Tagged: Dame Susan Jocelyn Bell Burnell Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:29 am on July 21, 2019 Permalink | Reply
    Tags: , , , , , Dame Susan Jocelyn Bell Burnell, , Is anyone out there?, , , Shelley Wright of UCSD and Niroseti at UCSC Lick Observatory's Nickel Telescope,   

    From WIRED: “An Alien-Hunting Tech Mogul May Help Solve a Space Mystery” 

    Wired logo

    From WIRED

    07.21.19
    Katia Moskvitch

    1
    Yuri Milner. Billy H.C. Kwok/Getty Images

    In spring 2007, David Narkevic, a physics student at West Virginia University, was sifting through reams of data churned out by the Parkes telescope—a dish in Australia that had been tracking pulsars, the collapsed, rapidly spinning cores of once massive stars.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    His professor, astrophysicist Duncan Lorimer, had asked him to search for a recently discovered type of ultra-rapid pulsar dubbed RRAT. But buried among the mountain of data, Narkevic found an odd signal that seemed to come from the direction of our neighboring galaxy, the Small Magellanic Cloud.

    smc

    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2

    The signal was unlike anything Lorimer had encountered before. Although it flashed only briefly, for just five milliseconds, it was 10 billion times brighter than a typical pulsar in the Milky Way galaxy. It was emitting in a millisecond as much energy as the sun emits in a month.

    What Narkevic and Lorimer found was the first of many bizarre, ultra-powerful flashes detected by our telescopes. For years the flashes first seemed either improbable or at least vanishingly rare. But now researchers have observed more than 80 of these Fast Radio Bursts, or FRBs. While astronomers once thought that what would be later dubbed the “Lorimer Burst” was a one-off, they now agree that there’s probably one FRB happening somewhere in the universe nearly every second.

    And the reason for this sudden glut of discoveries? Aliens. Well, not aliens per se, but the search for them. Among the scores of astronomers and researchers working tirelessly to uncover these enigmatic signals is an eccentric Russian billionaire who, in his relentless hunt for extraterrestrial life, has ended up partly bankrolling one of the most complex and far-reaching scans of our universe ever attempted.

    Ever since Narkevic spotted the first burst, scientists have been wondering what could produce these mesmerizing flashes in deep space. The list of possible sources is long, ranging from the theoretical to the simply unfathomable: colliding black holes, white holes, merging neutron stars, exploding stars, dark matter, rapidly spinning magnetars, and malfunctioning microwaves have all been proposed as possible sources.

    While some theories can now be rejected, many live on. Finally though, after more than a decade of searching, a new generation of telescopes is coming online that could help researchers to understand the mechanism that is producing these ultra-powerful bursts. In two recent back-to-back papers, one published last week and one today, two different arrays of radio antennas—the Australian Square Kilometer Array Pathfinder (ASKAP) and Caltech’s Deep Synoptic Array 10 at the Owens Valley Radio Observatory (OVRO) in the US—have for the first time ever been able to precisely locate two different examples of these mysterious one-off FRBs.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    Caltech’s Deep Synoptic Array 10 dish array at Owens Valley Radio Observatory, near Big Pine, California USA, Altitude 1,222 m (4,009 ft

    Physicists are now expecting that two other new telescopes—Chime (the Canadian Hydrogen Intensity Mapping Experiment) in Canada and MeerKAT in South Africa—will finally tell us what produces these powerful radio bursts.

    CHIME Canadian Hydrogen Intensity Mapping Experiment -A partnership between the University of British Columbia, the University of Toronto, McGill University, Yale and the National Research Council in British Columbia, at the Dominion Radio Astrophysical Observatory in Penticton, British Columbia, CA Altitude 545 m (1,788 ft)

    SKA Meerkat telescope(s), 90 km outside the small Northern Cape town of Carnarvon, SA

    But Narkevic’s and Lorimer’s discovery nearly got binned. For a few months after they first spotted the unusually bright burst, it looked like the findings wouldn’t make it any further than Lorimer’s office walls, just beyond the banks of the Monongahela River that slices through the city of Morgantown in West Virginia.

    Soon after detecting the burst, Lorimer asked his former graduate adviser Matthew Bailes, an astronomer at Swinburne University in Melbourne, to help him plot the signal—which to astronomers is now a famous and extremely bright energy peak, rising well above the power of any known pulsar. The burst seemed to come from much, much further away than where the Parkes telescope would usually find pulsars; in this case, probably from another galaxy, potentially billions of light-years away.

    “It just looked beautiful. I was like, ‘Whoa, that’s amazing.’ We nearly fell off our chairs,” recalls Bailes. “I had trouble sleeping that night because I thought if this thing is really that far away and that insanely bright, it’s an amazing discovery. But it better be right.”

    Within weeks, Lorimer and Bailes crafted a paper and sent it to Nature—and swiftly received a rejection. In a reply, a Nature editor raised concerns that there had been only one event, which appeared way brighter than seemed possible. Bailes was disappointed, but he had been in a worse situation before. Sixteen years earlier, he and fellow astronomer Andrew Lyne had submitted a paper claiming to have spotted the first ever planet orbiting another star—and not just any star but a pulsar. The scientific discovery turned out to be a fluke of their telescope. Months later, Lyne had to stand up in front of a large audience at an American Astronomical Society conference and announce their mistake. “It’s science. Anything can happen,” says Bailes. This time around, Bailes and Lorimer were certain that they had it right and decided to send their FRB paper to another journal, Science.

    After it was published, the paper immediately stirred interest; some scientists even wondered whether the mysterious flash was an alien communication. This wasn’t the first time that astronomers had reached for aliens as the answer for a seemingly inexplicable signal from space; in 1967, when researchers detected what turned out to be the first pulsar, they also wondered whether it could be a sign of intelligent life.

    Just like Narkevic decades later, Cambridge graduate student Jocelyn Bell had stumbled across a startling signal in the reams of data gathered by a radio array in rural Cambridgeshire.

    Women in STEM – Dame Susan Jocelyn Bell Burnell

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell at work on first plusar chart 1967 pictured working at the Four Acre Array in 1967. Image courtesy of Mullard Radio Astronomy Observatory.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    Not much of the array is left today; in the fields near the university where it once stood, there’s an overgrown hedge, hiding a collection of wonky, sad-looking wooden poles that were once covered in a web of copper wire designed to detect radio waves from faraway sources. The wire has long been stolen and sold on to scrap metal dealers.

    “We did seriously consider the possibility of aliens,” Bell says, now an emeritus professor at Oxford University. Tellingly, the first pulsar was half-jokingly dubbed LGM-1 —for little green men. With only half a year left until the defense of her PhD thesis, she was less than thrilled that “some silly lot of little green men” were using her telescope and her frequency to signal to planet Earth. Why would aliens “be using a daft technique signaling to what was probably still a rather inconspicuous planet?” she once wrote in an article for Cosmic Search Magazine.

    Just a few weeks later, however, Bell spotted a second pulsar, and then a third just as she got engaged, in January 1968. Then, as she was defending her thesis and days before her wedding, she discovered a fourth signal in yet another part of the sky. Proof that pulsars had to be a natural phenomenon of an astrophysical origin, not a signal from intelligent life. Each new signal made the prospect even more unlikely that groups of aliens, separated by the vastness of the space, were somehow coordinating their efforts to send a message to an uninteresting hunk of rock on the outskirts of the Milky Way.

    Lorimer wasn’t so lucky. After the first burst, six years would pass without another detection. Many scientists began to lose interest. The microwave explanation persisted for a while, says Lorimer, as skeptics sneered at the notion of finding a burst that was observed only once. It didn’t help that in 2010 Parkes detected 16 similar pulses, which were quickly proven to be indeed caused by the door of a nearby microwave oven that had been opened suddenly during its heating cycle.

    2
    Yuri Milner on stage with Mark Zuckerberg at a Breakthrough Prize event in 2017. Kimberly White/Getty Images

    When Avi Loeb first read of Lorimer’s unusual discovery, he too wondered if it was nothing more than the result of some errant wiring or miscalibrated computer. The chair of the astronomy department at Harvard happened to be in Melbourne in November 2007, just as Lorimer’s and Bailes’ paper appeared in Science, so he had a chance to discuss the odd burst with Bailes. Loeb thought the radio flash was a compelling enigma—but not much more than that.

    Still, that same year Loeb wrote a theoretical paper arguing that radio telescopes built to detect very specific hydrogen emissions from the early universe would also be able to eavesdrop on radio signals from alien civilizations up to about 10 light-years away. “We have been broadcasting for a century—so another civilization with the same arrays can see us from a distance out to 50 light-years,” was Loeb’s reasoning. He followed up with another paper on the search for artificial lights in the solar system. There, Loeb showed that a city as bright as Tokyo could be detected with the Hubble Space Telescope even if it was located right at the edge of the solar system. In yet another paper he argued how to detect industrial pollution in planetary atmospheres.

    Ever since he was a little boy growing up in Israel, Loeb has been fascinated with life—on Earth and elsewhere in the universe. “Currently, the search for microbial life is part of the mainstream in astronomy—people are looking for the chemical fingerprints of primitive life in the atmosphere of exoplanets,” says Loeb, who first dabbled in philosophy before his degree in physics.

    But the search for intelligent life beyond Earth should also be part of the mainstream, he argues. “There is a taboo, it’s a psychological and sociological problem that people have. It’s because there is the baggage of science fiction and UFO reports, both of which have nothing to do with what actually goes on out there in space,” he adds. He’s frustrated with having to explain—and defend—his point of view. After all, he says, billions have been poured into the search for dark matter over decades with zero results. Should the search for extraterrestrial intelligence, more commonly known as SETI, be regarded as even more fringe than this fruitless search?

    Lorimer didn’t follow Loeb’s SETI papers closely. After six long and frustrating years, his luck turned in 2013, when a group of his colleagues—including Bailes—spotted four other bright radio flashes in Parkes’ data. Lorimer felt vindicated and relieved. More detections followed and the researchers were on a roll: At long last, FRBs had been confirmed as a real thing. After the first event was dubbed “Lorimer’s Burst,” it swiftly made it onto the physics and astronomy curricula of universities around the globe. In physics circles, Lorimer was elevated to the position of a minor celebrity.

    Keeping an eye on events from a distance was Loeb. One evening in February 2014, at a dinner in Boston, he started chatting to a charismatic Russian-Israeli called Yuri Milner, a billionaire technology investor with a background in physics and a well-known name in Silicon Valley. Ever since he could remember, Milner had been fascinated with life beyond Earth, a subject close to Loeb’s heart; the two instantly hit it off.

    Milner came to see Loeb again in May the following year, at Harvard, and asked the academic how long it would take to travel to Alpha Centauri, the star system closest to Earth.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Loeb replied he would need half a year to identify the technology that would allow humans to get there in their lifetime. Milner then asked Loeb to lead Breakthrough Starshot, one of five Breakthrough Initiatives the Russian oligarch was about to announce in a few weeks—backed by $100 million of his own money and all designed to support SETI.

    Breakthrough Starshot Initiative

    Breakthrough Starshot

    ESO 3.6m telescope & HARPS at LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    SPACEOBS, the San Pedro de Atacama Celestial Explorations Observatory is located at 2450m above sea level, north of the Atacama Desert, in Chile, near to the village of San Pedro de Atacama and close to the border with Bolivia and Argentina

    SNO Sierra Nevada Observatory is a high elevation observatory 2900m above the sea level located in the Sierra Nevada mountain range in Granada Spain and operated maintained and supplied by IAC

    Teide Observatory in Tenerife Spain, home of two 40 cm LCO telescopes

    Observatori Astronòmic del Montsec (OAdM), located in the town of Sant Esteve de la Sarga (Pallars Jussà), 1,570 meters on the sea level

    Bayfordbury Observatory,approximately 6 miles from the main campus of the University of Hertfordshire

    Fast-forward six months, and at the end of December 2015 Loeb got a call asking him to prepare a presentation summarizing his recommended technology for the Alpha Centauri trip. Loeb was visiting Israel and about to head on a weekend trip to a goat farm in the southern part of the country. “The following morning, I was sitting next to the reception of the farm—the only location with internet connectivity—and typing the PowerPoint presentation that contemplated a lightsail technology for Yuri’s project,” says Loeb. He presented it at Milner’s home in Moscow two weeks later, and the Breakthrough Initiatives were announced with fanfare in July 2015.

    The initiatives were an adrenaline shot in the arm of the SETI movement—the largest ever private cash injection into the search for aliens. One of the five projects is Breakthrough Listen, which was championed, among others, by the famous astronomer Stephen Hawking (who has died since) and British astronomer royal Martin Rees.

    Breakthrough Listen Project

    1

    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA




    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia


    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Newly added

    CfA/VERITAS, a major ground-based gamma-ray observatory with an array of four 12m optical reflectors for gamma-ray astronomy in the GeV – TeV energy range. Located at Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, US in AZ, USA, Altitude 2,606 m (8,550 ft)

    Echoing the film Contact, with Jodie Foster playing an astronomer listening out for broadcasts from aliens (loosely based on real-life SETI astronomer Jill Tarter), the project uses radio telescopes around the world to look for any signals from extraterrestrial intelligence.

    Jill Tarter Image courtesy of Jill Tarter

    After the Breakthrough Initiatives were announced, Milner’s money quickly got invested into the deployment of cutting-edge technology—such as computer storage and new receivers—at existing radio telescopes, including Green Bank in West Virginia and Parkes in Australia; whether the astronomers using these observatories believed in alien life or not, they welcomed the investment with open arms. It didn’t take long to receive the first scientific returns.

    After the Breakthrough Initiatives were announced, Milner’s money quickly got invested into the deployment of cutting-edge technology—such as computer storage and new receivers—at existing radio telescopes, including Green Bank in West Virginia and Parkes in Australia; whether the astronomers using these observatories believed in alien life or not, they welcomed the investment with open arms. It didn’t take long to receive the first scientific returns.

    In August 2015 one of the previously spotted FRBs decided to make a repeat appearance, triggering headlines worldwide because it was so incredibly powerful, brighter than the Lorimer Burst and any other FRB. It was dubbed “the repeater” and is also known as the Spitler Burst, because it was first discovered by astronomer Laura Spitler of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

    Max Planck Institute for Radio Astronomy

    Max Planck Institute for Radio Astronomy Bonn Germany

    Over the next few months, the burst flashed many more times, not regularly, but often enough to allow researchers to determine its host galaxy and consider its possible source—likely a highly magnetized, young, rapidly spinning neutron star (or magnetar).

    This localization was done with the Very Large Array (VLA), a group of 27 radio dishes in New Mexico that feature heavily in the film Contact. But the infrastructure at Green Bank Telescope upgraded by Breakthrough Listen caught the repeating flashes many more times, says Lorimer—allowing researchers to study its host galaxy more in detail. “It’s wonderful—they have a mission to find ET, but along the way they want to show that this is producing other useful results for the scientific community,” he adds. Detecting FRBs has quickly become one of the main objectives of Breakthrough Listen.

    Netting the repeater was both a boon and a hindrance—on the one hand, it eliminated models that cataclysmic events such as supernova explosions were causing FRBs; after all, these can happen only once. On the other hand, it deepened the mystery. The repeater lives in a small galaxy with a lot of star formation—the kind of environment where a neutron star could be born, hence the magnetar model. But what about all the other FRBs that don’t repeat?

    Researchers started to think that perhaps there were different types of these bursts, each with its own source. Scientific conferences still buzz with talks of mights and might-nots, with physicists eagerly debating possible sources of FRBs in corridors and at conference bars. In March 2017, Loeb caused a media frenzy by suggesting that FRBs could actually be of alien origin—solar-powered radio transmitters that might be interstellar light sails pushing huge spaceships across galaxies.

    That Parkes is part of the SETI project is obvious to any visitor. Walking up the flight of stairs to the circular operating tower below the dish, every button, every door, and every wall nostalgically screams 1960s, until you reach the control room full of modern screens where astronomers remotely control the antenna to observe pulsars.

    Up another flight of stairs is the data storage room, stacked with columns and columns of computer drives full of blinking lights. One thick column of hard drives is flashing neon blue, put there by Breakthrough Listen as part of a cutting-edge recording system designed to help astronomers search for every possible radio signal in 12 hours of data, much more than ever before. Bailes, who now splits his time between FRB search and Breakthrough Listen, takes a smiling selfie in front of Milner’s drives.

    While many early FRB discoveries were made with veteran telescopes—single mega dishes like Parkes and Green Bank—new telescopes, some with the financial backing of Breakthrough Listen, are now revolutionizing the FRB field.

    Deep in South African’s semi-desert region of the Karoo, eight hours by car from Cape Town, stands an array of 64 dishes, permanently tracking space. They are much smaller than their mega-dish cousins, and all work in unison. This is MeerKAT [above], another instrument in Breakthrough Listen’s growing worldwide network of giant telescopes. Together with a couple of other next-generation instruments, this observatory might hopefully tell us one day, probably in the next decade, what FRBs really are.

    The name MeerKAT means “More KAT,” a follow up to KAT 7, the Karoo Array Telescope of seven antennas—although real meerkats do lurk around the remote site, sharing the space with wild donkeys, horses, snakes, scorpions and kudus, moose-sized mammals with long, spiraling antlers. Visitors to MeerKAT are told to wear safety leather boots with steel toes as a precaution against snakes and scorpions. They’re also warned about the kudus, which are very protective of their calves and recently attacked the pickup truck of a security guard, turning him and his car over. Around MeerKAT there is total radio silence; all visitors have to switch off their phones and laptops. The only place with connectivity is an underground “bunker” shielded by 30-centimeter-thick walls and a heavy metal door to protect the sensitive antennas from any human-made interference.

    MeerKAT is one of the two precursors to a much bigger future radio observatory—the SKA, or Square Kilometer Array.

    SKA Square Kilometer Array

    SKA South Africa

    Once SKA is complete, scientists will have added another 131 antennas in the Karoo. The first SKA dish has just been shipped to the MeerKAT site from China. Each antenna will take several weeks to assemble, followed by a few more months of testing to see whether it actually works the way it should. If all goes well, more will be commissioned, built, and shipped to this faraway place, where during the day the dominant color is brown; as the sun sets, however, the MeerKAT dishes dance in an incredible palette of purples, reds, and pinks, as they welcome the Milky Way stretching its starry path just above. MeerKAT will soon be an incredible FRB machine, says Bailes.

    There is another SKA precursor—ASKAP in Australia.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    Back in 2007, when Lorimer was mulling over the Nature rejection, Ryan Shannon was finishing his PhD in physics at Cornell University in New York—sharing the office with Laura Spitler, who would later discover the Spitler Burst. Shannon had come to the US from Canada, growing up in a small town in British Columbia. About half an hour drive from his home is the Dominion and Radio Astronomical Observatory (DRAO)—a relatively small facility that was involved in building equipment for the VLA.

    5

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    Subconsciously, says Shannon, DRAO must have impacted his choice of career. And it was at DRAO that a few years later a totally new telescope—Chime [above]—would be built that would greatly impact the nascent field of FRB research. But in 2007 that was still to come. After graduating from Cornell in 2011, Shannon decided not to stay close to home—“something my mum would’ve wanted.” Instead, he moved to Australia and ultimately to Swinburne University on the outskirts of Melbourne.

    Shannon joined Bailes’ team in 2017—and by then astronomers had begun to understand why they weren’t detecting more FRBs, even though they were already estimating that these flashes were happening hundreds of times every day, if not more. “Our big radio telescopes don’t have wide fields of view, they can’t see the entire sky—that’s why we missed nearly all FRBs in the first decade of realizing these things exist,” says Shannon.

    When he, Bailes, and other FRB hunters saw the ultra-bright repeater, the Spitler Burst, they understood that there were fast radio bursts which could be found even without gigantic telescopes like Parkes, by using instruments that have a wider field of view. So they started building ASKAP [above]—a new observatory conceived in 2012 and recently completed in the remote Australian outback. It sports 36 dishes with a 12-meter diameter each, and just like with MeerKAT, they all work together.

    To get to ASKAP, in a very sparsely populated area in the Murchison Shire of Western Australia, one has to first fly to Perth, change for a smaller plane bound for Murchison, then squeeze into a really tiny single propeller plane, or drive for five hours across 150 kilometers of dirt roads. “When it rains, it turns to mud, and you can’t drive there,” says Shannon, who went to the ASKAP site twice, to introduce the local indigenous population to the new telescope constructed—with permission—on their land and see the remote, next-generation ultra-sensitive radio observatory for himself.

    MeerKAT and ASKAP bring two very different technological approaches to the hunt for FRBs. Both observatories look at the southern sky, which makes it possible to see the Milky Way’s bright core much better than in the northern hemisphere; they complement old but much upgraded observatories like Parkes and Arecibo in South America. But the MeerKAT dishes have highly sensitive receivers which are able to detect very distant objects, while ASKAP’s novel multi-pixel receivers on each dish offer a much wider field of view, enabling the telescope to find nearby FRBs more often.

    “ASKAP’s dishes are less sensitive, but we can observe a much larger portion of the sky,” says Shannon. “So ASKAP is going to be able to see things that are usually intrinsically brighter.” Together, the two precursors will be hunting for different parts of the FRB population—since “you want to understand the entire population to know the big picture.”

    MeerKAT only started taking data in February, but ASKAP has been busy scanning the universe for FRBs for a few years now. Not only has it already spotted about 30 new bursts, but in a new paper just released in Science, Shannon and colleagues have detailed a new way to localize them despite their short duration, which is a big and important step toward being able to determine what triggers this ultra-bright radiation. Think of ASKAP’s antennas as the eye of a fly; they can scan a wide patch of the sky to spot as many bursts as possible, but the antennas can all be made to point instantly in the same direction. This way, they make an image of the sky in real time, and spot a millisecond-long FRB as it washes over Earth. That’s what Shannon and his colleagues have done, and for the first time ever, managed to net one burst they named FRB 180924 and pinpoint its host galaxy, some 4 billion light-years away, all in real time.

    Another team, at Caltech’s Owens Valley Radio Observatory (OVRO) in the Sierra Nevada mountains in California, have also just caught a new burst and traced it back to its source, a galaxy 7.9 billion light years away.

    Caltech’s Deep Synoptic Array 10 dish array at Owens Valley Radio Observatory, near Big Pine, California USA, Altitude 1,222 m (4,009 ft

    And just like Shannon, they didn’t do it with a single dish telescope but a recently built array of 10 4.5-meter antennas called the Deep Synoptic Array-10. The antennas act together like a mile-wide dish to cover an area on the sky the size of 150 full moons. The telescope’s software then processes an amount of data equivalent to a DVD every second. The array is a precursor for the Deep Synoptic Array that, when built by 2021, will sport 110 radio dishes, and may be able to detect and locate more than 100 FRBs every year.

    What both ASKAP’s and OVRO’s teams found was that their presumably one-off bursts originated in galaxies very different from the home of the first FRB repeater. Both come from galaxies with very little star formation, similar to the Milky Way and very different from the home of the repeater, where stars are born at a rate of about a hundred times faster. The discoveries show that “every galaxy, even a run-of-the-mill galaxy like our Milky Way, can generate an FRB,” says Vikram Ravi, an astronomer at Caltech and part of the OVRO team.

    But the findings also mean that the magnetar model, accepted by many as the source of the repeating burst, does not really work for these one-off flashes. Perhaps, Shannon says, ASKAP’s burst could be the result of a merger of two neutron stars, similar to the one spotted two years ago by the gravitational wave detectors LIGO and Virgo in the US and Italy, because both host galaxies are very similar. “It’s a bit spooky that way,” says Shannon. One thing is clear though, he adds: The findings show that there is likely more than one type of FRBs.

    Back in Shannon’s hometown in Canada, the excitement has also been growing exponentially because of CHIME. Constructed at the same time as MeerKAT and ASKAP, this is a very different observatory; it has no dishes but antennas in the form of long buckets designed to capture light. In January, the CHIME team reported the detection of the second FRB repeater and 12 non-repeating FRBs. CHIME is expected to find many, many more bursts, and with ASKAP, MeerKAT and CHIME working together, astronomers hope to understand the true nature of the enigmatic radio flashes very soon.

    But will they fulfill Milner’s dream and successfully complete SETI, the search for extraterrestrial intelligence? Lorimer says that scientists hunting for FRBs and pulsars have for decades been working closely with colleagues involved in SETI projects.

    After all, Loeb’s models for different—alien—origins of FRBs are not fundamentally wrong. “The energetics when you consider what we know from the observations are consistent and there’s nothing wrong with that,” says Lorimer. “And as part of the scientific method, you definitely want to encourage those ideas.” He personally prefers to find the simplest natural explanation for the phenomena he observes in space—but until we manage to directly observe the source of these FRBs, all theoretical ideas should stand, as long as they are scientifically sound—whether they involve aliens or not.

    Any image repeats in this post were required for complete coverage.

    See the full article here .

    Totally missing from this article on SETI-

    SETI Institute


    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)

    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch).jpg

    Shelley Wright of UC San Diego, with NIROSETI, developed at U Toronto, at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz

    Laser SETI, the future of SETI Institute research

    SETI@home, a BOINC project originated in the Space Science Lab at UC Berkeley

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 6:45 pm on March 19, 2019 Permalink | Reply
    Tags: "Astronomers Find “Cannonball Pulsar” Speeding Through Space", , , , , Dame Susan Jocelyn Bell Burnell, , PSR J0002+6216,   

    From National Radio Astronomy Observatory: “Astronomers Find “Cannonball Pulsar” Speeding Through Space” 


    From National Radio Astronomy Observatory

    NRAO Banner

    March 19, 2019

    Dave Finley, Public Information Officer
    (575) 835-7302
    dfinley@nrao.edu

    Object got powerful “kick” from supernova explosion.

    1
    Credit: Composite by Jayanne English, University of Manitoba; F. Schinzel et al.; NRAO/AUI/NSF; DRAO/Canadian Galactic Plane Survey; and NASA/IRAS.

    Astronomers using the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) [below] have found a pulsar speeding away from its presumed birthplace at nearly 700 miles per second, with its trail pointing directly back at the center of a shell of debris from the supernova explosion that created it. The discovery is providing important insights into how pulsars — superdense neutron stars left over after a massive star explodes — can get a “kick” of speed from the explosion.

    Women in STEM – Dame Susan Jocelyn Bell Burnell

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    Dame Susan Jocelyn Bell Burnell at work on first plusar chart 1967 pictured working at the Four Acre Array in 1967. Image courtesy of Mullard Radio Astronomy Observatory.

    “This pulsar has completely escaped the remnant of debris from the supernova explosion,” said Frank Schinzel, of the National Radio Astronomy Observatory (NRAO). “It’s very rare for a pulsar to get enough of a kick for us to see this,” he added.

    The pulsar, dubbed PSR J0002+6216, about 6,500 light-years from Earth, was discovered in 2017 by a citizen-science project called Einstein@Home, running on BOINC software from UC Berkeley Space Science Center. That project uses computer time donated by volunteers to analyze data from NASA’s Fermi Gamma-ray Space Telescope. So far, using more than 10,000 years of computing time, the project has discovered a total of 23 pulsars.

    einstein@home

    NASA/Fermi Gamma Ray Space Telescope

    Radio observations with the VLA clearly show the pulsar outside the supernova remnant, with a tail of shocked particles and magnetic energy some 13 light-years long behind it. The tail points back toward the center of the supernova remnant.

    “Measuring the pulsar’s motion and tracing it backwards shows that it was born at the center of the remnant, where the supernova explosion occurred,” said Matthew Kerr, of the Naval Research Laboratory. The pulsar now is 53 light-years from the remnant’s center.

    “The explosion debris in the supernova remnant originally expanded faster than the pulsar’s motion,” said Dale Frail, of NRAO. “However, the debris was slowed by its encounter with the tenuous material in interstellar space, so the pulsar was able to catch up and overtake it,” he added.

    The astronomers said that the pulsar apparently caught up with the shell about 5,000 years after the explosion. The system now is seen about 10,000 years after the explosion.

    The pulsar’s speed of nearly 700 miles per second is unusual, the scientists said, with the average pulsar speed only about 150 miles per second. “This pulsar is moving fast enough that it eventually will escape our Milky Way Galaxy,” Frail said.

    Astronomers have long known that pulsars get a kick when born in supernova explosions, but still are unsure how that happens.

    “Numerous mechanisms for producing the kick have been proposed. What we see in PSR J0002+6216 supports the idea that hydrodynamic instabilities in the supernova explosion are responsible for the high velocity of this pulsar,” Frail said.

    “We have more work to do to fully understand what’s going on with this pulsar, and it’s providing an excellent opportunity to improve our knowledge of supernova explosions and pulsars,” Schinzel said.

    Schinzel, Kerr, and Frail worked with Urvashi Rau and Sanjay Bhatnagar, both of NRAO. The scientists are reporting their results at the High Energy Astrophysics Division meeting of the American Astronomical Society in Monterey, California, and have submitted a paper to the Astrophysical Journal Letters.

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

    The Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

    Einstein@Home is a World Year of Physics 2005 and an International Year of Astronomy 2009 project. It is supported by the American Physical Society (APS), the US National Science Foundation (NSF), the Max Planck Society (MPG), and a number of international organizations.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), and the Very Long Baseline Array (VLBA)*.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    NRAO VLBA

    NRAO VLBA

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    And the future Expanded Very Large Array (EVLA).

     
  • richardmitnick 11:58 am on December 24, 2018 Permalink | Reply
    Tags: , , ‘PulChron’ system measures the passing of time using millisecond-frequency radio pulses from multiple fast-spinning neutron stars, , , Dame Susan Jocelyn Bell Burnell, , ESA sets clock by distant spinning stars, ,   

    From European Space Agency: “ESA sets clock by distant spinning stars” 

    ESA Space For Europe Banner

    From European Space Agency

    24 December 2018

    ESA’s technical centre in the Netherlands has begun running a pulsar-based clock. The ‘PulChron’ system measures the passing of time using millisecond-frequency radio pulses from multiple fast-spinning neutron stars.

    Operating since the end of November, this pulsar-based timing system is hosted in the Galileo Timing and Geodetic Validation Facility of ESA’s ESTEC establishment, at Noordwijk in the Netherlands, and relies on ongoing observations by a five-strong array of radio telescopes across Europe.

    1
    Pulsar encased in supernova bubble

    Neutron stars are the densest form of observable matter in the cosmos, formed out of the collapsed core of exploding stars. Tiny in cosmic terms, on the order of a dozen kilometres in diameter, they still have a higher mass than Earth’s Sun.

    A pulsar is a type of rapidly rotating neutron star with a magnetic field that emits a beam of radiation from its pole. Because of their spin – kept steady by their extreme density – pulsars as seen from Earth appear to emit highly regular radio bursts – so much so that in 1967 their discoverer, UK astronomer Jocelyn Bell Burnell, initially considered they might be evidence of ‘little green men’.

    Women in STEM – Dame Susan Jocelyn Bell Burnell

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    3
    ESTEC

    “PulChron aims to demonstrate the effectiveness of a pulsar-based timescale for the generation and monitoring of satellite navigation timing in general, and Galileo System Time in particular,” explains navigation engineer Stefano Binda, overseeing the PulChron project.

    “A timescale based on pulsar measurements is typically less stable than one using atomic or optical clocks in the short term but it could be competitive in the very long term, over several decades or more, beyond the working life of any individual atomic clock.

    “In addition, this pulsar time scale works quite independently of whatever atomic clock technology is employed – it doesn’t rely on switches between atomic energy states but the rotation of neutron stars.”

    PulChron sources batches of pulsar measurements from the five 100-m class radio telescopes comprising the European Pulsar Timing Array – the Westerbork Synthesis Radio Telescope in the Netherlands, Germany’s Effelsberg Radio Telescope, the Lovell Telescope in the UK , France’s Nancay Radio Telescope and the Sardinia Radio Telescope in Italy.

    Westerbork Synthesis Radio Telescope, an aperture synthesis interferometer near World War II Nazi detention and transit camp Westerbork, north of the village of Westerbork, Midden-Drenthe, in the northeastern Netherlands

    MPIFR/Effelsberg Radio Telescope, in the Ahrgebirge (part of the Eifel) in Bad Münstereifel, Germany

    3
    Lovell Telescope, Jodrell Bank

    Nancay decametric radio telescope located in the small commune of Nançay, two hours’ drive south of Paris, France

    Sardinia Radio Telescope based in Pranu Sanguni, near Sant’Andrea Frius and San Basilio, about 35 km north of Cagliari (Sardinia, Italy).

    This multinational effort monitors 18 highly precise pulsars in the European sky to search out any timing anomalies, potential evidence of gravitational waves – fluctuations in the fabric of spacetime caused by powerful cosmic events.

    For PulChron, these radio telescope measurements are used to steer the output of an active hydrogen maser atomic clock with equipment based in the Galileo Timing and Geodetic Validation Facility – combining its extreme short- and medium-term stability with the longer-term reliability of the pulsars. A ‘paper clock’ record is also generated out of the measurements, for subsequent post-processing checks.

    4
    Atomic clocks at ESTEC

    ESA established the Timing and Geodetic Validation Facility in the early days of the Galileo programme, first to prepare for ESA’s two GIOVE test satellites and then in support of the world-spanning Galileo system, based on ‘Galileo System Time’ which needs to remain accurate to a few billionths of a second. The Facility continues to serve as an independent yardstick of Galileo performance, linked to monitoring stations across the globe, as well as a tool for anomaly investigation.

    Stefano adds: “The TGVF provided a perfect opportunity to host the PulChron because it is capable of integrating such new elements with little effort, and has a long tradition in time applications, having been used even to synchronise time and frequency offset of the Galileo satellites themselves.”

    5
    PulChron setup

    PulChron’s accuracy is being monitored down to a few billionths of a second using ESA’s adjacent UTC Laboratory, which harnesses three such atomic hydrogen maser clocks plus a trio of caesium clocks to produce a highly-stable timing signal, contributing to the setting of Coordinated Universal Time, UTC – the world’s time.

    The gradual diversion of pulsar time from ESTEC’s UTC time can therefore be tracked – anticipated at a rate of around 200 trillionths of a second daily.

    This project is supported through ESA’s Navigation Innovation and Support Programme (NAVISP), applying ESA’s hard-won expertise from Galileo and Europe’s EGNOS satellite augmentation system to new satellite navigation and – more widely – positioning, navigation and timing challenges.

    PulChron is being led for ESA by GMV in the UK in collaboration with the University of Manchester and the UK’s NPL National Physical Laboratory.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 9:00 am on July 25, 2018 Permalink | Reply
    Tags: , , , , , Dame Susan Jocelyn Bell Burnell, ,   

    From CSIROscope: Women in STEM-“The pioneer of pulsars pops into Parkes” 

    CSIRO bloc

    From CSIROscope

    25 July 2018
    Andrew Warren,
    Lucy Thackray

    1
    Dame Jocelyn with the record of her discovery

    In 1967, as a 24-year-old PhD student at Cambridge University, Dame Jocelyn Bell Burnell made one of the most significant scientific discoveries of the 20th Century when she identified and precisely analysed the first pulsar.

    Dame Jocelyn recently visited Australia, and while she was in Parkes to deliver the John Bolton lecture at the local Astrofest event, she had the chance to pop in to see our Parkes radio telescope, which you probably know as ‘The Dish’. This was the first time Dame Jocelyn had visited The Dish, which has detected more than half of the more than 2500 pulsars found since her original discovery, and when the opportunity presented itself she just ‘couldn’t resist.’ And while she was here we had the chance to catch up with her to hear her thoughts on the breakneck speed of modern science, as well as the adversity women face when pursuing a career in science.

    Puzzling pulsars

    A pulsar is a small star left behind after a normal star has died in a fiery explosion, which spins up to hundreds of times per second and sends out beams of radio waves. We now know those radio waves can be detected as a ‘pulse’ when the beam is pointed in the direction of our telescopes.

    Dame Jocelyn discovered pulsars by spotting a tiny but of ‘scruff’ in the 30 metres of chart recordings made by the telescope each day.

    “It was troubling me because it didn’t fit into any previously known category, so I was a bit puzzled by what it actually was. I started calling it ‘LGM’, which stood for Little Green Men, although I didn’t seriously believe it was little green men,” Dame Jocelyn said.

    It wasn’t until she found the second pulsar that she was able to relax a little and know that the first detection wasn’t an anomaly.

    “It wasn’t till that point I was able to stop and think aaah…this is a new branch of astronomy we’re opening up.”

    3
    Celebrating her 75th birthday at The Dish with a surprise cake

    A trailblazing pioneer

    Dame Jocelyn’s ambition when starting out was to develop a career in radio astronomy.

    “I’d already felt like a bit of a pioneering woman during my time as an undergraduate, when I was the only women in a class of fifty people doing their honours physics degree,” she said.

    And even though she’d been credited with such an important scientific discovery, she would go on to face adversity many times during her career. Perhaps the most high profile example is when the Nobel Prize in Physics was awarded to her thesis supervisor and another astronomer in 1974 for the work discovering pulsars.

    Reflecting on the incident now, Dame Jocelyn thinks “…it was far more important that there was a Nobel Prize in astrophysics, rather than what it was for, or who it went to, because it created a precedent and opened the door, because until then astrophysics hadn’t been recognised at all.”

    “There were certainly discouragements, and you sometimes had to find workarounds, but it got even harder when I married and had a child, because mothers weren’t meant to work, so I ended up working part-time for about eighteen years,” Dame Jocelyn said.

    “I knew that I needed to work… I was quite lucky that directors were prepared to give me part-time jobs, they weren’t very wonderful jobs, but they were intellectually engaging and enjoyable, and allowed me to work part-time, so that kept me sane and kept me in touch with the field.”

    “The world is getting much better at recognising women, but there’s still not parity. There’s still more room for women, and as it becomes more normal for women to do scientific things more women will come through and play a role, which will be great,” Dame Jocelyn said.

    Inspiring the next generation

    Shivani Bhandari is one of our postdoctoral astronomers who had the opportunity to hear Dame Jocelyn speak while she was in Australia.

    “It was an absolute honour to chair Dame Jocelyn’s colloquium and see her speak enthusiastically about her 50 year old discovery.” Shivani said.

    “Her struggle to pursue research in a male dominated area of study, driven by pure passion for astrophysics, is truly inspiring for female scientists, including myself.”

    4
    Our Postoctoral astronomer Shivani Bhandari with Dame Jocelyn

    Science at breakneck speed

    Dame Jocelyn also had time to reflect on the breakneck speed of modern research.

    “It’s fantastic seeing the technological change being applied to astronomy. The equipment on the Parkes telescope and others around the world is forever improving, and the pace of discovery just gets faster and faster as the equipment gets better. It leaves you a bit breathless, but it’s very exciting,” she said.

    “It’s been magnificent to see so many developments in the field since the original discovery of pulsars fifty years ago. It’s since become a major field of astronomical research, especially here at Parkes.”

    “It’s a very exciting time to be around, it’s fascinating!”

    Dame Jocelyn’s discovery

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 9:12 am on March 9, 2018 Permalink | Reply
    Tags: , , , , Dame Susan Jocelyn Bell Burnell, , , Susan Jocelyn Bell Burnell   

    From ScienceNews: “50 years ago, pulsars burst onto the scene” 


    ScienceNews

    March 8, 2018
    Emily Conover

    Excerpt from the March 16, 1968 issue of Science News

    1
    LIKE CLOCKWORK Scientists reported the first discovery of a pulsar 50 years ago. The rapidly rotating neutron stars emit beams of radiation (illustrated), which sweep past Earth at regular intervals. NASA’s Goddard Space Flight Center.

    2
    The strangest signals reaching Earth

    The search for neutron stars has intensified because of a relatively small area, low in the northern midnight sky, from which the strangest radio signals yet received on Earth are being detected. If the signals come from a star, the source broadcasting the radio waves is very likely the first neutron star ever detected. — Science News, March 16, 1968

    Susan Jocelyn Bell


    Update

    That first known neutron star’s odd pulsating signature earned it the name “pulsar.” The finding garnered a Nobel Prize just six years after its 1968 announcement — although one of the pulsar’s discoverers, astrophysicist Dame Jocelyn Bell Burnell, was famously excluded.

    Dame Susan Jocelyn Bell Burnell 2009

    Since then, astronomers have found thousands of these blinking collapsed stars, which have confirmed Einstein’s theory of gravity and have been proposed as a kind of GPS for spacecraft.

    See the full article here .

    Science News is edited for an educated readership of professionals, scientists and other science enthusiasts. Written by a staff of experienced science journalists, it treats science as news, reporting accurately and placing findings in perspective. Science News and its writers have won many awards for their work; here’s a list of many of them.

    Published since 1922, the biweekly print publication reaches about 90,000 dedicated subscribers and is available via the Science News app on Android, Apple and Kindle Fire devices. Updated continuously online, the Science News website attracted over 12 million unique online viewers in 2016.

    Science News is published by the Society for Science & the Public, a nonprofit 501(c) (3) organization dedicated to the public engagement in scientific research and education.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:43 pm on March 1, 2018 Permalink | Reply
    Tags: , , , , Dame Susan Jocelyn Bell Burnell, , , , ,   

    From GBO: “Pulsar Watchers Close In On Galaxy Merger History” 

    gbo-logo

    Green Bank Radio Telescope, West Virginia, USA
    Green Bank Radio Telescope, West Virginia, USA

    gbo-sign

    Green Bank Observatory

    2018-02-28
    Paul Vosteen

    1
    Astronomers see galaxies merging throughout the universe, some of which should result in binary supermassive black holes. Credit: NASA

    Fifty years after pulsar discovery published, massive new data set moves closer to finding very-low-frequency gravitational waves, researchers say.

    For the past twelve years, a group of astronomers have been watching the sky carefully, timing pulses of radio waves being emitted by rapidly spinning stars called pulsars, first discovered 50 years ago. These astronomers are interested in understanding pulsars, but their true goal is much more profound; the detection of a new kind of gravitational waves. With a new, more sophisticated analysis, they are much closer than ever before.

    Gravitational waves are wrinkles in space-time that stretch and squeeze the distances between objects. In 2015, a hundred years after Albert Einstein realized that accelerating massive objects should produce them, these waves were finally detected from black holes with masses roughly 30 times the mass of our sun colliding with each other. However, Einstein’s theory also predicts another kind of wave, one that comes from the mergers of black holes with masses of hundred million times the sun’s.

    Astronomers believe that nearly all galaxies have supermassive black holes at their centers. When two galaxies collide, these black holes will slowly fall toward each other, finally merging long after the initial galaxy collision. In the last stage of this process, as the two black holes spiral closer to each other, strong gravitational waves can be produced.

    While these waves travel at the speed of light, their strength varies quite slowly, on timescales ranging from months to years. This means that gravitational wave observatories on Earth can’t measure them. For that, you need an observatory with detectors light-years apart.

    “We know that galaxy mergers are an important part of galaxy growth and evolution through cosmic time. By detecting gravitational waves from supermassive binary black holes at the cores of merging galaxies, we will be able to probe how galaxies are shaped by those black holes,” said Sarah Burke-Spolaor, assistant professor at West Virginia University.

    2
    Nature publication of the discovery of pulsar B1919+21. Credit: Reproduced by permission from Springer Nature

    Fifty years ago, the February 24, 1968 edition of the journal Nature provided the solution, with the discovery of a new kind of star. This new star was curious, emitting regular radio pulses once every 1.3 seconds. Graduate student Jocelyn Bell (now Dr. Bell Burnell [now really Dame Susan Jocelyn Bell Burnell, one of the many women denied a deserved Nobel]) was the first to spot the signal, seeing it as “a bit of scruff” in her radio surveys. Zooming in on the scruff, Bell saw the regular pulses from the star.

    After first entertaining the possibility that the pulses could be the result of LGM, or “little green men,” the new star was dubbed a pulsar, with the understanding that the pulses represented the rotation rate of the star. Such a rapid rotation rate meant that the star must be small, about the size of a city. Only a few years later, a pulsar in a binary system was found, and the first mass estimate indicated that this tiny object held about one and a half times the mass of our sun.

    “Before this time, no one thought stars so small could actually exist! It wasn’t until a pulsar was found at the center of a supernova remnant in 1968 that astronomers realized that pulsars were neutron stars born in the explosions of massive stars,” said Maura McLaughlin, professor at West Virginia University.

    4
    After detecting unexpected signals at the same location in the sky (top left), graduate student Jocelyn Bell (right) [now Dame Susan Jocelyn Bell Burnell] observed individual pulses from the new source (bottom left) in late 1967. Credit: UK National Science & Media Museum

    6
    2009 Dame Susan Jocelyn Bell Burnell. Wikipedia

    The fastest pulsars, called millisecond pulsars, spin hundreds of times every second (faster than your kitchen blender!), and are the most stable natural clocks known in the universe. Pulsar astronomers around the globe are monitoring these stellar clocks in order to form a new kind of cosmic gravitational wave detector known as a “Pulsar Timing Array.” By carefully measuring when radio pulses arrive from millisecond pulsars, astronomers can track the tiny changes in the distance from the Earth to the pulsars caused by the stretching and squeezing of spacetime due to a gravitational wave.

    In the US and Canada, a group called NANOGrav (North American Nanohertz Observatory for Gravitational Waves) is searching for these gravitational waves using some of the largest telescopes in the world, including the Green Bank Telescope in West Virginia and the Arecibo Observatory in Puerto Rico.

    NAIC/Arecibo Observatory, Puerto Rico, USA, at 497 m (1,631 ft)

    NANOGrav routinely joins forces with groups in Europe and Australia to improve their sky coverage and sensitivity. Collectively known as the International Pulsar Timing Array, the combined observations from these groups constitute the most sensitive data set in the world for searching for low-frequency gravitational waves.

    6
    International Pulsar Timing Array

    This month, fifty years after the publication of the first pulsar discovery, NANOGrav has submitted a pair of companion papers to The Astrophysical Journal describing eleven years of monthly observations of 45 millisecond pulsars along with the astrophysical implications of their results. For the first time, the data set includes a six-pulsar “high-frequency” sample, with measurements made every week to expand the pulsar timing array’s sensitivity range. NANOGrav is able to set sensitive upper limits that constrain the physical processes at play in galaxy mergers. As their sensitivity improves, NANOGrav is uncovering new sources of background noise that must be accounted for. Most recently, uncertainties in the pull of Jupiter on the sun have been found to affect pulsar timing. As a result, the team is implementing new computational methods to account for this, in effect determining Jupiter’s orbit more precisely than possible except by planetary missions.

    “This is the most sensitive pulsar timing dataset ever created for both gravitational wave analysis and a host of other astrophysical measurements. And with each new release, we will add more pulsars and data, which increase our sensitivity to gravitational waves”, said David Nice, professor at Lafayette College.

    Last year, the journal that announced the discovery of pulsars once again played host to a pulsar first. In November, Nature Astronomy published their first-ever article describing the gravitational wave environment that pulsar timing arrays are working to uncover. By looking at galaxy surveys, the article estimates there are about 100 supermassive black hole binaries that are close enough to affect pulsar timing array measurements. Given their expected future sensitivity, the authors state that pulsar timing arrays should be able to isolate the gravitational waves from a specific individual galaxy within about 10 years.

    “From city-sized pulsars spinning fast in galaxies to large, massive galaxies themselves and their merging central black holes, all in 50 years! That is a large step for humankind, and not one that we could have foreseen. What will the next 50 years bring? Pulsars and gravitational waves will continue to be big news, I’m sure!” said Jocelyn Bell Burnell.

    A century after Einstein first predicted them, gravitational waves were finally detected. Now, 50 years after Jocelyn Bell’s discovery, pulsars have become a new tool for measuring both gravitational waves and the distant black holes that create them. If predictions are correct, the next decade will be an exciting period of discovery for radio astronomers, pulsars, and gravitational waves!

    Links to supporting materials:
    1-page summary of 11-year results: https://nanograv.github.io/11yr_stochastic_analysis/ Submitted to the Astrophysical Journal, Dec 31, 2017

    11-Year Data Release paper: https://arxiv.org/abs/1801.01837 Submitted to The Astrophysical Journal

    Gravitational Wave Search paper: https://arxiv.org/abs/1801.02617 Submitted to The Astrophysical Journal

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    gbo-science-building

    Mission Statement

    Green Bank Observatory enables leading edge research at radio wavelengths by offering telescope, facility and advanced instrumentation access to the astronomy community as well as to other basic and applied research communities. With radio astronomy as its foundation, the Green Bank Observatory is a world leader in advancing research, innovation, and education.

    History

    60 years ago, the trailblazers of American radio astronomy declared this facility their home, establishing the first ever National Radio Astronomy Observatory within the United States and the first ever national laboratory dedicated to open access science. Today their legacy is alive and well.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: