Japan; Max Planck Institute for Nuclear Physics, Max Planck Institute for Medical Research, Hamburg Center for Ultrafast Imaging and the National Metrology Institute (PTB) in Germany; the University of Science and Technology in Beijing; Aarhus University in Denmark; Sorbonne University in France; the DOE’s Argonne National Laboratory and Brookhaven National Laboratory; the University of Chicago; and Northwestern University. Funding for the research came from the DOE Office of Science and from the German Research Foundation (DFG).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 10:20 am on April 19, 2017 Permalink | Reply
    Tags: Accelerator Consortium, , DESY, , Particle accelerator for the European XFEL X-ray laser operational, Superconducting linear accelerator,   

    From XFEL: “Particle accelerator for the European XFEL X-ray laser operational” 

    XFEL bloc

    European XFEL

    19 April 2017
    No writer credit

    World’s longest superconducting linear accelerator

    1
    View into the 2.1-kilometre long accelerator tunnel of European XFEL with the yellow superconducting accelerator modules hanging from the ceiling. Heiner Müller-Elsner / European XFEL

    The international X-ray laser European XFEL has reached one of its final major milestones on the way to scientific user operation. DESY has successfully commissioned the particle accelerator, which drives the X-ray laser along its full length.

    Accelerated electrons have passed through the complete 2.1 kilometre length of the accelerator tunnel. In the next step, the energy of the electrons will be raised further, before they will be sent into a magnetic slalom section where the bright X-ray laser light will be generated. This first lasing is planned for May. DESY is the largest shareholder of the European XFEL and is responsible for the construction and operation of the superconducting linear accelerator.

    “The European XFEL’s particle accelerator is the first superconducting linear accelerator of this size in the world to go into operation. With the commissioning of this complex machine, DESY and European XFEL scientists have placed the crown on their 20-year engagement in developing and building this large international project. The first experiments are within reach, and I am quite excited about the discoveries ahead of us”, says Chairman of the DESY Board of Directors Helmut Dosch. “I am exceptionally happy about arriving at this milestone and congratulate all involved for the outstanding work and their great tenacity.”

    Chairman of the European XFEL Management Board Robert Feidenhans’l says: “The successful commissioning of the accelerator is a very important step that brings us much closer to the start of user operation in the fall. Under the leadership of DESY, the Accelerator Consortium, comprising 17 research institutes, has done an excellent job in the last years. I thank all colleagues involved for their work, which entailed a great deal of know-how and precision but also much personal commitment. The accelerator is an outstanding example of successful global cooperation, encompassing research facilities, institutes, and universities alongside companies that produced certain components.”

    The European XFEL is an X-ray laser of superlatives: The research facility will produce up to 27 000 X-ray laser flashes per second, each so short and intense that researchers can make pictures of structures and processes at the atomic level.
    The superconducting particle accelerator of the facility, which is now operational across its full length, is the key component of the 3.4 km long X-ray laser. The accelerator’s superconducting TESLA technology, which was developed in an international collaboration led by DESY, is the basis for the unique high rate of X-ray laser flashes. Superconductivity means that the accelerator components have no electrical resistance. For this, they have to be cooled to extremely low temperatures.

    From December into January, the accelerator was cooled to its operating temperature of -271°C. The so-called electron injector and first section of the main accelerator then went into operation, comprising altogether 18 of 98 total accelerator modules. Within this section, the electron bunches were both accelerated and compressed three times, down to 10 micrometres (a thousandth of a millimetre). Finally, the team placed the third section of the accelerator into operation. Currently, the electrons reach an energy of 12 gigaelectronvolts (GeV), and in regular operation, an energy of up to 17.5 GeV is planned.

    “The energy and other properties of the electron bunches are already within the range where they will be during first user operation”, says DESY physicist Winfried Decking, who leads the commissioning of the European XFEL accelerator.

    The coordination of the unique components of the accelerator and the control of the electron beam will now be intensively tested before the accelerated electrons are allowed into the following section: the up to 210 m long special magnetic structures called undulators. There, the ultrabright X-ray laser flashes will be generated. Scientific experiments should begin this fall.

    The superconducting particle accelerator of the European XFEL was built over the last seven years through an international consortium, under the leadership of DESY, composed of the following research institutes: CEA and CNRS in France; INFN in Italy; IFJ-PAN, NCBJ, and the Wrocław University of Technology in Poland; the Budker Institute, Institute for High Energy Physics, Institute for Nuclear Research, and NIIEFA in Russia; CIEMAT and Universidad Politécnica de Madrid in Spain; the Manne Siegbahn Laboratory, Stockholm University, and Uppsala University in Sweden; and the Paul Scherrer Institute in Switzerland.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    XFEL Campus

    The Hamburg area will soon boast a research facility of superlatives: The European XFEL will generate ultrashort X-ray flashes—27 000 times per second and with a brilliance that is a billion times higher than that of the best conventional X-ray radiation sources.

    The outstanding characteristics of the facility are unique worldwide. Starting in 2017, it will open up completely new research opportunities for scientists and industrial users.

     
  • richardmitnick 3:16 pm on April 18, 2017 Permalink | Reply
    Tags: Centre for Structural Systems Biology (CSSB), DESY, Electron cryo-microscopes, German Research Council grants co-financing of five electron cryo-microscopes at CSSB   

    From DESY: “High-tech microscopes for infection research” 

    DESY
    DESY

    2017/04/18

    German Research Council grants co-financing of five electron cryo-microscopes at CSSB

    The German Research Council DFG has granted the Universität Hamburg co-financing for establishing a 15.6 million Euro electron cryo-microscopy facility in the new Centre for Structural Systems Biology (CSSB) on the DESY campus. The German Federal Government will provide 50 per cent of the overall financing and the city of Hamburg will provide the other 50 per cent. The CSSB is a joint initiative of ten research partners from Northern Germany, including DESY. CSSB devotes itself to infection biology and medicine by utilizing structural and molecular biology methods and imaging techniques in conjunction with systems biology approaches.

    The planned five electron cryo-microscopes will be funded as part of the German Research Council’s major research instrumentation program.

    1
    Typical electron cryo-microscope, this one at Northwestern University, Chicago, USA

    They will complement the research opportunities at DESY’s ultra-bright X-ray light sources.

    2
    View into the main accelerator tunnel of European XFEL, where 100 superconducting accelerator modules are being installed (Photo: Dirk Nölle, DESY)

    Both methods enable three-dimensional imaging of biological structures at the molecular level. With the new super microscopes, scientists plan to study the complex molecular structures and function of pathogens as well as their interactions with host cell components such as proteins and membranes. The insights gained from this research will contribute to the identification of critical steps in the infection process and to the development of novel intervention strategies.

    “The investment in the pioneering electron cryo-microscopy in Hamburg is of national importance,” emphasised Hamburg’s Senator for Science, Research and Equality, Katharina Fegebank. “Infection researchers from all over Germany will come to the Bahrenfeld campus to use the microscopes and to pursue their research at the ultra-bright DESY light sources.”

    Matthias Wilmanns, Scientific Director of CSSB, emphasized: “The establishment of a state-of-the-art electron cryo-microscopy research infrastructure is a key element in CSSB’s overall research concept. This facility will provide our scientist with the technology to expand our understanding of host-pathogen interactions and tackle some of the most demanding scientific challenges in infection biology.”

    The CSSB is a joint venture of ten academic partners: Universität Hamburg, the University Medical Center Hamburg-Eppendorf (UKE), the Bernhard Nocht Institute for Tropical Medicine (BNITM), the Research Center Borstel (FZB), the European Molecular Biology Laboratory (EMBL), Forschungszentrum Jülich (FZJ), the Hannover Medical School (MHH), the Heinrich Pette Institute, Leibniz Institute for Experimental Virology (HPI), the Helmholtz Centre for Infection Research (HZI), and DESY. The different CSSB research groups will investigate pathogens from all three organism groups: viruses, bacteria, and eukaryotic parasites.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

     
  • richardmitnick 1:16 pm on March 5, 2017 Permalink | Reply
    Tags: , DESY, DORIS storage ring, Olympus collaboration, , , Positron-proton and electron-proton elastic scattering   

    From DESY: “OLYMPUS experiment publishes first results for proton puzzle” 

    DESY
    DESY

    2017/03/03

    1
    DESY scientist Uwe Schneekloth during construction of the OLYMPUS dectector within the big toroid coils of the experiment. In the background on the left one can see the DORIS beampipe connected to the target cell, on the right the time of flight chambers (photo: DESY/ H. Müller-Elsner).

    The international OLYMPUS Collaboration this week published their first results in the journal Physical Review Letters. In 2012, the OLYMPUS detector made measurements at the DORIS storage ring to study a problem observed in electron-proton scattering.

    DESY DORIS III
    DESY DORIS III

    “The publication marks the culmination of a seven year research project to resolve a puzzling discrepancy in measurements of the proton form factors: GE and GM, which describe the electric and magnetic charge distributions inside the proton,” says Douglas Hasell from the Massachusetts Institute of Technology (MIT) in Boston, who is the spokesperson for some 55 OLYMPUS scientists from 13 institutions.

    MIT Widget

    The experiment produced precise measurements of the ratio between positron-proton and electron-proton elastic scattering to investigate the role of two-photon exchange in electron-proton scattering.

    The form factors examined by the OLYMPUS group are determined by the distribution of the quarks inside the proton. Scientists have been measuring these form factors for the past 60 or so years; in the 1960s and 1970s, they were also carried out at the DESY accelerator. Measurements made at Jefferson Lab in the USA in the early 2000s revealed deviations from older experiments by studying the collisions of polarised electrons and protons.

    Jefferson Lab

    One possible explanation could be that in some collisions instead of just one photon, several photons are exchanged between the two particles. In order to test this hypothesis, the 50-tonne OLYMPUS detector was installed at the DORIS storage ring. Most of it came from the BLAST detector, which was used at MIT from 2002 to 2005, adapted for the DORIS storage ring that also had to be modified.

    The big advantage of this combination was that DORIS could alternate between high intensity beams of electrons and their antiparticles, positrons, incident on the protons in a hydrogen gas target. In multi-photon exchange, differences arise depending on whether the protons were struck with electrons or positrons. “Using DORIS, we were able to switch very rapidly between electron and positron operation, which considerably reduces the systematic error in the measurements,” explains Uwe Schneekloth, a researcher at DESY who is the deputy spokesperson for the collaboration. “Thanks to the amazing support of DESY’s accelerator team, which kept DORIS up and running over the Christmas break and even implemented the top-up mode of operation for DORIS, we were able to collect a large amount of valuable data over our short operating time in spite of some technical challenges.”

    Overall, the scientists collected data for just over three months. In the course of the subsequent analysis, the researchers found that two different processes contribute to the assumed exchange of two photons during a collision. Whereas the dominant process can be described very well in theoretical terms, the distinctly smaller effect still poses certain riddles. It is markedly weaker than previous, less precise experiments, led scientists to believe. The OLYMPUS results indicate that this so-called “hard two-photon exchange” can explain the discrepancy between the two form factors. Although they agree with a general description of the phenomenon, existing model-dependent calculations still need to be modified in order to describe it. “To achieve a more precise understanding of the process, it would be helpful to conduct similar experiments at higher collision energies and with substantially higher collision frequencies. However, at the moment there is no suitable tailor-made solution for this, as we had in the case of the OLYMPUS detector at DORIS,” explains Schneekloth.

    “The findings from OLYMPUS will lead to a marked advance in our understanding of the proton,” explains Joachim Mnich, Director for particle and astroparticle physics at DESY. “I would like to congratulate the OLYMPUS Collaboration, whose experiment has supplied the most accurate data on this effect that will be available for the foreseeable future.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

     
  • richardmitnick 11:52 am on March 1, 2017 Permalink | Reply
    Tags: DESY, , , Scientists develop spectacles for X-ray lasers, X-ray laser beam,   

    From DESY: “Scientists develop spectacles for X-ray lasers” 

    DESY
    DESY

    2017/03/01

    Tailor-made corrective glasses permit unparalleled concentration of X-ray beam

    An international team of scientists has tailored special X-ray glasses to concentrate the beam of an X-ray laser stronger than ever before. The individually produced corrective lens eliminates the inevitable defects of an X-ray optics stack almost completely and concentrates three quarters of the X-ray beam to a spot with 250 nanometres (millionths of a millimetre) diameter, closely approaching the theoretical limit. The concentrated X-ray beam can not only improve the quality of certain measurements, but also opens up entirely new research avenues, as the team surrounding DESY lead scientist Christian Schroer writes in the journal Nature Communications.

    1
    Profile of the focused X-ray beam, without (top) and with (bottom) the corrective lens. Credit: Frank Seiboth, DESY

    Although X-rays obey the same optical laws as visible light, they are difficult to focus or deflect: “Only a few materials are available for making suitable X-ray lenses and mirrors,” explains co-author Andreas Schropp from DESY. “Also, since the wavelength of X-rays is very much smaller than that of visible light, manufacturing X-ray lenses of this type calls for a far higher degree of precision than is required in the realm of optical wavelengths – even the slightest defect in the shape of the lens can have a detrimental effect.”

    The production of suitable lenses and mirrors has already reached a very high level of precision, but the standard lenses, made of the element beryllium, are usually slightly too strongly curved near the centre, as Schropp notes. “Beryllium lenses are compression-moulded using precision dies. Shape errors of the order of a few hundred nanometres are practically inevitable in the process.” This results in more light scattered out of the focus than unavoidable due to the laws of physics. What’s more, this light is distributed quite evenly over a rather large area.

    2
    The X-ray spectacles under an electron microscope. Credit: DESY NanoLab

    Such defects are irrelevant in many applications. “However, if you want to heat up small samples using the X-ray laser, you want the radiation to be focussed on an area as small as possible,” says Schropp. “The same is true in certain imaging techniques, where you want to obtain an image of tiny samples with as much details as possible.”

    In order to optimise the focussing, the scientists first meticulously measured the defects in their portable beryllium X-ray lens stack. They then used these data to machine a customised corrective lens out of quartz glass, using a precision laser at the University of Jena. The scientists then tested the effect of these glasses using the LCLS X-ray laser at SLAC National Accelerator Laboratory in the U.S.

    “Without the corrective glasses, our lens focused about 75 per cent of the X-ray light onto an area with a diameter of about 1600 nanometres. That is about ten times as large as theoretically achievable,” reports principal author Frank Seiboth from the Technical University of Dresden, who now works at DESY. “When the glasses were used, 75 per cent of the X-rays could be focused into an area of about 250 nanometres in diameter, bringing it close to the theoretical optimum.” With the corrective lens, about three times as much X-ray light was focused into the central speckle than without it. In contrast, the full width at half maximum (FWHM), the generic scientific measure of focus sharpness in optics, did not change much and remained at about 150 nanometres, with or without the glasses.

    3
    Scheme of the experimental set-up. Credit: Frank Seiboth, DESY

    The same combination of mobile standard optics and tailor-made glasses has also been studied by the team at DESY’s synchrotron X-ray source PETRA III and the British Diamond Light Source. In both cases, the corrective lens led to a comparable improvement to that seen at the X-ray laser. “In principle, our method allows an individual corrective lens to be made for every X-ray optics,” explains lead scientist Schroer, who is also a professor of physics at the University of Hamburg.

    “These so-called phase plates can not only benefit existing X-ray sources, but in particular they could become a key component of next-generation X-ray lasers and synchrotron light sources,” emphasises Schroer. “Focusing X-rays to the theoretical limits is not only a prerequisite for a substantial improvement in a range of different experimental techniques; it can also pave the way for completely new methods of investigation. Examples include the non-linear scattering of particles of light by particles of matter, or creating particles of matter from the interaction of two particles of light. For these methods, the X-rays need to be concentrated in a tiny space which means efficient focusing is essential.”

    Involved in this research project were the Technical University of Dresden, the Universities of Jena and Hamburg, KTH Royal Institute of Technology in Stockholm, Diamond Light Source, SLAC National Accelerator Laboratory and DESY.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

     
  • richardmitnick 4:52 pm on February 28, 2017 Permalink | Reply
    Tags: , , , Cherenkov Telescope Array Namibia, Cosmic gamma-rays, Cosmic particle accelerator blazar Markarian 421, , DESY, ,   

    From DESY: “New eyes for the gamma-ray sky” 

    DESY
    DESY

    2017/02/28

    Final milestone for the upgraded H.E.S.S. telescopes in Namibia

    1
    Cherenkov Telescope Array Namibia

    The newly refurbished cameras of the H.E.S.S. gamma-ray telescopes in Namibia have detected their first signals from a cosmic particle accelerator: The new cameras recorded Markarian 421 as their first target, a well-known blazar in the constellation of Ursa Major. The active galactic nucleus, 400 million light years away, was detected during an active state and at high significance. After four years of development, testing, production and deployment, this is the last big milestone of the H.E.S.S. I camera upgrade project, which was led by DESY. The success is also an important test for the next generation gamma-ray observatory, the Cherenkov Telescope Array CTA, which will use the same camera technology.

    When H.E.S.S. explores the mysteries of the high-energy sky, it actually does not look into the Universe, but at the upper atmosphere. Cosmic gamma-rays are absorbed there and produce short, faint, violet Cherenkov light flashes that can be detected from the ground using large mirrors and ultra-fast electronics. The exposure times per image are as short as 16 nanoseconds (billionths of a second), and H.E.S.S. is recording about 300 of such events per second. Since some images only consist of a few handfuls of light particles (photons), the technical requirements to build such cameras are very challenging.

    In the ten years for which the original H.E.S.S. I cameras have been operated, their fragile electronic components have suffered a natural level of ageing, which degraded their performance. In parallel, also the technologies available on the market have developed much further, like faster Ethernet solutions, and smaller and faster readout chips. One of these chips is the NECTAr chip, which has been developed for the next big experiment in the field, CTA. Therefore, in 2012 the H.E.S.S. collaboration placed an order with their new collaborators at DESY in Zeuthen to team up with colleagues from the Paris area and Universities of Leicester and Amsterdam to make use of this chip and design a new, modernised version of the four H.E.S.S. I cameras.

    The engineers lost no time and developed a holistic modernisation concept that foresaw not only the replacement of single electronics boards, but also a better cabling, pneumatics and ventilation scheme. On top of this, colleagues from LLR near Paris added a full renewal of the light collimators in front of the PMT pixels (“Winston cones”) to the list of things to improve, so more light is collected in the first place. The first of the cameras was installed in July 2015, the other three were brought to Namibia in September 2016. “The installation went extremely well. Although it’s a very isolated work situation, out there in the remote countryside of Namibia, the team was really performing great and the atmosphere was very good”, summarises Stefan Klepser, DESY project leader of the upgrade. “Also, I am happy to say that we stayed well within the budget and the time frame we were aiming at.”

    After the installation, software needed to be adjusted, network connections to be established, and real-life, unexpected issues needed to be trouble-shooted. Around Christmas 2016 the systems were all fit for observation, and as luck would have it, an old friend in the gamma-ray sky, the blazar Markarian 421 was reported to show increased activity. Despite being located in the Northern sky, in the constellation of Ursa Major, it was within reach for observations by H.E.S.S. The scientists turned the four telescopes at it and could record thousands of images.

    “The refurbished cameras delivered the first large scale demonstration that the NECTAr technology is fit for teraelectronvolt astronomy”, summarises Christian Stegmann, head of the DESY institute in Zeuthen. “This makes us look forward to the final years of H.E.S.S., where the new cameras will provide us with enhanced performance at both very low and very high energies. And it is a promising outlook at the next major gamma-ray observatory CTA, where DESY is an important partner.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

     
  • richardmitnick 1:07 pm on January 19, 2017 Permalink | Reply
    Tags: , , DESY, , First electrons at -271°C (2 Kelvin), ,   

    From European XFEL: “First electrons in the -271°C cooled main accelerator” 

    XFEL bloc

    European XFEL

    19 January 2017
    No writer credit

    Accelerator team start test of linac at operation temperature

    1
    View into the accelerator tunnel: behind a chicane (in front) operating at room temperature the electrons are guided into the first four superconducting accelerator modules.
    Dirk Nölle / DESY

    The European XFEL has reached an important milestone on the way to its operation phase: The Accelerator Team has guided the first electrons from their initial acceleration point in the facility’s injector into the superconducting main linear accelerator, which is cooled to -271°C (2 Kelvin). After passing through the first four accelerator modules and a subsequent section wherein the electron bunches are compressed, the particles were captured in an electron dump about 150 metres away.

    “The first cooling of the accelerator was a critical phase in the commissioning of the European XFEL”, said Hans Weise, leader of the Accelerator Consortium responsible for building the accelerator. “The cooling plant team has mastered this through great commitment and much outstanding intuition.”

    At the beginning of December, the experts began to flush the cryogenic system of the accelerator and fill it with helium. On 28 December, after three weeks at the 4-Kelvin (-269°C) mark, the so-called “cold compressors” were switched on. They lowered the pressure of the helium in the linear accelerator to 30 millibar so it could cool further to 2 Kelvin (-271°C, the operational temperature of the accelerator). At the beginning of January, the machine physicists brought the European XFEL injector, which has a superconducting segment within it as well, back into service. After a successful test operation in summer 2016, the injector had been turned off so that the chicane connecting it to the main accelerator could be built. After a short time, the injector again achieved the beam quality of the test operation in summer, and the team could then direct the first particle beam through the chicane and into the main accelerator.

    “We now have sufficient control over the pressure and temperature in the superconducting accelerator, such that we can feed the cavities with the first high frequency field”, Weise explained the next task for the scientists. The 32 resonators in the first four modules are then being brought to resonance frequency and fine-tuned to one another so that the particle bunches can be accelerated through them.

    In the next weeks and months, the successive commissioning of the remaining accelerating sections is planned. As soon as the acceleration is high enough, the electron bunches will be sent through the undulators, which are special magnetic structures in which the X-ray flashes will be generated.

    2
    The “plot for experts” shows the temperature development in the different sections of the main accelerator during the cooldown phase.
    DESY

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    XFEL Campus

    The Hamburg area will soon boast a research facility of superlatives: The European XFEL will generate ultrashort X-ray flashes—27 000 times per second and with a brilliance that is a billion times higher than that of the best conventional X-ray radiation sources.

    The outstanding characteristics of the facility are unique worldwide. Starting in 2017, it will open up completely new research opportunities for scientists and industrial users.

     
  • richardmitnick 2:33 pm on September 26, 2016 Permalink | Reply
    Tags: , DESY, , , , , , uperconducting part of the European XFEL accelerator ready,   

    From European XFEL: “Superconducting part of the European XFEL accelerator ready” 

    XFEL bloc

    European XFEL

    26 September 2016
    No writer credit found

    Ninety-six modules fully installed in 1.7-km long tunnel section.

    An important milestone in the construction of the X-ray laser European XFEL has been reached: The 1.7-km long superconducting accelerator is installed in the tunnel. The linear accelerator will accelerate bunches of free electrons flying at near-light speed to the extremely high energy of 17.5 gigaelectronvolts. The bunches are accelerated in devices called resonators, which are cooled to a temperature of -271°C. In the next part of the facility, the electron bunches are used to generate the flashes of X-ray light that will allow scientists new insights into the nanocosmos. The European XFEL accelerator will be put into operation step by step in the next weeks. It will be the largest and most powerful linear accelerator of its type in the world. On 6 October, the German Minister for Education and Research, Prof. Johanna Wanka, and the Polish Vice Minister of Science and Education Dr Piotr Dardziński, will officially initiate the commissioning of the X-ray laser, including the accelerator. User operation at the European XFEL is anticipated to begin in mid-2017.

    Responsible for the construction of the accelerator was an international consortium of 17 research institutes under the leadership of Deutsches Elektronen-Synchrotron (DESY), which is also the largest shareholder of the European XFEL.

    DESY

    The central section consists of 96 accelerator modules, each 12 metres long, which contain almost 800 resonators made from ultrapure niobium surrounded by liquid helium. The electrons are accelerated inside of these resonators. The modules, which were industrially produced in cooperation with several partners, are on average about 16% more powerful than specified, so the original goal of 100 modules in the accelerator could be reduced to 96.

    1
    Using a small box as a clean area, technicians make connections between two accelerator modules in the European XFEL tunnel in April.
    Heiner Müller-Elsner / European XFEL

    “I congratulate the accelerator team for this milestone and thank all partners for their perseverance and their tireless efforts”, said the Chairman of the DESY Board of Directors Helmut Dosch. “The individual teams involved meshed like the gears of a clock to build the world’s most powerful and modern linear accelerator. That all was delivered within a tight budget deserves the utmost respect.”

    “We are excited that the installation of the accelerator modules has been successfully completed”, said European XFEL Managing Director and Chairman of the Management Board Massimo Altarelli. “This is an important step on the way to user operation next year. On this path there were numerous challenges that, in the past months and years, we faced together successfully. I thank DESY and our European partners for their enormous effort, and we look together with excitement towards the next weeks and months, when the accelerator goes into operation.”

    2
    The European XFEL accelerator tunnel. European XFEL

    The French project partner CEA in Saclay assembled the modules. Colleagues from the Polish partner institute IFJ-PAN in Kraków performed comprehensive tests of each individual module at DESY before it was installed in the 2-km long accelerator tunnel. Magnets for focusing and steering the electron beam inside the modules came from the Spanish research centre CIEMAT in Madrid. The niobium resonators were manufactured by companies in Germany and Italy, supervised by research centres DESY and INFN in Rome. Russian project partners such as the Efremov Institute in St. Petersburg and the Budker Institute in Novosibirsk delivered the different parts for vacuum components for the accelerator, within which the electron beam will be directed and focused in the non-superconducting portions of the facility at room temperature. Many other components were manufactured by DESY and their partners, including diagnostics and electron beam stabilization mechanisms, among others.

    In October, the accelerator is expected to move towards operation in several steps. As soon as the system for access control is installed, the interior of the modules can be slowly cooled to the operating temperature of two degrees above absolute zero—colder than outer space. Then DESY scientists can send the first electrons through the accelerator. At first, the electrons will be stopped in an “electron dump” at the end of the accelerator, until all of the beam properties are optimized. Then the electron beam will be sent further towards the X-ray light-generating magnetic structures called undulators. Here, the alternating poles of the undulator’s magnets will force the electron bunches to move in a tight, zigzagging “slalom” course for a 210-m stretch. In a self-amplifying intensification process, extremely short and bright X-ray flashes with laser-like properties will be generated. Reaching the conditions needed for this process is a massive technical challenge. Among other things, the electron bunches from the accelerator must meet precisely defined specifications. But the participating scientists have reason for optimism. All foundational principles and techniques have been proven at the free-electron laser FLASH at DESY, the prototype for the European XFEL. At European XFEL itself, the commissioning of the 30-m long injector has been complete since July. The injector generates the electron bunches for the main accelerator and accelerates them in an initial section to near-light speed.

    The beginning of user operation, the final step in the transition from the construction phase to the operation phase, is foreseen for summer 2017.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    XFEL Campus

    The Hamburg area will soon boast a research facility of superlatives: The European XFEL will generate ultrashort X-ray flashes—27 000 times per second and with a brilliance that is a billion times higher than that of the best conventional X-ray radiation sources.

    The outstanding characteristics of the facility are unique worldwide. Starting in 2017, it will open up completely new research opportunities for scientists and industrial users.

     
  • richardmitnick 10:06 am on July 25, 2016 Permalink | Reply
    Tags: , DESY, Electron injector for European XFEL exceeds expectations, ,   

    From XFEL: “Electron injector for European XFEL exceeds expectations” 

    XFEL bloc

    European XFEL

    25 July 2016
    No writer credit found

    First accelerator section successfully tested

    DESY has successfully concluded tests of the first section of the particle accelerator for the European XFEL. The so-called electron injector, which is 30 metres long, performed distinctly better than expected. The injector already completed a whole week under operating conditions. “Having gathered much valuable experience, we are now all set to start up the entire accelerator complex”, reports Winfried Decking, the machine coordinator at DESY. “This is a huge success for the entire accelerator team, together with our international partners.”

    1
    The diagnostic system produces elongated images of individual electron bunches and allows to analyse them in slices. DESY

    The bright X-ray light of the European XFEL is produced by small bunches of high-energy electrons which are brought to speed by a particle accelerator and then sent down an undulating magnetic path. At each magnetic bend in the path, the electron nunches emit X-rays which add up to a laser-like pulse in a self-amplifying manner.

    DESY is the main shareholder of the European XFEL GmbH and responsible, among other things, for building and operating the 2.1-kilometre particle accelerator. The injector is located at the very beginning of the accelerator to which it supplies tailor-made bunches of electrons. The quality of these electron bunches is crucial to the quality of the X-ray laser pulses at the experimental stations, 3.4 kilometres away. One important quality criterion is how narrowly the electron bunches can be focused. “This so-called emittance is some 40 percent better than specified”, reports Decking.

    2
    The injector is 30 metres long. Dirk Nölle / DESY

    Ten times every second, the injector produces a train of up to 2700 short bunches of electrons. To test the quality of the beam, a special diagnostic system picks out individual bunches. “We need only about four bunches per train to analyse the beam”, explains Decking. These bunches are tilted by a cavity before striking the diagnostic screen. The elongated image they leave behind as a result can be used to study the longitudinal structure of each bunch in detail. The analysis reveals the outstanding quality of the bunches.

    In the past seven months, the injector, which produced its first electron beam in December, has given the accelerator team an opportunity to get to know all major subsystems of the entire accelerator facility: “The injector includes all the subsystems that are used in the main accelerator too”, says Decking. “This meant we were able to test and familiarise ourselves with them.” All in all, he says, no major obstacles were encountered throughout the several months of its test operation. The injector went offline on Monday, so that it can be connected to the main accelerator, for which commissioning is planned to start in October 2016. The whole facility is expected to be available for experiments as from the summer of 2017.

    3
    View of DESY’s accelerator control centre, European XFEL section. Dirk Nölle / DESY

    Apart from DESY and European XFEL GmbH, the Centre national de la recherche scientifique CNRS in Orsay (France), the Commissariat à l’énergie atomique et aux énergies alternatives CEA in Saclay (France), the Istituto Nazionale di Fisica Nucleare INFN in Milan (Italy), the Narodowe Centrum Badań Jądrowych in Swierk (Poland), the Wrocław University of Technology WUT in Wrocław (Poland), the Instytut Fizyki Jądrowej IFJ-PAN in Krakow (Poland), the Institute for High-Energy Physics in Protvino (Russia), the Efremov Institute NIIEFA in St. Petersburg (Russia), the Budker Institute for Nuclear Physics BINP in Novosibirsk (Russia), the Institute for Nuclear Research INR in Moscow (Russia), the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT in Madrid (Spain), the Universidad Politécnica de Madrid UPM in Madrid (Spain), the University of Stockholm (Sweden), the University of Uppsala (Sweden), and the Paul Scherrer Institute in Villigen (Switzerland) are also involved in the injector.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    XFEL Campus

    The Hamburg area will soon boast a research facility of superlatives: The European XFEL will generate ultrashort X-ray flashes—27 000 times per second and with a brilliance that is a billion times higher than that of the best conventional X-ray radiation sources.

    The outstanding characteristics of the facility are unique worldwide. Starting in 2017, it will open up completely new research opportunities for scientists and industrial users.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: