Tagged: Dark Matter Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:14 am on June 20, 2018 Permalink | Reply
    Tags: , , , , Dark fusion?, Dark Matter, ,   

    From Science News: “If real, dark fusion could help demystify this physics puzzle” 


    From Science News

    June 6, 2018
    Emily Conover

    1
    DARK CLOUDS Galaxies and galaxy clusters are surrounded by dark matter (illustrated in blue over an image of the cluster Abell 2744; red indicates gas). Dark matter particles may undergo a process called dark fusion, one scientist suggests. XMM-Newton/ESA, WFI/ESO, NASA, CFHT

    Fusion may have a dark side. A shadowy hypothetical process called “dark fusion” could be occurring throughout the cosmos, a new study suggests.

    The standard type of fusion occurs when two atomic nuclei unite to form a new element, releasing energy in the process. “This is why the sun shines,” says physicist Sam McDermott of Fermilab in Batavia, Ill. A similar process — dark fusion — could occur with particles of dark matter, McDermott suggests in a paper published in the June 1, 2018 in Physical Review Letters.

    If the idea is correct, the proposed phenomenon may help physicists resolve a puzzle related to dark matter — a poorly understood substance believed to bulk up the mass of galaxies. Without dark matter, scientists can’t explain how galaxies’ stars move the way they do. But some of the quirks of how dark matter is distributed within galaxy centers remain a mystery.

    Dark matter is thought to be composed of reclusive particles that don’t interact much with ordinary matter — the stuff that makes up stars, planets and living creatures. That introverted nature is what makes the enigmatic particles so hard to detect. But dark matter may not be totally antisocial (SN: 3/3/18, p. 8). “Why wouldn’t the dark matter particles interact with each other? There’s really no good reason to say they wouldn’t,” says physicist Manoj Kaplinghat of the University of California, Irvine.

    Scientists have suggested that dark matter particles might ricochet off one another. But the new study goes a step further, proposing that pairs of dark matter particles could fuse, forming other unknown types of dark matter particles in the process.

    Such dark fusion could help explain why dark matter near the centers of galaxies is more evenly distributed than expected. In computer simulations of galaxy formation, the density of dark matter rises sharply toward a cusp in the center of a galaxy. But in reality, galaxies have a core evenly filled with dark matter.

    Those simulations assume dark matter particles don’t interact with one another. But dark fusion could change how the particles behave, giving them energy that would provide the oomph necessary to escape entrapment in a galaxy’s dense cusp, thereby producing an evenly filled core.

    “You can kick [particles] around through this interaction, so that’s kind of cool,” says physicist Annika Peter of the Ohio State University in Columbus. But, she says, dark fusion might end up kicking the particles out of the galaxy entirely, which wouldn’t mesh with expectations: The particles could escape the halo of dark matter that scientists believe surrounds each galaxy.

    For now, if fusion does have an alter ego, scientists remain in the dark.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Advertisements
     
  • richardmitnick 12:56 pm on June 19, 2018 Permalink | Reply
    Tags: , , , , , Dark Matter, The paleo-detector   

    From astrobites: “A Paleo-Detector for Dark Matter: How Ancient Rocks Could Help Unravel the Mystery” 

    Astrobites bloc

    From astrobites

    Title: Searching for Dark Matter with Paleo-Detectors
    Authors: S. Baum, A. K. Drukier, K. Freese, M. Górski, & P. Stengel
    First Author’s Institution: The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, Sweden
    1
    Status: Pre-print available [open access on arXiv]

    Dark matter is, by its very nature, elusive. Though we can detect its presence by observing its gravitational influence, dark matter remains invisible because it doesn’t interact electromagnetically. The most widely accepted explanation for dark matter is the existence of weakly interacting massive particles (WIMPs). WIMPs, if eventually observed, would constitute a new, massive kind of elementary particle. Their discovery would be revolutionary for particle physics and cosmology; therefore, countless direct (in labs) and indirect (observing their annihilation or decay) detection experiments are being conducted to identify them. Today’s astrobite discusses a novel proposal for direct dark matter detection that seems more fit for scientists in Jurassic Park than for particle physicists: the paleo-detector.

    The authors of today’s featured paper theorize that ancient rocks could contain evidence of interactions between WIMPS and nuclei in the minerals, forming a completely natural “detector” that would allow scientists to search for evidence of the massive particles using excavated rocks. This experiment varies significantly from other direct detection efforts, as those look for evidence of WIMPs hitting Earth-based detectors in real time. The paleo-detector would instead trace nanometers-long “tracks” of chemical and physical change in the rocks as the result of WIMP-induced nuclear recoil that occurred long ago.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 2:34 pm on May 30, 2018 Permalink | Reply
    Tags: , , , , , Dark Matter, Does Some Dark Matter Carry an Electric Charge?, EDGES collaboration   

    From Harvard-Smithsonian Center for Astrophysics: “Does Some Dark Matter Carry an Electric Charge?” 

    Harvard Smithsonian Center for Astrophysics


    From Harvard-Smithsonian Center for Astrophysics

    May 30, 2018

    Megan Watzke
    Harvard-Smithsonian Center for Astrophysics
    +1 617-496-7998
    mwatzke@cfa.harvard.edu

    Peter Edmonds
    Harvard-Smithsonian Center for Astrophysics
    +1 617-571-7279
    pedmonds@cfa.harvard.edu

    1

    Astronomers have proposed a new model for the invisible material that makes up most of the matter in the Universe. They have studied whether a fraction of dark matter particles may have a tiny electrical charge.

    “You’ve heard of electric cars and e-books, but now we are talking about electric dark matter,” said Julian Munoz of Harvard University in Cambridge, Mass., who led the study that has been published in the journal Nature. “However, this electric charge is on the very smallest of scales.”

    Munoz and his collaborator, Avi Loeb of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., explore the possibility that these charged dark matter particles interact with normal matter by the electromagnetic force.

    Their new work dovetails with a recently announced result from the Experiment to Detect the Global EoR (Epoch of Reionization) Signature (EDGES) collaboration. In February, scientists from this project said they had detected the radio signature from the first generation of stars, and possible evidence for interaction between dark matter and normal matter. Some astronomers quickly challenged the EDGES claim. Meanwhile, Munoz and Loeb were already looking at the theoretical basis underlying it.

    “We’re able to tell a fundamental physics story with our research no matter how you interpret the EDGES result,” said Loeb, who is the chair of the Harvard astronomy department. “The nature of dark matter is one of the biggest mysteries in science and we need to use any related new data to tackle it.”

    The story begins with the first stars, which emitted ultraviolet (UV) light. According to the commonly accepted scenario, this UV light interacted with cold hydrogen atoms in gas lying between the stars and enabled them to absorb the cosmic microwave background (CMB) radiation, the leftover radiation from the Big Bang.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    This absorption should have led to a drop in intensity of the CMB during this period, which occurs less than 200 million years after the Big Bang. The EDGES team claimed to detect evidence for this absorption of CMB light, though this has yet to be independently verified by other scientists. However, the temperature of the hydrogen gas in the EDGES data is about half of the expected value.

    “If EDGES has detected cooler than expected hydrogen gas during this period, what could explain it?” said Munoz. “One possibility is that hydrogen was cooled by the dark matter.”

    At the time when CMB radiation is being absorbed, the any free electrons or protons associated with ordinary matter would have been moving at their slowest possible speeds (since later on they were heated by X-rays from the first black holes). Scattering of charged particles is most effective at low speeds. Therefore, any interactions between normal matter and dark matter during this time would have been the strongest if some of the dark matter particles are charged. This interaction would cause the hydrogen gas to cool because the dark matter is cold, potentially leaving an observational signature like that claimed by the EDGES project.

    “We are constraining the possibility that dark matter particles carry a tiny electrical charge – equal to one millionth that of an electron – through measurable signals from the cosmic dawn,” said Loeb. “Such tiny charges are impossible to observe even with the largest particle accelerators.”

    Only small amounts of dark matter with weak electrical charge can both explain the EDGES data and avoid disagreement with other observations. If most of the dark matter is charged, then these particles would have been deflected away from regions close to the disk of our own Galaxy, and prevented from reentering. This conflicts with observations showing that large amounts of dark matter are located close to the disk of the Milky Way.

    Scientists know from observations of the CMB that protons and electrons combined in the early Universe to form neutral atoms. Only a small fraction of these charged particles, about one in a few thousand, remained free. Munoz and Loeb are considering the possibility that dark matter may have acted in a similar way. The data from EDGES, and similar experiments, might be the only way to detect the few remaining charged particles, as most of the dark matter would be neutral.

    “The viable parameter space for this scenario is quite constrained, but if confirmed by future observations, of course we would be learning something fundamental about the nature of dark matter, one of the biggest puzzles that we have in physics today,” said Harvard’s Cora Dvorkin who was not involved with the new study.

    Lincoln Greenhill also from the CfA is currently testing the observational claim by the EDGES team. He leads the Large Aperture Experiment to Detect the Dark Ages (LEDA) project, which uses the Long Wavelength Array in Owen’s Valley California and Socorro, New Mexico.

    A paper describing these results appear in the May 31, 2018 issue of the journal Nature.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    stem

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

     
  • richardmitnick 1:52 pm on May 14, 2018 Permalink | Reply
    Tags: Axion Cold Dark Matter experiment, , , , Dark Matter, , , Planckian interacting dark matter, Superfluid models of dark matter,   

    From Physics- “Meetings: WIMP Alternatives Come Out of the Shadows” 

    Physics LogoAbout Physics

    Physics Logo 2

    From Physics

    May 14, 2018

    At an annual physics meeting in the Alps, WIMPs appeared to lose their foothold as the favored dark matter candidate, making room for a slew of new ideas.

    The Rencontres de Moriond (Moriond Conferences) have been a fixture of European high-energy physics for over half a century. These meetings—typically held at an Alpine ski resort—have been the site of many big announcements, such as the first public talk on the top quark discovery in 1995 and important Higgs updates in 2013. One day, perhaps, a dark matter detection will headline at Moriond. For now, physicists wait. But they’ve gotten a bit anxious, as their shoo-in candidate, the WIMP, has yet to make an appearance—despite several ongoing searches.

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB deep in Sudbury’s Creighton Mine

    Lux Dark Matter 2 at SURF, Lead, SD, USA

    DARWIN Dark Matter experiment. A design study for a next-generation, multi-ton dark matter detector in Europe at the University of Zurich

    At this year’s Moriond, held this past March in La Thuile, Italy, some of the limelight passed to other dark matter candidates, such as axions, black holes, superfluids, and more.

    1
    T. Tait/University of California, Irvine

    WIMPs, or weakly interacting massive particles, have been a popular topic over the years at Moriond, according to meeting organizer Jacques Dumarchez from the Laboratory of Nuclear Physics and High Energy (LPNHE) in France. The reason for this enthusiasm is that WIMPs fall out of theory without much tweaking. Extensions of the standard model, like supersymmetry, predict a host of particles with weak interactions and a mass in the 1 to 100GeV∕c2 range. If WIMPs like this were created in the big bang, then, according to simple thermodynamic arguments, their density would match the expectations for dark matter based on astronomical observations. This seemingly effortless matching has been called the WIMP miracle.

    But these days, the miracle has less of a halo around it. At this year’s Moriond, updates from direct and indirect searches for WIMPs sounded almost apologetic. Alessandro Manfredini of the Weizmann Institute of Science in Israel told his listeners to “keep calm… and fingers crossed,” as he gave the latest news from Xenon 1T, a one-ton dark matter detector at Italy’s Gran Sasso laboratory. He showed that the experiment has now reached record-breaking sensitivity, so that if a 50GeV∕c2 WIMP exists, the next data release could reveal ten events. But, like other WIMP searches, the current results rule the particles out—by putting tighter limits on their properties—rather than rule them in. The hunt will continue for years to come, but the WIMP paradigm has “started to look less as the obvious solution to the dark matter problem,” Dumarchez said.

    XENON1T at Gran Sasso


    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    When did WIMP confidence start to deflate? Tim Tait from the University of California, Irvine, described the change as gradual. “It is hard to say exactly when it began, but I think it was becoming noticeable around 2014 or so,” Tait said. That’s when the null results from dark matter searches began closing the favored parameter space for the WIMP model. “Of course, there is still a good opportunity for those searches to discover WIMPs,” he said.

    At Moriond, Tait gave an overview of dark matter candidates, in which he discussed WIMPs but devoted much of his time to the dazzling variety of other dark matter theories. Chief among these is the axion.

    CERN CAST Axion Solar Telescope

    U Washington ADMX Axion Dark Matter Experiment

    AXION DME experiment at U Washington

    Like the WIMP, it is well-motivated from particle physics theory, as it may explain why strong interactions do not violate CP symmetry, while weak interactions do. The axion is also the target of several dedicated searches, such as ADMX. Other familiar “dark horse” candidates discussed at Moriond were neutrinos and black holes—with the latter seeing a boost in popularity after recent gravitational-wave observations.

    But at the conference, the doors seemed open to all comers, with several new dark matter ideas taking the stage. One of the talks was by Justin Khoury from the University of Pennsylvania in Philadelphia, who advocates a superfluid model of dark matter. The main assumption here is that dark matter has strong self-interactions that cause it to cool and condense in the centers of galaxies. The resulting superfluid could help explain certain anomalies in observed galactic velocity profiles.

    Martin Sloth from the University of Southern Denmark takes a very different approach. Rather than having strong interactions, his so-called Planckian interacting dark matter has zero interactions beyond gravity, but it makes up for its lack of interactions with an enormous mass (around 1028eV∕c2). At the opposite end of the mass spectrum is fuzzy dark matter, weighing in at 10−22eV∕c2. These ethereal particles could explain an apparent lack of small galaxies. But they could also run into constraints from observed absorption in the intergalactic medium, explained Eric Armengaud from France’s Atomic Energy Commission (CEA) in Saclay.

    Although WIMPs continue to be the odds-on favorite, the field has certainly expanded—with light and heavy masses, weak and strong interactions, and seemingly everything in between. Sloth compared the current situation without a WIMP detection to a Wimbledon tournament without Roger Federer: “Everybody is signing up, thinking that they now have a chance.”

    But can theorists make compelling arguments for these alternatives, as they did for WIMPs? David Kaplan from Johns Hopkins University, Maryland, believes that theoretical backing will not be a problem. In fact, he commented that the community has been too fixated on WIMPs (and the miracle) for the last 30 years. He warned his compatriots to not make the same mistake again: “I don’t want the next 30 years to be just axions.”

    See the full article here .

    Please help promote STEM in your local schools.

    stem

    Stem Education Coalition

    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments (physics@aps.org).

     
    • mpc755 11:18 am on May 15, 2018 Permalink | Reply

      There is evidence of dark matter every time a double-slit experiment is performed, as it is the medium that waves.

      Like

      • richardmitnick 11:25 am on May 15, 2018 Permalink | Reply

        Thanks for reading and commenting. It is much appreciated.

        Like

        • mpc755 12:08 pm on May 15, 2018 Permalink

          Dark matter is a supersolid that fills ’empty’ space and is displaced by visible matter. What is referred to geometrically as curved spacetime physically exists in nature as the state of displacement of the dark matter. The state of displacement of the dark matter is gravity.

          Dark matter ripples when galaxy clusters collide and waves in a double-slit experiment, relating general relativity and quantum mechanics.

          Thanks for the response.

          Like

  • richardmitnick 9:01 am on May 7, 2018 Permalink | Reply
    Tags: , , Construction Begins on One of the World’s Most Sensitive Dark Matter Experiments, Dark Matter, , , , , SuperCDMS SNOLAB experiment,   

    From SLAC Lab: “Construction Begins on One of the World’s Most Sensitive Dark Matter Experiments” 


    From SLAC Lab

    May 7, 2018

    Press Office Contact: Andrew Gordon,
    agordon@slac.stanford.edu
    (650) 926-2282

    Written by Manuel Gnida

    1
    The future SuperCDMS SNOLAB experiment will hunt for weakly interacting massive particles (WIMPs), hypothetical components of dark matter. If a WIMP (white trace) strikes an atom inside the experiment’s detector crystals (gray), it will cause the crystal lattice to vibrate (blue). The collision will also send electrons (red) through the crystal that enhance the vibrations. (Greg Stewart/SLAC National Accelerator Laboratory)

    2
    The future SuperCDMS SNOLAB experiment will hunt for weakly interacting massive particles (WIMPs), hypothetical components of dark matter. This photo shows one of the experiment’s detector crystals within its protective copper housing. (Andy Freeberg/SLAC National Accelerator Laboratory)

    3
    SLAC’s Paul Brink handles the SuperCDMS SNOLAB engineering tower. (Chris Smith/SLAC National Accelerator Laboratory)

    4
    A SuperCDMS SNOLAB detector, fabricated at Texas A&M University. (Matt Cherry/SuperCDMS collaboration/SLAC National Accelerator Laboratory)

    5
    Dan Bauer (left) and Mark Ruschman in Fermilab’s Lab G , where the SuperCDMS SNOLAB project is preparing to test the cryogenics system for the new experiment. (Reidar Hahn/Fermi National Accelerator Laboratory)

    6
    Fermilab’s Mark Ruschman tests prototypes for the SuperCDMS SNOLAB cryogenics system. (Reidar Hahn/Fermi National Accelerator Laboratory)

    The SuperCDMS SNOLAB project, a multi-institutional effort led by SLAC, is expanding the hunt for dark matter to particles with properties not accessible to any other experiment.

    SNOLAB, Sudbury, Ontario, Canada.

    The U.S. Department of Energy has approved funding and start of construction for the SuperCDMS SNOLAB experiment, which will begin operations in the early 2020s to hunt for hypothetical dark matter particles called weakly interacting massive particles, or WIMPs. The experiment will be at least 50 times more sensitive than its predecessor, exploring WIMP properties that can’t be probed by other experiments and giving researchers a powerful new tool to understand one of the biggest mysteries of modern physics.

    The DOE’s SLAC National Accelerator Laboratory is managing the construction project for the international SuperCDMS collaboration of 111 members from 26 institutions, which is preparing to do research with the experiment.

    “Understanding dark matter is one of the hottest research topics – at SLAC and around the world,” said JoAnne Hewett, head of SLAC’s Fundamental Physics Directorate and the lab’s chief research officer. “We’re excited to lead the project and work with our partners to build this next-generation dark matter experiment.”

    With the DOE approvals, known as Critical Decisions 2 and 3, the researchers can now build the experiment. The DOE Office of Science will contribute $19 million to the effort, joining forces with the National Science Foundation ($12 million) and the Canada Foundation for Innovation ($3 million).

    “Our experiment will be the world’s most sensitive for relatively light WIMPs – in a mass range from a fraction of the proton mass to about 10 proton masses,” said Richard Partridge, head of the SuperCDMS group at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of SLAC and Stanford University. “This unparalleled sensitivity will create exciting opportunities to explore new territory in dark matter research.”

    An Ultracold Search 6,800 Feet Underground

    Scientists know that visible matter in the universe accounts for only 15 percent of all matter. The rest is a mysterious substance, called dark matter. Due to its gravitational pull on regular matter, dark matter is a key driver for the evolution of the universe, affecting the formation of galaxies like our Milky Way. It therefore is fundamental to our very own existence.

    But scientists have yet to find out what dark matter is made of. They believe it could be composed of dark matter particles, and WIMPs are top contenders. If these particles exist, they would barely interact with their environment and fly right through regular matter untouched. However, every so often, they could collide with an atom of our visible world, and dark matter researchers are looking for these rare interactions.

    7
    The centerpiece of the SuperCDMS SNOLAB experiment will be four detector towers (left), each containing six detector packs. The towers will be mounted inside the SNOBOX (right), a vessel in which the detector packs will be cooled to almost absolute zero temperature. (Greg Stewart/SLAC National Accelerator Laboratory)

    In the SuperCDMS SNOLAB experiment, the search will be done using silicon and germanium crystals, in which the collisions would trigger tiny vibrations. However, to measure the atomic jiggles, the crystals need to be cooled to less than minus 459.6 degrees Fahrenheit – a fraction of a degree above absolute zero temperature. These ultracold conditions give the experiment its name: Cryogenic Dark Matter Search, or CDMS. The prefix “Super” indicates an increased sensitivity compared to previous versions of the experiment.

    The collisions would also produce pairs of electrons and electron deficiencies that move through the crystals, triggering additional atomic vibrations that amplify the signal from the dark matter collision. The experiment will be able to measure these “fingerprints” left by dark matter with sophisticated superconducting electronics.

    The experiment will be assembled and operated at the Canadian laboratory SNOLAB – 6,800 feet underground inside a nickel mine near the city of Sudbury. It’s the deepest underground laboratory in North America. There it will be protected from high-energy particles, called cosmic radiation, which can create unwanted background signals.

    8
    The SuperCDMS dark matter experiment will be located at the Canadian laboratory SNOLAB, 2 kilometers (6,800 feet) underground inside a nickel mine near the city of Sudbury. It’s the deepest underground laboratory in North America. There it will be protected from high-energy particles, called cosmic radiation, which can create unwanted background signals. (Greg Stewart/SLAC National Accelerator Laboratory; inset: SNOLAB)

    “SNOLAB is excited to welcome the SuperCDMS SNOLAB collaboration to the underground lab,” said Kerry Loken, SNOLAB project manager. “We look forward to a great partnership and to supporting this world-leading science.”

    Over the past months, a detector prototype has been successfully tested at SLAC. “These tests were an important demonstration that we’re able to build the actual detector with high enough energy resolution, as well as detector electronics with low enough noise to accomplish our research goals,” said KIPAC’s Paul Brink, who oversees the detector fabrication at Stanford.

    Together with seven other collaborating institutions, SLAC will provide the experiment’s centerpiece of four detector towers, each containing six crystals in the shape of oversized hockey pucks. The first tower could be sent to SNOLAB by the end of 2018.

    “The detector towers are the most technologically challenging part of the experiment, pushing the frontiers of our understanding of low-temperature devices and superconducting readout,” said Bernard Sadoulet, a collaborator from the University of California, Berkeley.

    A Strong Collaboration for Extraordinary Science

    In addition to SLAC, two other national labs are involved in the project. Fermi National Accelerator Laboratory is working on the experiment’s intricate shielding and cryogenics infrastructure, and Pacific Northwest National Laboratory is helping understand background signals in the experiment, a major challenge for the detection of faint WIMP signals.

    9
    Slideshow of SuperCDMS SNOLAB photos. For more images, visit the SuperCDMS SNOLAB photostream on Flickr.

    A number of U.S. and Canadian universities also play key roles in the experiment, working on tasks ranging from detector fabrication and testing to data analysis and simulation. The largest international contribution comes from Canada and includes the research infrastructure at SNOLAB.

    “We’re fortunate to have a close-knit network of strong collaboration partners, which is crucial for our success,” said KIPAC’s Blas Cabrera, who directed the project through the CD-2/3 approval milestone. “The same is true for the outstanding support we’re receiving from the funding agencies in the U.S. and Canada.”

    Fermilab’s Dan Bauer, spokesperson of the SuperCDMS collaboration said, “Together we’re now ready to build an experiment that will search for dark matter particles that interact with normal matter in an entirely new region.”

    SuperCDMS SNOLAB will be the latest in a series of increasingly sensitive dark matter experiments. The most recent version, located at the Soudan Mine in Minnesota, completed operations in 2015.

    “The project has incorporated lessons learned from previous CDMS experiments to significantly improve the experimental infrastructure and detector designs for the experiment,” said SLAC’s Ken Fouts, project manager for SuperCDMS SNOLAB. “The combination of design improvements, the deep location and the infrastructure support provided by SNOLAB will allow the experiment to reach its full potential in the search for low-mass dark matter.”

    For more information on the SuperCDMS SNOLAB project and the SuperCDMS collaboration, check out this website:

    SuperCDMS SNOLAB Website

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

     
  • richardmitnick 4:40 pm on May 6, 2018 Permalink | Reply
    Tags: , , Dark Matter, , LUX/Dark matter experiment at SURF, , ,   

    From Symmetry: “The origins of dark matter” 

    Symmetry Mag
    From Symmetry

    11/08/16 [Just brought forward in social media]
    Matthew R. Francis

    1
    Artwork by Sandbox Studio, Chicago with Corinne Mucha

    [Because this article is well over a year old, I have updated it with Dark Matter experiments and also included a section on the origins of Dark Matter research by Vera Rubin and Fritz Zicky.]

    Dark Matter Research

    Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016

    Milky Way Dark Matter Halo Credit ESO L. Calçada


    Dark matter halo. Image credit: Virgo consortium / A. Amblard / ESA

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    Scientists studying the cosmic microwave background hope to learn about more than just how the universe grew—it could also offer insight into dark matter, dark energy and the mass of the neutrino.

    Dark matter cosmic web and the large-scale structure it forms The Millenium Simulation, V. Springel et al

    Dark Matter Particle Explorer China

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB deep in Sudbury’s Creighton Mine

    LUX/Dark matter experiment at SURF

    Edelweiss Dark Matter Experiment, located at the Modane Underground Laboratory in France

    Transitions are everywhere we look. Water freezes, melts, or boils; chemical bonds break and form to make new substances out of different arrangements of atoms. The universe itself went through major transitions in early times. New particles were created and destroyed continually until things cooled enough to let them survive. Those particles include ones we know about, such as the Higgs boson or the top quark. But they could also include dark matter, invisible particles which we presently know only because of their gravitational effects. In cosmic terms, dark matter particles could be a “thermal relic,” forged in the hot early universe and then left behind during the transitions to more moderate later eras. One of these transitions, known as “freeze-out,” changed the nature of the whole universe.

    The hot cosmic freezer

    On average, today’s universe is a pretty boring place. If you pick a random spot in the cosmos, it’s far more likely to be in intergalactic space than, say, the heart of a star or even inside an alien solar system. That spot is probably cold, dark and quiet. The same wasn’t true for a random spot shortly after the Big Bang. “The universe was so hot that particles were being produced from photons smashing into other photons, of photons hitting electrons, and electrons hitting positrons and producing these very heavy particles,” says Matthew Buckley of Rutgers University. The entire cosmos was a particle-smashing party, but parties aren’t meant to last. This one lasted only a trillionth of a second. After that came the cosmic freeze-out. During the freeze-out, the universe expanded and cooled enough for particles to collide far less frequently and catastrophically. “One of these massive particles floating through the universe is finding fewer and fewer antimatter versions of itself to collide with and annihilate,” Buckley says. “Eventually the universe would get large enough and cold enough that the rate of production and the rate of annihilation basically goes to zero, and you just a relic abundance, these few particles that are floating out there lonely in space.” Many physicists think dark matter is a thermal relic, created in huge numbers in before the cosmos was a half-second old and lingering today because it barely interacts with any other particle.

    A WIMPy miracle

    One reason to think of dark matter as a thermal relic is an interesting coincidence known as the “WIMP miracle.” WIMP stands for “weakly-interacting massive particle,” and WIMPs are the most widely accepted candidates for dark matter. Theory says WIMPs are likely heavier than protons and interact via the weak force, or at least interactions related to the weak force. The last bit is important, because freeze-out for a specific particle depends on what forces affect it and the mass of the particle. Thermal relics made by the weak force were born early in the universe’s history because particles need to be jammed in tight for the weak force, which only works across short distances, to be a factor.

    “If dark matter is a thermal relic, you can calculate how big the interaction [between dark matter particles] needs to be,” Buckley says. Both the primordial light known as the cosmic microwave background [CMB] and the behavior of galaxies tell us that most dark matter must be slow-moving (“cold” in the language of physics).

    COBE CMB


    NASA/COBE 1989 to 1993.


    Cosmic Microwave Background NASA/WMAP


    NASA/WMAP 2001 to 2010


    CMB per ESA/Planck


    ESA/Planck 2009 to 2013

    That means interactions between dark matter particles must be low in strength. “Through what is perhaps a very deep fact about the universe,” Buckley says, “that interaction turns out to be the strength of what we know as the weak nuclear force.” That’s the WIMP miracle: The numbers are perfect to make just the right amount of WIMPy matter. The big catch, though, is that experiments haven’t found any WIMPs yet.

    It’s too soon to say WIMPs don’t exist, but it does rule out some of the simpler theoretical predictions about them.

    Ultimately, the WIMP miracle could just be a coincidence. Instead of the weak force, dark matter could involve a new force of nature that doesn’t affect ordinary matter strongly enough to detect. In that scenario, says Jessie Shelton of the University of Illinois at Urbana-Champaign, “you could have thermal freeze-out, but the freeze-out is of dark matter to some other dark field instead of [something in] the Standard Model.” In that scenario, dark matter would still be a thermal relic but not a WIMP. For Shelton, Buckley, and many other physicists, the dark matter search is still full of possibilities. “We have really compelling reasons to look for thermal WIMPs,” Shelton says. “It’s worth remembering that this is only one tiny corner of a much broader space of possibilities.”

    Well, what about AXIONS?

    CERN CAST Axion Solar Telescope


    Inside the ADMX experiment hall at the University of Washington Credit Mark Stone U. of Washington

    Origins of Dark Matter Research

    Vera Rubin measuring spectra (Emilio Segre Visual Archives AIP SPL)

    Vera Florence Cooper Rubin was an American astronomer who pioneered work on galaxy rotation rates. She uncovered the discrepancy between the predicted angular motion of galaxies and the observed motion, by studying galactic rotation curves. This phenomenon became known as the galaxy rotation problem, and was evidence of the existence of dark matter. Although initially met with skepticism, Rubin’s results were confirmed over subsequent decades. Her legacy was described by The New York Times as “ushering in a Copernican-scale change” in cosmological theory.

    Fritz Zwicky, the Father of Dark Matter research.No image credit after long search

    Fritz Zwicky, a Swiss astronomer. He worked most of his life at the California Institute of Technology in the United States of America, where he made many important contributions in theoretical and observational astronomy. In 1933, Zwicky was the first to use the virial theorem to infer the existence of unseen dark matter, describing it as “dunkle Materie

    There was no Nobel award for either Rubin or Zwicky.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:03 pm on April 12, 2018 Permalink | Reply
    Tags: Dark Matter, Heavy dark matter and PeV neutrinos: are they related?, , ,   

    From U Wisconsin IceCube: “Heavy dark matter and PeV neutrinos: are they related?” 

    U Wisconsin ICECUBE neutrino detector at the South Pole

    IceCube neutrino detector interior

    IceCube Gen-2 DeepCore

    The existence of dark matter was proposed to explain gravitational effects of objects such as galaxies that could not be described by the constituents of so-called “normal” matter—electrons, neutrons, and protons. But dark matter searches have so far been futile. A proposed solution is a new, heavy dark matter particle that is long-lived but not necessarily on cosmic timescales.

    This scenario is especially interesting for IceCube because the decay of dark matter can produce high-energy neutrinos. And some models predict that some or all of the highest energy neutrinos seen in IceCube could be the result of such decay.

    The IceCube Collaboration has tested a few of these models and found no evidence that the high-energy neutrinos can be attributed to the decay of heavy dark matter particles. This nondetection resulted in a new lower limit of seconds—about 10 billion times the age of the universe—for the lifetime of dark matter particles with a mass of 10 TeV or above. The paper [Search for neutrinos from decaying dark matter with IceCube,” The IceCube Collaboration: M. G. Aartsen et al.] summarizing these results has just been submitted to the European Physical Journal C.

    1
    Comparison of the lower lifetime limits with results obtained from gamma-ray telescopes: HAWC (Dwarf Spheroidal Galaxies), HAWC (Galactic Halo/Center) and Fermi/LAT. Image: IceCube Collaboration

    HAWC High Altitude Cherenkov Experiment, located on the flanks of the Sierra Negra volcano in the Mexican state of Puebla at an altitude of 4100 meters, at WikiMiniAtlas 18°59′41″N 97°18′30.6″W. searches for cosmic rays

    NASA/Fermi Gamma Ray Space Telescope


    NASA/Fermi LAT

    Following the current understanding of fundamental interactions, all matter is unstable—even protons are expected to decay, although we might never see the decay of one since its lifetime is about times the age of the universe.

    Relic particles that may make up galactic and extragalactic dark matter could have lifetimes short enough to allow us detect the high-energy neutrinos that they would inevitably produce. Indeed, several theoretical models ascribe the cosmic neutrino signal detected by IceCube at TeV-PeV energies to the decay of heavy dark matter.

    IceCube searched for heavy dark matter in two independent measurements—one using six years of muon-neutrino tracks from the Northern Hemisphere and the other using two years of all-flavor neutrino cascades from the full sky—and found that if dark matter neutrinos exist, then only 1 in every 10 billion dark matter particles could have decayed by now. These results also prove that IceCube is a high-precision particle detector that can rule out, or at least constrain, dark matter theoretical models.

    IceCube data has been fitted with different combinations of theoretical predictions for dark matter and a diffuse astrophysical component. “Using both tracks and cascades, data favors a small but nonsignificant contribution from dark matter,” explains Jöran Stettner, a graduate student at RWTH Aachen University in Germany and main author of this work. “However, adding a dark matter contribution does not significantly improve the description of the observed astrophysical neutrinos,” adds Stettner

    This nondetection is used to set the strongest bounds to date on the minimal lifetime of dark matter particles with masses above 10 TeV. “To explain that we have not seen neutrinos from the decay of heavy dark matter, the lifetime of the hypothetical particle has to be much larger than the age of the universe,” says Hrvoje Dujmovic, a graduate student from Sungkyunkwan University in Korea and also main author of this paper.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    IceCube is a particle detector at the South Pole that records the interactions of a nearly massless sub-atomic particle called the neutrino. IceCube searches for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter, and could reveal the new physical processes associated with the enigmatic origin of the highest energy particles in nature. In addition, exploring the background of neutrinos produced in the atmosphere, IceCube studies the neutrinos themselves; their energies far exceed those produced by accelerator beams. IceCube is the world’s largest neutrino detector, encompassing a cubic kilometer of ice.

     
  • richardmitnick 12:43 pm on April 11, 2018 Permalink | Reply
    Tags: , Dark Matter, , ,   

    From U Washington via UC Berkeley: “Start of most sensitive search yet for dark matter axion” 

    U Washington

    University of Washington

    UC Berkeley

    UC Berkeley

    April 9, 2018
    Robert Sanders
    rlsanders@berkeley.edu

    1
    The SQUID-based amplifier, which is about a millimeter square, is supercooled to be sensitive to faint signals from axions, should they convert into a microwave photon in the ADMX detector. Sean O’Kelley image

    Thanks to low-noise superconducting quantum amplifiers invented at UC Berkeley, physicists are now embarking on the most sensitive search yet for axions, one of today’s top candidates for dark matter.

    The Axion Dark Matter Experiment (ADMX) reported results today showing that it is the world’s first and only experiment to have achieved the necessary sensitivity to “hear” the telltale signs of dark matter axions.

    The milestone is the result of more than 30 years of research and development, with the latest piece of the puzzle coming in the form of a quantum device that allows ADMX to listen for axions more closely than any experiment ever built.

    John Clarke, a professor of physics in the graduate school at UC Berkeley and a pioneer in the development of sensitive magnetic detectors called SQUIDs (superconducting quantum interference devices), developed the amplifier two decades ago. ADMX scientists, with Clarke’s input, have now incorporated it into the ADMX detector at the University of Washington, Seattle, and are ready to roll.

    “ADMX is a complicated and quite expensive piece of machinery, so it took a while to build a suitable detector so that they could put the SQUID amplifier on it and demonstrate that it worked as advertised. Which it did,” Clarke said.

    The ADMX team published their results online today in the journal Physical Review Letters.

    “This result signals the start of the true hunt for axions,” said Andrew Sonnenschein at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois, the operations manager for ADMX. “If dark matter axions exist within the frequency band we will be probing for the next few years, then it’s only a matter of time before we find them.”

    Dark matter: MACHOs, WIMPs or axions?

    U Washington ADMX cutaway rendering of the ADMX detector

    Dark matter is the missing 84 percent of matter in the universe, and physicists have looked extensively for many possible candidates, most prominently massive compact halo objects, or MACHOs, and weakly interacting massive particles, or WIMPs. Despite decades of searching for MACHOs and WIMPs, scientists have struck out; they can see the effects of dark matter in the universe, in how galaxies and stars within galaxies move, but they can’t see dark matter itself.

    Axions are becoming the favored alternative, in part because their existence would also solve problems with the standard model of particle physics today, including the fact that the neutron should have an electric dipole moment, but doesn’t.

    Like other dark-matter candidates, axions are everywhere but difficult to detect. Because they interact with ordinary matter so rarely, they stream through space, even passing through the Earth, without “touching” ordinary matter. ADMX employs a strong magnetic field and a tuned, reflective box to encourage axions to convert to microwave-frequency photons, and uses the quantum amplifier to “listen” for them. All this is done at the lowest possible temperature to reduce background noise.

    Clarke learned of a key stumbling block for ADMX in 1994, when meeting with physicist Leslie Rosenberg, now a professor at the University of Washington and chief scientist for ADMX, and Karl van Bibber, now chair of UC Berkeley’s Department of Nuclear Engineering. Because the axion signal would be very faint, any detector would have to be very cold and “quiet.” Noise from heat, or thermal radiation, is easy to eliminate by cooling the detector down to 0.1 Kelvin, or roughly 460 degrees below zero Fahrenheit. But eliminating the noise from standard semiconductor transistor amplifiers proved difficult.

    They asked Clarke, would SQUID amplifiers solve this problem?

    Supercold amplifiers lower noise to absolute limit

    Though he had built SQUID amplifiers that worked up to 100 MHz frequencies, none worked at the gigahertz frequencies needed, so he set to work to build one. By 1998, he and his collaborators had solved the problem, thanks in large part to initial funding from the National Science Foundation and subsequent funding from the Department of Energy (DOE) through Lawrence Berkeley National Laboratory. The amplifiers on ADMX were funded by DOE through the University of Washington.


    Listening for dark matter: How ADMX employs cold cavities and SQUID amplifiers to find the elusive axion. Courtesy of University of Washington, Seattle.

    Clarke and his group showed that, cooled to temperatures of tens of milliKelvin above absolute zero, the Microstrip SQUID Amplifier (MSA) could achieve a noise that was quantum limited, that is, limited only by Heisenberg’s Uncertainty Principle.

    “You can’t do better than that,” Clarke said.

    This much quieter technology, combined with the refrigeration unit, reduced the noise by a factor of about 30 at 600 MHz so that a signal from the axion, if there is one, should come through loud and clear. The MSA currently in operation on ADMX was fabricated by Gene Hilton at the National Institute of Standards and Technology in Boulder, Colorado, and tested, calibrated and packaged by Sean O’Kelley, a graduate student in Clarke’s research group at UC Berkeley.

    The ADMX team plans to slowly tune through millions of frequencies in hopes of hearing a clear tone from photons produced by axion decay.

    “This result plants a flag,” said Rosenberg. “It tells the world that we have the sensitivity, and have a very good shot at finding the axion. No new technology is needed. We don’t need a miracle anymore, we just need the time.”

    Clarke noted too that the high-frequency, low-noise quantum SQUID amplifiers he invented for ADMX have since been employed in another hot area of physics, to read out the superconducting quantum bits, or qubits, for quantum computers of the future.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us — the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 3:39 pm on April 10, 2018 Permalink | Reply
    Tags: Baryonic acoustic oscillations, BOSS - Baryon Oscillation Spectroscopic Survey, , Dark Matter, , Filament structures in the cosmic web, , Tiny Distortions in Universe’s Oldest Light Reveal Clearer Picture of Strands in Cosmic Web,   

    From LBNL: “Tiny Distortions in Universe’s Oldest Light Reveal Clearer Picture of Strands in Cosmic Web” 

    Berkeley Logo

    Berkeley Lab

    April 10, 2018

    Glenn Roberts Jr.
    geroberts@lbl.gov
    (510) 486-5582

    1
    In this illustration, the trajectory of cosmic microwave background (CMB) light is bent by structures known as filaments that are invisible to our eyes, creating an effect known as weak lensing captured by the Planck satellite (left), a space observatory. Researchers used computers to study this weak lensing of the CMB and produce a map of filaments, which typically span hundreds of light years in length. (Credit: Siyu He, Shadab Alam, Wei Chen, and Planck/ESA)

    Cosmic Background Radiation per ESA/Planck


    ESA/Planck

    Weak gravitational lensing NASA/ESA Hubble

    Scientists have decoded faint distortions in the patterns of the universe’s earliest light to map huge tubelike structures invisible to our eyes – known as filaments – that serve as superhighways for delivering matter to dense hubs such as galaxy clusters.

    The international science team, which included researchers from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, analyzed data from past sky surveys using sophisticated image-recognition technology to home in on the gravity-based effects that identify the shapes of these filaments. They also used models and theories about the filaments to help guide and interpret their analysis.

    Published April 9 in the journal Nature Astronomy, the detailed exploration of filaments will help researchers to better understand the formation and evolution of the cosmic web – the large-scale structure of matter in the universe – including the mysterious, unseen stuff known as dark matter that makes up about 85 percent of the total mass of the universe.

    Cosmic web Millenium Simulation Max Planck Institute for Astrophysics

    Dark matter cosmic web and the large-scale structure it forms The Millenium Simulation, V. Springel et al


    Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016

    Dark matter constitutes the filaments – which researchers learned typically stretch and bend across hundreds of millions of light years – and the so-called halos that host clusters of galaxies are fed by the universal network of filaments. More studies of these filaments could provide new insights about dark energy, another mystery of the universe that drives its accelerating expansion.

    Filament properties could also put gravity theories to the test, including Einstein’s theory of general relativity, and lend important clues to help solve an apparent mismatch in the amount of visible matter predicted to exist in the universe – the “missing baryon problem.”

    “Usually researchers don’t study these filaments directly – they look at galaxies in observations,” said Shirley Ho, a senior scientist at Berkeley Lab and Cooper-Siegel associate professor of physics at Carnegie Mellon University who led the study. “We used the same methods to find the filaments that Yahoo and Google use for image recognition, like recognizing the names of street signs or finding cats in photographs.”

    2
    Filament structures in the cosmic web are shown at different time periods, ranging from when the universe was 12.3 billion years old (left) to when the universe was 7.4 billion years old (right). The area in the animation spans 7,500 square degrees of space. Evidence is strongest for the filament structures represented in blue. Other likely filament structures are shaded purple, magenta, and red. (Credit: Yen-Chi Chen and Shirley Ho)

    The study used data from the Baryon Oscillation Spectroscopic Survey, or BOSS, an Earth-based sky survey that captured light from about 1.5 million galaxies to study the universe’s expansion and the patterned distribution of matter in the universe set in motion by the propagation of sound waves, or “baryonic acoustic oscillations,” rippling in the early universe.

    BOSS Supercluster Baryon Oscillation Spectroscopic Survey (BOSS)

    The BOSS survey team, which featured Berkeley Lab scientists in key roles, produced a catalog of likely filament structures that connected clusters of matter that researchers drew from in the latest study.

    Researchers also relied on precise, space-based measurements of the cosmic microwave background, or CMB, which is the nearly uniform remnant signal from the first light of the universe. While this light signature is very similar across the universe, there are regular fluctuations that have been mapped in previous surveys.

    In the latest study, researchers focused on patterned fluctuations in the CMB. They used sophisticated computer algorithms to seek out the imprint of filaments from gravity-based distortions in the CMB, known as weak lensing effects, that are caused by the CMB light passing through matter.

    Since galaxies live in the densest regions of the universe, the weak lensing signal from the deflection of CMB light is strongest from those parts. Dark matter resides in the halos around those galaxies, and was also known to spread from those denser areas in filaments.

    “We knew that these filaments should also cause a deflection of CMB and would also produce a measurable weak gravitational lensing signal,” said Siyu He, the study’s lead author who is a Ph.D. researcher from Carnegie Mellon University – she is now at Berkeley Lab and is also affiliated with UC Berkeley. The research team used statistical techniques to identify and compare the “ridges,” or points of higher density that theories informed them would point to the presence of filaments.

    “We were not just trying to ‘connect the dots’ – we were trying to find these ridges in the density, the local maximum points in density,” she said. They checked their findings with other filament and galaxy cluster data, and with “mocks,” or simulated filaments based on observations and theories. The team used large cosmological simulations generated at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), for example, to check for errors in their measurements.

    NERSC Cray XC40 Cori II supercomputer

    LBL NERSC Cray XC30 Edison supercomputer


    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF


    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    The filaments and their connections can change shape and connections over time scales of hundreds of millions of years. The competing forces of the pull of gravity and the expansion of the universe can shorten or lengthen the filaments.

    “Filaments are this integral part of the cosmic web, though it’s unclear what is the relationship between the underlying dark matter and the filaments,” and that was a primary motivation for the study, said Simone Ferraro, one of the study’s authors who is a Miller postdoctoral fellow at UC Berkeley’s Center for Cosmological Physics.

    Scientists have decoded faint distortions in the patterns of the universe’s earliest light to map huge tubelike structures invisible to our eyes – known as filaments – that serve as superhighways for delivering matter to dense hubs such as galaxy clusters.

    The international science team, which included researchers from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, analyzed data from past sky surveys using sophisticated image-recognition technology to home in on the gravity-based effects that identify the shapes of these filaments. They also used models and theories about the filaments to help guide and interpret their analysis.

    Published April 9 in the journal Nature Astronomy, the detailed exploration of filaments will help researchers to better understand the formation and evolution of the cosmic web – the large-scale structure of matter in the universe – including the mysterious, unseen stuff known as dark matter that makes up about 85 percent of the total mass of the universe.

    Dark matter constitutes the filaments – which researchers learned typically stretch and bend across hundreds of millions of light years – and the so-called halos that host clusters of galaxies are fed by the universal network of filaments. More studies of these filaments could provide new insights about dark energy, another mystery of the universe that drives its accelerating expansion.

    Filament properties could also put gravity theories to the test, including Einstein’s theory of general relativity, and lend important clues to help solve an apparent mismatch in the amount of visible matter predicted to exist in the universe – the “missing baryon problem.”

    “Usually researchers don’t study these filaments directly – they look at galaxies in observations,” said Shirley Ho, a senior scientist at Berkeley Lab and Cooper-Siegel associate professor of physics at Carnegie Mellon University who led the study. “We used the same methods to find the filaments that Yahoo and Google use for image recognition, like recognizing the names of street signs or finding cats in photographs.”
    Image – Filament structures in the cosmic web are shown at different time periods: ranging from when the was 12.3 billion years old (left) to when the universe was 7.4 billion years old. The area in the animation spans 7,500 square degrees of space. Evidence is strongest for the filament structures represented in blue – other likely filament structures are shaded pink and red. (Credit: Yen-Chi Chen and Shirley Ho)

    Filament structures in the cosmic web are shown at different time periods, ranging from when the universe was 12.3 billion years old (left) to when the universe was 7.4 billion years old (right). The area in the animation spans 7,500 square degrees of space. Evidence is strongest for the filament structures represented in blue. Other likely filament structures are shaded purple, magenta, and red. (Credit: Yen-Chi Chen and Shirley Ho)

    The study used data from the Baryon Oscillation Spectroscopic Survey, or BOSS, an Earth-based sky survey that captured light from about 1.5 million galaxies to study the universe’s expansion and the patterned distribution of matter in the universe set in motion by the propagation of sound waves, or “baryonic acoustic oscillations,” rippling in the early universe.

    The BOSS survey team, which featured Berkeley Lab scientists in key roles, produced a catalog of likely filament structures that connected clusters of matter that researchers drew from in the latest study.

    Researchers also relied on precise, space-based measurements of the cosmic microwave background, or CMB, which is the nearly uniform remnant signal from the first light of the universe. While this light signature is very similar across the universe, there are regular fluctuations that have been mapped in previous surveys.

    In the latest study, researchers focused on patterned fluctuations in the CMB. They used sophisticated computer algorithms to seek out the imprint of filaments from gravity-based distortions in the CMB, known as weak lensing effects, that are caused by the CMB light passing through matter.

    Since galaxies live in the densest regions of the universe, the weak lensing signal from the deflection of CMB light is strongest from those parts. Dark matter resides in the halos around those galaxies, and was also known to spread from those denser areas in filaments.

    “We knew that these filaments should also cause a deflection of CMB and would also produce a measurable weak gravitational lensing signal,” said Siyu He, the study’s lead author who is a Ph.D. researcher from Carnegie Mellon University – she is now at Berkeley Lab and is also affiliated with UC Berkeley. The research team used statistical techniques to identify and compare the “ridges,” or points of higher density that theories informed them would point to the presence of filaments.

    “We were not just trying to ‘connect the dots’ – we were trying to find these ridges in the density, the local maximum points in density,” she said. They checked their findings with other filament and galaxy cluster data, and with “mocks,” or simulated filaments based on observations and theories. The team used large cosmological simulations generated at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), for example, to check for errors in their measurements.

    The filaments and their connections can change shape and connections over time scales of hundreds of millions of years. The competing forces of the pull of gravity and the expansion of the universe can shorten or lengthen the filaments.

    “Filaments are this integral part of the cosmic web, though it’s unclear what is the relationship between the underlying dark matter and the filaments,” and that was a primary motivation for the study, said Simone Ferraro, one of the study’s authors who is a Miller postdoctoral fellow at UC Berkeley’s Center for Cosmological Physics.


    Visualizing the cosmic web: This computerized simulation by the Virgo Consortium, called the Millennium Simulation, shows a web-like structure in the universe composed of galaxies and the dark matter around them. (Credit: Millennium Simulation Project)

    New data from existing experiments, and next-generation sky surveys such as the Berkeley Lab-led Dark Energy Spectroscopic Instrument (DESI) now under construction at Kitt Peak National Observatory in Arizona should provide even more detailed data about these filaments, he added.

    Researchers noted that this important step in sleuthing the shapes and locations of filaments should also be useful for focused studies that seek to identify what types of gases inhabit the filaments, the temperatures of these gases, and the mechanisms for how particles enter and move around in the filaments. The study also allowed them to determine the length of filaments.

    Siyu He said that resolving the filament structure can also provide clues to the properties and contents of the voids in space around the filaments, and “help with other theories that are modifications of general relativity,” she said.

    Ho added, “We can also maybe use these filaments to constrain dark energy – their length and width may tell us something about dark energy’s parameters.”

    Shadab Alam, a researcher at the University of Edinburgh and Royal Observatory in Edinburgh, U.K.; and Yen-Chi Chen, an assistant professor at the University of Washington, also participated in the study. The work was supported by the U.S. Department of Energy Office of Science, NASA, the National Science Foundation, the European Research Council, and the Miller Institute for Basic Research in Science at UC Berkeley.

    NERSC is a DOE Office of Science User Facility

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 7:26 pm on March 6, 2018 Permalink | Reply
    Tags: , , , , Dark Matter, , ,   

    From JHU HUB: “Evidence points to cooling property of dark matter, just as Johns Hopkins researchers predicted” 

    Johns Hopkins
    JHU HUB

    3.5.18
    Jon Schroeder

    A new measurement reported in Nature provides evidence for a new cooling property of dark matter posited by a collection of JHU professors, postdoctoral fellows, and students.

    2
    Artist’s rendering of how the first stars in the universe may have looked.
    N.R.Fuller/National Science Foundation/Nature

    The newly published paper, authored by a group of radio-astronomers at Arizona State University, describes the first measurement of the temperature of intergalactic hydrogen atoms from only 180 million years after the Big Bang.

    3
    A timeline of the universe, updated to show when the first stars emerged. This updated timeline of the universe reflects the recent discovery that the first stars emerged by 180 million years after the Big Bang. The research behind this timeline was conducted by Judd Bowman of Arizona State University and his colleagues, with funding from the National Science Foundation. Credit: N.R.Fuller, National Science Foundation

    Surprisingly, that temperature reading is colder than expected in the standard cosmological model. An interpretation paper by a researcher at Tel Aviv University explains that this result can be understood if these hydrogen atoms have some small heat exchange with the abundant dark matter in the universe. If this result is correct, it tells us something new about the physics of dark matter: Not only does dark matter have a gravitational pull that prevents galaxies from flying apart, it also has the ability to absorb heat energy.

    The theoretical research that suggested hydrogen might be cooled by dark matter, and thus produce the signal reported in Nature, was conducted at Johns Hopkins University.

    The initial paper exploring the possibility of heat exchange between hydrogen and dark matter was authored in 2013 by Marc Kamionkowski, a theoretical physicist in the university’s Department of Physics and Astronomy, and two of his collaborators. Two subsequent papers elaborated further this heat exchange and proposed to seek evidence for it in precisely the type of measurements reported in Nature. One of these papers was authored by Joseph Silk, a JHU research professor, and his collaborators; the other paper was written by JHU postdocs Yacine Ali-Haïmoud and Ely Kovetz and a graduate student, Julián Munoz.

    “This newly reported result, if confirmed by subsequent measurements, may well turn out to be a Rosetta stone for the nature of dark matter,” Kamionkowski said. “I think Joe and his collaborators, and Julian, Ely, and Yacine, deserve significant credit for suggesting these neutral-hydrogen measurements could be used in this way.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About the Hub

    We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

    In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

    We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

    At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

    There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
    • Michael McLaughlin 7:22 am on March 7, 2018 Permalink | Reply

      Fascinating read! The field of Dark Matter continues to offer valuable insight into the inner workings of the universe.

      Like

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: