Tagged: Cosmic Dawn Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:36 pm on January 24, 2023 Permalink | Reply
    Tags: "Were galaxies much different in the early universe?", Arno Penzias and Robert Wilson of AT&T in Holmdel NJ with the Holmdel horn antenna first caught the faint echo of the Big Bang., CMB per European Space Agency(EU) Planck, Cosmic Dawn, , , , ESA Planck microwave telescope 2009 to 2013, , SARAO SKA HERA, The "21-centimeter line", ,   

    From The University of California-Berkeley: “Were galaxies much different in the early universe?” 

    From The University of California-Berkeley

    Robert Sanders

    An array of 350 radio telescopes in the Karoo desert of South Africa is getting closer to detecting “cosmic dawn” — the era after the Big Bang when stars first ignited and galaxies began to bloom.

    In a paper accepted for publication in The Astrophysical Journal [below], the Hydrogen Epoch of Reionization Array (HERA) team reports that it has doubled the sensitivity of the array, which was already the most sensitive radio telescope in the world dedicated to exploring this unique period in the history of the universe.

    While they have yet to actually detect radio emissions from the end of the cosmic dark ages, their results do provide clues to the composition of stars and galaxies in the early universe. In particular, their data suggest that early galaxies contained very few elements besides hydrogen and helium, unlike our galaxies today.

    When the radio dishes are fully online and calibrated, ideally this fall, the team hopes to construct a 3D map of the bubbles of ionized and neutral hydrogen as they evolved from about 200 million years ago to around 1 billion years after the Big Bang. The map could tell us how early stars and galaxies differed from those we see around us today, and how the universe as a whole looked in its adolescence.

    “This is moving toward a potentially revolutionary technique in cosmology. Once you can get down to the sensitivity you need, there’s so much information in the data,” said Joshua Dillon, a research scientist in the University of California- Berkeley’s Department of Astronomy and lead author of the paper. “A 3D map of most of the luminous matter in the universe is the goal for the next 50 years or more.”

    Other telescopes also are peering into the early universe. The new James Webb Space Telescope (JWST) has now imaged a galaxy that existed about 325 million years after the birth of the universe in the Big Bang.

    But the JWST can see only the brightest of the galaxies that formed during the Epoch of Reionization, not the smaller but far more numerous dwarf galaxies whose stars heated the intergalactic medium and ionized most of the hydrogen gas.

    HERA seeks to detect radiation from the neutral hydrogen that filled the space between those early stars and galaxies and, in particular, determine when that hydrogen stopped emitting or absorbing radio waves because it became ionized.

    A 13.8-billion-year cosmic timeline indicates the era shortly after the Big Bang observed by the Planck satellite, the era of the first stars and galaxies observed by HERA and the era of galaxy evolution to be observed by NASA’s future James Webb Space Telescope. HERA image.

    The fact that the HERA team has not yet detected these bubbles of ionized hydrogen within the cold hydrogen of the cosmic dark age rules out some theories of how stars evolved in the early universe.

    Specifically, the data show that the earliest stars, which may have formed around 200 million years after the Big Bang, contained few other elements than hydrogen and helium. This is different from the composition of today’s stars, which have a variety of so-called metals, the astronomical term for elements, ranging from lithium to uranium, that are heavier than helium. The finding is consistent with the current model for how stars and stellar explosions produced most of the other elements.

    “Early galaxies have to have been significantly different than the galaxies that we observe today in order for us not to have seen a signal,” said Aaron Parsons, principal investigator for HERA and a UC Berkeley associate professor of astronomy. “In particular, their X-ray characteristics have to have changed. Otherwise, we would have detected the signal we’re looking for.”

    The atomic composition of stars in the early universe determined how long it took to heat the intergalactic medium once stars began to form. Key to this is the high-energy radiation, primarily X-rays, produced by binary stars where one of them has collapsed to a black hole or neutron star and is gradually eating its companion. With few heavy elements, a lot of the companion’s mass is blown away instead of falling onto the black hole, meaning fewer X-rays and less heating of the surrounding region.

    The new data fit the most popular theories of how stars and galaxies first formed after the Big Bang, but not others. Preliminary results from the first analysis of HERA data, reported a year ago, hinted that those alternatives — specifically, cold reionization — were unlikely.

    “Our results require that even before reionization and by as late as 450 million years after the Big Bang, the gas between galaxies must have been heated by X-rays. These likely came from binary systems where one star is losing mass to a companion black hole,” Dillon said. “Our results show that if that’s the case, those stars must have been very low ‘metallicity,’ that is, very few elements other than hydrogen and helium in comparison to our sun, which makes sense because we’re talking about a period in time in the universe before most of the other elements were formed.”

    The Epoch of Reionization [image above]

    The origin of the universe in the Big Bang 13.8 billion years ago produced a hot cauldron of energy and elementary particles that cooled for hundreds of thousands of years before protons and electrons combined to form atoms — primarily hydrogen and helium. Looking at the sky with sensitive telescopes, astronomers have mapped in detail the faint variations in temperature from this moment — what’s known as the cosmic microwave background [CMB] — a mere 380,000 years after the Big Bang.

    Aside from this relic heat radiation, however, the early universe was dark. As the universe expanded, the clumpiness of matter seeded galaxies and stars, which in turn produced radiation — ultraviolet and X-rays — that heated the gas between stars. At some point, hydrogen began to ionize — it lost its electron — and formed bubbles within the neutral hydrogen, marking the beginning of the Epoch of Reionization.

    To map these bubbles, HERA and several other experiments are focused on a wavelength of light that neutral hydrogen absorbs and emits, but ionized hydrogen does not. Called the “21-centimeter line” (a frequency of 1,420 megahertz), it is produced by the hyperfine transition, during which the spins of the electron and proton flip from parallel to antiparallel. Ionized hydrogen, which has lost its only electron, doesn’t absorb or emit this radio frequency.

    Since the Epoch of Reionization, the 21 centimeter line has been red-shifted by the expansion of the universe to a wavelength 10 times as long — about 2 meters, or 6 feet. HERA’s rather simple antennas, a construct of chicken wire, PVC pipe and telephone poles, are 14 meters across in order to collect and focus this radiation onto detectors.

    “At two meters wavelength, a chicken wire mesh is a mirror,” Dillon said. “And all the sophisticated stuff, so to speak, is in the supercomputer backend and all of the data analysis that comes after that.”

    UC Berkeley astronomer Joshua Dillon under one of the HERA radio dishes in 2017. (Photo courtesy of Joshua Dillon)

    The new analysis is based on 94 nights of observing in 2017 and 2018 with about 40 antennas — phase 1 of the array. Last year’s preliminary analysis was based on 18 nights of phase 1 observations.

    The new paper’s main result is that the HERA team has improved the sensitivity of the array by a factor of 2.1 for light emitted about 650 million years after the Big Bang (a redshift, or an increase in wavelength, of 7.9), and 2.6 for radiation emitted about 450 million years after the Big Bang (a redshift of 10.4).

    The HERA team continues to improve the telescope’s calibration and data analysis in hopes of seeing those bubbles in the early universe, which are about 1 millionth the intensity of the radio noise in the neighborhood of Earth. Filtering out the local radio noise to see the radiation from the early universe has not been easy.

    “If it’s Swiss cheese, the galaxies make the holes, and we’re looking for the cheese,” so far, unsuccessfully, said David Deboer, a research astronomer in UC Berkeley’s Radio Astronomy Laboratory.

    Extending that analogy, however, Dillon noted, “What we’ve done is we’ve said the cheese must be warmer than if nothing had happened. If the cheese were really cold, it turns out it would be easier to observe that patchiness than if the cheese were warm.”

    That mostly rules out cold reionization theory, which posited a colder starting point. The HERA researchers suspect, instead, that the X-rays from X-ray binary stars heated up the intergalactic medium first.

    UC Berkeley astronomer Aaron Parsons takes a selfie at the HERA array in 2017. (Photo credit: Aaron Parsons)

    “The X-rays will effectively heat up the whole block of cheese before the holes will form,” Dillon said. “And those holes are the ionized bits.”

    “HERA is continuing to improve and set better and better limits,” Parsons said. “The fact that we’re able to keep pushing through, and we have new techniques that are continuing to bear fruit for our telescope, is great.”

    The HERA collaboration is led by UC Berkeley and includes scientists from across North America, Europe and South Africa. The construction of the array is funded by the National Science Foundation and the Gordon and Betty Moore Foundation, with key support from the government of South Africa and the South African Radio Astronomy Observatory (SARAO).

    The Astrophysical Journal
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of California-Berkeley is a public land-grant research university in Berkeley, California. Established in 1868 as the state’s first land-grant university, it was the first campus of the University of California system and a founding member of the Association of American Universities . Its 14 colleges and schools offer over 350 degree programs and enroll some 31,000 undergraduate and 12,000 graduate students. Berkeley is ranked among the world’s top universities by major educational publications.

    Berkeley hosts many leading research institutes, including the Mathematical Sciences Research Institute and the Space Sciences Laboratory. It founded and maintains close relationships with three national laboratories at The DOE’s Lawrence Berkeley National Laboratory, The DOE’s Lawrence Livermore National Laboratory and The DOE’s Los Alamos National Lab, and has played a prominent role in many scientific advances, from the Manhattan Project and the discovery of 16 chemical elements to breakthroughs in computer science and genomics. Berkeley is also known for student activism and the Free Speech Movement of the 1960s.

    Berkeley alumni and faculty count among their ranks 110 Nobel laureates (34 alumni), 25 Turing Award winners (11 alumni), 14 Fields Medalists, 28 Wolf Prize winners, 103 MacArthur “Genius Grant” recipients, 30 Pulitzer Prize winners, and 19 Academy Award winners. The university has produced seven heads of state or government; five chief justices, including Chief Justice of the United States Earl Warren; 21 cabinet-level officials; 11 governors; and 25 living billionaires. It is also a leading producer of Fulbright Scholars, MacArthur Fellows, and Marshall Scholars. Berzerkeley alumni, widely recognized for their entrepreneurship, have founded many notable companies.

    Berkeley’s athletic teams compete in Division I of the NCAA, primarily in the Pac-12 Conference, and are collectively known as the California Golden Bears. The university’s teams have won 107 national championships, and its students and alumni have won 207 Olympic medals.

    Made possible by President Lincoln’s signing of the Morrill Act in 1862, The University of California was founded in 1868 as the state’s first land-grant university by inheriting certain assets and objectives of the private College of California and the public Agricultural, Mining, and Mechanical Arts College. Although this process is often incorrectly mistaken for a merger, the Organic Act created a “completely new institution” and did not actually merge the two precursor entities into the new university. The Organic Act states that the “University shall have for its design, to provide instruction and thorough and complete education in all departments of science, literature and art, industrial and professional pursuits, and general education, and also special courses of instruction in preparation for the professions”.

    Ten faculty members and 40 students made up the fledgling university when it opened in Oakland in 1869. Frederick H. Billings, a trustee of the College of California, suggested that a new campus site north of Oakland be named in honor of Anglo-Irish philosopher George Berkeley. The university began admitting women the following year. In 1870, Henry Durant, founder of the College of California, became its first president. With the completion of North and South Halls in 1873, the university relocated to its Berkeley location with 167 male and 22 female students.

    Beginning in 1891, Phoebe Apperson Hearst made several large gifts to Berkeley, funding a number of programs and new buildings and sponsoring, in 1898, an international competition in Antwerp, Belgium, where French architect Émile Bénard submitted the winning design for a campus master plan.

    20th century

    In 1905, the University Farm was established near Sacramento, ultimately becoming the University of California-Davis. In 1919, Los Angeles State Normal School became the southern branch of the University, which ultimately became the University of California-Los Angeles. By 1920s, the number of campus buildings had grown substantially and included twenty structures designed by architect John Galen Howard.

    In 1917, one of the nation’s first ROTC programs was established at Berkeley and its School of Military Aeronautics began training pilots, including Gen. Jimmy Doolittle. Berkeley ROTC alumni include former Secretary of Defense Robert McNamara and Army Chief of Staff Frederick C. Weyand as well as 16 other generals. In 1926, future fleet admiral Chester W. Nimitz established the first Naval ROTC unit at Berkeley.

    In the 1930s, Ernest Lawrence helped establish the Radiation Laboratory (now The DOE’s Lawrence Berkeley National Laboratory) and invented the cyclotron , which won him the Nobel physics prize in 1939.

    Using the cyclotron, Berkeley professors and Berkeley Lab researchers went on to discover 16 chemical elements—more than any other university in the world. In particular, during World War II and following Glenn Seaborg’s then-secret discovery of plutonium, Ernest Orlando Lawrence’s Radiation Laboratory began to contract with the U.S. Army to develop the atomic bomb. Physics professor J. Robert Oppenheimer was named scientific head of the Manhattan Project in 1942. Along with the Lawrence Berkeley National Laboratory, Berkeley founded and was then a partner in managing two other labs, The Doe’s Los Alamos National Laboratory (1943) and The DOE’s Lawrence Livermore National Laboratory (1952).

    By 1942, The American Council on Education ranked Berkeley second only to Harvard University in the number of distinguished departments.

    In 1952, the University of California reorganized itself into a system of semi-autonomous campuses, with each campus given its own chancellor, and Clark Kerr became Berkeley’s first Chancellor, while Sproul remained in place as the President of the University of California.

    Berkeley gained a worldwide reputation for political activism in the 1960s. In 1964, the Free Speech Movement organized student resistance to the university’s restrictions on political activities on campus—most conspicuously, student activities related to the Civil Rights Movement. The arrest in Sproul Plaza of Jack Weinberg, a recent Berkeley alumnus and chair of Campus CORE, in October 1964, prompted a series of student-led acts of formal remonstrance and civil disobedience that ultimately gave rise to the Free Speech Movement, which movement would prevail and serve as precedent for student opposition to America’s involvement in the Vietnam War.

    In 1982, The Mathematical Sciences Research Institute was established on campus with support from the National Science Foundation and at the request of three Berkeley mathematicians — Shiing-Shen Chern, Calvin Moore and Isadore M. Singer. The institute is now widely regarded as a leading center for collaborative mathematical research, drawing thousands of visiting researchers from around the world each year.

    21st century

    In the current century, Berkeley has become less politically active and more focused on entrepreneurship and fundraising, especially for STEM disciplines.

    Modern Berkeley students are less politically radical, with a greater percentage of moderates and conservatives than in the 1960s and 70s. Democrats outnumber Republicans on the faculty by a ratio of 9:1. On the whole, Democrats outnumber Republicans on American university campuses by a ratio of 10:1.

    In 2007, The Energy Biosciences Institute was established with funding from BP and Stanley Hall, a research facility and headquarters for The California Institute for Quantitative Biosciences (QB3), opened. The next few years saw the dedication The Li Ka Shing Center for Biomedical and Health Sciences, funded by a lead gift from billionaire Li Ka-shing; the opening of Sutardja Dai Hall, home of The Center for Information Technology Research in the Interest of Society and the Banatao Institute (CITRIS); and the unveiling of Blum Hall, housing the Blum Center for Developing Economies. Supported by a grant from alumnus James Simons, The Simons Institute for the Theory of Computing was established in 2012. In 2014, Berkeley and its sister campus, University of California-San Francisco, established The Innovative Genomics Institute, and, in 2020, an anonymous donor pledged $252 million to help fund a new center for computing and data science.

    Since 2000, Berkeley alumni and faculty have received 40 Nobel Prizes, behind only Harvard and Massachusetts Institute of Technology among US universities; five Turing Awards, behind only MIT and Stanford University; and five Fields Medals, second only to Princeton University. According to PitchBook, Berkeley ranks second, just behind Stanford University, in producing VC-backed entrepreneurs.

    UC Berzerkeley Seal

  • richardmitnick 7:27 pm on July 20, 2018 Permalink | Reply
    Tags: , Cosmic Dawn, Darm Matter and Hydrogen?, , ,   

    From physicsworld.com: “Did dark matter have a chilling effect on the early universe?” 

    From physicsworld.com

    10 Jul 2018
    Edwin Cartlidge

    Early days: artist’s impression of stars forming from primordial hydrogen gas. (Courtesy: E R Fuller/National Science Foundation)

    New research lends further support to the idea that a detection of surprisingly strong absorption by primordial hydrogen gas, reported earlier this year, could be evidence of dark matter. The new results, described in three papers in Physical Review Letters, are theoretical and do not settle the issue. Indeed, one group is sceptical of the dark-matter interpretation. But the work heightens interest in ongoing observations of the “cosmic dawn”, with new results from radio telescopes expected within the next year.

    According to cosmologists, the hydrogen gas that existed in the very early universe was in thermal equilibrium with the cosmic microwave background (CMB), which meant that the gas would not have been visible either through absorption of the microwave photons or through emission. But at the start of the cosmic dawn about 100 million years after the Big Bang, ultraviolet light from the first stars would have excited the hydrogen atoms and shifted the distribution of electrons within the lower and upper levels of the hyperfine transition. As such, the hydrogen would have started to absorb much more radiation at the transition wavelength (21 cm), which would be seen today as a dip at longer, re-shifted wavelengths in the CMB spectrum.

    Dark Energy Camera Enables Astronomers a Glimpse at the Cosmic Dawn

    In February, researchers working on the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) telescope reported in Nature that they had seen just such a dip at a wavelength of 380 cm in data from their small ground-based antenna system in Western Australia.

    EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia.

    The observation was exciting news, but nevertheless in line with standard cosmological theory. However, the dip was actually twice as deep as expected – immediately leading theorists to speculate that the hydrogen was in fact interacting with particles of dark matter.

    “The stakes are high because if the signal is real, this experiment is worth two Nobel prizes,” says Abraham Loeb of Harvard University. “One for being first to detect the 21 cm signal from the cosmic dawn and the second for finding an unexpected level of hydrogen absorption that may be indicative of new physics.”

    New or old force?

    The idea is that the dark matter would have been colder than the hydrogen atoms and so interactions between the two would have transferred energy from the gas to the dark matter – so cooling the gas and boosting absorption. The possibility of this mechanism being tied to the switching on of the first stars was proposed by Rennan Barkana of Tel Aviv University in Israel, but Barkana suggested that the interaction could involve a new fundamental force between dark and ordinary matter.

    However, Loeb and Harvard colleague Julián Muñoz argued that there could be no such force as it would have led to stars cooling more quickly than is observed. Instead, they reckon that the interaction could be that of familiar electromagnetism – requiring that a small fraction of dark matter particles have little mass and carry about a millionth of the charge of the electron.

    That view has now won cautious backing from other researchers in the US. By imposing constraints from a wider range of cosmological and astrophysical observations, Asher Berlin of the SLAC National Accelerator Laboratory in California and colleagues have shown in a new paper [Physical Review Letters] that dark matter interactions could indeed explain the EDGES results if up to 2% of dark matter weighs in at less than a tenth the mass of the proton and has a charge less than 0.01% of the electron’s. Berlin and colleagues do, however, add that this scenario would require “additional forces” to subsequently deplete the dark matter so its abundance is in line with observations of the present universe. “Although it’s possible that dark matter could produce the EDGES result, it is not easy or simple to do so,” says Berlin’s colleague Dan Hooper of Fermilab near Chicago.

    Extraordinary claims

    Loeb acknowledges that “extraordinary claims require extraordinary evidence,” adding that the apparent 21 cm signal from EDGES could be nothing more than instrumental noise or absorption by dust grains in our galaxy. He looks forward to new results from other experiments operating at different sites – including SARAS-2, LEDA, and PRIzM – and expects new data to be available within the next year.

    Even if the signal is confirmed, however, dark matter is not necessarily the culprit. Guido D’Amico and colleagues at CERN in Geneva argue in the second new paper [Physical Review Letters] that proponents of the dark-matter interpretation have carried out an “incomplete analysis” by neglecting the heating effect of dark-matter annihilation. In particular, they say that annihilations could inject electrons and low-energy photons into the hydrogen gas, thereby potentially heating the gas more than it is cooled. As such, they conclude, dark-matter annihilations are “strongly constrained” by a 21 cm signal.

    In a third new paper [Physical Review Letters], on the other hand, Anastasia Fialkov of the Harvard-Smithsonian Center for Astrophysics in the US and colleagues (including Barkana) show that the dark-matter hypothesis yields an additional prediction that can be tested using different kinds of radio telescope. They have found that the 21 cm signal should vary across the sky by up to 30 times as much as it would do if there were no charged interactions between ordinary and dark matter – and pointing out that this prediction can be tested using low-frequency interferometers.

    Muñoz is enthusiastic about these spatial measurements, explaining that they are far more immune to foreground noise and other potential systematic errors than the data collected by EDGES, and are therefore, he says, “more reliable”. He reckons that a couple of interferometers – LOFAR in the Netherlands and HERA in South Africa – might have gathered sufficient data within the next five to ten years to establish definitively whether or not the dip at 21 cm really is due to charged dark matter.

    ASTRON LOFAR Radio Antenna Bank, Nethrlands

    UC Berkeley Hydrogen Epoch of Reionization Array (HERA), South Africa

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    PhysicsWorld is a publication of the Institute of Physics. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

    We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.
    IOP Institute of Physics

  • richardmitnick 11:27 am on July 29, 2017 Permalink | Reply
    Tags: , , , , Cosmic Dawn, ,   

    From ASU: “ASU astronomers find young galaxies that appeared soon after the Big Bang” 

    ASU Bloc



    Using powerful Dark Energy Camera in Chile, researchers reach the cosmic dawn.

    Dark Energy Survey

    Dark Energy Camera [DECam], built at FNAL

    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    ASU astronomers Sangeeta Malhotra and James Rhoads, working with international teams in Chile and China, have discovered 23 young galaxies, seen as they were 800 million years after the Big Bang. The results from this sample have been recently published in The Astrophysical Journal.

    False color image of a 2 square degree region of the LAGER survey field, created from images taken in the optical at 500 nm (blue), in the near-infrared at 920 nm (red), and in a narrow-band filter centered at 964 nm (green). The small white boxes indicate the positions of the 23 LAEs discovered in the survey. The detailed insets (yellow) show two of the brightest LAEs. Credit Zhenya Zheng (SHAO) & Junxian Wang (USTC).

    Long ago, about 300,000 years after the beginning of the universe (the Big Bang), the universe was dark. There were no stars or galaxies, and the universe was filled with neutral hydrogen gas. In the next half-billion years or so, the first galaxies and stars appeared. Their energetic radiation ionized their surroundings, illuminating and transforming the universe.

    This dramatic transformation, known as re-ionization, occurred sometime in the interval between 300 million years and 1 billion years after the Big Bang. Astronomers are trying to pinpoint this milestone more precisely, and the galaxies found in this study help in this determination.

    “Before re-ionization, these galaxies were very hard to see, because their light is scattered by gas between galaxies, like a car’s headlights in fog,” Malhotra said. “As enough galaxies turn on and ‘burn off the fog’ they become easier to see. By doing so, they help provide a diagnostic to see how much of the ‘fog’ remains at any time in the early universe.”

    ALMA Schematic diagram of the history of the Universe. The Universe is in a neutral state at 400 thousand years after the Big Bang, until light from the first generation of stars starts to ionise the hydrogen. After several hundred million years, the gas in the Universe is completely ionised. Credit. NAOJ

    The galaxy search using the ASU-designed filter and DECam is part of the ongoing “Lyman Alpha Galaxies in the Epoch of Reionization” project (LAGER). It is the largest uniformly selected sample that goes far enough back in the history of the universe to reach cosmic dawn.

    “The combination of large survey size and sensitivity of this survey enables us to study galaxies that are common but faint, as well as those that are bright but rare, at this early stage in the universe,” said Malhotra.

    Junxian Wang, a co-author on this study and the lead of the Chinese LAGER team, adds that “our findings in this survey imply that a large fraction of the first galaxies that ionized and illuminated the universe formed early, less than 800 million years after the Big Bang.”

    The next steps for the team will be to build on these results. They plan to continue to search for distant star-forming galaxies over a larger volume of the universe and to further investigate the nature of some of the first galaxies in the universe.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ASU is the largest public university by enrollment in the United States.[11] Founded in 1885 as the Territorial Normal School at Tempe, the school underwent a series of changes in name and curriculum. In 1945 it was placed under control of the Arizona Board of Regents and was renamed Arizona State College.[12][13][14] A 1958 statewide ballot measure gave the university its present name.
    ASU is classified as a research university with very high research activity (RU/VH) by the Carnegie Classification of Institutions of Higher Education, one of 78 U.S. public universities with that designation. Since 2005 ASU has been ranked among the Top 50 research universities, public and private, in the U.S. based on research output, innovation, development, research expenditures, number of awarded patents and awarded research grant proposals. The Center for Measuring University Performance currently ranks ASU 31st among top U.S. public research universities.[15]

    ASU awards bachelor’s, master’s and doctoral degrees in 16 colleges and schools on five locations: the original Tempe campus, the West campus in northwest Phoenix, the Polytechnic campus in eastern Mesa, the Downtown Phoenix campus and the Colleges at Lake Havasu City. ASU’s “Online campus” offers 41 undergraduate degrees, 37 graduate degrees and 14 graduate or undergraduate certificates, earning ASU a Top 10 rating for Best Online Programs.[16] ASU also offers international academic program partnerships in Mexico, Europe and China. ASU is accredited as a single institution by The Higher Learning Commission.

    ASU Tempe Campus
    ASU Tempe Campus

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: