Tagged: Cosmochemistry Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:16 pm on February 6, 2023 Permalink | Reply
    Tags: "A star is born - Study reveals complex chemistry inside ‘stellar nurseries’", , , , Cosmochemistry, , ,   

    From The University of Colorado-Boulder: “A star is born – Study reveals complex chemistry inside ‘stellar nurseries’” 

    U Colorado

    From The University of Colorado-Boulder

    2.6.23
    Daniel Strain
    daniel.strain@colorado.edu

    1
    Gas and dust swirl in the Taurus Molecular Cloud (TMC-1) as seen by the Herschel Space Observatory. (Credit: ESA/Herschel; R. Hurt/JPL-Caltech/NASA; CC BY-SA 3.0 IGO)

    An international team of researchers has uncovered what might be a critical step in the chemical evolution of molecules in cosmic “stellar nurseries.” In these vast clouds of cold gas and dust in space, trillions of molecules swirl together over millions of years. The collapse of these interstellar clouds eventually gives rise to young stars and planets.

    Like human bodies, stellar nurseries contain a lot of organic molecules, which are made up mostly of carbon and hydrogen atoms. The group’s results, published Feb. 6 in the journal Nature Astronomy [below], reveal how certain large organic molecules may form inside these clouds. It’s one tiny step in the eons-long chemical journey that carbon atoms undergo—forming in the hearts of dying stars, then becoming part of planets, living organisms on Earth and perhaps beyond.

    “In these cold molecular clouds, you’re creating the first building blocks that will, in the end, form stars and planets,” said Jordy Bouwman, research associate at the Laboratory for Atmospheric and Space Physics (LASP) and assistant professor in the Department of Chemistry at CU Boulder.

    2
    Graphic showing how hexagonally-shaped ortho-benzyne molecules can combine with methyl radicals to form a series of larger organic molecules, each containing a ring of five carbon atoms. (Credit: Henry Cardwell)

    For the new study, Bouwman and his colleagues took a deep dive into one stellar nursery in particular: the Taurus Molecular Cloud (TMC-1). This region sits in the constellation Taurus and is roughly 440 light years (more than 2 quadrillion miles) from Earth. The chemically complex environment is an example of what astronomers call an “accreting starless core.” Its cloud has begun to collapse, but scientists haven’t yet detected embryonic stars emerging inside it.

    The team’s findings hinge on a deceptively simple molecule called ortho-benzyne. Drawing on experiments on Earth and computer simulations, the researchers showed that this molecule can readily combine with others in space to form a wide range of larger organic molecules.

    Small building blocks, in other words, become big building blocks.

    And, Bouwman said, those reactions could be a sign that stellar nurseries are a lot more interesting than scientists give them credit for.

    “We’re only at the start of truly understanding how we go from these small building blocks to larger molecules,” he said. “I think we’ll find that this chemistry is so much more complex than we thought, even at the earliest stages of star formation.”

    Fateful observation

    Bouwman is a cosmochemist, studying a field that blends chemistry and astronomy to understand the churning chemical reactions that happen deep in space.

    On the surface, he said, cold molecular clouds might not seem like a hotbed of chemical activity. As their name suggests, these galactic primordial soups tend to be frigid, often hovering around -263 degrees Celsius (about -440 degrees Fahrenheit), just 10 degrees above absolute zero. Most reactions need at least a little bit of heat to get a kick-start.

    But cold or not, complex chemistry seems to be happening in stellar nurseries. TMC-1, in particular, contains surprising concentrations of relatively large organic molecules with names like fulvenallene and 1- and 2-ethynylcyclopentadiene. Chemists call them “five-membered ring compounds” because they each contain a ring of carbon atoms shaped like a pentagon.

    “Researchers kept detecting these molecules in TMC-1, but their origin was unclear,” Bouwman said.

    Now, he and his colleagues think they have an answer.

    In 2021, researchers using the Yebes 40-metre Radio telescope in Spain found an unexpected molecule hiding in the clouds of gas of TMC-1: ortho-benzyne.

    3
    Yebes Observatory RT40m (ES). European VLBI Network (EU) (EVN)

    Bouwman explained that this small molecule, made up of a ring of six carbon atoms with four hydrogens, is one of the extroverts of the chemistry world. It easily interacts with a number of other molecules and doesn’t require a lot of heat to do so.

    “There’s no barrier to reaction,” Bouwman said. “That means it has the potential to drive complex chemistry in cold environments.”

    Identifying the culprit

    To find out what kind of complex chemistry was happening in TMC-1, Bouwman and his colleagues—who hail from the United States, Germany, the Netherlands and Switzerland—turned to a technique called “photoelectron photoion coincidence spectroscopy.” The team used light generated by a giant facility called a synchotron light source to identify the products of chemical reactions.

    They saw that ortho-benzyne and methyl radicals, another common constituent of molecular clouds, readily combine to form larger and more complex organic compounds.

    “We knew we were onto something good,” Bouwman said.

    The team then drew on computer models to explore the role of ortho-benzyne in a stellar nursery spread out over several light-years deep in space. The results were promising: The models generated clouds of gas containing roughly the same mix of organic molecules that astronomers had observed in TMC-1 using telescopes.

    Ortho-benzyne, in other words, seems to be a prime candidate for driving the gas-phase organic chemistry that occurs within these stellar nurseries, Bouwman said.

    He added that scientists still have a lot of work to do to fully understand all of the reactions happening in TMC-1. He wants to examine, for example, how organic molecules in space also pick up nitrogen atoms—key components of the DNA and amino acids of living organisms on Earth.

    “Our findings may just change the view on what ingredients we have in the first place to form new stars and new planets,” Bouwman said.

    Co-authors on the new paper include researchers at Leiden University in the Netherlands, Benedictine College in the U.S., the University of Würzburg in Germany and Paul Scherrer Institute in Switzerland.

    Nature Astronomy

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Colorado Campus

    As the flagship university of the state of Colorado The University of Colorado-Boulder , founded in 1876, five months before Colorado became a state. It is a dynamic community of scholars and learners situated on one of the most spectacular college campuses in the country, and is classified as an R1 University, meaning that it engages in a very high level of research activity. As one of 34 U.S. public institutions belonging to the prestigious Association of American Universities ), a selective group of major research universities in North America, – and the only member in the Rocky Mountain region – we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.

    University of Colorado-Boulder has blossomed in size and quality since we opened our doors in 1877 – attracting superb faculty, staff, and students and building strong programs in the sciences, engineering, business, law, arts, humanities, education, music, and many other disciplines.

    Today, with our sights set on becoming the standard for the great comprehensive public research universities of the new century, we strive to serve the people of Colorado and to engage with the world through excellence in our teaching, research, creative work, and service.

    In 2015, the university comprised nine colleges and schools and offered over 150 academic programs and enrolled almost 17,000 students. Five Nobel Laureates, nine MacArthur Fellows, and 20 astronauts have been affiliated with CU Boulder as students; researchers; or faculty members in its history. In 2010, the university received nearly $454 million in sponsored research to fund programs like the Laboratory for Atmospheric and Space Physics and JILA. CU Boulder has been called a Public Ivy, a group of publicly funded universities considered as providing a quality of education comparable to those of the Ivy League.

    The Colorado Buffaloes compete in 17 varsity sports and are members of the NCAA Division I Pac-12 Conference. The Buffaloes have won 28 national championships: 20 in skiing, seven total in men’s and women’s cross country, and one in football. The university has produced a total of ten Olympic medalists. Approximately 900 students participate in 34 intercollegiate club sports annually as well.

    On March 14, 1876, the Colorado territorial legislature passed an amendment to the state constitution that provided money for the establishment of the University of Colorado in Boulder, the Colorado School of Mines in Golden, and the Colorado State University – College of Agricultural Sciences in Fort Collins.

    Two cities competed for the site of the University of Colorado: Boulder and Cañon City. The consolation prize for the losing city was to be home of the new Colorado State Prison. Cañon City was at a disadvantage as it was already the home of the Colorado Territorial Prison. (There are now six prisons in the Cañon City area.)

    The cornerstone of the building that became Old Main was laid on September 20, 1875. The doors of the university opened on September 5, 1877. At the time, there were few high schools in the state that could adequately prepare students for university work, so in addition to the University, a preparatory school was formed on campus. In the fall of 1877, the student body consisted of 15 students in the college proper and 50 students in the preparatory school. There were 38 men and 27 women, and their ages ranged from 12–23 years.

    During World War II, Colorado was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a navy commission.

    University of Colorado-Boulder hired its first female professor, Mary Rippon, in 1878. It hired its first African-American professor, Charles H. Nilon, in 1956, and its first African-American librarian, Mildred Nilon, in 1962. Its first African American female graduate, Lucile Berkeley Buchanan, received her degree in 1918.

    Research institutes

    University of Colorado-Boulder’s research mission is supported by eleven research institutes within the university. Each research institute supports faculty from multiple academic departments, allowing institutes to conduct truly multidisciplinary research.

    The Institute for Behavioral Genetics (IBG) is a research institute within the Graduate School dedicated to conducting and facilitating research on the genetic and environmental bases of individual differences in behavior. After its founding in 1967 IBG led the resurging interest in genetic influences on behavior. IBG was the first post-World War II research institute dedicated to research in behavioral genetics. IBG remains one of the top research facilities for research in behavioral genetics, including human behavioral genetics, psychiatric genetics, quantitative genetics, statistical genetics, and animal behavioral genetics.

    The Institute of Cognitive Science (ICS) at CU Boulder promotes interdisciplinary research and training in cognitive science. ICS is highly interdisciplinary; its research focuses on education, language processing, emotion, and higher level cognition using experimental methods. It is home to a state-of-the-art fMRI system used to collect neuroimaging data.

    ATLAS Institute is a center for interdisciplinary research and academic study, where engineering, computer science and robotics are blended with design-oriented topics. Part of CU Boulder’s College of Engineering and Applied Science, the institute offers academic programs at the undergraduate, master’s and doctoral levels, and administers research labs, hacker and makerspaces, and a black box experimental performance studio. At the beginning of the 2018–2019 academic year, approximately 1,200 students were enrolled in ATLAS academic programs and the institute sponsored six research labs.[64]

    In addition to IBG, ICS and ATLAS, the university’s other institutes include Biofrontiers Institute, Cooperative Institute for Research in Environmental Sciences, Institute of Arctic & Alpine Research (INSTAAR), Institute of Behavioral Science (IBS), JILA, Laboratory for Atmospheric & Space Physics (LASP), Renewable & Sustainable Energy Institute (RASEI), and the University of Colorado Museum of Natural History.

     
  • richardmitnick 1:15 pm on August 16, 2022 Permalink | Reply
    Tags: "These Asteroid Particles May Be Our Most 'Pristine' Sample of The Outer Solar System", , , , Cosmochemistry, , ,   

    From JAXA-The Japan Aerospace Exploration Agency (JP) Via “Science Alert (AU)” : “These Asteroid Particles May Be Our Most ‘Pristine’ Sample of The Outer Solar System” 

    From JAXA-The Japan Aerospace Exploration Agency (JP)

    Via

    ScienceAlert

    “Science Alert (AU)”

    8.16.22
    Michelle Starr

    1
    One of the samples from the asteroid Ryugu. (JAXA)

    Rubble retrieved from an asteroid in near-Earth solar orbit could be the most ‘pristine’ sample of cosmic rock we’ve had our hands on yet.

    According to a new, in-depth analysis of the material delivered to Earth from the asteroid Ryugu, the samples of rocks and dust are among the most uncontaminated Solar System materials we’ve ever had the opportunity to study – and their composition suggests that they incorporate chemistry from the outer reaches of the system.

    This not only gives us a unique tool for understanding the Solar System and its formation, it gives us new context in which to interpret other space rocks that have been contaminated by coming into contact with Earth.

    “Ryugu particles,” wrote a team led by cosmochemist Motoo Ito of the Japan Agency for Marine-Earth Science Technology (JAMSTEC) in Japan, “are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition.”

    It has been around 4.6 billion years since the Sun formed, and the Solar System around it. Obviously that’s a very long time, and a lot of things have changed since then; but we do have time capsules that allow us to study the chemistry of the early Solar System in order to understand how it all came together. These are chunks of rock, such as comets and asteroids, that have been drifting about in space more or less unchanged since they formed.

    Visiting a rock far from Earth isn’t easy, and collecting and returning samples even less so. Historically, we’ve relied on space rocks coming to us to get our mitts on these time capsules. Meteorites known as carbonaceous chondrites have been the best tool available to probe the composition of the asteroids that may have delivered water to Earth, as the Solar System was still forming.

    However, this record is biased by a kind of mineral version of survival of the fittest. Only the strongest chunks of space rock persist through the explosive rigors of atmospheric entry, and even then they become altered and contaminated by the terrestrial environment.

    In recent years, venturing out to touch down on asteroids has fallen within our capabilities. In December of 2020, a probe that had been sent to Ryugu by the Japanese Space Agency (JAXA) dropped off an invaluable payload: samples of material collected from the surface of the asteroid, and transported home in sterile containers.

    Scientists have been avidly studying the contents ever since, revealing that the asteroid is compositionally very similar to those carbonaceous chondrites, making it what we call a C-type asteroid. It also contains prebiotic molecules – the precursors to biological compounds – and may have once been a comet.

    The new analysis delves even deeper. Ito and his colleagues have found that the abundances of heavy hydrogen and nitrogen in the asteroid are consistent with an origin in the outer Solar System; that is, Ryugu started its life much farther from the Sun. This would be consistent with the comet theory, since those icy bodies are visitors from the Solar System’s farther reaches.

    Ryugu, the researchers found, also has one glaring difference from carbonaceous chondrites. Missing from the asteroid samples are ferrihydrite (compounds of iron and oxygen) and sulfate (sulfur and oxygen). Since these compounds are found in meteorites, they were thought to be a component of extraterrestrial materials. The lack of them in Ryugu suggests that they could be the result of terrestrial weathering in the meteorites.

    This means that future meteorite studies should make allowances for this possibility… and that future asteroid sample return missions will be able to shed more light on the matter.

    “In this study we demonstrate that [carbonaceous] meteorites, despite their geochemical importance as proxies of the bulk Solar System composition, are terrestrially contaminated samples,” the researchers wrote in their paper.

    “The findings of this study clearly demonstrate the importance of direct sampling of primitive asteroids and the need to transport returned samples in totally inert and sterile conditions. The evidence presented here shows that Ryugu particles are undoubtedly among the most uncontaminated Solar System materials available for laboratory study and ongoing investigations of these precious samples will certainly expand our understanding of early Solar System processes.”

    The research has been published in Nature Astronomy.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Japan Aerospace Exploration Agency (JAXA) (JP) was born through the merger of three institutions, namely the Institute of Space and Astronautical Science (ISAS), the National Aerospace Laboratory of Japan (NAL) and the National Space Development Agency of Japan (NASDA). It was designated as a core performance agency to support the Japanese government’s overall aerospace development and utilization. JAXA, therefore, can conduct integrated operations from basic research and development, to utilization.

    In 2013, to commemorate the 10th anniversary of its founding, JAXA created the corporate slogan, “Explore to Realize,” which reflects its management philosophy of utilizing space and the sky to achieve a safe and affluent society.

    JAXA became a National Research and Development Agency in April 2015, and took a new step forward to achieve optimal R&D achievements for Japan, according to the government’s purpose of establishing a national R&D agency.

     
  • richardmitnick 10:30 pm on August 3, 2022 Permalink | Reply
    Tags: "More supernova dust in the solar system", , , , , Cosmochemistry, Recent studies suggest that a significant fraction of the stardust (more than 25 percent) in the solar system comes from supernova explosions., The chemical elements-from carbon to uranium-are formed exclusively in stars in a set of processes known as stellar nucleosynthesis., The MPG Institute for Chemistry [(Otto Hahn Institute) [MPG Institut für Chemie] (DE), The NanoSIMS ion probe measures the distribution of the abundance of certain isotopes in the submicrometer range.   

    From The MPG Institute for Chemistry [(Otto Hahn Institute) [MPG Institut für Chemie] (DE): “More supernova dust in the solar system” 

    From The MPG Institute for Chemistry [(Otto Hahn Institute) [MPG Institut für Chemie] (DE)

    August 01, 2022

    Dr. Peter Hoppe
    MPG Institute for Chemistry
    +49 6131 305-5300
    peter.hoppe@mpic.de

    Until recently, cosmochemists and astrophysicists assumed that supernovae and their progenitors, the supergiant stars, contributed only little of our solar system’s stardust content. However, recent studies suggest that a significant fraction of the stardust (more than 25 percent) in the solar system comes from supernova explosions and their progenitor stars. This allows us to better understand the composition and origin of our solar system’s building blocks. Previous assumptions about the origin of the dust were still very uncertain.

    1
    False-color image image of the supernova remnant Cassiopeia A: A supernova that exploded in the 17th century. Dust from such a supernova, which exploded billions of years ago, can also be detected in our solar system and in larger quantities than previously assumed. © NASA/JPL-Caltech/STScI/CXC/SAO Animation: NASA/JPL-Caltech/Univ. of Ariz./STScI/CXC/SAO.

    The chemical elements-from carbon to uranium-are formed exclusively in stars in a set of processes known as stellar nucleosynthesis. At the end of a star’s life, they are released as wind or in a violent explosion (supernovae) into the surrounding space, called the interstellar medium. In the process, a large fraction of the non-volatile elements condenses into stardust, but some of this is destroyed again later in the interstellar medium. The surviving grains were also incorporated into the planetary bodies of our solar system about 4.6 billion years ago. Since these grains existed before the formation of our solar system, they are called “presolar grains.” They display untypical, i.e. anomalous, isotope patterns for our solar system. On the basis of these characteristic anomalies in isotopic abundance, they can be detected in meteorites and cometary material. Presolar grains provide a unique opportunity for detailed laboratory studies of stellar nucleosynthesis processes and help to identify the types of stars that contributed dust to the solar system. This provides an important contribution when it comes to better understanding the origin of chemical elements and the formation of our solar system.

    The newly published article in Nature Astronomy [below] presents recent findings from studies of these presolar grains and discusses implications for future research, interstellar dust models, and the interpretation of astronomical observations of dust in the ejecta of supernova explosions.

    The new findings were made possible by the improved stardust analysis methods of the NanoSIMS ion probe as well as new model calculations. The NanoSIMS ion probe measures the distribution of the abundance of certain isotopes in the submicrometer range. It does this by scanning with a focused ion beam and then using mass spectrometry to analyze the sample’s particles that are knocked out in the process.

    More accurate dust models of the interstellar medium are possible

    Peter Hoppe, group leader in the Department of Particle Chemistry at the MPG Institute for Chemistry and lead author of the publication, explains that: “Knowing that a much larger fraction of stardust comes from supernova explosions provides researchers with important new parameters to create computer models of dust evolution in the interstellar medium. This is especially true when describing the survival of freshly produced supernova dust and old interstellar dust as supernova shock waves pass through.” The latter is of interest, he said, because dust plays an important role as a catalyst for chemical reactions in interstellar molecular clouds and is thought to be a building block for the formation of new planets in protoplanetary disks in young stellar systems. The astrophysicist sums up by saying that there has so far been insufficient exploration of the processes that caused stardust to mix in the local interstellar medium over extended spatial and temporal scales, and these need to be studied in more detail in future evolutionary models.

    Science paper:
    Nature Astronomy

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mainz_MPI_Innenhof

    The MPG Institute for Chemistry (Otto Hahn Institute)[MPG Institut für Chemie – Otto Hahn Institut)(DE) is a non-university research institute under the auspices of the MPG Society [MPG Gesellschaft) (DE). It was created as a Kaiser Wilhelm Institute in 1911.

    Research at the MPG Institute for Chemistry in Mainz aims at an integral understanding of chemical processes in the Earth system, particularly in the atmosphere and biosphere. Investigations address a wide range of interactions between air, water, soil, life and climate in the course of Earth history up to today’s human-driven epoch, the Anthropocene. The Institute consists of five scientific departments (Atmospheric Chemistry, Climate Geochemistry, Biogeochemistry, Multiphase Chemistry, and Particle Chemistry) and additional research groups. The departments are independently led by their Directors.

    Research

    The Institute consists of five scientific departments and additional research groups.

    Atmospheric Chemistry Department: The Atmospheric Chemistry Department focuses on the study of ozone and other atmospheric photo-oxidants, their chemical reactions and global cycles. The researchers use kinetic and photochemical laboratory investigations, in situ and remote sensing measurements. The Atmospheric Chemistry department also develops numerical models to describe meteorological and chemical processes in the atmosphere, to simulate the complex atmospheric interactions and to test the theory through measurement campaigns (ground-based or by ship, aircraft, satellite). Research groups:
    Reactive Processes
    Optical Spectroscopy
    Radical Measurements
    Organic Reactive Species
    Research Group of Andrea Pozzer
    Biogeochemistry Department: The Department Biogeochemistry concentrates on the exchange and interactions of trace gases and aerosols between biosphere and atmosphere with a special focus on Amazon region. They use laboratory investigations, field measurements and numerical models to study this processes. Research topics are: exchange of chemically and climatically important trace gases between the soil/vegetation system and the atmosphere, formation of aerosol particles and their effects on climate, impact of vegetation fires on ecology and atmospheric pollution, and the changing global cycles of trace elements.
    Department of Climate Geochemistry: The team explore the climate -ocean-atmosphere system on annual up to geological timescales. Of particular interest is the Cenozoic (the past 65 million years). They investigate the changes in internal feedback processes, e.g. interactions between ocean and atmosphere, oceanic heat transport or its nutrient status. Moreover, the scientists study the biogeochemical processes in the polar oceans and their role in regulating atmospheric CO2 concentration between ice ages and warmer periods. Therefore, they examine geological archives such as sediments from the open ocean and speleothems. The department operates the R/S/Y Eugen Seibold. Research groups:
    Isotope Biogeochemistry
    Paleoclimate Research
    Organic Isotope Geochemistry
    Geosientific databases
    Micropaleontology
    Inorganic Gas Isotope Geochemistry
    Multiphase Chemistry Department: The department deals with multiphase processes at the molecular level and its impact on the macroscopic and global scale. Concerning the Earth System and climate research, they focus on biological and organic aerosols, aerosol-cloud interactions and atmospheric surface exchange processes whereas in the field of life and health sciences, the researchers study the change of protein macromolecules air pollution and how this affects allergic reactions and diseases. Research groups:
    Biomolecular Analyses & Interactions
    Organic Pollutants & Exposure
    Inflammatory Processes
    Aerosol analysis & Microscopy
    Multiscale Interactions & Integration
    Aerosol, Cloud & Surface Interactions
    Microbial Communities & Processes
    Multiphase Chemical Kinetics and Reaction Mechanisms
    Particle Chemistry Department: Here they study the physical properties and chemical composition of atmospheric aerosol and cloud particles using laboratory experiments (e.g. in a vertical wind tunnel), measurements on ground and hill stations and on mobile measurement facilities (airplanes). Furthermore, extraterrestrial particles are being analyzed using isotopic measurements, such as presolar grains from meteorites and comets. Research groups:
    Instrumental Aerosol Analytics
    NAMIP – Nano- and Microparticle Research
    Aerosol and Cloud Chemistry
    Atmospheric Hydrometeors
    Aerosol and Cloud Physics
    AEROTROP
    Further research groups: In December 2016 there were four additional research groups at the Institute: The Minerva group. They deal with the interaction of aerosols and regional air quality; matter at high pressures. Analyzing satellite data in order to draw conclusions about tropospheric and stratospheric trace gases. The group “Terrestrial Paleoclimates” uses loess in Eurasia as climate archives for information of past climates.

    The MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 10:08 am on July 8, 2022 Permalink | Reply
    Tags: "New insights into the Earth’s formation", A blueprint for other planets, A cosmic melting pot, An inexplicable discrepancy, An international research team led by ETH Zürich proposes a new theory for the Earth’s formation. It may also show how other rocky planets were formed., , , , Cosmochemistry, , , The theory: Small grains grew over time into kilometre-​sized planetesimals by accumulating more and more material through their gravitational pull to create a planet.   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “New insights into the Earth’s formation” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    7.8.22
    Arian Bastani

    An international research team led by ETH Zürich proposes a new theory for the Earth’s formation. It may also show how other rocky planets were formed.

    1
    Artist’s impression of the Earth’s formation – from chondritic asteroids on the left, and from planetesimals on the right.

    Although the Earth has long been studied in detail, some fundamental questions have still to be answered. One of them concerns the formation of our planet, about whose beginnings researchers are still unclear. An international research team led by ETH Zürich and the National Centre of Competence in Research PlanetS is now proposing a new answer to this question based on laboratory experiments and computer simulations. The researchers have published their study in the journal Nature Astronomy.

    An inexplicable discrepancy

    “The prevailing theory in astrophysics and cosmochemistry is that the Earth formed from chondritic asteroids. These are relatively small, simple blocks of rock and metal that formed early on in the solar system,” explains the study’s lead author, Paolo Sossi, Professor of Experimental Planetology at ETH Zürich. “The problem with this theory is that no mixture of these chondrites can explain the exact composition of the Earth, which is much poorer in light, volatile elements such as hydrogen and helium than we would have expected.”

    Various hypotheses have been put forward over the years to explain this discrepancy. For example, it was postulated that the collisions of the objects that later formed the Earth generated enormous amounts of heat. This vaporized the light elements, leaving the planet in its current composition.

    However, Sossi is convinced that these theories are rendered implausible as soon as you measure the isotopic composition of Earth’s different elements: “The isotopes of a chemical element all have the same number of protons, albeit different numbers of neutrons. Isotopes with fewer neutrons are lighter and should therefore be able to escape more easily. If the theory of vaporization by heating were correct, we would find fewer of these light isotopes on Earth today than in the original chondrites. But that is precisely what the isotope measurements do not show.”

    A cosmic melting pot

    Sossi’s team therefore looked for another solution. “Dynamic models with which we simulate the formation of planets show that the planets in our solar system formed progressively. Small grains grew over time into kilometre-​sized planetesimals by accumulating more and more material through their gravitational pull,” Sossi explains. Similar to chondrites, planetesimals are also small bodies of rock and metal. But unlike chondrites, they have been heated sufficiently to differentiate into a metallic core and a rocky mantle. “What is more, planetesimals that formed in different areas around the young Sun or at different times can have very different chemical compositions,” Sossi adds. The question now is whether the random combination of different planetesimals actually result in a composition that matched that of Earth.

    To find out, the team ran simulations in which thousands of planetesimals collided with one another in the early solar system. The models were designed in such a way that, over time, celestial bodies were reproduced that correspond to the four rocky planets Mercury, Venus, Earth and Mars. The simulations show that a mixture of many different planetesimals could actually lead to the Earth’s effective composition. What’s more, Earth’s composition is even the most statistically likely outcome of these simulations.

    A blueprint for other planets

    “Even though we had suspected it, we still found this result very remarkable,” Sossi recalls. “We now not only have a mechanism that better explains the formation of the Earth, but we also have a reference to explain the formation of the other rocky planets,” the researcher says. The mechanism could be used, for example, to predict how Mercury’s composition differs from that of the other rocky planets. Or how rocky exoplanets of other stars might be composed.

    “Our study shows how important it is to consider both the dynamics and the chemistry when trying to understand planetary formation,” Sossi notes. “I hope that our findings will lead to closer collaboration between researchers in these two fields.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology, Stanford University and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology, Stanford University, California Institute of Technology, Princeton University, University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

     
  • richardmitnick 8:21 am on February 17, 2022 Permalink | Reply
    Tags: "The True Source of Earth's Water Could Be Wildly Different to What You Think", Cosmochemistry, , , , The origin of water on Earth is the origin of life in the Solar System (and the Universe) as we know it.   

    From The DOE’s Lawrence Livermore National Laboratory (US) via Science Alert (AU): “The True Source of Earth’s Water Could Be Wildly Different to What You Think” 

    From The DOE’s Lawrence Livermore National Laboratory (US)

    via

    ScienceAlert

    Science Alert (AU)

    17 FEBRUARY 2022
    MICHELLE STARR

    1
    Credit: andrej67/Getty Images.

    Nothing on Earth can live without water. The origin of water on Earth, therefore, is the origin of life in the Solar System (and the Universe) as we know it.

    Figuring out where and how our world obtained its water [Nature Astronomy] might be key to finding life on other worlds, but the truth is we don’t know for sure where it came from.

    Nonetheless, it’s commonly accepted that one potential mechanism for water delivery was bombardment from water-bearing asteroids and comets when Earth as we know it today was much younger.

    But a new analysis of rocks collected from the Moon and brought to Earth during the Apollo era suggests that this might not actually be the case.

    Rather, according to a team of researchers at Lawrence Livermore National Laboratory, the likeliest explanation is that Earth formed with its water. In other words, it was here all along.

    “Earth was either born with the water we have, or we were hit by something that was basically pure H2O, with not much else in it,” explains cosmochemist Greg Brennecka of LLNL.

    “This work eliminates meteorites or asteroids as possible sources of water on Earth and points strongly toward the ‘born with it’ option.”

    The Moon might seem a strange sort of place to look for Earth’s water. It’s dusty, dry, and extremely not wet at all.

    As it turns out, though, the Moon is a great place to study Earth’s history. The Moon formed when two massive objects – one roughly the size of Mars, the other a little smaller than our own world – smacked together and reformed into blobs that would become Earth and its Moon.

    Theia Protoplanet slamming into Earth: Sci-News.com

    Earth’s memory of this event has weathered over time, but because the Moon has no plate tectonics or weather, geological evidence doesn’t erode the same way.

    That’s not to say that there are no processes at all up there. Impacts from other objects and previous volcanic activity can alter the lunar surface. There are, however, some samples in the Apollo collection that are relatively unchanged.

    Now, according to the giant-impact hypothesis, that giant smash-up 4.5 billion years ago actually depleted Earth and the Moon of their volatiles.

    That’s why, under that model, the Moon is so dry; and, compared to other objects in the Solar System that have water, the bulk of Earth is pretty dry too, especially once you take its size into account.

    To understand the history of the Earth-Moon system prior to the giant impact, the team looked at three lunar samples that crystallized 4.3 to 4.35 billion years ago, examining two isotopes: volatile and radioactive isotope rubidium-87 (87Rb), and the isotope it decays into, strontium-87 (87Sr).

    The latter especially is thought to be a good proxy for understanding the long-term volatile budget of the Moon, and relative abundances of moderately volatile elements, such as rubidium, reflect the behavior of more volatile species, like water.

    Interestingly, the team’s analysis revealed that there was very little 87Sr in the Earth-Moon system, even prior to the giant impact. This suggests that both proto-Earth and the impactor, Theia, were strongly depleted in volatile elements, suggesting that volatile depletion was not a result of the giant impact after all.

    This means that the different volatile distributions on Earth and the Moon were inherited from Earth and Theia, which could explain why Earth is wetter. It also suggests that both bodies probably formed in the same general region of the Solar System, rather than Theia forming farther out and migrating in, and that the impact couldn’t have happened earlier than 4.45 million years ago.

    Although this challenges some accepted views of the formation of Earth and the Moon, it neatly explains the origins of volatiles in the Earth-Moon system, the researchers say. It accounts for differences in their volatile proportions, and explains the similarities in isotope ratios.

    “There were only a few types of materials that could have combined to make the Earth and Moon, and they were not exotic,” explains cosmochemist Lars Borg of LLNL.

    “They were likely both just large bodies that formed in approximately the same area that happened to run into one another a little more than 100 million years after the Solar System formed…but lucky for us, they did just that.”

    The research has been published in PNAS.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration

    The DOE’s Lawrence Livermore National Laboratory (LLNL) (US) is an American federal research facility in Livermore, California, United States, founded by the University of California-Berkeley (US) in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System (US). In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km^2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence, director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the DOE’s Los Alamos National Laboratory(US) and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the DOE’s Lawrence Berkeley National Laboratory (US) and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.” The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS. The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km^2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    NIF National Ignition Facility located at the DOE’s Lawrence Livermore National Laboratory in Livermore, California.


    NNSA

     
  • richardmitnick 12:59 pm on September 25, 2021 Permalink | Reply
    Tags: "Misfit Meteorite Sheds Light on Solar System History", , Cosmochemistry, , , The Nedagolla meteorite   

    From Sky & Telescope : “Misfit Meteorite Sheds Light on Solar System History” 

    From Sky & Telescope

    September 21, 2021
    Jure Japelj

    Scientists have discovered the first meteorite that doesn’t fall into one of two fundamental groups. The meteorite provides a unique glimpse into the era of asteroid formation and migration.

    1
    Artist’s impression of the asteroid belt. Credit: NASA / JPL-Caltech (US).

    The meteorite would be just another one among thousands found on Earth if it weren’t for its unusual composition. Researchers have long tried to understand its origin, and now they might have solved the mystery. In a recent study to be published in Meteoritics & Planetary Science, scientists found that the Nedagolla meteorite is a product of a collision between two asteroids of distinct origin. Its unique history opens up a new window into the research of the early stages of solar system formation.

    Two Meteorite Families

    Meteorites are time capsules that illuminate the era of planet formation. The solar system formed from a cloud of interstellar gas and dust that collapsed under its own gravity. Particles within the resulting protoplanetary disk collided and stuck, forming ever larger planetesimals, which became the parent bodies of the meteorites found on Earth.

    Meteorites come in different flavors [Space Science Reviews]. Depending on whether iron or silicates dominate, meteorites are traditionally classified as iron, stony, or stony-iron. Composition also depends on whether the meteorites originate from bodies that underwent melting, or whether the parent body was unmelted and therefore more pristine. By these classifiers, Nedagolla is an ungrouped iron meteorite.

    But one can also look at isotopes. Isotopes are elements with the same number of protons but a different number of neutrons, and they can carry a lot of information, including the time of a rock’s formation.

    “About 10 years ago, the community realized that there is an isotopic dichotomy in meteoritic material,” says graduate student Fridolin Spitzer (University of Münster [Westfälische Wilhelms-Universität Münster] (DE)), who was first author of the new study. Cosmochemists thus use isotopes to classify meteorites of all sorts, regardless of their chemical composition, as either non-carbonaceous chondrite (NC) or the carbonaceous chondrite (CC). (These groups were initially differentiated by the amount of carbon, but now the terms are used more generally.)

    There is only one exception: “Nedagolla is the first one that does not consistently fall into one of the two categories but seems to fall in between,” says Spitzer.

    Scientists suspect that the two isotope classes formed in two different parts of the protoplanetary disk: The NCs in the disk’s inner part and the CCs in the outer solar system, beyond the Jupiter´s orbit. So where does that put the Nedagolla meteorite?

    Scientists have discovered the first meteorite that doesn’t fall into one of two fundamental groups. The meteorite provides a unique glimpse into the era of asteroid formation and migration.
    Artist’s impression of the asteroid belt
    NASA / JPL-Caltech

    A fireball embellished the night sky over India on January 23, 1870. Accompanied by a thunderous detonation, the fiery mass crashed in the village of Nedagolla with enough force to leave the bystanders stunned. The impact left behind a bit over 4 kilograms of cosmic rock — the Nedagolla meteorite.

    The meteorite would be just another one among thousands found on Earth if it weren’t for its unusual composition. Researchers have long tried to understand its origin, and now they might have solved the mystery. In a recent study to be published in Meteoritics & Planetary Science (preprint available here), scientists found that the Nedagolla meteorite is a product of a collision between two asteroids of distinct origin. Its unique history opens up a new window into the research of the early stages of solar system formation.
    Two Meteorite Families

    Meteorites are time capsules that illuminate the era of planet formation. The solar system formed from a cloud of interstellar gas and dust that collapsed under its own gravity. Particles within the resulting protoplanetary disk collided and stuck, forming ever larger planetesimals, which became the parent bodies of the meteorites found on Earth.

    Meteorites come in different flavors. Depending on whether iron or silicates dominate, meteorites are traditionally classified as iron, stony, or stony-iron. Composition also depends on whether the meteorites originate from bodies that underwent melting, or whether the parent body was unmelted and therefore more pristine. By these classifiers, Nedagolla is an ungrouped iron meteorite.

    But one can also look at isotopes. Isotopes are elements with the same number of protons but a different number of neutrons, and they can carry a lot of information, including the time of a rock’s formation.

    “About 10 years ago, the community realized that there is an isotopic dichotomy in meteoritic material,” says graduate student Fridolin Spitzer (University of Münster, Germany), who was first author of the new study. Cosmochemists thus use isotopes to classify meteorites of all sorts, regardless of their chemical composition, as either non-carbonaceous chondrite (NC) or the carbonaceous chondrite (CC). (These groups were initially differentiated by the amount of carbon, but now the terms are used more generally.)

    There is only one exception: “Nedagolla is the first one that does not consistently fall into one of the two categories but seems to fall in between,” says Spitzer.

    Scientists suspect that the two isotope classes formed in two different parts of the protoplanetary disk: The NCs in the disk’s inner part and the CCs in the outer solar system, beyond the Jupiter´s orbit. So where does that put the Nedagolla meteorite?

    Asteroid Migrations and Collisions

    After performing a new and independent analysis of the meteorite’s composition, the team proposes that its unique isotopic imprint comes from a collision of NC and CC planetesimals. “The two bodies collided, and this induced melting because of high impact velocities, and it induced mixing of materials from these two bodies,” explains Spitzer.

    Here things become interesting. Most meteorites originate from the asteroid belt, a region between the orbits of Mars and Jupiter. So, the CC-type meteorites had to migrate to the inner part of the solar system at some point, otherwise the Nedagolla meteorite wouldn´t exist.

    1
    A schematic view of the protoplanetary disk in the first few million years after its formation. The NC (red) and CC (blue) planetesimals formed in the inner and outer disk, respectively. The growing Jupiter might have separated the two classes. Credit: Bermingham et al. 2020.

    “The reason why we have any CC material to analyze on Earth, which is in itself an NC body, is because, during the disk evolution, planets like Jupiter migrated inwards and outwards, scattering material around the Solar System,” says Katherine Bermingham (Rutgers University).

    But the details are still murky. For example, did Jupiter’s movements create the isotopic divide? And why did one region of the disk have a consistently different mixture of material compared to the other?

    With the Nedagolla meteorite, scientists obtained the first isotopic evidence that the NC and CC bodies mingled. Its composition suggests that at least the CC body had a metallic core. Furthermore, the formative collision couldn’t have happened earlier than about 7 million years after the disk’s formation.

    Such information measured for a larger sample of similar meteorites would be invaluable. “I think it is important that the community does more of this kind of work to see if we can figure out better time constraints on NC-CC mixing,” says Bermingham. “There are a lot of ungrouped iron meteorites out there, and maybe this signature will be found in those that we haven’t studied yet.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 2:03 pm on July 10, 2021 Permalink | Reply
    Tags: "New Type of Stellar Grain Discovered", Allende meteorite (which fell to Earth in 1969), CAIs: calcium- and aluminum-rich inclusions found in certain meteorites., , Cosmochemistry, , , Rubidium-87, Unusually high amounts of strontium-84-a relatively rare light isotope of the element strontium that is so-named for the 84 neutrons in its nucleus.   

    From California Institute of Technology (US) : “New Type of Stellar Grain Discovered” 

    Caltech Logo

    From California Institute of Technology (US)

    July 09, 2021
    Robert Perkins
    (626) 395‑1862
    rperkins@caltech.edu

    Unusual chemistry of grain could tell scientists more about the origin of Earth’s water.

    1
    Allende meteorite (which fell to Earth in 1969)

    Scientists have discovered a new type of star dust whose composition indicates that it formed during a rare form of nucleosynthesis (the process through which new atomic nuclei are created) and could shed new light on the history of water on Earth.

    A team led by cosmochemists from Caltech and Victoria University of Wellington (NZ) studied ancient minerals aggregates within the Allende meteorite (which fell to Earth in 1969) and found that many of them had unusually high amounts of strontium-84-a relatively rare light isotope of the element strontium that is so-named for the 84 neutrons in its nucleus.

    “Strontium-84 is part of a family of isotopes produced by a nucleosynthetic process, named the p-process, which remains mysterious,” says Caltech’s François L. H. Tissot, assistant professor of geochemistry. “Our results points to the survival of grains possibly containing pure strontium-84. This is exciting, as the physical identification of such grains would provide a unique chance to learn more about the p-process.”

    Tissot and collaborator Bruce L. A. Charlier of Victoria University of Wellington are co-lead authors on a study describing the findings that was published in Science Advances on July 9.

    “This is really interesting,” Charlier says. “We want to know what the nature of this material is and how it fits into the mix of ingredients that went to form the recipe for the planets.”

    Strontium (atomic symbol: Sr), a chemically reactive metal, has four stable isotopes: strontium-84 and its heavier cousins that have 86, 87, or 88 neutrons in their nuclei.

    3
    Strontium. https://www.britannica.com/science/strontium.

    Scientists have found that strontium is useful when attempting to date objects from the early solar system because one of its heavy isotopes, strontium-87, is produced by the decay of the radioactive isotope rubidium-87 (atomic symbol: Rb).

    4
    Rubidium. https://www.britannica.com/science/rubidium

    Rubidium-87 has a very long half-life, 49 billion years, which is more than three times the age of the universe. Half-life represents the amount of time required for the radioactivity of an isotope to drop to one-half its original value, allowing these isotopes to serve as chronometers for dating samples on varying time scales. The most famous radioactive isotope used for dating is carbon-14, the radioactive isotope of carbon; with its half-life of roughly 5,700 years, carbon-14 can be used to determine the ages of organic (carbon-containing) materials on human timescales, up to about 60,000 years. Rubidium-87, in contrast, can be used to date the oldest objects in the universe, and, closer to home, the objects in the solar system.

    What is particularly attractive about using the Rb–Sr pair for dating is that rubidium is a volatile element—that is, it tends to evaporate to form a gas phase at even relatively low temperatures—while strontium is not volatile. As such, rubidium is present at a higher proportion in solar system objects that are rich in other volatiles (such as water), because they formed at lower temperatures.

    5
    A CAI inclusion in the Allende meteorite. This inclusion contains strontium, which was isolated and studied by Tissot and colleagues.

    Counterintuitively, Earth has an Rb/Sr ratio that is 10 times lower than that of water-rich meteorites, implying that the planet either accreted from water-poor (and thus rubidium-poor) materials or it accreted from water-rich materials but lost most of its water over time as well as its rubidium. Understanding which of these scenarios took place is important for understanding the origin of water on Earth.

    In theory, the Rb–Sr chronometer should be able to tease apart these two scenarios, as the amount of Sr-87 produced by radioactive decay in a given amount of time will not be the same if Earth started with a lot of rubidium versus less of the material.

    In the latter scenario, i.e., with less rubidium, the newly formed Earth would have been poor in volatiles such as water, thus the amount of Sr-87 in the earth and in volatile-poor meteorites would be similar to that observed in the oldest-known solar system solids, the so-called CAIs. CAIs are calcium- and aluminum-rich inclusions found in certain meteorites. Dating back 4.567 billion years, CAIs represent the first objects that condensed in the early solar nebula, the flattened, rotating disk of gas and dust from which the solar system was born. As such, CAls offer a geologic window into how and from what type of stellar materials the solar system formed.

    “They are critical witnesses to the processes that were happening while the solar system was forming,” says Tissot.

    However, the composition of CAIs has long muddled scientists’ ability to determine if Earth formed mostly dry or not. That is because CAls, unlike other solar-system materials, have anomalous ratios of the four strontium isotopes, with a slightly elevated proportion of strontium-84. Thus, they pose a challenge to the validity of the rubidium–strontium dating system. And they also raise a key question: Why are they different?

    To learn more, Tissot and Charlier took nine specimens of so-called fine-grained CAls. Fine-grained CAIs have preserved their condensate (that is, snowflake-like) texture, which testifies to their pristine nature.

    The team painstakingly leached out these CAIs by bathing them in gradually harsher acids to strip away the more chemically reactive minerals (and the strontium they contain), leaving a concentrate of only the most resistant fraction. The final sample contained almost pure Sr-84, while a typical sample is composed of 0.56 percent Sr-84.

    “Step-leaching is a little bit of a blunt instrument because you are not entirely sure what exactly it is you are destroying at each step,” Charlier says. “But the nub of what we’ve found is, once you have stripped away 99 percent of the common components within the CAIs, what we are left with is something highly exotic that we weren’t expecting.”

    “The signature is unlike anything else found in the solar system,” Tissot says. The grains carrying this signature, Tissot and Charlier concluded, must have formed prior to the birth of the solar system and survived that cataclysmic process during which stellar grains were heated to extremely high temperatures, vaporized, and then condensed into solid materials.

    Given the relative abundance of strontium-84, the discovery points to the likely existence in meteorites of nanometer-sized grains containing almost pure strontium-84 that were formed during a rare nucleosynthetic process before the formation of the solar system itself. The nature of these grains is still a mystery, as only their isotopic composition in strontium reveals their existence. But the high levels of Sr-84 in the CAIs suggest that Earth and volatile-poor meteorites have more strontium-87 than CAIs, favoring the scenario in which Earth accreted with more water and volatile elements, which were subsequently lost within the first few million years after their formation.

    Co-authors include Caltech graduate student Ren T. Marquez, Hauke Vollstaedt of Thermo Fisher Scientific in Bremen, Germany, Nicolas Dauphas of the University of Chicago (US), and Colin J. N. Wilson of Victoria University of Wellington. Funding to support this research came from Victoria University of Wellington, Caltech, National Aeronautics Space Agency (US), the National Science Foundation (US), and Massachusetts Institute of Technology (US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Caltech campus

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 11:27 am on May 15, 2021 Permalink | Reply
    Tags: "Solar Wind From the Centre of the Earth", Cosmochemistry, , High-precision noble gas analyses indicate that solar wind particles from our primordial Sun were encased in the Earth’s core over 4.5 billion years ago., Isotopic ratios of helium and neon are typical for the solar wind., Noble gas mass spectrometer, The research group has long been measuring solar noble gas isotopes of helium and neon in igneous rock of oceanic islands like Hawaii and Réunion., The scientists found solar noble gases in an iron meteorite they studied., The team postulates that solar wind particles in the primordial Solar System were trapped by the precursor materials of the Washington County parent asteroid.,   

    From U Heidelberg [Ruprecht-Karls-Universität Heidelberg] (DE): “Solar Wind From the Centre of the Earth” 

    U Heidelberg bloc

    From U Heidelberg [Ruprecht-Karls-Universität Heidelberg] (DE)

    14 May 2021

    Model for the Earth’s core: Heidelberg researchers verify presence of solar noble gases in metal of an iron meteorite.

    1
    Meteorite example. Washington University of St. Louis.
    [Washington County iron meteorite-no image available.]

    High-precision noble gas analyses indicate that solar wind particles from our primordial Sun were encased in the Earth’s core over 4.5 billion years ago. Researchers from the Institute of Earth Sciences at Heidelberg University have concluded that the particles made their way into the overlying rock mantle over millions of years. The scientists found solar noble gases in an iron meteorite they studied. Because of their chemical composition, such meteorites are often used as natural models for the Earth’s metallic core.

    The rare class of iron meteorites make up only five percent of all known meteorite finds on Earth. Most are fragments from inside larger asteroids that formed metallic cores in the first one to two million years of our Solar System. The Washington County iron meteorite now being studied at the Klaus Tschira Laboratory for Cosmochemistry at the Institute of Earth Sciences was found nearly 100 years ago. Its name comes from the location in Colorado (USA) where it was discovered. It resembles a metal discus, is six cm thick, and weighs approx. 5.7 kilograms, according to Prof. Dr Mario Trieloff, head of the Geo- and Cosmochemistry research group.

    The researchers were finally able to definitively prove the presence of a solar component in the iron meteorite. Using a noble gas mass spectrometer, they determined that the samples from the Washington County meteorite contain noble gases whose isotopic ratios of helium and neon are typical for the solar wind. According to Dr Manfred Vogt, a member of the Trieloff team, ”the measurements had to be extraordinarily accurate and precise to differentiate the solar signatures from the dominant cosmogenic noble gases and atmospheric contamination”. The team postulates that solar wind particles in the primordial Solar System were trapped by the precursor materials of the Washington County parent asteroid. The noble gases captured along with the particles were dissolved into the liquid metal from which the asteroid’s core formed.

    The results of their measurements allowed the Heidelberg researchers to draw a conclusion by analogy that the core of the planet Earth might also contain such noble gas components. Yet another scientific observation supports this assumption. Prof. Trieloff’s research group has long been measuring solar noble gas isotopes of helium and neon in igneous rock of oceanic islands like Hawaii and Réunion. These magmatites derive from a special form of volcanism sourced by mantle plumes rising from thousands of kilometres deep in the Earth’s mantle. Their particularly high solar gas content makes them fundamentally different from the shallow mantle as represented by volcanic activity of submarine mid-ocean mountain ridges. “We always wondered why such different gas signatures could exist at all in a slowly albeit constantly convecting mantle,” states the Heidelberg researcher.

    Their findings appear to confirm the assumption that the solar noble gases in mantle plumes originate in the planet’s core – and hence signify solar wind particles from the centre of the Earth. “Just one to two percent of a metal with a similar composition as the Washington Country meteorite in the Earth’s core would be enough to explain the different gas signatures in the mantle,” states Dr Vogt. The Earth’s core may therefore play a previously underappreciated active role in the geochemical development of the Earth’s mantle.

    The research was funded by the Klaus Tschira Foundation. The results of the intricate, high-resolution noble gas measurements were published in the journal Communications Earth and Environment. A researcher from the MPG Institute for Chemistry (Otto Hahn Institute) [MPG Institut für Chemie – Otto Hahn Institut] (DE) in Mainz also assisted with the project.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Heidelberg Campus

    Founded in 1386, From U Heidelberg [Ruprecht-Karls-Universität Heidelberg] (DE) , a state university of BadenWürttemberg, is Germany’s oldest university. In continuing its timehonoured tradition as a research university of international standing the Ruprecht-Karls-University’s mission is guided by the following principles:
    Firmly rooted in its history, the University is committed to expanding and disseminating our knowledge about all aspects of humanity and nature through research and education. The University upholds the principle of freedom of research and education, acknowledging its responsibility to humanity, society, and nature.

     
  • richardmitnick 4:40 pm on June 24, 2019 Permalink | Reply
    Tags: "The Interiors of Exoplanets May Well Hold the Key to Their Habitability", , , “The heart of habitability is in planetary interiors” concluded Carnegie geochemist George Cody, , Cosmochemistry, , Deep Carbon Observatory’s Biology Meets Subduction project, Findings from the Curiosity rover that high levels of the gas methane had recently been detected on Mars., , , PREM-Preliminary Reference Earth Model, This idea that subsurface life on distant planets could be identified by their byproducts in the atmosphere has just taken on a new immediacy, We’ve only understood the Earth’s structure for the past hundred years.   

    From Many Worlds: “The Interiors of Exoplanets May Well Hold the Key to Their Habitability” 

    NASA NExSS bloc

    NASA NExSS

    Many Words icon

    From Many Worlds

    June 23, 2019
    Marc Kaufman

    1
    Scientists have had a working — and evolving — understanding of the interior of the Earth for only a century or so. But determining whether a distant planet is truly habitable may require an understanding of its inner dynamics — which will for sure be a challenge to achieve. (Harvard-Smithsonian Center for Astrophysics)

    The quest to find habitable — and perhaps inhabited — planets and moons beyond Earth focuses largely on their location in a solar system and the nature of its host star, the eccentricity of its orbit, its size and rockiness, and the chemical composition of its atmosphere, assuming that it has one.

    Astronomy, astrophysics, cosmochemistry and many other disciplines have made significant progress in characterizing at least some of the billions of exoplanets out there, although measuring the chemical makeup of atmospheres remains a immature field.

    But what if these basic characteristics aren’t sufficient to answer necessary questions about whether a planet is habitable? What if more information — and even more difficult to collect information — is needed?

    That’s the position of many planetary scientists who argue that the dynamics of a planet’s interior are essential to understand its habitability.

    With our existing capabilities, observing an exoplanet’s atmospheric composition will clearly be the first way to search for signatures of life elsewhere. But four scientists at the Carnegie Institution of Science — Anat Shahar, Peter Driscoll, Alycia Weinberger, and George Cody — argued in a recent perspective article in Science that a true picture of planetary habitability must consider how a planet’s atmosphere is linked to and shaped by what’s happening in its interior.

    They argue that on Earth, for instance, plate tectonics are crucial for maintaining a surface climate where life can fill every niche. And without the cycling of material between the planet’s surface and interior, the convection that drives the Earth’s magnetic field would not be possible and without a magnetic field, we would be bombarded by cosmic radiation.

    1
    What makes a planet potentially habitable and what are signs that it is not. This graphic from the Carnegie paper illustrates the differences (Shahar et al.)

    “The perspective was our way to remind people that the only exoplanet observable right now is the atmosphere, but that the atmospheric composition is very much linked to planetary interiors and their evolution,” said lead author Shahar, who is trained in geological sciences. “If there is a hope to one day look for a biosignature, it is crucial we understand all the ways that interiors can influence the atmospheric composition so that the observations can then be better understood.”

    “We need a better understanding of how a planet’s composition and interior influence its habitability, starting with Earth,” she said. “This can be used to guide the search for exoplanets and star systems where life could thrive, signatures of which could be detected by telescopes.”

    It all starts with the formation process. Planets are born from the rotating ring of dust and gas that surrounds a young star.

    The elemental building blocks from which rocky planets form–silicon, magnesium, oxygen, carbon, iron, and hydrogen–are universal. But their abundances and the heating and cooling they experience in their youth will affect their interior chemistry and, in turn, defining factors such ocean volume and atmospheric composition.

    “One of the big questions we need to ask is whether the geologic and dynamic features that make our home planet habitable can be produced on planets with different compositions,” Carnegie planetary scientist Peter Driscoll explained in a release.

    In the next decade as a new generation of telescopes come online, scientists will begin to search in earnest for biosignatures in the atmospheres of rocky exoplanets. But the colleagues say that these observations must be put in the context of a larger understanding of how a planet’s total makeup and interior geochemistry determines the evolution of a stable and temperate surface where life could perhaps arise and thrive.

    “The heart of habitability is in planetary interiors,” concluded Carnegie geochemist George Cody.

    Our knowledge of the Earth’s interior starts with these basic contours: it has a thin outer crust, a thick mantle, and a core the size of Mars. A basic question that can be asked and to some extent answered now is whether this structure is universal for small rocky planets. Will these three layers be present in some form in many other rocky planets as well?

    Earlier preliminary research published in the The Astrophysical Journal suggests that the answer is yes – they will have interiors very similar to Earth.

    “We wanted to see how Earth-like these rocky planets are. It turns out they are very Earth-like,” said lead author Li Zeng of the Harvard-Smithsonian Center for Astrophysics (CfA)

    To reach this conclusion Zeng and his co-authors applied a computer model known as the Preliminary Reference Earth Model (PREM), which is the standard model for Earth’s interior. They adjusted it to accommodate different masses and compositions, and applied it to six known rocky exoplanets with well-measured masses and physical sizes.

    They found that the other planets, despite their differences from Earth, all should have a nickel/iron core containing about 30 percent of the planet’s mass. In comparison, about a third of the Earth’s mass is in its core. The remainder of each planet would be mantle and crust, just as with Earth.

    “We’ve only understood the Earth’s structure for the past hundred years. Now we can calculate the structures of planets orbiting other stars, even though we can’t visit them,” adds Zeng.

    The model assumes that distant exoplanets have chemical compositions similar to Earth. This is reasonable based on the relevant abundances of key chemical elements like iron, magnesium, silicon, and oxygen in nearby systems. However, planets forming in more or less metal-rich regions of the galaxy could show different interior structures.

    While thinking about exoplanetary interiors—and some day finding ways to investigate them — is intriguing and important, it’s also apparent that there’s a lot more to learn about role of the Earth’s interior in making the planet habitable.

    In 2017, for instance, an interdisciplinary group of early career scientists visited Costa Rica’s subduction zone, (where the ocean floor sinks beneath the continent) to find out if subterranean microbes can affect geological processes that move carbon from Earth’s surface into the deep interior.

    3
    Donato Giovannelli and Karen Lloyd collect samples from the crater lake in Poás Volcano in Costa Rica. (Katie Pratt)

    The study shows that microbes consume and trap a small but measurable amount of the carbon sinking into the trench off Costa Rica’s Pacific coast. The microbes may also be involved in chemical processes that pull out even more carbon, leaving cement-like veins of calcite in the crust.

    According to their new study in Nature, the answer is yes.

    In all, microbes and calcite precipitation combine to trap about 94 percent of the carbon squeezed out from the edge of the oceanic plate as it sinks into the mantle during subduction. This carbon remains naturally sequestered in the crust, where it cannot escape back to the surface through nearby volcanoes in the way that much carbon ultimately recycles.

    These unexpected findings have important implications for how much carbon moves from Earth’s surface into the interior, especially over geological timescales. The research is part of the Deep Carbon Observatory’s Biology Meets Subduction project.

    Overall, the study shows that biology has the power to affect carbon recycling and thereby deep Earth geology.

    “We already knew that microbes altered geological processes when they first began producing oxygen from photosynthesis,” said Donato Giovannelli of University of Naples, Italy (and who I knew from time spent at the Earth-Life Science Institute Tokyo.) He is a specialist in extreme environments and researches what they can tell us about early Earth and possibly other planets.

    “I think there are probably even more ways that biology has had an outsized impact on geology, we just haven’t discovered them yet.”

    The findings also shows, Giovanelli told me, that subsurface microbes might have a similarly outsized effect on the composition and balancing of atmospheres—“hinting to the possibility of detecting the indirect effect of subsurface life through atmosphere measurements of exoplanets,” he said.

    5
    The 2003 finding by Michael Mumma and Geronimo Villanueva of NASA Goddard Space Flight Center showing signs of major plumes of methane on Mars. While some limited and seasonably determined concentrations of methane have been detected since, there has been nothing to compare with the earlier high methane readings Mars — until just last week. (NASA/ M. Mumma et al)

    This idea that subsurface life on distant planets could be identified by their byproducts in the atmosphere has just taken on a new immediacy with findings from the Curiosity rover that high levels of the gas methane had recently been detected on Mars. Earlier research had suggested that Mars had some subsurface methane, but the amount appeared to be quite minimal — except as detected once back in 2003 by NASA scientists.

    None of the researchers now or in the past have claimed that they know the origin of the methane — whether it is produced biologically or through other planetary processes. But on Earth, some 90 percent of methane comes from biology — bacteria, plants, animals.

    Could, then, these methane plumes be a sign that life exists (or existed) below the surface of Mars? It’s possible, and highlights the great importance of what goes on below the surface of planets and moons.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Many Worlds
    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: