Tagged: Condensed Matter Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:07 pm on January 20, 2022 Permalink | Reply
    Tags: "Going beyond the exascale", , , Classical computers have been central to physics research for decades., Condensed Matter Physics, , , Fermilab has used classical computing to simulate lattice quantum chromodynamics., , , , Planning for a future that is still decades out., Quantum computers could enable physicists to tackle questions even the most powerful computers cannot handle., , Quantum computing is here—sort of., , Solving equations on a quantum computer requires completely new ways of thinking about programming and algorithms., , , The biggest place where quantum simulators will have an impact is in discovery science.   

    From Symmetry: “Going beyond the exascale” 

    Symmetry Mag

    From Symmetry

    01/20/22
    Emily Ayshford

    1
    Illustration by Sandbox Studio, Chicago with Ana Kova.

    Quantum computers could enable physicists to tackle questions even the most powerful computers cannot handle.

    After years of speculation, quantum computing is here—sort of.

    Physicists are beginning to consider how quantum computing could provide answers to the deepest questions in the field. But most aren’t getting caught up in the hype. Instead, they are taking what for them is a familiar tack—planning for a future that is still decades out, while making room for pivots, turns and potential breakthroughs along the way.

    “When we’re working on building a new particle collider, that sort of project can take 40 years,” says Hank Lamm, an associate scientist at The DOE’s Fermi National Accelerator Laboratory (US). “This is on the same timeline. I hope to start seeing quantum computing provide big answers for particle physics before I die. But that doesn’t mean there isn’t interesting physics to do along the way.”

    Equations that overpower even supercomputers.

    Classical computers have been central to physics research for decades, and simulations that run on classical computers have guided many breakthroughs. Fermilab, for example, has used classical computing to simulate lattice quantum chromodynamics. Lattice QCD is a set of equations that describe the interactions of quarks and gluons via the strong force.

    Theorists developed lattice QCD in the 1970s. But applying its equations proved extremely difficult. “Even back in the 1980s, many people said that even if they had an exascale computer [a computer that can perform a billion billion calculations per second], they still couldn’t calculate lattice QCD,” Lamm says.

    Depiction of ANL ALCF Cray Intel SC18 Shasta Aurora exascale supercomputer, to be built at DOE’s Argonne National Laboratory (US).

    Depiction of ORNL Cray Frontier Shasta based Exascale supercomputer with Slingshot interconnect featuring high-performance AMD EPYC CPU and AMD Radeon Instinct GPU technology , being built at DOE’s Oak Ridge National Laboratory (US).

    But that turned out not to be true.

    Within the past 10 to 15 years, researchers have discovered the algorithms needed to make their calculations more manageable, while learning to understand theoretical errors and how to ameliorate them. These advances have allowed them to use a lattice simulation, a simulation that uses a volume of a specified grid of points in space and time as a substitute for the continuous vastness of reality.

    Lattice simulations have allowed physicists to calculate the mass of the proton—a particle made up of quarks and gluons all interacting via the strong force—and find that the theoretical prediction lines up well with the experimental result. The simulations have also allowed them to accurately predict the temperature at which quarks should detach from one another in a quark-gluon plasma.

    Quark-Gluon Plasma from BNL Relative Heavy Ion Collider (US).

    DOE’s Brookhaven National Laboratory(US) RHIC Campus

    The limit of these calculations? Along with being approximate, or based on a confined, hypothetical area of space, only certain properties can be computed efficiently. Try to look at more than that, and even the biggest high-performance computer cannot handle all of the possibilities.

    Enter quantum computers.

    Quantum computers are all about possibilities. Classical computers don’t have the memory to compute the many possible outcomes of lattice QCD problems, but quantum computers take advantage of quantum mechanics to calculate differently.

    Quantum computing isn’t an easy answer, though. Solving equations on a quantum computer requires completely new ways of thinking about programming and algorithms.

    Using a classical computer, when you program code, you can look at its state at all times. You can check a classical computer’s work before it’s done and trouble-shoot if things go wrong. But under the laws of quantum mechanics, you cannot observe any intermediate step of a quantum computation without corrupting the computation; you can observe only the final state.

    That means you can’t store any information in an intermediate state and bring it back later, and you cannot clone information from one set of qubits into another, making error correction difficult.

    “It can be a nightmare designing an algorithm for quantum computation,” says Lamm, who spends his days trying to figure out how to do quantum simulations for high-energy physics. “Everything has to be redesigned from the ground up. We are right at the beginning of understanding how to do this.”

    Just getting started

    Quantum computers have already proved useful in basic research. Condensed matter physicists—whose research relates to phases of matter—have spent much more time than particle physicists thinking about how quantum computers and simulators can help them. They have used quantum simulators to explore quantum spin liquid states [Science] and to observe a previously unobserved phase of matter called a prethermal time crystal [Science].

    “The biggest place where quantum simulators will have an impact is in discovery science, in discovering new phenomena like this that exist in nature,” says Norman Yao, an assistant professor at The University of California-Berkeley (US) and co-author on the time crystal paper.

    Quantum computers are showing promise in particle physics and astrophysics. Many physics and astrophysics researchers are using quantum computers to simulate “toy problems”—small, simple versions of much more complicated problems. They have, for example, used quantum computing to test parts of theories of quantum gravity [npj Quantum Information] or create proof-of-principle models, like models of the parton showers that emit from particle colliders [Physical Review Letters] such as the Large Hadron Collider.

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN].

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] map.

    CERN LHC tube in the tunnel. Credit: Maximilien Brice and Julien Marius Ordan.

    SixTRack CERN LHC particles.

    “Physicists are taking on the small problems, ones that they can solve with other ways, to try to understand how quantum computing can have an advantage,” says Roni Harnik, a scientist at Fermilab. “Learning from this, they can build a ladder of simulations, through trial and error, to more difficult problems.”

    But just which approaches will succeed, and which will lead to dead ends, remains to be seen. Estimates of how many qubits will be needed to simulate big enough problems in physics to get breakthroughs range from thousands to (more likely) millions. Many in the field expect this to be possible in the 2030s or 2040s.

    “In high-energy physics, problems like these are clearly a regime in which quantum computers will have an advantage,” says Ning Bao, associate computational scientist at DOE’s Brookhaven National Laboratory (US). “The problem is that quantum computers are still too limited in what they can do.”

    Starting with physics

    Some physicists are coming at things from a different perspective: They’re looking to physics to better understand quantum computing.

    John Preskill is a physics professor at The California Institute of Technology (US) and an early leader in the field of quantum computing. A few years ago, he and Patrick Hayden, professor of physics at Stanford University (US), showed that if you entangled two photons and threw one into a black hole, decoding the information that eventually came back out via Hawking radiation would be significantly easier than if you had used non-entangled particles. Physicists Beni Yoshida and Alexei Kitaev then came up with an explicit protocol for such decoding, and Yao went a step further, showing that protocol could also be a powerful tool in characterizing quantum computers.

    “We took something that was thought about in terms of high-energy physics and quantum information science, then thought of it as a tool that could be used in quantum computing,” Yao says.

    That sort of cross-disciplinary thinking will be key to moving the field forward, physicists say.

    “Everyone is coming into this field with different expertise,” Bao says. “From computing, or physics, or quantum information theory—everyone gets together to bring different perspectives and figure out problems. There are probably many ways of using quantum computing to study physics that we can’t predict right now, and it will just be a matter of getting the right two people in a room together.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 10:45 am on January 15, 2022 Permalink | Reply
    Tags: "Cuprates": materials that can be viewed as containing anionic copper complexes., "Newly discovered type of ‘strange metal’ could lead to deep insights", "Strange metals": A type of system where charge carriers are bosons-something that's never been seen before., , “Strange metals”: a class of materials that are related to high-temperature superconductors., Boltzmann’s constant: represents the energy produced by random thermal motion., Bosons follow very different rules from fermions., , , Condensed Matter Physics, Cooper pairs: a pair of electrons (or other fermions) bound together at low temperatures., Cuprates are most famous for being high-temperature superconductors meaning they conduct electricity with zero resistance at temperatures far above that of normal superconductors., Fermi liquid theory: a theoretical model of interacting fermions that describes the normal state of most metals at sufficiently low temperatures., , , Planck’s constant: relates to the energy of a photon (a particle of light)., This is the first time "strange metal" behavior has been seen in a bosonic system., While electrons belong to a class of particles called fermions Cooper pairs of electrons act as bosons.   

    From Brown University (US): “Newly discovered type of ‘strange metal’ could lead to deep insights” 

    From Brown University (US)

    January 12, 2022

    Kevin Stacey
    kevin_stacey@brown.edu
    401-863-3766

    A new discovery could help scientists to understand “strange metals,” a class of materials that are related to high-temperature superconductors and share fundamental quantum attributes with black holes.

    1
    Using a material called yttrium barium copper oxide arrayed with tiny holes, researchers have discovered “strange metal” behavior in a type of system where charge carriers are bosons-something that’s never been seen before.

    Scientists understand quite well how temperature affects electrical conductance in most everyday metals like copper or silver. But in recent years, researchers have turned their attention to a class of materials that do not seem to follow the traditional electrical rules. Understanding these so-called “strange metals” could provide fundamental insights into the quantum world, and potentially help scientists understand strange phenomena like high-temperature superconductivity.

    Now, a research team co-led by a Brown University physicist has added a new discovery to the “strange metal” mix. In research published in the journal Nature [“Signatures of a ‘strange metal’ in a bosonic system”], the team found “strange metal” behavior in a material in which electrical charge is carried not by electrons, but by more “wave-like” entities called Cooper pairs.

    While electrons belong to a class of particles called fermions Cooper pairs of electrons act as bosons, which follow very different rules from fermions. This is the first time “strange metal” behavior has been seen in a bosonic system, and researchers are hopeful that the discovery might be helpful in finding an explanation for how “strange metals” work — something that has eluded scientists for decades.

    “We have these two fundamentally different types of particles whose behaviors converge around a mystery,” said Jim Valles, a professor of physics at Brown and the study’s corresponding author. “What this says is that any theory to explain “strange metal” behavior can’t be specific to either type of particle. It needs to be more fundamental than that.”

    “Strange metals”

    “Strange metal” behavior was first discovered around 30 years ago in a class of materials called cuprates. These copper-oxide materials are most famous for being high-temperature superconductors, meaning they conduct electricity with zero resistance at temperatures far above that of normal superconductors. But even at temperatures above the critical temperature for superconductivity, cuprates act strangely compared to other metals.

    As their temperature increases, cuprates’ resistance increases in a strictly linear fashion. In normal metals, the resistance increases only so far, becoming constant at high temperatures in accord with what’s known as Fermi liquid theory. Resistance arises when electrons flowing in a metal bang into the metal’s vibrating atomic structure, causing them to scatter. Fermi-liquid theory sets a maximum rate at which electron scattering can occur. But strange metals don’t follow the Fermi-liquid rules, and no one is sure how they work. What scientists do know is that the temperature-resistance relationship in strange metals appears to be related to two fundamental constants of nature: Boltzmann’s constant, which represents the energy produced by random thermal motion, and Planck’s constant, which relates to the energy of a photon (a particle of light).

    “To try to understand what’s happening in these strange metals, people have applied mathematical approaches similar to those used to understand black holes,” Valles said. “So there’s some very fundamental physics happening in these materials.”

    Of bosons and fermions

    In recent years, Valles and his colleagues have been studying electrical activity in which the charge carriers are not electrons. In 1952, Nobel Laureate Leon Cooper, now a Brown professor emeritus of physics, discovered that in normal superconductors (not the high-temperature kind discovered later), electrons team up to form Cooper pairs, which can glide through an atomic lattice with no resistance. Despite being formed by two electrons, which are fermions, Cooper pairs can act as bosons.

    “Fermion and boson systems usually behave very differently,” Valles said. “Unlike individual fermions, bosons are allowed to share the same quantum state, which means they can move collectively like water molecules in the ripples of a wave.”

    In 2019, Valles and his colleagues showed that Cooper pair bosons can produce metallic behavior, meaning they can conduct electricity with some amount of resistance. That in itself was a surprising finding, the researchers say, because elements of quantum theory suggested that the phenomenon shouldn’t be possible. For this latest research, the team wanted to see if bosonic Cooper-pair metals were also “strange metals”.

    The team used a cuprate material called yttrium barium copper oxide patterned with tiny holes that induce the Cooper-pair metallic state. The team cooled the material down to just above its superconducting temperature to observe changes in its conductance. They found, like fermionic “strange metals”, a Cooper-pair metal conductance that is linear with temperature.

    The researchers say this new discovery will give theorists something new to chew on as they try to understand “strange metal” behavior.

    “It’s been a challenge for theoreticians to come up with an explanation for what we see in ‘strange metals’,” Valles said. “Our work shows that if you’re going to model charge transport in “strange metals”, that model must apply to both fermions and bosons — even though these types of particles follow fundamentally different rules.”

    Ultimately, a theory of “strange metals” could have massive implications. “Strange metal” behavior could hold the key to understanding high-temperature superconductivity, which has vast potential for things like lossless power grids and quantum computers. And because “strange metal” behavior seems to be related to fundamental constants of the universe, understanding their behavior could shed light on basic truths of how the physical world works.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Brown

    Brown U Robinson Hall

    Brown University (US) is a private Ivy League research university in Providence, Rhode Island. Founded in 1764 as the College in the English Colony of Rhode Island and Providence Plantations, Brown is the seventh-oldest institution of higher education in the United States and one of the nine colonial colleges chartered before the American Revolution.

    At its foundation, Brown University was the first college in North America to accept students regardless of their religious affiliation. The university is home to the oldest applied mathematics program in the United States, the oldest engineering program in the Ivy League, and the third-oldest medical program in New England. The university was one of the early doctoral-granting U.S. institutions in the late 19th century, adding masters and doctoral studies in 1887. In 1969, Brown adopted its “Open Curriculum” after a period of student lobbying. The new curriculum eliminated mandatory “general education” distribution requirements, made students “the architects of their own syllabus” and allowed them to take any course for a grade of satisfactory (Pass) or no-credit (Fail) which is unrecorded on external transcripts. In 1971, Brown’s coordinate women’s institution, Pembroke College (US), was fully merged into the university.

    Admission is among the most selective in the United States; in 2021, the university reported an acceptance rate of 5.4%.

    The university comprises the College; the Graduate School; Alpert Medical School; the School of Engineering; the School of Public Health and the School of Professional Studies. Brown’s international programs are organized through The Watson Institute for International and Public Affairs at Brown University (US), and the university is academically affiliated with the UChicago Marine Biological Laboratory in Woods Hole, Massachusetts (US) and The Rhode Island School of Design (US). In conjunction with the Rhode Island School of Design, Brown offers undergraduate and graduate dual degree programs.

    Brown’s main campus is located in the College Hill neighborhood of Providence, Rhode Island. The university is surrounded by a federally listed architectural district with a dense concentration of Colonial-era buildings. Benefit Street, which runs along the western edge of the campus, contains one of the richest concentrations of 17th and 18th century architecture in the United States.

    As of November 2019, nine Nobel Prize winners have been affiliated with Brown as alumni, faculty, or researchers, as well as seven National Humanities Medalists and ten National Medal of Science laureates. Other notable alumni include 26 Pulitzer Prize winners, 18 billionaires, one U.S. Supreme Court Chief Justice, four U.S. Secretaries of State, 99 members of the United States Congress, 57 Rhodes Scholars, 21 MacArthur Genius Fellows, and 37 Olympic medalists.

    The foundation and the charter
    ===
    In 1761, three residents of Newport, Rhode Island, drafted a petition to the colony’s General Assembly:

    “That your Petitioners propose to open a literary institution or School for instructing young Gentlemen in the Languages, Mathematics, Geography & History, & such other branches of Knowledge as shall be desired. That for this End… it will be necessary… to erect a public Building or Buildings for the boarding of the youth & the Residence of the Professors.”

    The three petitioners were Ezra Stiles, pastor of Newport’s Second Congregational Church and future president of Yale University (US); William Ellery, Jr., future signer of the United States Declaration of Independence; and Josias Lyndon, future governor of the colony. Stiles and Ellery later served as co-authors of the college’s charter two years later. The editor of Stiles’s papers observes, “This draft of a petition connects itself with other evidence of Dr. Stiles’s project for a Collegiate Institution in Rhode Island, before the charter of what became Brown University.”

    The Philadelphia Association of Baptist Churches were also interested in establishing a college in Rhode Island—home of the mother church of their denomination. At the time, the Baptists were unrepresented among the colonial colleges; the Congregationalists had Harvard University (US) and Yale, the Presbyterians had the College of New Jersey (later Princeton University (US)), and the Episcopalians had The William & Mary College (US) and King’s College (later Columbia University(US)). Isaac Backus, a historian of the New England Baptists and an inaugural trustee of Brown, wrote of the October 1762 resolution taken at Philadelphia:

    “The Philadelphia Association obtained such an acquaintance with our affairs, as to bring them to an apprehension that it was practicable and expedient to erect a college in the Colony of Rhode-Island, under the chief direction of the Baptists; … Mr. James Manning, who took his first degree in New-Jersey college in September, 1762, was esteemed a suitable leader in this important work.”

    James Manning arrived at Newport in July 1763 and was introduced to Stiles, who agreed to write the charter for the college. Stiles’ first draft was read to the General Assembly in August 1763 and rejected by Baptist members who worried that their denomination would be underrepresented in the College Board of Fellows. A revised charter written by Stiles and Ellery was adopted by the Rhode Island General Assembly on March 3, 1764, in East Greenwich.

    In September 1764, the inaugural meeting of the corporation—the college’s governing body—was held in Newport’s Old Colony House. Governor Stephen Hopkins was chosen chancellor, former and future governor Samuel Ward vice chancellor, John Tillinghast treasurer, and Thomas Eyres secretary. The charter stipulated that the board of trustees should be composed of 22 Baptists, five Quakers, five Episcopalians, and four Congregationalists. Of the 12 Fellows, eight should be Baptists—including the college president—”and the rest indifferently of any or all Denominations.”

    At the time of its creation, Brown’s charter was a uniquely progressive document. Other colleges had curricular strictures against opposing doctrines, while Brown’s charter asserted, “Sectarian differences of opinions, shall not make any Part of the Public and Classical Instruction.” The document additionally “recognized more broadly and fundamentally than any other [university charter] the principle of denominational cooperation.” The oft-repeated statement that Brown’s charter alone prohibited a religious test for College membership is inaccurate; other college charters were similarly liberal in that particular.

    The college was founded as Rhode Island College, at the site of the First Baptist Church in Warren, Rhode Island. James Manning was sworn in as the college’s first president in 1765 and remained in the role until 1791. In 1766, the college authorized Rev. Morgan Edwards to travel to Europe to “solicit Benefactions for this Institution.” During his year-and-a-half stay in the British Isles, the reverend secured funding from benefactors including Thomas Penn and Benjamin Franklin.

    In 1770, the college moved from Warren to Providence. To establish a campus, John and Moses Brown purchased a four-acre lot on the crest of College Hill on behalf of the school. The majority of the property fell within the bounds of the original home lot of Chad Brown, an ancestor of the Browns and one of the original proprietors of Providence Plantations. After the college was relocated to the city, work began on constructing its first building.

    A building committee, organized by the corporation, developed plans for the college’s first purpose-built edifice, finalizing a design on February 9, 1770. The subsequent structure, referred to as “The College Edifice” and later as University Hall, may have been modeled on Nassau Hall, built 14 years prior at the College of New Jersey. President Manning, an active member of the building process, was educated at Princeton and might have suggested that Brown’s first building resemble that of his alma mater.

    The College

    Founded in 1764, the college is Brown’s oldest school. About 7,200 undergraduate students are enrolled in the college, and 81 concentrations are offered. For the graduating class of 2020 the most popular concentrations were Computer Science; Economics; Biology; History; Applied Mathematics; International Relations and Political Science. A quarter of Brown undergraduates complete more than one concentration before graduating. If the existing programs do not align with their intended curricular interests, undergraduates may design and pursue independent concentrations.

    35 percent of undergraduates pursue graduate or professional study immediately, 60 percent within 5 years, and 80 percent within 10 years. For the Class of 2009, 56 percent of all undergraduate alumni have since earned graduate degrees. Among undergraduate alumni who go on to receive graduate degrees, the most common degrees earned are J.D. (16%), M.D. (14%), M.A. (14%), M.Sc. (14%), and Ph.D. (11%). The most common institutions from which undergraduate alumni earn graduate degrees are Brown University, Columbia University, and Harvard University.

    The highest fields of employment for undergraduate alumni ten years after graduation are education and higher education (15%), medicine (9%), business and finance (9%), law (8%), and computing and technology (7%).

    Brown and RISD

    Since its 1893 relocation to College Hill, Rhode Island School of Design (RISD) has bordered Brown to its west. Since 1900, Brown and RISD students have been able to cross-register at the two institutions, with Brown students permitted to take as many as four courses at RISD to count towards their Brown degree. The two institutions partner to provide various student-life services and the two student bodies compose a synergy in the College Hill cultural scene.

    Rankings

    Brown University is accredited by the New England Commission of Higher Education. For their 2021 rankings, The Wall Street Journal/Times Higher Education ranked Brown 5th in the Best Colleges 2021 edition.

    The Forbes Magazine annual ranking of America’s Top Colleges 2021—which ranked 600 research universities, liberal arts colleges and service academies—ranked Brown 26th overall and 23rd among universities.

    U.S. News & World Report ranked Brown 14th among national universities in its 2021 edition.[162] The 2021 edition also ranked Brown 1st for undergraduate teaching, 20th in Most Innovative Schools, and 18th in Best Value Schools.

    Washington Monthly ranked Brown 37th in 2020 among 389 national universities in the U.S. based on its contribution to the public good, as measured by social mobility, research, and promoting public service.

    For 2020, U.S. News & World Report ranks Brown 102nd globally.

    In 2014, Forbes Magazine ranked Brown 7th on its list of “America’s Most Entrepreneurial Universities.” The Forbes analysis looked at the ratio of “alumni and students who have identified themselves as founders and business owners on LinkedIn” and the total number of alumni and students.

    LinkedIn particularized the Forbes rankings, placing Brown third (between The Massachusetts Institute of Technology (US) and Princeton) among “Best Undergraduate Universities for Software Developers at Startups.” LinkedIn’s methodology involved a career-path examination of “millions of alumni profiles” in its membership database.

    In 2020, U.S. News ranked Brown’s Warren Alpert Medical School the 9th most selective in the country, with an acceptance rate of 2.8 percent.

    According to 2020 data from The Department of Education (US), the median starting salary of Brown computer science graduates was the highest in the United States.

    In 2020, Brown produced the second-highest number of Fulbright winners. For the three years prior, the university produced the most Fulbright winners of any university in the nation.

    Research

    Brown is member of The Association of American Universities (US) since 1933 and is classified among “R1: Doctoral Universities – Very High Research Activity”. In FY 2017, Brown spent $212.3 million on research and was ranked 103rd in the United States by total R&D expenditure by The National Science Foundation (US).

     
  • richardmitnick 11:02 pm on January 11, 2022 Permalink | Reply
    Tags: "Semiconductor demonstrates elusive quantum physics model", An elusive model that was first proposed more than a decade ago but which scientists have never able to demonstrate because a suitable material didn’t seem to exist., Condensed Matter Physics, , , The Hall effect first observed in the late 19th century., The quantum anomalous Hall insulator-first discovered in 2013, The two states of matter have never before been demonstrated in the same system., The two-dimensional topological insulator   

    From The Cornell Chronicle (US) and The Cornell University College of Engineering (US) : “Semiconductor demonstrates elusive quantum physics model” 

    From The Cornell Chronicle (US)

    and

    2

    The Cornell University College of Engineering (US)

    January 11, 2022
    David Nutt
    cunews@cornell.edu

    1
    Credit: CC0 Public Domain

    With a little twist and the turn of a voltage knob, Cornell researchers have shown that a single material system can toggle between two of the wildest states in condensed matter physics: the quantum anomalous Hall insulator and the two-dimensional topological insulator.

    By doing so, they realized an elusive model that was first proposed more than a decade ago, but which scientists have never able to demonstrate because a suitable material didn’t seem to exist. Now that the researchers have created the right platform, their breakthrough could lead to advances in quantum devices.

    The team’s paper is published Dec. 22 in Nature. The co-lead authors are former postdoctoral researchers Tingxin Li and Shengwei Jiang, doctoral student Bowen Shen and The Massachusetts Institute of Technology (US) researcher Yang Zhang.

    The project is the latest discovery from the shared lab of Kin Fai Mak, associate professor of physics in the College of Arts and Sciences, and Jie Shan, professor of applied and engineering physics in the College of Engineering, the paper’s co-senior authors. Both researchers are members of The Kavli Institute at Cornell for Nanoscale Science; they came to Cornell through the provost’s Nanoscale Science and Microsystems Engineering (NEXT Nano) initiative.

    Their lab specializes in exploring the electronic properties of 2D quantum materials, often by stacking ultrathin monolayers of semiconductors so their slightly mismatched overlap creates a moiré lattice pattern. There, electrons can be deposited and interact with each other to exhibit a range of quantum behavior.

    For the new project, the researchers paired molybdenum ditelluride (MoTe2) with tungsten diselenide (WSe2), twisting them at a 180-degree angle for a configuration that is known as an AB stack.

    After applying a voltage, they observed what’s known as a quantum anomalous Hall effect. This has its roots in a phenomenon called the Hall effect first observed in the late 19th century, in which electrical current is flowed through a sample and then bent by a magnetic field that is applied at a perpendicular angle.

    The quantum Hall effect, discovered in 1980, is the supersized version, in which a far greater magnetic field is applied, triggering even stranger phenomena: The interior of the bulk sample becomes an insulator, while an electrical current moves in a single direction along the outer edge, with resistances quantized to a value defined by the fundamental constants in the universe, regardless of the details of the material.

    The quantum anomalous Hall insulator, first discovered in 2013, achieves the same effect but without the intervention of any magnetic field, the electrons speeding along the edge as if on a highway, without dissipating energy, somewhat like a superconductor.

    “For a long time people thought that a magnetic field is needed for the quantum Hall effect, but you actually don’t need one,” Mak said. “So what replaces the role of a magnetic field? It turns out that it is magnetism. You have to make the material magnetic.”

    The MoTe2/WSe2 stack now joins the ranks of only handful of materials that are known to be quantum anomalous Hall insulators. But that is only half of its appeal.

    The researchers found that by simply tweaking the voltage, they could turn their semiconductor stack into a 2D topological insulator, which is a cousin of sorts to the quantum anomalous Hall insulator, except that it exists in duplicate. In one “copy,” the electron highway flows clockwise around the edge, and in the other, it flows counterclockwise.

    The two states of matter have never before been demonstrated in the same system.

    After consulting with collaborators led by co-author Liang Fu at MIT, the Cornell team learned its experiment had realized a toy model for graphene first proposed by physics professors Charles Kane and Eugene Mele at The University of Pennsylvania (US) in 2005. The Kane-Mele model was the first theoretical model for 2D topological insulators.

    “That was a surprise to us,” Mak said. “We just made this material and did the measurements. We saw the quantum anomalous Hall effect and the 2D topological insulator and said ‘Oh, wow. That’s great.’ Then we talked to our theory friend, Liang Fu, at MIT. They did the calculations and figured out the material actually realized a long sought-after model in condensed matter. We never expected this.”

    Like graphene moiré materials, MoTe2/WSe2 can switch between a range of quantum states, including a transition from a metal to a Mott insulator, a discovery the team reported in Nature in September.

    Now Mak and Shan’s lab is investigating the full potential of the material by coupling it with superconductors and using it to build quantum anomalous Hall interferometers, both of which in turn could generate qubits, the basic element for quantum computing. Mak is also hopeful they may find a way to significantly raise the temperature at which the quantum anomalous Hall effect occurs – which is at about 2 kelvin – resulting in a high-temperature dissipationless conductor.

    Co-authors include doctoral students Lizhong Li and Zui Tao; and researchers from MIT and The National Institute for Materials Science (JP).

    The research was primarily supported by the U.S. Department of Energy, with additional support from the National Science Foundation, the Air Force Office of Scientific Research, the Army Research Office, the Simons Foundation and the David and Lucile Packard Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Cornell University College of Engineering is a division of Cornell University that was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. It is one of four private undergraduate colleges at Cornell that are not statutory colleges.

    It currently grants bachelors, masters, and doctoral degrees in a variety of engineering and applied science fields, and is the third largest undergraduate college at Cornell by student enrollment. The college offers over 450 engineering courses, and has an annual research budget exceeding US$112 million.

    The Cornell University College of Engineering was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. The program was housed in Sibley Hall on what has since become the Arts Quad, both of which are named for Hiram Sibley, the original benefactor whose contributions were used to establish the program. The college took its current name in 1919 when the Sibley College merged with the College of Civil Engineering. It was housed in Sibley, Lincoln, Franklin, Rand, and Morse Halls. In the 1950s the college moved to the southern end of Cornell’s campus.

    Cassier’s Magazine, December 1891, featured an article about the College.

    The college is known for a number of firsts. In 1889, the college took over electrical engineering from the Department of Physics, establishing the first department in the United States in this field. The college awarded the nation’s first doctorates in both electrical engineering and industrial engineering. The Department of Computer Science, established in 1965 jointly under the College of Engineering and the College of Arts and Sciences, is also one of the oldest in the country.

    For many years, the college offered a five-year undergraduate degree program. However, in the 1960s, the course was shortened to four years for a B.S. degree with an optional fifth year leading to a masters of engineering degree. From the 1950s to the 1970s, Cornell offered a Master of Nuclear Engineering program, with graduates gaining employment in the nuclear industry. However, after the 1979 accident at Three Mile Island, employment opportunities in that field dimmed and the program was dropped. Cornell continued to operate its on-campus nuclear reactor as a research facility following the close of the program. For most of Cornell’s history, Geology was taught in the College of Arts and Sciences. However, in the 1970s, the department was shifted to the engineering college and Snee Hall was built to house the program. After World War II, the Graduate School of Aerospace Engineering was founded as a separate academic unit, but later merged into the engineering college.

    Cornell Engineering is home to many teams that compete in student design competitions and other engineering competitions. Presently, there are teams that compete in the Baja SAE, Automotive X-Prize (see Cornell 100+ MPG Team), UNP Satellite Program, DARPA Grand Challenge, AUVSI Unmanned Aerial Systems and Underwater Vehicle Competition, Formula SAE, RoboCup, Solar Decathlon, Genetically Engineered Machines, and others.

    Cornell’s College of Engineering is currently ranked 12th nationally by U.S. News and World Report, making it ranked 1st among engineering schools/programs in the Ivy League. The engineering physics program at Cornell was ranked as being No. 1 by U.S. News and World Report in 2008. Cornell’s operations research and industrial engineering program ranked fourth in nation, along with the master’s program in financial engineering. Cornell’s computer science program ranks among the top five in the world, and it ranks fourth in the quality of graduate education.

    The college is a leader in nanotechnology. In a survey done by a nanotechnology magazine Cornell University was ranked as being the best at nanotechnology commercialization, 2nd best in terms of nanotechnology facilities, the 4th best at nanotechnology research and the 10th best at nanotechnology industrial outreach.

    Departments and schools

    With about 3,000 undergraduates and 1,300 graduate students, the college is the third-largest undergraduate college at Cornell by student enrollment. It is divided into twelve departments and schools:

    School of Applied and Engineering Physics
    Department of Biological and Environmental Engineering
    Meinig School of Biomedical Engineering
    Smith School of Chemical and Biomolecular Engineering
    School of Civil & Environmental Engineering
    Department of Computer Science
    Department of Earth & Atmospheric Sciences
    School of Electrical and Computer Engineering
    Department of Materials Science and Engineering
    Sibley School of Mechanical and Aerospace Engineering
    School of Operations Research and Information Engineering
    Department of Theoretical and Applied Mechanics
    Department of Systems Engineering

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University(US) is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and The Jacobs Technion-Cornell Institute(US) in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through The State University of New York(US) (SUNY) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University(US) laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are The Department of Health and Human Services and the National Science Foundation(US), accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech(US) engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration(US)’s Jet Propulsion Laboratory at Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico(US) until 2011, when they transferred the operations to SRI International, the Universities Space Research Association (US) and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico](US).

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As a National Science Foundation (US) center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Eniginnering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory(US), which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 2:12 pm on January 11, 2022 Permalink | Reply
    Tags: "Physicists detect a hybrid particle held together by uniquely intense 'glue'", Antiferromagnets, , Condensed Matter Physics, , , , , The discovery could offer a route to smaller and faster electronic devices.,   

    From The Massachusetts Institute of Technology (US) : “Physicists detect a hybrid particle held together by uniquely intense ‘glue'” 

    MIT News

    From The Massachusetts Institute of Technology (US)

    January 10, 2022
    Jennifer Chu

    The discovery could offer a route to smaller and faster electronic devices.

    1
    MIT physicists have detected a hybrid particle in an unusual, two-dimensional magnetic material. The hybrid particle is a mashup of an electron and a phonon. Image: Christine Daniloff, MIT.

    In the particle world, sometimes two is better than one. Take, for instance, electron pairs. When two electrons are bound together, they can glide through a material without friction, giving the material special superconducting properties. Such paired electrons, or Cooper pairs, are a kind of hybrid particle — a composite of two particles that behaves as one, with properties that are greater than the sum of its parts.

    Now MIT physicists have detected another kind of hybrid particle in an unusual, two-dimensional magnetic material. They determined that the hybrid particle is a mashup of an electron and a phonon (a quasiparticle that is produced from a material’s vibrating atoms). When they measured the force between the electron and phonon, they found that the glue, or bond, was 10 times stronger than any other electron-phonon hybrid known to date.

    The particle’s exceptional bond suggests that its electron and phonon might be tuned in tandem; for instance, any change to the electron should affect the phonon, and vice versa. In principle, an electronic excitation, such as voltage or light, applied to the hybrid particle could stimulate the electron as it normally would, and also affect the phonon, which influences a material’s structural or magnetic properties. Such dual control could enable scientists to apply voltage or light to a material to tune not just its electrical properties but also its magnetism.

    The results are especially relevant, as the team identified the hybrid particle in nickel phosphorus trisulfide (NiPS3), a two-dimensional material that has attracted recent interest for its magnetic properties. If these properties could be manipulated, for instance through the newly detected hybrid particles, scientists believe the material could one day be useful as a new kind of magnetic semiconductor, which could be made into smaller, faster, and more energy-efficient electronics.

    “Imagine if we could stimulate an electron, and have magnetism respond,” says Nuh Gedik, professor of physics at MIT. “Then you could make devices very different from how they work today.”

    Gedik and his colleagues have published their results today in the journal Nature Communications. His co-authors include Emre Ergeçen, Batyr Ilyas, Dan Mao, Hoi Chun Po, Mehmet Burak Yilmaz, and Senthil Todadri at MIT, along with Junghyun Kim and Je-Geun Park of The Seoul National University [서울대학교](KR).

    Particle sheets

    The field of modern condensed matter physics is focused, in part, on the search for interactions in matter at the nanoscale. Such interactions, between a material’s atoms, electrons, and other subatomic particles, can lead to surprising outcomes, such as superconductivity and other exotic phenomena. Physicists look for these interactions by condensing chemicals onto surfaces to synthesize sheets of two-dimensional materials, which could be made as thin as one atomic layer.

    In 2018, a research group in Korea discovered some unexpected interactions in synthesized sheets of NiPS3, a two-dimensional material that becomes an antiferromagnet at very low temperatures of around 150 kelvins, or -123 degrees Celsius. The microstructure of an antiferromagnet resembles a honeycomb lattice of atoms whose spins are opposite to that of their neighbor. In contrast, a ferromagnetic material is made up of atoms with spins aligned in the same direction.

    In probing NiPS3, that group discovered that an exotic excitation became visible when the material is cooled below its antiferromagnetic transition, though the exact nature of the interactions responsible for this was unclear. Another group found signs of a hybrid particle, but its exact constituents and its relationship with this exotic excitation were also not clear.

    Gedik and his colleagues wondered if they might detect the hybrid particle, and tease out the two particles making up the whole, by catching their signature motions with a super-fast laser.

    Magnetically visible

    Normally, the motion of electrons and other subatomic particles are too fast to image, even with the world’s fastest camera. The challenge, Gedik says, is similar to taking a photo of a person running. The resulting image is blurry because the camera’s shutter, which lets in light to capture the image, is not fast enough, and the person is still running in the frame before the shutter can snap a clear picture.

    To get around this problem, the team used an ultrafast laser that emits light pulses lasting only 25 femtoseconds (one femtosecond is 1 millionth of 1 billionth of a second). They split the laser pulse into two separate pulses and aimed them at a sample of NiPS3. The two pulses were set with a slight delay from each other so that the first stimulated, or “kicked” the sample, while the second captured the sample’s response, with a time resolution of 25 femtoseconds. In this way, they were able to create ultrafast “movies” from which the interactions of different particles within the material could be deduced.

    In particular, they measured the precise amount of light reflected from the sample as a function of time between the two pulses. This reflection should change in a certain way if hybrid particles are present. This turned out to be the case when the sample was cooled below 150 kelvins, when the material becomes antiferromagnetic.

    “We found this hybrid particle was only visible below a certain temperature, when magnetism is turned on,” says Ergeçen.

    To identify the specific constituents of the particle, the team varied the color, or frequency, of the first laser and found that the hybrid particle was visible when the frequency of the reflected light was around a particular type of transition known to happen when an electron moves between two d-orbitals. They also looked at the spacing of the periodic pattern visible within the reflected light spectrum and found it matched the energy of a specific kind of phonon. This clarified that the hybrid particle consists of excitations of d-orbital electrons and this specific phonon.

    They did some further modeling based on their measurements and found the force binding the electron with the phonon is about 10 times stronger than what’s been estimated for other known electron-phonon hybrids.

    “One potential way of harnessing this hybrid particle is, it could allow you to couple to one of the components and indirectly tune the other,” Ilyas says. “That way, you could change the properties of a material, like the magnetic state of the system.”

    This research was supported, in part, by the U.S. Department of Energy and the Gordon and Betty Moore Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 5:40 pm on January 7, 2022 Permalink | Reply
    Tags: "Magic-angle" graphene becomes a powerful ferromagnet., "Magic-angle" graphene has caused quite a stir in physics in recent years., "Magnetic surprise revealed in ‘magic-angle’ graphene", , “Magnetism and superconductivity are usually at opposite ends of the spectrum., , Changing the angle of the sheets with respect to each other changes the interactions., , Computer memory, Condensed Matter Physics, Electrons begin to interact not only with other electrons within a graphene sheet but also with those in the adjacent sheet., Exciting new possibilities for quantum science research, Magnets are generally destructive to superconductivity., , , , Spin-orbit coupling is a state of electron in which each electron’s spin-its tiny magnetic moment that points either up or down-becomes linked to its orbit around the atomic nucleus., Things get interesting when graphene sheets are stacked., When “magic-angle" graphene” is cooled to near absolute zero it suddenly becomes a superconductor meaning it conducts electricity with zero resistance.   

    From Brown University (US) : “Magnetic surprise revealed in ‘magic-angle’ graphene” 

    From Brown University (US)

    January 6, 2022
    Kevin Stacey
    kevin_stacey@brown.edu
    401-863-3766

    Magnets and superconductors don’t normally get along, but a new study shows that “magic-angle” graphene is capable of producing both superconductivity and ferromagnetism, which could be useful in quantum computing.

    1
    When layers of “magic-angle” graphene (bottom) come in contact with layers of certain transitions metals, it induces a phenomenon called spin-orbit coupling in the graphene layers. That phenomenon gives rise to surprising physics, including ferromagnetism. Credit: Li lab/Brown University.

    When two sheets of the carbon nanomaterial graphene are stacked together at a particular angle with respect to each other, it gives rise to some fascinating physics. For instance, when this so-called “magic-angle” graphene is cooled to near absolute zero it suddenly becomes a superconductor meaning it conducts electricity with zero resistance.

    Now, a research team from Brown University has found a surprising new phenomenon that can arise in “magic-angle” graphene. In research published in the journal Science, the team showed that by inducing a phenomenon known as spin-orbit coupling, “magic-angle” graphene becomes a powerful ferromagnet.

    “Magnetism and superconductivity are usually at opposite ends of the spectrum in condensed matter physics, and it’s rare for them to appear in the same material platform,” said Jia Li, an assistant professor of physics at Brown and senior author of the research. “Yet we’ve shown that we can create magnetism in a system that originally hosts superconductivity. This gives us a new way to study the interplay between superconductivity and magnetism, and provides exciting new possibilities for quantum science research.”

    “Magic-angle” graphene has caused quite a stir in physics in recent years. Graphene is a two-dimensional material made of carbon atoms arranged in a honeycomb-like pattern. Single sheets of graphene are interesting on their own — displaying remarkable material strength and extremely efficient electrical conductance. But things get even more interesting when graphene sheets are stacked. Electrons begin to interact not only with other electrons within a graphene sheet but also with those in the adjacent sheet. Changing the angle of the sheets with respect to each other changes those interactions, giving rise to interesting quantum phenomena like superconductivity.

    This new research adds a new wrinkle — spin-orbit coupling — to this already interesting system. Spin-orbit coupling is a state of electron behavior in certain materials in which each electron’s spin — its tiny magnetic moment that points either up or down — becomes linked to its orbit around the atomic nucleus.

    “We know that spin-orbit coupling gives rise to a wide range of interesting quantum phenomena, but it’s not normally present in ‘magic-angle’ graphene,” said Jiang-Xiazi Lin, a postdoctoral researcher at Brown and the study’s lead author. “We wanted to introduce spin-orbit coupling, and then see what effect it had on the system.”

    To do that, Li and his team interfaced “magic-angle” graphene with a block of tungsten diselenide, a material that has strong spin-orbit coupling. Aligning the stack precisely induces spin-orbit coupling in the graphene. From there, the team probed the system with external electrical currents and magnetic fields.

    The experiments showed that an electric current flowing in one direction across the material in the presence of an external magnetic field produces a voltage in the direction perpendicular to the current. That voltage, known as the Hall effect, is the tell-tale signature of an intrinsic magnetic field in the material.

    Much to the research team’s surprise, they showed that the magnetic state could be controlled using an external magnetic field, which is oriented either in the plane of the graphene or out-of-plane. This is in contrast with magnetic materials without spin-orbit coupling, where the intrinsic magnetism can be controlled only when the external magnetic field is aligned along the direction of the magnetism.

    “This observation is an indication that spin-orbit coupling is indeed present and provided the clue for building a theoretical model to understand the influence of the atomic interface,” said Yahui Zhang, a theoretical physicist from Harvard University (US) who worked with the team at Brown to understand the physics associated with the observed magnetism.

    “The unique influence of spin-orbit coupling gives scientists a new experimental knob to turn in the effort to understand the behavior of ‘magic-angle’ graphene,” said Erin Morrissette, a Brown graduate student who performed some of the experimental work. “The findings also have the potential for new device applications.”

    One possible application is in computer memory. The team found that the magnetic properties of “magic-angle” graphene can be controlled with both external magnetic fields and electric fields. That would make this two-dimensional system an ideal candidate for a magnetic memory device with flexible read/write options.

    Another potential application is in quantum computing, the researchers say. An interface between a ferromagnet and a superconductor has been proposed as a potential building block for quantum computers. The problem, however, is that such an interface is difficult to create because magnets are generally destructive to superconductivity. But a material that’s capable of both ferromagnetism and superconductivity could provide a way to create that interface.

    “We are working on using the atomic interface to stabilize superconductivity and ferromagnetism at the same time,” Li said. “The coexistence of these two phenomena is rare in physics, and it will certainly unlock more excitement”

    The research was primarily supported by Brown University. Additional co-authors are Ya-Hui Zhang, Zhi Wang, Song Liu, Daniel Rhodes, Kenji Watanabe, Takashi Taniguchi and James Hone.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Brown

    Brown U Robinson Hall

    Brown University (US) is a private Ivy League research university in Providence, Rhode Island. Founded in 1764 as the College in the English Colony of Rhode Island and Providence Plantations, Brown is the seventh-oldest institution of higher education in the United States and one of the nine colonial colleges chartered before the American Revolution.

    At its foundation, Brown University was the first college in North America to accept students regardless of their religious affiliation. The university is home to the oldest applied mathematics program in the United States, the oldest engineering program in the Ivy League, and the third-oldest medical program in New England. The university was one of the early doctoral-granting U.S. institutions in the late 19th century, adding masters and doctoral studies in 1887. In 1969, Brown adopted its “Open Curriculum” after a period of student lobbying. The new curriculum eliminated mandatory “general education” distribution requirements, made students “the architects of their own syllabus” and allowed them to take any course for a grade of satisfactory (Pass) or no-credit (Fail) which is unrecorded on external transcripts. In 1971, Brown’s coordinate women’s institution, Pembroke College (US), was fully merged into the university.

    Admission is among the most selective in the United States; in 2021, the university reported an acceptance rate of 5.4%.

    The university comprises the College; the Graduate School; Alpert Medical School; the School of Engineering; the School of Public Health and the School of Professional Studies. Brown’s international programs are organized through The Watson Institute for International and Public Affairs at Brown University (US), and the university is academically affiliated with the UChicago Marine Biological Laboratory in Woods Hole, Massachusetts (US) and The Rhode Island School of Design (US). In conjunction with the Rhode Island School of Design, Brown offers undergraduate and graduate dual degree programs.

    Brown’s main campus is located in the College Hill neighborhood of Providence, Rhode Island. The university is surrounded by a federally listed architectural district with a dense concentration of Colonial-era buildings. Benefit Street, which runs along the western edge of the campus, contains one of the richest concentrations of 17th and 18th century architecture in the United States.

    As of November 2019, nine Nobel Prize winners have been affiliated with Brown as alumni, faculty, or researchers, as well as seven National Humanities Medalists and ten National Medal of Science laureates. Other notable alumni include 26 Pulitzer Prize winners, 18 billionaires, one U.S. Supreme Court Chief Justice, four U.S. Secretaries of State, 99 members of the United States Congress, 57 Rhodes Scholars, 21 MacArthur Genius Fellows, and 37 Olympic medalists.

    The foundation and the charter

    In 1761, three residents of Newport, Rhode Island, drafted a petition to the colony’s General Assembly:

    “That your Petitioners propose to open a literary institution or School for instructing young Gentlemen in the Languages, Mathematics, Geography & History, & such other branches of Knowledge as shall be desired. That for this End… it will be necessary… to erect a public Building or Buildings for the boarding of the youth & the Residence of the Professors.”

    The three petitioners were Ezra Stiles, pastor of Newport’s Second Congregational Church and future president of Yale University (US); William Ellery, Jr., future signer of the United States Declaration of Independence; and Josias Lyndon, future governor of the colony. Stiles and Ellery later served as co-authors of the college’s charter two years later. The editor of Stiles’s papers observes, “This draft of a petition connects itself with other evidence of Dr. Stiles’s project for a Collegiate Institution in Rhode Island, before the charter of what became Brown University.”

    The Philadelphia Association of Baptist Churches were also interested in establishing a college in Rhode Island—home of the mother church of their denomination. At the time, the Baptists were unrepresented among the colonial colleges; the Congregationalists had Harvard University (US) and Yale, the Presbyterians had the College of New Jersey (later Princeton University (US)), and the Episcopalians had The William & Mary College (US) and King’s College (later Columbia University(US)). Isaac Backus, a historian of the New England Baptists and an inaugural trustee of Brown, wrote of the October 1762 resolution taken at Philadelphia:

    “The Philadelphia Association obtained such an acquaintance with our affairs, as to bring them to an apprehension that it was practicable and expedient to erect a college in the Colony of Rhode-Island, under the chief direction of the Baptists; … Mr. James Manning, who took his first degree in New-Jersey college in September, 1762, was esteemed a suitable leader in this important work.”

    James Manning arrived at Newport in July 1763 and was introduced to Stiles, who agreed to write the charter for the college. Stiles’ first draft was read to the General Assembly in August 1763 and rejected by Baptist members who worried that their denomination would be underrepresented in the College Board of Fellows. A revised charter written by Stiles and Ellery was adopted by the Rhode Island General Assembly on March 3, 1764, in East Greenwich.

    In September 1764, the inaugural meeting of the corporation—the college’s governing body—was held in Newport’s Old Colony House. Governor Stephen Hopkins was chosen chancellor, former and future governor Samuel Ward vice chancellor, John Tillinghast treasurer, and Thomas Eyres secretary. The charter stipulated that the board of trustees should be composed of 22 Baptists, five Quakers, five Episcopalians, and four Congregationalists. Of the 12 Fellows, eight should be Baptists—including the college president—”and the rest indifferently of any or all Denominations.”

    At the time of its creation, Brown’s charter was a uniquely progressive document. Other colleges had curricular strictures against opposing doctrines, while Brown’s charter asserted, “Sectarian differences of opinions, shall not make any Part of the Public and Classical Instruction.” The document additionally “recognized more broadly and fundamentally than any other [university charter] the principle of denominational cooperation.” The oft-repeated statement that Brown’s charter alone prohibited a religious test for College membership is inaccurate; other college charters were similarly liberal in that particular.

    The college was founded as Rhode Island College, at the site of the First Baptist Church in Warren, Rhode Island. James Manning was sworn in as the college’s first president in 1765 and remained in the role until 1791. In 1766, the college authorized Rev. Morgan Edwards to travel to Europe to “solicit Benefactions for this Institution.” During his year-and-a-half stay in the British Isles, the reverend secured funding from benefactors including Thomas Penn and Benjamin Franklin.

    In 1770, the college moved from Warren to Providence. To establish a campus, John and Moses Brown purchased a four-acre lot on the crest of College Hill on behalf of the school. The majority of the property fell within the bounds of the original home lot of Chad Brown, an ancestor of the Browns and one of the original proprietors of Providence Plantations. After the college was relocated to the city, work began on constructing its first building.

    A building committee, organized by the corporation, developed plans for the college’s first purpose-built edifice, finalizing a design on February 9, 1770. The subsequent structure, referred to as “The College Edifice” and later as University Hall, may have been modeled on Nassau Hall, built 14 years prior at the College of New Jersey. President Manning, an active member of the building process, was educated at Princeton and might have suggested that Brown’s first building resemble that of his alma mater.

    The College

    Founded in 1764, the college is Brown’s oldest school. About 7,200 undergraduate students are enrolled in the college, and 81 concentrations are offered. For the graduating class of 2020 the most popular concentrations were Computer Science; Economics; Biology; History; Applied Mathematics; International Relations and Political Science. A quarter of Brown undergraduates complete more than one concentration before graduating. If the existing programs do not align with their intended curricular interests, undergraduates may design and pursue independent concentrations.

    35 percent of undergraduates pursue graduate or professional study immediately, 60 percent within 5 years, and 80 percent within 10 years. For the Class of 2009, 56 percent of all undergraduate alumni have since earned graduate degrees. Among undergraduate alumni who go on to receive graduate degrees, the most common degrees earned are J.D. (16%), M.D. (14%), M.A. (14%), M.Sc. (14%), and Ph.D. (11%). The most common institutions from which undergraduate alumni earn graduate degrees are Brown University, Columbia University, and Harvard University.

    The highest fields of employment for undergraduate alumni ten years after graduation are education and higher education (15%), medicine (9%), business and finance (9%), law (8%), and computing and technology (7%).

    Brown and RISD

    Since its 1893 relocation to College Hill, Rhode Island School of Design (RISD) has bordered Brown to its west. Since 1900, Brown and RISD students have been able to cross-register at the two institutions, with Brown students permitted to take as many as four courses at RISD to count towards their Brown degree. The two institutions partner to provide various student-life services and the two student bodies compose a synergy in the College Hill cultural scene.

    Rankings

    Brown University is accredited by the New England Commission of Higher Education. For their 2021 rankings, The Wall Street Journal/Times Higher Education ranked Brown 5th in the Best Colleges 2021 edition.

    The Forbes Magazine annual ranking of America’s Top Colleges 2021—which ranked 600 research universities, liberal arts colleges and service academies—ranked Brown 26th overall and 23rd among universities.

    U.S. News & World Report ranked Brown 14th among national universities in its 2021 edition.[162] The 2021 edition also ranked Brown 1st for undergraduate teaching, 20th in Most Innovative Schools, and 18th in Best Value Schools.

    Washington Monthly ranked Brown 37th in 2020 among 389 national universities in the U.S. based on its contribution to the public good, as measured by social mobility, research, and promoting public service.

    For 2020, U.S. News & World Report ranks Brown 102nd globally.

    In 2014, Forbes Magazine ranked Brown 7th on its list of “America’s Most Entrepreneurial Universities.” The Forbes analysis looked at the ratio of “alumni and students who have identified themselves as founders and business owners on LinkedIn” and the total number of alumni and students.

    LinkedIn particularized the Forbes rankings, placing Brown third (between The Massachusetts Institute of Technology (US) and Princeton) among “Best Undergraduate Universities for Software Developers at Startups.” LinkedIn’s methodology involved a career-path examination of “millions of alumni profiles” in its membership database.

    In 2020, U.S. News ranked Brown’s Warren Alpert Medical School the 9th most selective in the country, with an acceptance rate of 2.8 percent.

    According to 2020 data from The Department of Education (US), the median starting salary of Brown computer science graduates was the highest in the United States.

    In 2020, Brown produced the second-highest number of Fulbright winners. For the three years prior, the university produced the most Fulbright winners of any university in the nation.

    Research

    Brown is member of The Association of American Universities (US) since 1933 and is classified among “R1: Doctoral Universities – Very High Research Activity”. In FY 2017, Brown spent $212.3 million on research and was ranked 103rd in the United States by total R&D expenditure by The National Science Foundation (US).

     
  • richardmitnick 4:09 pm on December 10, 2021 Permalink | Reply
    Tags: "Resolving the Puzzles of Graphene Superconductivity", A setup of three sheets of graphene stacked on top of one another with lattices aligned but shifted-forming rhombohedral trilayer graphene -revealed an unexpected state of superconductivity., A single layer of carbon atoms arranged in a honeycomb lattice makes up the promising nanomaterial called "graphene"., , Condensed Matter Physics, , Superconductivity relies on the pairing of free electrons in the material despite their repulsion arising from their equal negative charges, The Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT),   

    From The Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT): “Resolving the Puzzles of Graphene Superconductivity” 

    From The Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT)

    December 10, 2021

    Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene.

    1
    Unconventional superconductivity in graphene. Experimental data from trilayer graphene (bottom) shows two circular Fermi surfaces, creating a ring-like shape, in which the occupied electronic states lie (top). In unconventional superconductivity, the electrons are assumed to be “glued” together by an interaction, not to be confused with their usual interaction of electrical repulsion.

    Since superconductivity in three-layered graphene was discovered in September, the physics community has been left puzzled. Now, three months later, physicists from IST Austria together with colleagues from The Weizmann Institute of Science (IL) can successfully explain the results by drawing from a theory of unconventional superconductivity. The work has been published in Physical Review Letters.

    A single layer of carbon atoms arranged in a honeycomb lattice makes up the promising nanomaterial called graphene. Research on a setup of three sheets of graphene stacked on top of one another so that their lattices are aligned but shifted — forming rhombohedral trilayer graphene – revealed an unexpected state of superconductivity. In this state electrical resistance vanishes due to the quantum nature of the electrons. The discovery was published and debated in Nature, whilst the origins remained elusive. Now, Professor Maksym Serbyn and Postdoc Areg Ghazaryan from the Institute of Science and Technology (IST) Austria in collaboration with Professor Erez Berg and Postdoc Tobias Holder from the Weizmann Institute of Science, Israel, developed a theoretical framework of unconventional superconductivity, which resolves the puzzles posed by the experimental data.

    The Puzzles and their Resolution

    Superconductivity relies on the pairing of free electrons in the material despite their repulsion arising from their equal negative charges. This pairing happens between electrons of opposite spin through vibrations of the crystal lattice. Spin is a quantum property of particles comparable, but not identical to rotation. The mentioned kind of pairing is the case at least in conventional superconductors. “Applied to trilayer graphene,” co-lead-author Ghazaryan points out, “we identified two puzzles that seem difficult to reconcile with conventional superconductivity.”

    First, above a threshold temperature of roughly -260 °C electrical resistance should rise in equal steps with increasing temperature. However, in the experiments it remained constant up to -250 °C. Second, pairing between electrons of opposite spin implies a coupling that contradicts another experimentally observed feature, namely the presence of a nearby configuration with fully aligned spins, which we know as magnetism. “In the paper, we show that both observations are explainable,” group leader Maksym Serbyn summarizes, “if one assumes that an interaction between electrons provides the ‘glue’ that holds electrons together. This leads to unconventional superconductivity.”

    When one draws all possible states, which electrons can have, on a certain chart and then separates the occupied ones from the unoccupied ones with a line, this separation line is called a Fermi surface. Experimental data from graphene shows two Fermi surfaces, creating a ring-like shape. In their work, the researchers draw from a theory from Kohn and Luttinger from the 1960’s and demonstrate that such circular Fermi surfaces favor a mechanism for superconductivity based only on electron interactions. They also suggest experimental setups to test their argument and offer routes towards raising the critical temperature, where superconductivity starts appearing.

    The Benefits of Graphene Superconductivity

    While superconductivity has been observed in other trilayer and bilayer graphene, these known materials must be specifically engineered and may be hard to control because of their low stability. Rhombohedral trilayer graphene, although rare, is naturally occurring. The proposed theoretical solution has the potential of shedding light on long-standing problems in condensed matter physics and opening the way to potential applications of both superconductivity and graphene.

    Science paper:
    Physical Review Letters

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT) is a young international institute dedicated to basic research and graduate education in the natural and mathematical sciences, located in Klosterneuburg on the outskirts of Vienna. Established jointly by the federal government of Austria and the provincial government of Lower Austria, the Institute was inaugurated in 2009 and will grow to about 90 research groups by 2026.

    The governance and management structures of IST Austria guarantee its independence and freedom from political and commercial influences. The Institute is headed by the President, who is appointed by the Board of Trustees and advised by the Scientific Board. The first President of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor of the University of California-Berkeley (US) and the EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH) in Switzerland.

     
  • richardmitnick 4:42 pm on November 15, 2021 Permalink | Reply
    Tags: "A Third Way to Explain Fine Tuning", , Condensed Matter Physics, Electron-positron pairs, Multiverses(?), , , , The route to fine tuning explored by the scientists combines both dynamics and multiverses., What do the Higgs mass and Earth’s orbit ellipticity have in common? Both have values that are orders of magnitude smaller than theoretical estimates would suggest.   

    From Physics (US) : “A Third Way to Explain Fine Tuning” 

    About Physics

    From Physics (US)

    November 15, 2021
    Francesco Riva
    Department of Theoretical Physics, The University of Geneva [Université de Genève](CH)

    A theoretical proposal offers a new way to relate the Higgs boson mass and the cosmological constant to each other and explain why these quantities appear to be implausibly tuned to values much smaller than expected.

    1
    Cosmological Constant Redefined. March 6, 2014.
    The cosmological constant refers to a uniform energy density that presumably could explain the accelerated expansion of the Universe. However, a straightforward calculation of this constant gives an impossibly large value. A new approach to this problem, detailed in Physical Review Letters, involves a slight reformulation of general relativity, in which the cosmological constant ends up being a historical average of the matter energy density in the Universe. Besides predicting a small cosmological constant, the theory foresees an eventual collapse of our Universe in a big crunch.

    3
    New ATLAS measurement of the Higgs Boson mass
    6 July 2017
    ATLAS Collaboration

    1
    Gevorg/stock.adobe.com.
    Figure 1: Certain physical parameters appear implausibly “fine tuned” to produce the Universe as we know it. Arkani-Hamed and co-workers have proposed a new approach for explaining the fine tuning of two such parameters—the Higgs mass and the cosmological constant.

    What do the Higgs mass and Earth’s orbit ellipticity have in common? Both have values that are orders of magnitude smaller than theoretical estimates would suggest. These quantities appear to result from an extremely fine-tuned cancellation of two much larger quantities—a fact that many physicists find implausible (Fig. 1). These and other “fine tunings,” however, might only be apparent, and their explanation may hold the key for paradigmatic changes in our understanding of nature. Particle physics features two of the most intriguing fine-tuning puzzles: the Higgs boson mass and the cosmological constant.

    For a long time, the lore had it that these particle-physics tunings may be related to new symmetries, such as the elusive supersymmetry, or to statistical arguments—our fine-tuned Universe is just one of many possible multiverses. In recent years, however, new possible explanations have emerged [1–5*], culminating in a new proposal by Nima Arkani-Hamed of The Institute for Advanced Study (US), Raffaele Tito D’Agnolo of Paris-Saclay University [Université Paris-Saclay](FR), and Hyung Do Kim of The Seoul National University [서울대학교](KR) [6].

    • See references below for all citations.

    The trio identified a new class of mechanisms for producing fine tunings, in which only specific values of the Higgs mass can “trigger” the formation of multiverses. The appeal of their model is that it makes testable predictions—the existence of new, potentially observable Higgs particles.

    2
    Figure 2: The field (E) measured close to a charged conductor can be computed from the known charge distribution in a small region that can be experimentally characterized. If the measured field is close to the computed one, the contribution from unknown sources is negligible (top). But if the measured field is vanishingly small, it could appear “fine-tuned.” The explanation could lie in a hidden symmetry (right: a closed conductor surrounds the field) or in a statistical fluke that only occurs in one of many experiments (left: a set of opposite charges just happens to cancel the effect of the known charges).

    To understand fine tuning, consider a measurable quantity that could be theoretically computed were it not for the fact that the necessary information is partially unavailable. Take, for example, the electric field near a charged conducting surface of which we can observe only a small region (Fig. 2). The field can be computed from the known charges in this region but may be affected by other, unknown charges. The observed value will be the sum of a known and unknown contribution. An observed value close to that derived from the known contribution would indicate that the unknown contribution isn’t significant, and the difference may have a trivial explanation, such as some unaccounted-for difference in the conductor’s geometry.

    But if the observed value is much smaller than that expected from the known contribution, it means that the known and unknown parts almost exactly cancel out. Often, this fine tuning reveals something new about the system. For instance, the conducting surface could extend to form a closed shell, or “Faraday shield,” inside which the electric field is zero. In this case, the tuning results from the symmetries of electromagnetism. It could also be that oppositely charged point particles are distributed so as to precisely cancel the electric field. This canceling could just be a statistical fluke—a chance arrangement that only occurs in one out of many possible experiments.

    Similar examples abound in science. The mass of the electron appears to be fine tuned when one considers the large amount of energy that, according to classical electromagnetism, is stored in the electric field around the particle. But the explanation comes from a “new” particle, the positron, which influences the electron’s mass through the effect of fleeting electron-positron pairs generated in the quantum-mechanical vacuum around the electron. The low eccentricity of Earth’s orbit is an example of an apparent fine tuning that can be explained statistically: Earth is just one among myriad exoplanets whose orbits’ eccentricities are suitable for life to develop. In both cases, the apparent fine tunings were resolved by disruptive scientific discoveries—the discovery of the positron and of exoplanets.

    Other fine tunings, however, still puzzle physicists, such as those found in the standard model of particle physics. The standard model has unparalleled predictive power, but two of its parameters—the Higgs mass and the cosmological constant—appear to be extremely precisely tuned: To obtain the relatively small observed values of these two parameters, physicists require additional, unknown contributions that can almost exactly cancel other extremely large contributions from physics at scales that are accurately described by the standard model. If the standard model were to be valid up to the Planck scale, these additional contributions must be tuned to one part in 10^34 for the Higgs and to one part in 10^120 for the cosmological constant. Could these tunings also be signposts to conceptual breakthroughs? Concocting testable explanations has been a goal of theoretical physicists for the past four decades.

    Traditional solutions fit in two categories: a so-called dynamical explanation and a multiverse explanation. The dynamical option implies new structure, particles, or symmetries, such as supersymmetry—a theory in which the equations for matter and forces are identical—or Higgs compositeness—a theory in which the Higgs boson is a bound state of new strong interactions. The multiverse solution, on the other hand, provides a statistical explanation of why the observed cosmological constant is so small: We just happen to inhabit the one “anthropic” Universe among 10^120 possible universes whose cosmological constant enables life [7]. But observations have so far failed to deliver evidence for either the dynamical or the multiverse explanation, so researchers are starting to consider alternative scenarios.

    The third route explored by Arkani-Hamed, D’Agnolo, and Kim combines both dynamics and multiverses. Imagine a system whose energy spectrum depends on a parameter and exhibits—for special values of this parameter—a multiplicity of nearly degenerate ground states (a situation similar to that encountered in condensed-matter experiments, where the potential energy can be easily tweaked via experimental knobs). The researchers consider a particle-physics system where the special parameter is the Higgs mass. They show that this scenario requires the notion of “triggers”: certain couplings of the Higgs to other particles or forces that would cause the Higgs mass to affect other physical observables. In this scenario, nearly degenerate states—in this case, multiverses—only emerge for specific Higgs mass values. These triggers address both fine tunings at once because the multiverse allows for the existence of an anthropic universe. Unlike the original multiverse solution, however, triggers are falsifiable, as they are associated with new couplings or new particles that can be searched for. And unlike dynamical solutions, triggers don’t imply new forms of symmetry that have so far eluded detection.

    The trio’s calculations show that there are only a handful of possibly relevant triggers (in the standard model but also, surprisingly, in theories that extend the standard model) and that the theory can deliver precise predictions for each trigger possibility. The most interesting trigger possibility involves the existence of further Higgs particles (a two-Higgs doublet model) with masses at or below the known Higgs boson mass (125 GeV). Such a scale is within reach of collider experiments, including those involving rare B-meson decays at the LHCb experiment or top decays at CERN’s ATLAS and CMS experiments. There is still a large portion of parameter space that is amenable to exploration, and the new theory of triggers pinpoints promising search targets whose discovery would require much more than a “tuning” of our scientific theories.

    References

    L. F. Abbott, “A mechanism for reducing the value of the cosmological constant,” Phys. Lett. B 150, 427 (1985).
    G. Dvali and A. Vilenkin, “Field theory models for variable cosmological constant,” arXiv:hep-th/0102142.
    P. W. Graham et al., “Cosmological relaxation of the electroweak scale,” arXiv:1504.07551.
    A. Arvanitaki et al., “A small weak scale from a small cosmological constant,” arXiv:1609.06320.
    J. R. Espinosa et al., “Cosmological Higgs-axion interplay for a naturally small electroweak scale,” arXiv:1506.09217.
    N. Arkani-Hamed et al., “Weak scale as a trigger,” Phys. Rev. D 104, 095014 (2021).
    S. Weinberg, “Implications of dynamical symmetry breaking: An addendum,” Phys. Rev. D 19, 1277 (1979).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics (US) highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments.

     
  • richardmitnick 4:44 pm on November 8, 2021 Permalink | Reply
    Tags: "Ultra-pure semiconductor opens new frontier in the study of electrons", , Condensed Matter Physics, , Princeton researchers created the world's purest sample of gallium arsenide-a semiconductor used in specialized systems such as satellites., , , The team baked their material down to one impurity for every 10 billion atoms.   

    From Princeton University (US) : “Ultra-pure semiconductor opens new frontier in the study of electrons” 

    Princeton University

    November 4, 2021
    Scott Lyon

    1
    Princeton researchers created the world’s purest sample of gallium arsenide-a semiconductor used in specialized systems such as satellites. This photo shows the sample wired inside an experimental setup that looked at electrons in a two-dimensional plane. The sample’s purity revealed bizarre effects under relatively weak magnetic field, behavior that has no established theoretical framework. Credit: The researchers.

    Princeton researchers have created the world’s purest sample of gallium arsenide, a semiconductor used in devices that power such technologies as cell phones and satellites.

    The team baked their material down to one impurity for every 10 billion atoms, reaching a level of quality that outstrips even the world’s purest silicon sample used in verifying the one-kilogram standard. The finished gallium arsenide chip, a square about the width of a pencil eraser, allowed the team to probe deep into the very nature of electrons.

    Rather than sending this chip to space, the researchers took their ultra-pure sample to the basement of Princeton’s engineering quadrangle where they wired it up, froze it to colder-than-space temperatures, enveloped it in a powerful magnetic field and applied a voltage, sending electrons through the two-dimensional plane sandwiched between the material’s crystalline layers. As they lowered the magnetic field, they found a surprising series of effects.

    The results, published in Nature Materials, showed that many of the phenomena driving today’s most advanced physics can be observed under far weaker magnetic fields than previously thought. Lower magnetic fields could empower more labs to study the mysterious physics problems buried within such two-dimensional systems. More exciting, according to the researchers: These less severe conditions present physics that have no established theoretical framework, paving the way for further exploration of quantum phenomena.

    One surprise came when the electrons aligned into a lattice structure known as a Wigner crystal. Scientists previously thought Wigner crystals required extremely intense magnetic fields, around 14 Tesla. “Strong enough to levitate a frog,” said Kevin Villegas Rosales, one of the study’s two first authors, who recently completed his Ph.D. in electrical and computer engineering. But this study showed that electrons can crystallize at less than one Tesla. “We just needed the ultra-high quality to see them,” he said.

    The team also observed around 80 percent more “oscillations” in the system’s electrical resistance and a larger “activation gap” of what’s called the fractional quantum Hall effect, a key topic in condensed matter physics and quantum computation. The fractional quantum Hall effect was originally discovered by Daniel Tsui, Princeton’s Arthur Legrand Doty Professor of Electrical and Computer Engineering, Emeritus, who received the Nobel Prize in physics for his discovery.

    This study came together as part of ongoing collaboration between principal investigators Mansour Shayegan, professor of electrical and computer engineering, and Loren Pfeiffer, a senior research scholar in ECE.

    “There has been a wonderful relationship between our labs,” Shayegan said. Until around a decade ago, he and Pfeiffer, who at the time worked for Bell Labs, had maintained a friendly competition in search of ever purer materials that allowed them to study ever more interesting physics problems. Then Pfeiffer joined Princeton.

    No longer trying to best each other, as colleagues in the same department they were free to combine forces. They quickly developed a natural divide-and-conquer approach to the questions they had previously been trying to answer on their own. In the 10-plus years since, Pfeiffer’s group has built one of the world’s finest material-deposition instruments while Shayegan’s has refined leading methods to study the physics those ultra-pure materials reveal.

    In addition to addressing their research collaboratively, these two investigators co-advise many of the graduate students who work in their labs, including Villegas Rosales and Edwin Chung, the paper’s other first author. Chung also earned his Ph.D. this year and is now a postdoctoral researcher with the same two groups. Villegas Rosales has since joined Quantum Machines, a quantum computing startup company, as an engineer.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Princeton: Overview

    Princeton University (US) is a private Ivy League research university in Princeton, New Jersey (US). Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the nine colonial colleges chartered before the American Revolution. The institution moved to Newark in 1747, then to the current site nine years later. It was renamed Princeton University in 1896.

    Princeton provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences, and engineering. It offers professional degrees through the Princeton School of Public and International Affairs, the School of Engineering and Applied Science, the School of Architecture and the Bendheim Center for Finance. The university also manages the DOE’s Princeton Plasma Physics Laboratory. Princeton has the largest endowment per student in the United States.

    As of October 2020, 69 Nobel laureates, 15 Fields Medalists and 14 Turing Award laureates have been affiliated with Princeton University as alumni, faculty members or researchers. In addition, Princeton has been associated with 21 National Medal of Science winners, 5 Abel Prize winners, 5 National Humanities Medal recipients, 215 Rhodes Scholars, 139 Gates Cambridge Scholars and 137 Marshall Scholars. Two U.S. Presidents, twelve U.S. Supreme Court Justices (three of whom currently serve on the court) and numerous living billionaires and foreign heads of state are all counted among Princeton’s alumni body. Princeton has also graduated many prominent members of the U.S. Congress and the U.S. Cabinet, including eight Secretaries of State, three Secretaries of Defense and the current Chairman of the Joint Chiefs of Staff.

    Princeton University, founded as the College of New Jersey, was considered the successor of the “Log College” founded by the Reverend William Tennent at Neshaminy, PA in about 1726. New Light Presbyterians founded the College of New Jersey in 1746 in Elizabeth, New Jersey. Its purpose was to train ministers. The college was the educational and religious capital of Scottish Presbyterian America. Unlike Harvard University (US), which was originally “intensely English” with graduates taking the side of the crown during the American Revolution, Princeton was founded to meet the religious needs of the period and many of its graduates took the American side in the war. In 1754, trustees of the College of New Jersey suggested that, in recognition of Governor Jonathan Belcher’s interest, Princeton should be named as Belcher College. Belcher replied: “What a name that would be!” In 1756, the college moved its campus to Princeton, New Jersey. Its home in Princeton was Nassau Hall, named for the royal House of Orange-Nassau of William III of England.

    Following the untimely deaths of Princeton’s first five presidents, John Witherspoon became president in 1768 and remained in that post until his death in 1794. During his presidency, Witherspoon shifted the college’s focus from training ministers to preparing a new generation for secular leadership in the new American nation. To this end, he tightened academic standards and solicited investment in the college. Witherspoon’s presidency constituted a long period of stability for the college, interrupted by the American Revolution and particularly the Battle of Princeton, during which British soldiers briefly occupied Nassau Hall; American forces, led by George Washington, fired cannon on the building to rout them from it.

    In 1812, the eighth president of the College of New Jersey, Ashbel Green (1812–23), helped establish the Princeton Theological Seminary next door. The plan to extend the theological curriculum met with “enthusiastic approval on the part of the authorities at the College of New Jersey.” Today, Princeton University and Princeton Theological Seminary maintain separate institutions with ties that include services such as cross-registration and mutual library access.

    Before the construction of Stanhope Hall in 1803, Nassau Hall was the college’s sole building. The cornerstone of the building was laid on September 17, 1754. During the summer of 1783, the Continental Congress met in Nassau Hall, making Princeton the country’s capital for four months. Over the centuries and through two redesigns following major fires (1802 and 1855), Nassau Hall’s role shifted from an all-purpose building, comprising office, dormitory, library, and classroom space; to classroom space exclusively; to its present role as the administrative center of the University. The class of 1879 donated twin lion sculptures that flanked the entrance until 1911, when that same class replaced them with tigers. Nassau Hall’s bell rang after the hall’s construction; however, the fire of 1802 melted it. The bell was then recast and melted again in the fire of 1855.

    James McCosh became the college’s president in 1868 and lifted the institution out of a low period that had been brought about by the American Civil War. During his two decades of service, he overhauled the curriculum, oversaw an expansion of inquiry into the sciences, and supervised the addition of a number of buildings in the High Victorian Gothic style to the campus. McCosh Hall is named in his honor.

    In 1879, the first thesis for a Doctor of Philosophy (Ph.D.) was submitted by James F. Williamson, Class of 1877.

    In 1896, the college officially changed its name from the College of New Jersey to Princeton University to honor the town in which it resides. During this year, the college also underwent large expansion and officially became a university. In 1900, the Graduate School was established.

    In 1902, Woodrow Wilson, graduate of the Class of 1879, was elected the 13th president of the university. Under Wilson, Princeton introduced the preceptorial system in 1905, a then-unique concept in the United States that augmented the standard lecture method of teaching with a more personal form in which small groups of students, or precepts, could interact with a single instructor, or preceptor, in their field of interest.

    In 1906, the reservoir Carnegie Lake was created by Andrew Carnegie. A collection of historical photographs of the building of the lake is housed at the Seeley G. Mudd Manuscript Library on Princeton’s campus. On October 2, 1913, the Princeton University Graduate College was dedicated. In 1919 the School of Architecture was established. In 1933, Albert Einstein became a lifetime member of the Institute for Advanced Study with an office on the Princeton campus. While always independent of the university, the Institute for Advanced Study occupied offices in Jones Hall for 6 years, from its opening in 1933, until its own campus was finished and opened in 1939.

    Coeducation

    In 1969, Princeton University first admitted women as undergraduates. In 1887, the university actually maintained and staffed a sister college, Evelyn College for Women, in the town of Princeton on Evelyn and Nassau streets. It was closed after roughly a decade of operation. After abortive discussions with Sarah Lawrence College to relocate the women’s college to Princeton and merge it with the University in 1967, the administration decided to admit women and turned to the issue of transforming the school’s operations and facilities into a female-friendly campus. The administration had barely finished these plans in April 1969 when the admissions office began mailing out its acceptance letters. Its five-year coeducation plan provided $7.8 million for the development of new facilities that would eventually house and educate 650 women students at Princeton by 1974. Ultimately, 148 women, consisting of 100 freshmen and transfer students of other years, entered Princeton on September 6, 1969 amidst much media attention. Princeton enrolled its first female graduate student, Sabra Follett Meservey, as a PhD candidate in Turkish history in 1961. A handful of undergraduate women had studied at Princeton from 1963 on, spending their junior year there to study “critical languages” in which Princeton’s offerings surpassed those of their home institutions. They were considered regular students for their year on campus, but were not candidates for a Princeton degree.

    As a result of a 1979 lawsuit by Sally Frank, Princeton’s eating clubs were required to go coeducational in 1991, after Tiger Inn’s appeal to the U.S. Supreme Court was denied. In 1987, the university changed the gendered lyrics of “Old Nassau” to reflect the school’s co-educational student body. From 2009 to 2011, Princeton professor Nannerl O. Keohane chaired a committee on undergraduate women’s leadership at the university, appointed by President Shirley M. Tilghman.

    The main campus sits on about 500 acres (2.0 km^2) in Princeton. In 2011, the main campus was named by Travel+Leisure as one of the most beautiful in the United States. The James Forrestal Campus is split between nearby Plainsboro and South Brunswick. The University also owns some property in West Windsor Township. The campuses are situated about one hour from both New York City and Philadelphia.

    The first building on campus was Nassau Hall, completed in 1756 and situated on the northern edge of campus facing Nassau Street. The campus expanded steadily around Nassau Hall during the early and middle 19th century. The McCosh presidency (1868–88) saw the construction of a number of buildings in the High Victorian Gothic and Romanesque Revival styles; many of them are now gone, leaving the remaining few to appear out of place. At the end of the 19th century much of Princeton’s architecture was designed by the Cope and Stewardson firm (same architects who designed a large part of Washington University in St Louis (US) and University of Pennsylvania(US)) resulting in the Collegiate Gothic style for which it is known today. Implemented initially by William Appleton Potter and later enforced by the University’s supervising architect, Ralph Adams Cram, the Collegiate Gothic style remained the standard for all new building on the Princeton campus through 1960. A flurry of construction in the 1960s produced a number of new buildings on the south side of the main campus, many of which have been poorly received. Several prominent architects have contributed some more recent additions, including Frank Gehry (Lewis Library), I. M. Pei (Spelman Halls), Demetri Porphyrios (Whitman College, a Collegiate Gothic project), Robert Venturi and Denise Scott Brown (Frist Campus Center, among several others), and Rafael Viñoly (Carl Icahn Laboratory).

    A group of 20th-century sculptures scattered throughout the campus forms the Putnam Collection of Sculpture. It includes works by Alexander Calder (Five Disks: One Empty), Jacob Epstein (Albert Einstein), Henry Moore (Oval with Points), Isamu Noguchi (White Sun), and Pablo Picasso (Head of a Woman). Richard Serra’s The Hedgehog and The Fox is located between Peyton and Fine halls next to Princeton Stadium and the Lewis Library.

    At the southern edge of the campus is Carnegie Lake, an artificial lake named for Andrew Carnegie. Carnegie financed the lake’s construction in 1906 at the behest of a friend who was a Princeton alumnus. Carnegie hoped the opportunity to take up rowing would inspire Princeton students to forsake football, which he considered “not gentlemanly.” The Shea Rowing Center on the lake’s shore continues to serve as the headquarters for Princeton rowing.

    Cannon Green

    Buried in the ground at the center of the lawn south of Nassau Hall is the “Big Cannon,” which was left in Princeton by British troops as they fled following the Battle of Princeton. It remained in Princeton until the War of 1812, when it was taken to New Brunswick. In 1836 the cannon was returned to Princeton and placed at the eastern end of town. It was removed to the campus under cover of night by Princeton students in 1838 and buried in its current location in 1840.

    A second “Little Cannon” is buried in the lawn in front of nearby Whig Hall. This cannon, which may also have been captured in the Battle of Princeton, was stolen by students of Rutgers University in 1875. The theft ignited the Rutgers-Princeton Cannon War. A compromise between the presidents of Princeton and Rutgers ended the war and forced the return of the Little Cannon to Princeton. The protruding cannons are occasionally painted scarlet by Rutgers students who continue the traditional dispute.

    In years when the Princeton football team beats the teams of both Harvard University and Yale University in the same season, Princeton celebrates with a bonfire on Cannon Green. This occurred in 2012, ending a five-year drought. The next bonfire happened on November 24, 2013, and was broadcast live over the Internet.

    Landscape

    Princeton’s grounds were designed by Beatrix Farrand between 1912 and 1943. Her contributions were most recently recognized with the naming of a courtyard for her. Subsequent changes to the landscape were introduced by Quennell Rothschild & Partners in 2000. In 2005, Michael Van Valkenburgh was hired as the new consulting landscape architect for the campus. Lynden B. Miller was invited to work with him as Princeton’s consulting gardening architect, focusing on the 17 gardens that are distributed throughout the campus.

    Buildings

    Nassau Hall

    Nassau Hall is the oldest building on campus. Begun in 1754 and completed in 1756, it was the first seat of the New Jersey Legislature in 1776, was involved in the battle of Princeton in 1777, and was the seat of the Congress of the Confederation (and thus capitol of the United States) from June 30, 1783, to November 4, 1783. It now houses the office of the university president and other administrative offices, and remains the symbolic center of the campus. The front entrance is flanked by two bronze tigers, a gift of the Princeton Class of 1879. Commencement is held on the front lawn of Nassau Hall in good weather. In 1966, Nassau Hall was added to the National Register of Historic Places.

    Residential colleges

    Princeton has six undergraduate residential colleges, each housing approximately 500 freshmen, sophomores, some juniors and seniors, and a handful of junior and senior resident advisers. Each college consists of a set of dormitories, a dining hall, a variety of other amenities—such as study spaces, libraries, performance spaces, and darkrooms—and a collection of administrators and associated faculty. Two colleges, First College and Forbes College (formerly Woodrow Wilson College and Princeton Inn College, respectively), date to the 1970s; three others, Rockefeller, Mathey, and Butler Colleges, were created in 1983 following the Committee on Undergraduate Residential Life (CURL) report, which suggested the institution of residential colleges as a solution to an allegedly fragmented campus social life. The construction of Whitman College, the university’s sixth residential college, was completed in 2007.

    Rockefeller and Mathey are located in the northwest corner of the campus; Princeton brochures often feature their Collegiate Gothic architecture. Like most of Princeton’s Gothic buildings, they predate the residential college system and were fashioned into colleges from individual dormitories.

    First and Butler, located south of the center of the campus, were built in the 1960s. First served as an early experiment in the establishment of the residential college system. Butler, like Rockefeller and Mathey, consisted of a collection of ordinary dorms (called the “New New Quad”) before the addition of a dining hall made it a residential college. Widely disliked for their edgy modernist design, including “waffle ceilings,” the dormitories on the Butler Quad were demolished in 2007. Butler is now reopened as a four-year residential college, housing both under- and upperclassmen.

    Forbes is located on the site of the historic Princeton Inn, a gracious hotel overlooking the Princeton golf course. The Princeton Inn, originally constructed in 1924, played regular host to important symposia and gatherings of renowned scholars from both the university and the nearby Institute for Advanced Study for many years. Forbes currently houses nearly 500 undergraduates in its residential halls.

    In 2003, Princeton broke ground for a sixth college named Whitman College after its principal sponsor, Meg Whitman, who graduated from Princeton in 1977. The new dormitories were constructed in the Collegiate Gothic architectural style and were designed by architect Demetri Porphyrios. Construction finished in 2007, and Whitman College was inaugurated as Princeton’s sixth residential college that same year.

    The precursor of the present college system in America was originally proposed by university president Woodrow Wilson in the early 20th century. For over 800 years, however, the collegiate system had already existed in Britain at Cambridge and Oxford Universities. Wilson’s model was much closer to Yale University (US)’s present system, which features four-year colleges. Lacking the support of the trustees, the plan languished until 1968. That year, Wilson College was established to cap a series of alternatives to the eating clubs. Fierce debates raged before the present residential college system emerged. The plan was first attempted at Yale, but the administration was initially uninterested; an exasperated alumnus, Edward Harkness, finally paid to have the college system implemented at Harvard in the 1920s, leading to the oft-quoted aphorism that the college system is a Princeton idea that was executed at Harvard with funding from Yale.

    Princeton has one graduate residential college, known simply as the Graduate College, located beyond Forbes College at the outskirts of campus. The far-flung location of the GC was the spoil of a squabble between Woodrow Wilson and then-Graduate School Dean Andrew Fleming West. Wilson preferred a central location for the college; West wanted the graduate students as far as possible from the campus. Ultimately, West prevailed. The Graduate College is composed of a large Collegiate Gothic section crowned by Cleveland Tower, a local landmark that also houses a world-class carillon. The attached New Graduate College provides a modern contrast in architectural style.

    McCarter Theatre

    The Tony-award-winning McCarter Theatre was built by the Princeton Triangle Club, a student performance group, using club profits and a gift from Princeton University alumnus Thomas McCarter. Today, the Triangle Club performs its annual freshmen revue, fall show, and Reunions performances in McCarter. McCarter is also recognized as one of the leading regional theaters in the United States.

    Art Museum

    The Princeton University Art Museum was established in 1882 to give students direct, intimate, and sustained access to original works of art that complement and enrich instruction and research at the university. This continues to be a primary function, along with serving as a community resource and a destination for national and international visitors.

    Numbering over 92,000 objects, the collections range from ancient to contemporary art and concentrate geographically on the Mediterranean regions, Western Europe, China, the United States, and Latin America. There is a collection of Greek and Roman antiquities, including ceramics, marbles, bronzes, and Roman mosaics from faculty excavations in Antioch. Medieval Europe is represented by sculpture, metalwork, and stained glass. The collection of Western European paintings includes examples from the early Renaissance through the 19th century, with masterpieces by Monet, Cézanne, and Van Gogh, and features a growing collection of 20th-century and contemporary art, including iconic paintings such as Andy Warhol’s Blue Marilyn.

    One of the best features of the museums is its collection of Chinese art, with important holdings in bronzes, tomb figurines, painting, and calligraphy. Its collection of pre-Columbian art includes examples of Mayan art, and is commonly considered to be the most important collection of pre-Columbian art outside of Latin America. The museum has collections of old master prints and drawings and a comprehensive collection of over 27,000 original photographs. African art and Northwest Coast Indian art are also represented. The Museum also oversees the outdoor Putnam Collection of Sculpture.

    University Chapel

    The Princeton University Chapel is located on the north side of campus, near Nassau Street. It was built between 1924 and 1928, at a cost of $2.3 million [approximately $34.2 million in 2020 dollars]. Ralph Adams Cram, the University’s supervising architect, designed the chapel, which he viewed as the crown jewel for the Collegiate Gothic motif he had championed for the campus. At the time of its construction, it was the second largest university chapel in the world, after King’s College Chapel, Cambridge. It underwent a two-year, $10 million restoration campaign between 2000 and 2002.

    Measured on the exterior, the chapel is 277 feet (84 m) long, 76 feet (23 m) wide at its transepts, and 121 feet (37 m) high. The exterior is Pennsylvania sandstone, with Indiana limestone used for the trim. The interior is mostly limestone and Aquia Creek sandstone. The design evokes an English church of the Middle Ages. The extensive iconography, in stained glass, stonework, and wood carvings, has the common theme of connecting religion and scholarship.

    The Chapel seats almost 2,000. It hosts weekly ecumenical Christian services, daily Roman Catholic mass, and several annual special events.

    Murray-Dodge Hall

    Murray-Dodge Hall houses the Office of Religious Life (ORL), the Murray Dodge Theater, the Murray-Dodge Café, the Muslim Prayer Room and the Interfaith Prayer Room. The ORL houses the office of the Dean of Religious Life, Alison Boden, and a number of university chaplains, including the country’s first Hindu chaplain, Vineet Chander; and one of the country’s first Muslim chaplains, Sohaib Sultan.

    Sustainability

    Published in 2008, Princeton’s Sustainability Plan highlights three priority areas for the University’s Office of Sustainability: reduction of greenhouse gas emissions; conservation of resources; and research, education, and civic engagement. Princeton has committed to reducing its carbon dioxide emissions to 1990 levels by 2020: Energy without the purchase of offsets. The University published its first Sustainability Progress Report in November 2009. The University has adopted a green purchasing policy and recycling program that focuses on paper products, construction materials, lightbulbs, furniture, and electronics. Its dining halls have set a goal to purchase 75% sustainable food products by 2015. The student organization “Greening Princeton” seeks to encourage the University administration to adopt environmentally friendly policies on campus.

    Organization

    The Trustees of Princeton University, a 40-member board, is responsible for the overall direction of the University. It approves the operating and capital budgets, supervises the investment of the University’s endowment and oversees campus real estate and long-range physical planning. The trustees also exercise prior review and approval concerning changes in major policies, such as those in instructional programs and admission, as well as tuition and fees and the hiring of faculty members.

    With an endowment of $26.1 billion, Princeton University is among the wealthiest universities in the world. Ranked in 2010 as the third largest endowment in the United States, the university had the greatest per-student endowment in the world (over $2 million for undergraduates) in 2011. Such a significant endowment is sustained through the continued donations of its alumni and is maintained by investment advisers. Some of Princeton’s wealth is invested in its art museum, which features works by Claude Monet, Vincent van Gogh, Jackson Pollock, and Andy Warhol among other prominent artists.

    Academics

    Undergraduates fulfill general education requirements, choose among a wide variety of elective courses, and pursue departmental concentrations and interdisciplinary certificate programs. Required independent work is a hallmark of undergraduate education at Princeton. Students graduate with either the Bachelor of Arts (A.B.) or the Bachelor of Science in Engineering (B.S.E.).

    The graduate school offers advanced degrees spanning the humanities, social sciences, natural sciences, and engineering. Doctoral education is available in most disciplines. It emphasizes original and independent scholarship whereas master’s degree programs in architecture, engineering, finance, and public affairs and public policy prepare candidates for careers in public life and professional practice.

    The university has ties with the Institute for Advanced Study, Princeton Theological Seminary and the Westminster Choir College of Rider University (US).

    Undergraduate

    Undergraduate courses in the humanities are traditionally either seminars or lectures held 2 or 3 times a week with an additional discussion seminar that is called a “precept.” To graduate, all A.B. candidates must complete a senior thesis and, in most departments, one or two extensive pieces of independent research that are known as “junior papers.” Juniors in some departments, including architecture and the creative arts, complete independent projects that differ from written research papers. A.B. candidates must also fulfill a three or four semester foreign language requirement and distribution requirements (which include, for example, classes in ethics, literature and the arts, and historical analysis) with a total of 31 classes. B.S.E. candidates follow a parallel track with an emphasis on a rigorous science and math curriculum, a computer science requirement, and at least two semesters of independent research including an optional senior thesis. All B.S.E. students must complete at least 36 classes. A.B. candidates typically have more freedom in course selection than B.S.E. candidates because of the fewer number of required classes. Nonetheless, in the spirit of a liberal arts education, both enjoy a comparatively high degree of latitude in creating a self-structured curriculum.

    Undergraduates agree to adhere to an academic integrity policy called the Honor Code, established in 1893. Under the Honor Code, faculty do not proctor examinations; instead, the students proctor one another and must report any suspected violation to an Honor Committee made up of undergraduates. The Committee investigates reported violations and holds a hearing if it is warranted. An acquittal at such a hearing results in the destruction of all records of the hearing; a conviction results in the student’s suspension or expulsion. The signed pledge required by the Honor Code is so integral to students’ academic experience that the Princeton Triangle Club performs a song about it each fall. Out-of-class exercises fall under the jurisdiction of the Faculty-Student Committee on Discipline. Undergraduates are expected to sign a pledge on their written work affirming that they have not plagiarized the work.

    Graduate

    The Graduate School has about 2,600 students in 42 academic departments and programs in social sciences; engineering; natural sciences; and humanities. These departments include the Department of Psychology; Department of History; and Department of Economics.

    In 2017–2018, it received nearly 11,000 applications for admission and accepted around 1,000 applicants. The University also awarded 319 Ph.D. degrees and 170 final master’s degrees. Princeton has no medical school, law school, business school, or school of education. (A short-lived Princeton Law School folded in 1852.) It offers professional graduate degrees in architecture; engineering; finance and public policy- the last through the Princeton School of Public and International Affairs founded in 1930 as the School of Public and International Affairs and renamed in 1948 after university president (and U.S. president) Woodrow Wilson, and most recently renamed in 2020.

    Libraries

    The Princeton University Library system houses over eleven million holdings including seven million bound volumes. The main university library, Firestone Library, which houses almost four million volumes, is one of the largest university libraries in the world. Additionally, it is among the largest “open stack” libraries in existence. Its collections include the autographed manuscript of F. Scott Fitzgerald’s The Great Gatsby and George F. Kennan’s Long Telegram. In addition to Firestone library, specialized libraries exist for architecture, art and archaeology, East Asian studies, engineering, music, public and international affairs, public policy and university archives, and the sciences. In an effort to expand access, these libraries also subscribe to thousands of electronic resources.

    Institutes

    High Meadows Environmental Institute

    The High Meadows Environmental Institute is an “interdisciplinary center of environmental research, education, and outreach” at the university. The institute was started in 1994. About 90 faculty members at Princeton University are affiliated with it.

    The High Meadows Environmental Institute has the following research centers:

    Carbon Mitigation Initiative (CMI): This is a 15-year-long partnership between PEI and British Petroleum with the goal of finding solutions to problems related to climate change. The Stabilization Wedge Game has been created as part of this initiative.
    Center for BioComplexity (CBC)
    Cooperative Institute for Climate Science (CICS): This is a collaboration with the National Oceanographic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory.
    Energy Systems Analysis Group
    Grand Challenges

    Princeton Plasma Physics Laboratory

    The Princeton Plasma Physics Laboratory, PPPL, was founded in 1951 as Project Matterhorn, a top secret cold war project aimed at achieving controlled nuclear fusion. Princeton astrophysics professor Lyman Spitzer became the first director of the project and remained director until the lab’s declassification in 1961 when it received its current name.

    PPPL currently houses approximately half of the graduate astrophysics department, the Princeton Program in Plasma Physics. The lab is also home to the Harold P. Furth Plasma Physics Library. The library contains all declassified Project Matterhorn documents, included the first design sketch of a stellarator by Lyman Spitzer.

    Princeton is one of five US universities to have and to operate a Department of Energy(US) national laboratory.

    Student life and culture

    University housing is guaranteed to all undergraduates for all four years. More than 98% of students live on campus in dormitories. Freshmen and sophomores must live in residential colleges, while juniors and seniors typically live in designated upperclassman dormitories. The actual dormitories are comparable, but only residential colleges have dining halls. Nonetheless, any undergraduate may purchase a meal plan and eat in a residential college dining hall. Recently, upperclassmen have been given the option of remaining in their college for all four years. Juniors and seniors also have the option of living off-campus, but high rent in the Princeton area encourages almost all students to live in university housing. Undergraduate social life revolves around the residential colleges and a number of coeducational eating clubs, which students may choose to join in the spring of their sophomore year. Eating clubs, which are not officially affiliated with the university, serve as dining halls and communal spaces for their members and also host social events throughout the academic year.

    Princeton’s six residential colleges host a variety of social events and activities, guest speakers, and trips. The residential colleges also sponsor trips to New York for undergraduates to see ballets, operas, Broadway shows, sports events, and other activities. The eating clubs, located on Prospect Avenue, are co-ed organizations for upperclassmen. Most upperclassmen eat their meals at one of the eleven eating clubs. Additionally, the clubs serve as evening and weekend social venues for members and guests. The eleven clubs are Cannon; Cap and Gown; Charter; Cloister; Colonial; Cottage; Ivy; Quadrangle; Terrace; Tiger; and Tower.

    Princeton hosts two Model United Nations conferences, PMUNC in the fall for high school students and PDI in the spring for college students. It also hosts the Princeton Invitational Speech and Debate tournament each year at the end of November. Princeton also runs Princeton Model Congress, an event that is held once a year in mid-November. The four-day conference has high school students from around the country as participants.

    Although the school’s admissions policy is need-blind, Princeton, based on the proportion of students who receive Pell Grants, was ranked as a school with little economic diversity among all national universities ranked by U.S. News & World Report. While Pell figures are widely used as a gauge of the number of low-income undergraduates on a given campus, the rankings article cautions “the proportion of students on Pell Grants isn’t a perfect measure of an institution’s efforts to achieve economic diversity,” but goes on to say that “still, many experts say that Pell figures are the best available gauge of how many low-income undergrads there are on a given campus.”

    TigerTrends is a university-based student run fashion, arts, and lifestyle magazine.

    Demographics

    Princeton has made significant progress in expanding the diversity of its student body in recent years. The 2019 freshman class was one of the most diverse in the school’s history, with 61% of students identifying as students of color. Undergraduate and master’s students were 51% male and 49% female for the 2018–19 academic year.

    The median family income of Princeton students is $186,100, with 57% of students coming from the top 10% highest-earning families and 14% from the bottom 60%.

    In 1999, 10% of the student body was Jewish, a percentage lower than those at other Ivy League schools. Sixteen percent of the student body was Jewish in 1985; the number decreased by 40% from 1985 to 1999. This decline prompted The Daily Princetonian to write a series of articles on the decline and its reasons. Caroline C. Pam of The New York Observer wrote that Princeton was “long dogged by a reputation for anti-Semitism” and that this history as well as Princeton’s elite status caused the university and its community to feel sensitivity towards the decrease of Jewish students. At the time many Jewish students at Princeton dated Jewish students at the University of Pennsylvania in Philadelphia because they perceived Princeton as an environment where it was difficult to find romantic prospects; Pam stated that there was a theory that the dating issues were a cause of the decline in Jewish students.

    In 1981, the population of African Americans at Princeton University made up less than 10%. Bruce M. Wright was admitted into the university in 1936 as the first African American, however, his admission was a mistake and when he got to campus he was asked to leave. Three years later Wright asked the dean for an explanation on his dismissal and the dean suggested to him that “a member of your race might feel very much alone” at Princeton University.

    Traditions

    Princeton enjoys a wide variety of campus traditions, some of which, like the Clapper Theft and Nude Olympics, have faded into history:

    Arch Sings – Late-night concerts that feature one or several of Princeton’s undergraduate a cappella groups, such as the Princeton Nassoons; Princeton Tigertones; Princeton Footnotes; Princeton Roaring 20; and The Princeton Wildcats. The free concerts take place in one of the larger arches on campus. Most are held in Blair Arch or Class of 1879 Arch.

    Bonfire – Ceremonial bonfire that takes place in Cannon Green behind Nassau Hall. It is held only if Princeton beats both Harvard University and Yale University at football in the same season. The most recent bonfire was lighted on November 18, 2018.

    Bicker – Selection process for new members that is employed by selective eating clubs. Prospective members, or bickerees, are required to perform a variety of activities at the request of current members.

    Cane Spree – An athletic competition between freshmen and sophomores that is held in the fall. The event centers on cane wrestling, where a freshman and a sophomore will grapple for control of a cane. This commemorates a time in the 1870s when sophomores, angry with the freshmen who strutted around with fancy canes, stole all of the canes from the freshmen, hitting them with their own canes in the process.

    The Clapper or Clapper Theft – The act of climbing to the top of Nassau Hall to steal the bell clapper, which rings to signal the start of classes on the first day of the school year. For safety reasons, the clapper has been removed permanently.

    Class Jackets (Beer Jackets) – Each graduating class designs a Class Jacket that features its class year. The artwork is almost invariably dominated by the school colors and tiger motifs.

    Communiversity – An annual street fair with performances, arts and crafts, and other activities that attempts to foster interaction between the university community and the residents of Princeton.

    Dean’s Date – The Tuesday at the end of each semester when all written work is due. This day signals the end of reading period and the beginning of final examinations. Traditionally, undergraduates gather outside McCosh Hall before the 5:00 PM deadline to cheer on fellow students who have left their work to the very last minute.

    FitzRandolph Gates – At the end of Princeton’s graduation ceremony, the new graduates process out through the main gate of the university as a symbol of the fact that they are leaving college. According to tradition, anyone who exits campus through the FitzRandolph Gates before his or her own graduation date will not graduate.

    Holder Howl – The midnight before Dean’s Date, students from Holder Hall and elsewhere gather in the Holder courtyard and take part in a minute-long, communal primal scream to vent frustration from studying with impromptu, late night noise making.

    Houseparties – Formal parties that are held simultaneously by all of the eating clubs at the end of the spring term.

    Ivy stones – Class memorial stones placed on the exterior walls of academic buildings around the campus.

    Lawnparties – Parties that feature live bands that are held simultaneously by all of the eating clubs at the start of classes and at the conclusion of the academic year.

    Princeton Locomotive – Traditional cheer in use since the 1890s. It is commonly heard at Opening Exercises in the fall as alumni and current students welcome the freshman class, as well as the P-rade in the spring at Princeton Reunions. The cheer starts slowly and picks up speed, and includes the sounds heard at a fireworks show.

    Hip! Hip!
    Rah, Rah, Rah,
    Tiger, Tiger, Tiger,
    Sis, Sis, Sis,
    Boom, Boom, Boom, Ah!
    Princeton! Princeton! Princeton!

    Or if a class is being celebrated, the last line consists of the class year repeated three times, e.g. “Eighty-eight! Eighty-eight! Eighty-eight!”

    Newman’s Day – Students attempt to drink 24 beers in the 24 hours of April 24. According to The New York Times, “the day got its name from an apocryphal quote attributed to Paul Newman: ’24 beers in a case, 24 hours in a day. Coincidence? I think not.'” Newman had spoken out against the tradition, however.

    Nude Olympics – Annual nude and partially nude frolic in Holder Courtyard that takes place during the first snow of the winter. Started in the early 1970s, the Nude Olympics went co-educational in 1979 and gained much notoriety with the American press. For safety reasons, the administration banned the Olympics in 2000 to the chagrin of students.

    Prospect 11 – The act of drinking a beer at all 11 eating clubs in a single night.

    P-rade – Traditional parade of alumni and their families. They process through campus by class year during Reunions.

    Reunions – Massive annual gathering of alumni held the weekend before graduation.

    Athletics

    Princeton supports organized athletics at three levels: varsity intercollegiate, club intercollegiate, and intramural. It also provides “a variety of physical education and recreational programs” for members of the Princeton community. According to the athletics program’s mission statement, Princeton aims for its students who participate in athletics to be “‘student athletes’ in the fullest sense of the phrase. Most undergraduates participate in athletics at some level.

    Princeton’s colors are orange and black. The school’s athletes are known as Tigers, and the mascot is a tiger. The Princeton administration considered naming the mascot in 2007, but the effort was dropped in the face of alumni opposition.

    Varsity

    Princeton is an NCAA Division I school. Its athletic conference is the Ivy League. Princeton hosts 38 men’s and women’s varsity sports. The largest varsity sport is rowing, with almost 150 athletes.

    Princeton’s football team has a long and storied history. Princeton played against Rutgers University in the first intercollegiate football game in the U.S. on Nov 6, 1869. By a score of 6–4, Rutgers won the game, which was played by rules similar to modern rugby. Today Princeton is a member of the Football Championship Subdivision of NCAA Division I. As of the end of the 2010 season, Princeton had won 26 national football championships, more than any other school.

    Club and intramural

    In addition to varsity sports, Princeton hosts about 35 club sports teams. Princeton’s rugby team is organized as a club sport. Princeton’s sailing team is also a club sport, though it competes at the varsity level in the MAISA conference of the Inter-Collegiate Sailing Association.

    Each year, nearly 300 teams participate in intramural sports at Princeton. Intramurals are open to members of Princeton’s faculty, staff, and students, though a team representing a residential college or eating club must consist only of members of that college or club. Several leagues with differing levels of competitiveness are available.

    Songs

    Notable among a number of songs commonly played and sung at various events such as commencement, convocation, and athletic games is Princeton Cannon Song, the Princeton University fight song.

    Bob Dylan wrote Day of The Locusts (for his 1970 album New Morning) about his experience of receiving an honorary doctorate from the University. It is a reference to the negative experience he had and it mentions the Brood X cicada infestation Princeton experienced that June 1970.

    “Old Nassau”

    Old Nassau has been Princeton University’s anthem since 1859. Its words were written that year by a freshman, Harlan Page Peck, and published in the March issue of the Nassau Literary Review (the oldest student publication at Princeton and also the second oldest undergraduate literary magazine in the country). The words and music appeared together for the first time in Songs of Old Nassau, published in April 1859. Before the Langlotz tune was written, the song was sung to Auld Lang Syne’s melody, which also fits.

    However, Old Nassau does not only refer to the university’s anthem. It can also refer to Nassau Hall, the building that was built in 1756 and named after William III of the House of Orange-Nassau. When built, it was the largest college building in North America. It served briefly as the capitol of the United States when the Continental Congress convened there in the summer of 1783. By metonymy, the term can refer to the university as a whole. Finally, it can also refer to a chemical reaction that is dubbed “Old Nassau reaction” because the solution turns orange and then black.
    Princeton Shield

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: