Tagged: Computer Engineering Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:02 am on January 21, 2023 Permalink | Reply
    Tags: "air waveguide", "Nearly 50-meter laser experiment sets record in University of Maryland hallway", , A laser is sent down a UMD hallway in an experiment to corral light as it makes a 45-meter journey., Air waveguides have many potential applications related to collecting or transmitting light e.g. detecting light emitted by atmospheric pollution and long-range laser communication or even laser weapo, All the work was to see to what lengths they could push the technique., an "air waveguide"., An air waveguide prescribes a path for light., , Computer Engineering, , , , The team found that the waveguide lasted for just hundredths of a second before dissipating back into thin air. But that's eons for the laser bursts the researchers were sending., , These efforts temporarily transfigured thin air into a fiber optic cable—or more specifically, Transforming a hallway into a laboratory.   

    From The University of Maryland Via “phys.org” : “Nearly 50-meter laser experiment sets record in University of Maryland hallway” 

    From The University of Maryland

    Via

    “phys.org”

    1.20.23

    1
    A laser is sent down a UMD hallway in an experiment to corral light as it makes a 45-meter journey. Credit: Intense Laser-Matter Interactions Lab, UMD.

    It’s not at every university that laser pulses powerful enough to burn paper and skin are sent blazing down a hallway. But that’s what happened in UMD’s Energy Research Facility, an unremarkable looking building on the northeast corner of campus. If you visit the utilitarian white and gray hall now, it seems like any other university hall—as long as you don’t peak behind a cork board and spot the metal plate covering a hole in the wall.

    But for a handful of nights in 2021, UMD Physics Professor Howard Milchberg and his colleagues transformed the hallway into a laboratory: The shiny surfaces of the doors and a water fountain were covered to avoid potentially blinding reflections; connecting hallways were blocked off with signs, caution tape and special laser-absorbing black curtains; and scientific equipment and cables inhabited normally open walking space.

    As members of the team went about their work, a snapping sound warned of the dangerously powerful path the laser blazed down the hall. Sometimes the beam’s journey ended at a white ceramic block, filling the air with louder pops and a metallic tang. Each night, a researcher sat alone at a computer in the adjacent lab with a walkie-talkie and performed requested adjustments to the laser.

    Their efforts were to temporarily transfigure thin air into a fiber optic cable—or, more specifically, an “air waveguide”—that would guide light for tens of meters. Like one of the fiber optic internet cables that provide efficient highways for streams of optical data, an air waveguide prescribes a path for light. These air waveguides have many potential applications related to collecting or transmitting light, such as detecting light emitted by atmospheric pollution, long-range laser communication or even laser weaponry. With an air waveguide, there is no need to unspool solid cable and be concerned with the constraints of gravity; instead, the cable rapidly forms unsupported in the air. In a paper accepted for publication in the journal Physical Review X [below] the team described how they set a record by guiding light in 45-meter-long air waveguides and explained the physics behind their method.

    The researchers conducted their record-setting atmospheric alchemy at night to avoid inconveniencing (or zapping) colleagues or unsuspecting students during the workday. They had to get their safety procedures approved before they could repurpose the hallway.

    “It was a really unique experience,” says Andrew Goffin, a UMD electrical and computer engineering graduate student who worked on the project and is a lead author on the resulting journal article. “There’s a lot of work that goes into shooting lasers outside the lab that you don’t have to deal with when you’re in the lab—like putting up curtains for eye safety. It was definitely tiring.”

    All the work was to see to what lengths they could push the technique. Previously Milchberg’s lab demonstrated that a similar method worked for distances of less than a meter. But the researchers hit a roadblock in extending their experiments to tens of meters: Their lab is too small and moving the laser is impractical. Thus, a hole in the wall and a hallway becoming lab space.

    “There were major challenges: the huge scale-up to 50 meters forced us to reconsider the fundamental physics of air waveguide generation, plus wanting to send a high-power laser down a 50-meter-long public hallway naturally triggers major safety issues,” Milchberg says. “Fortunately, we got excellent cooperation from both the physics and from the Maryland environmental safety office!”

    Without fiber optic cables or waveguides, a light beam—whether from a laser or a flashlight—will continuously expand as it travels. If allowed to spread unchecked, a beam’s intensity can drop to un-useful levels. Whether you are trying to recreate a science fiction laser blaster or to detect pollutant levels in the atmosphere by pumping them full of energy with a laser and capturing the released light, it pays to ensure efficient, concentrated delivery of the light.

    Milchberg’s potential solution to this challenge of keeping light confined is additional light—in the form of ultra-short laser pulses. This project built on previous work from 2014 in which his lab demonstrated that they could use such laser pulses to sculpt waveguides in the air.

    2
    Distributions of the laser light collected after the hallway journey without a waveguide (left) and with a waveguide (right). Credit: Intense Laser-Matter Interactions Lab, UMD.

    The short pulse technique utilizes the ability of a laser to provide such a high intensity along a path, called a filament, that it creates a plasma—a phase of matter where electrons have been torn free from their atoms. This energetic path heats the air, so it expands and leaves a path of low-density air in the laser’s wake. This process resembles a tiny version of lighting and thunder where the lightning bolt’s energy turns the air into a plasma that explosively expands the air, creating the thunderclap; the popping sounds the researchers heard along the beam path were the tiny cousins of thunder.

    But these low-density filament paths on their own weren’t what the team needed to guide a laser. The researchers wanted a high-density core (the same as internet fiber optic cables). So, they created an arrangement of multiple low-density tunnels that naturally diffuse and merge into a moat surrounding a denser core of unperturbed air.

    The 2014 experiments used a set arrangement of just four laser filaments, but the new experiment took advantage of a novel laser setup that automatically scales up the number of filaments depending on the laser energy; the filaments naturally distribute themselves around a ring.

    The researchers showed that the technique could extend the length of the air waveguide, increasing the power they could deliver to a target at the end of the hallway. At the conclusion of the laser’s journey, the waveguide had kept about 20% of the light that otherwise would have been lost from their target area. The distance was about 60 times farther than their record from previous experiments. The team’s calculations suggest that they are not yet near the theoretical limit of the technique, and they say that much higher guiding efficiencies should be easily achievable with the method in the future.

    “If we had a longer hallway, our results show that we could have adjusted the laser for a longer waveguide,” says Andrew Tartaro, a UMD physics graduate student who worked on the project and is an author on the paper. “But we got our guide right for the hallway we have.”

    The researchers also did shorter eight-meter tests in the lab where they investigated the physics playing out in the process in more detail. For the shorter test they managed to deliver about 60% of the potentially lost light to their target.

    The popping sound of the plasma formation was put to practical use in their tests. Besides being an indication of where the beam was, it also provided the researchers with data. They used a line of 64 microphones to measure the length of the waveguide and how strong the waveguide was along its length (more energy going into making the waveguide translates to a louder pop).

    The team found that the waveguide lasted for just hundredths of a second before dissipating back into thin air. But that’s eons for the laser bursts the researchers were sending through it: Light can traverse more than 3,000 km in that time.

    Based on what the researchers learned from their experiments and simulations, the team is planning experiments to further improve the length and efficiency of their air waveguides. They also plan to guide different colors of light and to investigate if a faster filament pulse repetition rate can produce a waveguide to channel a continuous high-power beam.

    “Reaching the 50-meter scale for air waveguides literally blazes the path for even longer waveguides and many applications”, Milchberg says. “Based on new lasers we are soon to get, we have the recipe to extend our guides to one kilometer and beyond.”

    Physical Review X

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Maryland Campus

    The University of Maryland is a public land-grant research university. Founded in 1856, The University of Maryland is the flagship institution of the University System of Maryland. It is also the largest university in both the state and the Washington metropolitan area, with more than 41,000 students representing all fifty states and 123 countries, and a global alumni network of over 388,000. Its twelve schools and colleges together offer over 200 degree-granting programs, including 92 undergraduate majors, 107 master’s programs, and 83 doctoral programs. The University of Maryland is a member of The Association of American Universities and competes in intercollegiate athletics as a member of the Big Ten Conference.

    The University of Maryland’s proximity to the nation’s capital has resulted in many research partnerships with the federal government; faculty receive research funding and institutional support from agencies such as The National Institutes of Health (US), The National Aeronautics and Space Administration, The National Institute of Standards and Technology, The Food and Drug Administration, The National Security Agency, and The Department of Homeland Security. It is classified among “R1: Doctoral Universities – Very high research activity” and is labeled a “Public Ivy”, denoting a quality of education comparable to the private Ivy League. The University of Maryland is ranked among the top 100 universities both nationally and globally by several indices, including its perennially top-ranked criminology and criminal justice department.

    In 2016, the University of Maryland-College Park and The University of Maryland- Baltimore formalized their strategic partnership after their collaboration successfully created more innovative medical, scientific, and educational programs, as well as greater research grants and joint faculty appointments than either campus has been able to accomplish on its own. According to The National Science Foundation, the university spent a combined $1.1 billion on research and development in 2019, ranking it 14th overall in the nation and 8th among all public institutions. As of 2021, the operating budget of the University of Maryland is approximately $2.2 billion.

    On March 6, 1856, the forerunner of today’s University of Maryland was chartered as the Maryland Agricultural College. Two years later, Charles Benedict Calvert (1808–1864), a future U.S. Representative (Congressman) from the sixth congressional district of Maryland, 1861–1863, during the American Civil War and descendant of the first Lord Baltimores, colonial proprietors of the Province of Maryland in 1634, purchased 420 acres (1.7 km^2) of the Riversdale Mansion estate nearby today’s College Park, Maryland. Later that year, Calvert founded the school and was the acting president from 1859 to 1860. On October 5, 1859, the first 34 students entered the Maryland Agricultural College. The school became a land grant college in February 1864.

    Following the Civil War, in February 1866, the Maryland legislature assumed half ownership of the school. The college thus became in part a state institution. By October 1867, the school reopened with 11 students. In 1868, the former Confederate admiral Franklin Buchanan was appointed President of the school, and in his tenure of just over a year, he reorganized it, established a system of strict economy in its business transactions, applied some of its revenues for the paying off of its debts, raised its standards, and attracted patrons through his personal influence: enrollment grew to 80 at the time of his resignation, and the school’s debt was soon paid off. In 1873, Samuel Jones, a former Confederate Major General, became president of the college.

    Twenty years later, the federally funded Agricultural Experiment Station was established there. During the same period, state laws granted the college regulatory powers in several areas—including controlling farm disease, inspecting feed, establishing a state weather bureau and geological survey, and housing the board of forestry. Morrill Hall (the oldest instructional building still in use on campus) was built the following year.

    The state took control of the school in 1916, and the institution was renamed Maryland State College. That year, the first female students enrolled at the school. On April 9, 1920, the college became part of the existing University of Maryland, replacing St. John’s College, Annapolis as the university’s undergraduate campus. In the same year, the graduate school on the College Park campus awarded its first PhD degrees and the university’s enrollment reached 500 students. In 1925 the university was accredited by The Association of American Universities.

    By the time the first black students enrolled at the university in 1951, enrollment had grown to nearly 10,000 students—4,000 of whom were women. Prior to 1951, many black students in Maryland were enrolled at The University of Maryland-Eastern Shore.

    In 1957, President Wilson H. Elkins made a push to increase academic standards at the university. His efforts resulted in the creation of one of the first Academic Probation Plans. The first year the plan went into effect, 1,550 students (18% of the total student body) faced expulsion.

    On October 19, 1957, Queen Elizabeth II of the United Kingdom attended her first and only college football game at the University of Maryland after expressing interest in seeing a typical American sport during her first tour of the United States. The Maryland Terrapins beat the North Carolina Tar Heels 21 to 7 in the historical game now referred to as “The Queen’s Game”.

    Phi Beta Kappa established a chapter at UMD in 1964. In 1969, the university was elected to The Association of American Universities. The school continued to grow, and by the fall of 1985 reached an enrollment of 38,679. Like many colleges during the Vietnam War, the university was the site of student protests and had curfews enforced by the National Guard.

    In a massive restructuring of the state’s higher education system in 1988, the school was designated as the flagship campus of the newly formed University of Maryland System (later changed to the University System of Maryland in 1997), and was formally named the University of Maryland-College Park. All of the five campuses in the former network were designated as distinct campuses in the new system. However, in 1997 the Maryland General Assembly passed legislation allowing the University of Maryland-College Park to be known simply as The University of Maryland, recognizing the campus’ role as the flagship institution of the University System of Maryland.

    The other University System of Maryland institutions with the name “University of Maryland” are not satellite campuses of the University of Maryland-College Park. The University of Maryland-Baltimore, is the only other school permitted to confer certain degrees from the “University of Maryland”.

    In 1994, the National Archives at College Park completed construction and opened on a parcel of land adjoining campus donated by the University of Maryland, after lobbying by President William Kirwan and congressional leaders to foster academic collaboration between the institutions.

    In 2004, the university began constructing the 150-acre (61 ha) “M Square Research Park,” which includes facilities affiliated with The Department of Defense , Food and Drug Administration, and the new National Center for Weather and Climate Prediction, affiliated with The National Oceanic and Atmospheric Administration. In May 2010, ground was broken on a new $128-million, 158,068-square-foot (14,685.0 m^2) Physical Science Complex, including an advanced quantum science laboratory.

    The university’s Great Expectations campaign from 2006 to 2012 exceeded $1 billion in private donations.

    The university suffered multiple data breaches in 2014. The first resulted in the loss of over 300,000 student and faculty records. A second data breach occurred several months later. The second breach was investigated by the FBI and Secret Service and found to be done by David Helkowski. Despite the attribution, no charges were filed. As a result of the data breaches, the university offered free credit protection for five years to the students and faculty affected.

    In 2012, the University of Maryland-College Park and the University of Maryland- Baltimore united under the MPowering the State initiative to leverage the strengths of both institutions. The University of Maryland Strategic Partnership Act of 2016 officially formalized this partnership.

    The University of Maryland’s University District Plan, developed in 2011 under President Wallace Loh and the College Park City Council, seeks to make the City of College Park a top 20 college town by 2020 by improving housing and development, transportation, public safety, local pre-K–12 education, and supporting sustainability projects. As of 2018, the university is involved with over 30 projects and 1.5 million square feet of development as part of its Greater College Park Initiative, worth over $1 billion in public-private investments. The university’s vision is to revitalize the campus to foster a dynamic and innovative academic environment, as well as to collaborate with the surrounding neighborhoods and local government to create a vibrant downtown community for students and faculty

    In October 2017, the university received a record-breaking donation of $219.5 million from the A. James & Alice B. Clark Foundation, ranking among the largest philanthropic gifts to a public university in the country.

    As of February 12, 2020, it has been announced that Darryll J. Pines will be the 34th President of the University of Maryland-College Park effective July 1, 2020. Darryll J. Pines is the dean of the A. James Clark School of Engineering and the Nariman Farvardin Professor of Aerospace Engineering since January 2009. Darryll J. Pines has been with the University of Maryland College Park for 25 years since he arrived in 1995 and started as an assistant professor.

    In 2021, the university announced it had achieved its record goal of $1.5 billion raised in donations since 2018 as part of its Fearless Ideas: The Campaign for Maryland for investments in faculty, students, research, scholarships, and capital projects.

    The university hosts “living-learning” programs which allow students with similar academic interests to live in the same residential community, take specialized courses, and perform research in those areas of expertise. An example is the Honors College, which is geared towards undergraduate students meeting high academic requirements and consists of several of the university’s honors programs. The Honors College welcomes students into a community of faculty and undergraduates. The Honors College offers seven living and learning programs: Advanced Cybersecurity Experience for Students, Design Cultures and Creativity, Entrepreneurship and Innovation, Honors Humanities, Gemstone, Integrated Life Sciences, and University Honors.

    Advanced Cybersecurity Experience for Students (ACES), started in 2013, is directed by Michel Cukier and run by faculty and graduate students. ACES students are housed in Prince Frederick Hall and take a 14 credit, two year curriculum that educates future leaders in the field of cybersecurity. ACES also offers a complementary two-year minor in cybersecurity.

    Design Cultures and Creativity (DCC), started in 2009, is directed by artist Jason Farman and run by faculty and graduate students. The DCC program encourages students to explore the relationship between emerging media, society, and creative practices. DCC students are housed in Prince Frederick residence hall together and take a 16 credit, two year interdisciplinary curriculum which culminates in a capstone.

    Entrepreneurship and Innovation Program (EIP) is a living and learning program for Honors College freshmen and sophomores, helping build entrepreneurial mindsets, skill sets, and relationships for the development of solutions to today’s problems. Through learning, courses, seminars, workshops, competitions, and volunteerism, students receive an education in entrepreneurship and innovation. In collaboration with faculty and mentors who have launched new ventures, all student teams develop an innovative idea and write a product plan.

    Honors Humanities is the honors program for beginning undergraduates with interests in the humanities and creative arts. The selective two-year living-learning program combines a small liberal arts college environment with the resources of a large research university.

    Gemstone is a multidisciplinary four-year research program for select undergraduate honors students of all majors. Under guidance of faculty mentors and Gemstone staff, teams of students design, direct and conduct research, exploring the interdependence of science and technology with society.

    Integrated Life Sciences (ILS) is the honors program for students interested in all aspects of biological research and biomedicine. The College of Computer, Mathematical, and Natural Sciences has partnered with the Honors College to create the ILS program, which offers nationally recognized innovations in the multidisciplinary training of life science and pre-medical students. The objective of the ILS experience is to prepare students for success in graduate, medical, dental, or other professional schools.

    University Honors (UH) is the largest living-learning program in the Honors College and allows students the greatest independence in shaping their education. University Honors students are placed into a close-knit community of the university’s faculty and other undergraduates, committed to acquiring a broad and balanced education. Students choose from over 130 seminars exploring interdisciplinary topics in three broad areas: Contemporary Issues and Challenges, Arts and Sciences in Today’s World, and Using the World as a Classroom.

    The College Park Scholars programs are two-year living-learning programs for first- and second-year students. Students are selected to enroll in one of 12 thematic programs: Arts; Business, Society, and the Economy; Environment, Technology, and Economy; Global Public Health; International Studies; Life Sciences; Media, Self, and Society; Public Leadership; Science and Global Change; Science, Discovery, and the Universe; Science, Technology, and Society. Students live in dormitories in the Cambridge Community on North Campus.

    The nation’s first living-learning entrepreneurship program, Hinman CEOs, is geared toward students who are interested in starting their own business. Students from all academic disciplines live together and are provided the resources to explore business ventures.

    The QUEST (Quality Enhancement Systems and Teams) Honors Fellows Program engages undergraduate students from business, engineering, and computer, mathematical, and physical sciences. QUEST Students participate in courses focused on cross-functional collaboration, innovation, quality management, and teamwork. The Department of Civil & Environmental Engineering (CEE) has also been long considered an outstanding engineering division of the university since its inception in 1908.

    Other living-learning programs include: CIVICUS, a two-year program in the College of Behavioral and Social Sciences based on the five principles of civil society; Global Communities, a program that immerses students in a diverse culture (students from all over the world live in a community), and the Language House, which allows students pursuing language courses to live and practice with other students learning the same language.

    The Mock Trial Team engages in intercollegiate mock trial competition. The team, which first began competing in 1990, has won five national championships (2008, 2000, 1998, 1996, 1992), which ranks the most of any university, and was also the national runner-up in 1992 and 1993.

    Research

    On October 14, 2004, the university added 150 acres (61 ha) in an attempt to create the largest research park inside the Washington, D.C., Capital Beltway, formerly known as “M Square,” and now known as the “Discovery District”.

    Many of the faculty members have funding from federal agencies such as the National Science Foundation, the National Institutes of Health, NASA, the Department of Homeland Security, the National Institute of Standards and Technology, and the National Security Agency. These relationships have created numerous research opportunities for the university including:

    Taking the lead in the nationwide research initiative into the transmission and prevention of human and avian influenza.
    Creating a new research center to study the behavioral and social foundations of terrorism with funding from the U.S. Department of Homeland Security
    Launching the joint NASA-University of Maryland Deep Impact spacecraft in early January 2005.

    The University of Maryland Libraries provide access to scholarly information resources required to meet the missions of the university.

    The University of Maryland is an international center for the study of language, hosting the largest community of language scientists in North America, including more than 200 faculty, researchers, and graduate students, who collectively comprise the Maryland Language Science Center. Since 2008 the university has hosted an NSF-IGERT interdisciplinary graduate training program that has served as a catalyst for broader integrative efforts in language science, with 50 participating students and contributions from 50 faculty. The University of Maryland is also home to two key ‘migrator’ centers that connect basic research to critical national needs in education and national security: the Center for Advanced Study of Language (CASL) and the National Foreign Language Center.

    The Center for American Politics and Citizenship provides citizens and policy-makers with research on issues related to the United States’ political institutions, processes, and policies. CAPC is a non-partisan, non-profit research institution within the Department of Government and Politics in the College of Behavioral and Social Sciences.

    The Space Systems Laboratory researches human-robotic interaction for astronautics applications, and includes the only neutral buoyancy facility at a university.

    The Joint Quantum Institute conducts theoretical and experimental research on quantum and atomic physics. The institute was founded in 2006 as a collaboration between the University of Maryland and the National Institute of Standards and Technology (NIST).

    The Center for Technology and Systems Management (CTSM) aims to advance the state of technology and systems analysis for the benefit of people and the environment. The focus is on enhancing safety, efficiency and effectiveness by performing reliability, risk, uncertainty or decision analysis studies.

    The Joint Global Change Research Institute was formed in 2001 by the University of Maryland and the DOE’s Pacific Northwest National Laboratory. The institute focuses on multidisciplinary approaches of climate change research.

    The Center for Advanced Life Cycle Engineering (CALCE) was formed in 1985 at the University of Maryland. CALCE is dedicated to providing a knowledge and resource base to support the development of electronic components, products and systems.

    The National Consortium for the Study of Terrorism and Responses to Terrorism (START) launched in 2005 as one of the Centers of Excellence supported by the Department of Homeland Security in the United States. START is focused on the scientific study of the causes and consequences of terrorism in the United States and around the world.

    The university is tied for 58th in the 2021 U.S. News & World Report rankings of “National Universities” across the United States, and it is ranked tied for 19th nationally among public universities. The Academic Ranking of World Universities ranked Maryland as 43rd in the world in 2015. The 2017–2018 Times Higher Education World University Rankings placed Maryland 69th in the world. The 2016/17 QS World University Rankings ranked Maryland 131st in the world.

    The university was ranked among Peace Corps’ 25 Top Volunteer-Producing Colleges for the tenth consecutive year in 2020. The University of Maryland is ranked among Teach for America’s Top 20 Colleges and Universities, contributing the greatest number of graduating seniors to its 2017 teaching corps. Kiplinger’s Personal Finance ranked the University 10th for in-state students and 16th for out-of-state students in its 2019 Best College Value ranking. Money Magazine ranked the university 1st in the state of Maryland for public colleges in its 2019 Best College for Your Money ranking.

    For the fourth consecutive year in 2015, the university is ranked 1st in the U.S. for the number of Boren Scholarship recipients – with 9 students receiving awards for intensive international language study. The university is ranked as a Top Producing Institution of Fulbright U.S. Students and Scholars for the 2017–2018 academic year by the United States Department of State’s Bureau of Educational and Cultural Affairs.

    In 2017, the University of Maryland was ranked among the top 50 universities in the 2018 Best Global Universities Rankings by U.S. News & World Report based on its high academic research performance and global reputation.

    In 2021, the university was ranked among the top 10 universities in The Princeton Review’s annual survey of the Top Schools for Innovation & Entrepreneurship; this was the sixth consecutive such ranking.

    WMUC-FM (88.1 FM) is the university non-commercial radio station, staffed by UMD students and volunteers. WMUC is a freeform radio station that broadcasts at 10 watts. Its broadcasts can be heard throughout the Washington metropolitan area. Notable WMUC alumni include Connie Chung, Bonnie Bernstein, Peter Rosenberg and Aaron McGruder.

     
  • richardmitnick 9:19 pm on January 18, 2023 Permalink | Reply
    Tags: "First observation of the Čerenkov radiation phenomenon in 2D space", , , Computer Engineering, , ,   

    From The Technion-Israel Institute of Technology [הטכניון – מכון טכנולוגי לישראל] (IL) Via “phys.org” : “First observation of the Čerenkov radiation phenomenon in 2D space” 

    Technion bloc

    From The Technion-Israel Institute of Technology [הטכניון – מכון טכנולוגי לישראל] (IL)

    Via

    “phys.org”

    1.18.23

    1
    A single free electron propagates above the special layered structure that the researchers engineered, only a few tens of nanometers above it.During its movement, the electron emits discrete packets of radiation called “photons”. Between the electron and the photons it emitted, a connection of “quantum entanglement” is formed. Credit: Ella Maru Studio.

    Researchers from the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering at the Technion—Israel Institute of Technology have presented the first experimental observation of Čerenkov radiation confined in two dimensions. The results represent a new record in electron-radiation coupling strength, revealing the quantum properties of the radiation.

    Čerenkov radiation is a unique physical phenomenon, which for many years has been used in medical imaging and in particle detection applications, as well as in laser-driven electron accelerators. The breakthrough achieved by the Technion researchers links this phenomenon to future photonic quantum computing applications and free-electron quantum light sources.

    The study, which was published in Physical Review X [below], was headed by Ph.D. students Yuval Adiv and Shai Tsesses from the Technion, together with Hao Hu from the Nanyang Technological University in Singapore (today professor at Nanjing university in China). It was supervised by Prof. Ido Kaminer and Prof. Guy Bartal of the Technion, in collaboration with colleagues from China: Prof. Hongsheng Chen, and Prof. Xiao Lin from Zhejiang University.

    The interaction of free electrons with light underlies many known radiation phenomena and has led to numerous applications in science and industry. One of the most important of these interaction effects is the Čerenkov radiation—electromagnetic radiation emitted when a charged particle, such as an electron, travels through a medium at a speed greater than the phase velocity of light in that specific medium. It is the optical equivalent of a supersonic boom, which occurs, for example, when a jet travels faster than the speed of sound. Consequently, Čerenkov radiation is sometimes called an “optical shock wave.” The phenomenon was discovered in 1934. In 1958, the scientists who discovered it were awarded the Nobel Prize in Physics.

    Since then, during more than 80 years of research, the investigation of Čerenkov radiation led to the development of a wealth of applications, most of them for particle identification detectors and medical imaging. However, despite the intense preoccupation with the phenomenon, the bulk of theoretical research and all experimental demonstrations concerned Čerenkov radiation in the three-dimensional space and based its description on classical electromagnetism.

    Now, the Technion researchers present the first experimental observation of 2D Čerenkov radiation, demonstrating that in the two-dimensional space, radiation behaves in a completely different manner—for the first time, the quantum description of light is essential to explain the experiment results.

    The researchers engineered a special multilayer structure enabling interaction between free electrons and light waves traveling along a surface. The smart engineering of the structure allowed for a first measurement of 2D Čerenkov radiation. The low dimensionality of the effect permitted a glimpse into the quantum nature of the process of radiation emission from free electrons: a count of the number of photons (quantum particles of light) emitted from a single electron and indirect evidence of the entanglement of the electrons with the light waves they emit.

    In this context, “entanglement” means correlation between the properties of the electron and those of the light emitted, such that measuring one provides information about the other. It is worth noting that the 2022 Nobel Prize in Physics was awarded for the performance of a series of experiments demonstrating the effects of quantum entanglement (in systems different to those demonstrated in the present research).

    Yuval Adiv says, “The result of the study which surprised us the most concerns the efficiency of electron radiation emission in the experiment: whereas the most advanced experiments that preceded the present one achieved a regime in which approximately only one electron out of one hundred emitted radiation, here, we succeeded in achieving an interaction regime in which every electron emitted radiation. In other words, we were able to demonstrate an improvement of over two orders of magnitude in the interaction efficiency (also called the coupling strength). This result helps advance modern developments of efficient electron-driven radiation sources.”

    Prof. Kaminer says, “Radiation emitted from electrons is an old phenomenon that has been researched for over 100 years and was assimilated into technology a long time ago, an example being the home microwave oven. For many years, it seemed that we had already discovered everything there was to know about electron radiation, and thus, the idea that this kind of radiation had already been fully described by classical physics became entrenched. In striking contrast to this concept, the experimental apparatus we built allows the quantum nature of electron radiation to be revealed.

    “The new experiment that was now published explores the quantum-photonic nature of electron radiation. The experiment is part of a paradigm shift in the way we understand this radiation, and more broadly, the relationship between electrons and the radiation they emit. For example, we now understand that free electrons can become entangled with the photons they emit. It is both surprising and exciting to see signs of this phenomenon in the experiment.”

    Shai Tsesses says, “In Yuval Adiv’s new experiment we forced the electrons to travel in proximity to a photonic-plasmonic surface that I planned based on a technique developed in the lab of Prof. Guy Bartal. The electron velocity was accurately set to obtain a large coupling strength, greater than that obtained in normal situations, where coupling is to radiation in three-dimensions. At the heart of the process, we observe the spontaneous quantum nature of radiation emission, obtained in discrete packets of energy called photons. In this way, the experiment sheds new light on the quantum nature of photons.”

    Science paper:
    Physical Review X

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Technion Campus

    A science and technology research university, among the world’s top ten, TheTechnion-Israel Institute of Technology [הטכניון – מכון טכנולוגי לישראל](IL), is dedicated to the creation of knowledge and the development of human capital and leadership, for the advancement of the State of Israel and all humanity.

    The Technion-Israel Institute of Technology [הטכניון – מכון טכנולוגי לישראל](IL) is a public research university in Haifa, Israel. Established in 1912 under the dominion of the Ottoman Empire (and more than 35 years before the establishment of State of Israel), the Technion is the oldest university in the country.

    The Technion is ranked as the top university in both Israel and the Middle East, and in the top 100 universities in the world in the Academic Ranking of World Universities of 2019. The university offers degrees in science and engineering, and related fields such as architecture, medicine, industrial management, and education. It has 19 academic departments, 60 research centers, and 12 affiliated teaching hospitals. Since its founding, it has awarded more than 100,000 degrees and its graduates are cited for providing the skills and education behind the creation and protection of the State of Israel.

    Technion’s 565 faculty members currently include three Nobel Laureates in chemistry. Four Nobel Laureates have been associated with the university.

    The Technion has played a major role in the history of modern Israel. The selection of Hebrew as the language of instruction, defeating German in the War of the Languages, was an important milestone in Hebrew’s consolidation as Israel’s official language. The Technion is also a major factor behind the growth of Israel’s high-tech industry and innovation, including the country’s technical cluster in Silicon Wadi.
    History
    The Technikum was conceived in the early 1900s by the German-Jewish fund Ezrah as a school of engineering and sciences. It was to be the only institution of higher learning in the then Ottoman Palestine, other than the Bezalel Academy of Arts and Design [בצלאל, אקדמיה לאמנות ועיצוב‎] (IL) in Jerusalem (founded in 1907). In October 1913, the board of trustees selected German as the language of instruction, provoking a major controversy known as the War of the Languages. After opposition from American and Russian Jews to the use of German, the board of trustees reversed itself in February 1914 and selected Hebrew as the language of instruction. The German name Technikum was also replaced by the Hebrew name Technion.

    Technion’s cornerstone was laid in 1912, and studies began 12 years later in 1924. In 1923 Albert Einstein visited and planted the now-famous first palm tree, as an initiative of Nobel tradition. The first palm tree still stands today in front of the old Technion building, which is now the MadaTech museum, in the Hadar neighborhood. Einstein founded the first Technion Society, and served as its president upon his return to Germany.

    Research highlights

    In 1982, Dan Shechtman discovered a Quasicrystal structure. This is a structure with a Symmetry in the order of 5 – a phenomenon considered impossible until then by the then-current prevailing theories of Crystallography. In 2011 he won the Nobel Prize in Chemistry for this discovery.

    In 2004, two Technion professors, Avram Hershko and Aaron Ciechanover, won the Nobel Prize for the discovery of the biological system responsible for disassembling protein in the cell.

    Shulamit Levenberg, 37, was chosen by Scientific American magazine as one of the leading scientists in 2006 for the discovery of a method to transplant skin in a way the body does not reject.
    Moussa B.H. Youdim developed Rasagiline, a drug marketed by Teva Pharmaceuticals as Azilect (TM) for the treatment of neurodegenerative disease, especially Parkinson’s disease.

    In 1998, Technion successfully launched the “Gurwin TechSat II” microsatellite, making Technion one of five universities with a student program that designs, builds, and launches its own satellite. The satellite stayed in orbit until 2010.

    In the 1970s, computer scientists Abraham Lempel and Jacob Ziv developed the Lempel-Ziv-Welch algorithm for data compression. In 1995 and 2007 they won an IEEE Richard W. Hamming Medal for pioneering work in data compression and especially for developing the algorithm.

    In 2019, a team of 12 students won a gold medal at iGEM for developing bee-free honey.

     
  • richardmitnick 10:32 am on December 13, 2022 Permalink | Reply
    Tags: "Optical innovations", , Computer Engineering, , , , Optical Engineering, , Photonic devices are ones that can create and control or detect light and photonic integrated circuits are able to use light for even more complex functions such as data analysis., ,   

    From The University of Delaware : “Optical innovations” 

    U Delaware bloc

    From The University of Delaware

    12.12.22
    Erica K. Brockmeier
    Photos by Evan Krape, courtesy of Tingyi Gu
    Illustrations by Joy Smoker

    1
    Using a high-risk, high-reward research strategy, the research group of Tingyi Gu research group has made progress in developing new chip designs and applying unique materials for a wide range of optical communication, sensing and computing applications.

    University of Delaware Engineering’s Tingyi Gu and fellow researchers are creating state-of-the-art computing devices.

    On the third floor of the University of Delaware’s Du Pont Hall, electrical engineers analyze delicate, centimeter-sized computer chips on a large optical table surrounded by oscilloscopes, lenses and lasers. These researchers are busy collecting data on how well these chips can convert light waves into electrical signals, with the goal of figuring out how to make the next batch of chips they fabricate even faster, more energy efficient or with increased computing capabilities.

    It’s here in the lab of Tingyi Gu, an assistant professor in the Department of Electrical and Computer Engineering, where researchers are pushing the limits of the field of integrated photonic devices. Using a high-risk, high-reward research strategy, Gu’s research group has made progress in developing new chip designs and applying unique materials for a wide range of optical communication, sensing and computing applications.

    Light control

    Photonic devices are ones that can create, control or detect light, and photonic integrated circuits are able to use light for even more complex functions such as data analysis. Gu, who began working in this field as a graduate student, is focused on improving photonic integrated circuits through fundamental research, with a focus on developing new chip designs and studying how materials from other applications could be incorporated into photonic devices.

    “For me and my students, we are less likely to read a paper and modify something to show a slightly better advantage. Instead, we try to find something that can be more revolutionary by trying to fundamentally change the way we’re doing it,” said Gu about her group’s research strategy. “This is a higher risk approach, but it’s more fun to explore that rather than try to repeat what others have done or make some incremental progress.”

    Two examples of how Gu’s research strategy has led to progress in the field of photonics can be found in two of her group’s papers from earlier in 2022, one published in Nature Communications [below] and the other in Advanced Materials [below].

    Scaling up

    In 2019, Gu and graduate student Zi Wang developed an on-chip transformative optics design principle for robust wavefront control on an integrated photonic platform, which can be used for complicated processes related to other areas such as quantum optics.

    Now, the group’s latest Nature Communications [below] paper demonstrates how advanced computing capabilities can be integrated directly onto these photonic chips. “In 2019, our device had very simple components, like Fourier transformation. Now, with nearly a thousand pre-programmed elements, the integrated metasystem can handle uncertainties across the spectral domains, which is a milestone of integrated photonic processors to its electronic counterpart,” said Gu.

    Wang, who is now a postdoc at the National Institute of Standards and Technology (NIST), said that scaling up their original design, which would also make it compatible with manufacturing processes, was the most challenging part of this recent paper. “The structure was designed with a gradient back-propagation method, which cost a lot of time and computing resources in our original design,” said Wang. “But I found that our structure has a particular symmetry, and by using the symmetry in mathematical calculation, the computation became much easier.”

    2
    Members of the Gu lab after a group meeting at their laboratory in Evans Hall (from left, clockwise) postdoc Kaleem Ullah, doctoral student Masudur Rahim, doctoral student Dun Mao, visiting scholar Jongryul Kim, master’s student S M Zia Uddin, postdoc Heijun Jeong, visiting scholar Taharat Tazrin, doctoral student Yahui Xiao, and doctoral student Lorry Chang.

    Thanks to this insight, the researchers discovered that they could use light diffraction to perform complex computations and data analyses. “And because each of the programmable components is much smaller than the conventional chips, you can pack many more in the same chip area,” said Gu.

    Gu added that this paper is an example of how new design approaches can help researchers use existing fabrication methods to create chips that are more powerful than current state-of-the-art technologies. “There’s much greater potential for integrated photonic circuits, not just the same way that they have been used and studied for decades, and even current circuits now have limitations that we can break,” she said.

    Making new (optical) memories

    A second paper, published in Advanced Materials [below], demonstrates how Gu’s lab takes inspiration from materials in other applications to evaluate if they could be used for photonic memory, which rely on light instead of magnetism to store information. 

    Known as optical memristive devices, these platforms for rewritable memory storage have the potential to reduce overall energy consumption but currently rely on a slow process related to changes in the material’s phase, or the physical state of the material (the most common being solid, liquid and gas). Phase shifting is how optical devices store memory, but here the phase shifting process requires a transition between an amorphous phase (one that doesn’t have much structure, like a pile of sand grains) and a crystalline phase (one that is highly structured, like a close-up of a snowflake).

    Creating a phase shifter for photonic integrated circuits that is both compact and controllable has remained a challenge because the materials currently available for optical devices only change phases very slowly and at extremely high temperatures. 

    In this paper, the group studied indium selenide (In2Se3), a material commonly used in electronic devices but that has not been widely incorporated in optical applications, to see if they could create optical memory by shifting between different crystalline phases instead of between crystalline and amorphous phases.

    In this study, lead author Tiantian Li, a former UD postdoc who is now an associate professor at Xi’an University of Posts and Telecommunications, first discovered that the phase transition mechanism for indium selenide was different than originally theorized based on simulated results. The researchers then used these theoretical insights to phase shift between different crystalline states, creating optical memories using short, nanosecond light pulses.

    “Optical phase change materials have attracted a lot of interest because of the promising application in optical computing,” said Li about the impacts of this work. “The high-power consumption of the phase change material influences the computing speed of the neural network, and our material promises to break this bottleneck.”

    3
    Researchers in Gu’s lab are focused on developing new chip designs and studying how materials from other applications could be incorporated into photonic devices. The work entails three phases: Simulation, where different chip designs are evaluated; fabrication, where the chips are made at UD’s Nanofabrication Facility; and testing, where chips are evaluated to see how well they perform compared to what was predicted by the simulation.

    Beyond their applications for the field of photonics, these two papers also showcase the importance of creativity and unique sources of inspiration in this field. “We try to leverage other resources and combine knowledge from different areas,” said Gu. “In the Nature Communications paper, we were inspired by people doing image classifications for machine learning, and we brought that onto our integrated photonic platform, and for the Advanced Materials paper, we were inspired by chemists who study phase transition mechanisms.”

    The future of photonics

    Current members of the Gu lab are busy continuing the progress of these and other projects, all with a focus on improving the current state-of-the-art for photonic devices.

    This innovative work entails three key yet challenging phases: Simulation, where different chip designs are evaluated using computer software; fabrication, where the actual chips are made at UD’s Nanofabrication Facility; and testing, where they bring the chips back to the lab to see how well they perform compared to what was predicted by the simulation. 

    For Yahui Xiao, a doctoral student working on photonic crystals, doing this type of research, which requires knowledge that stretches from fundamental physics to manufacturing, has provided her with a meaningful graduate school experience, especially since she looks forward to a career doing this type of “hybrid” research in optical engineering and nanophotonics.

    “I’d like to gain insights of current technology by understanding the underlying physics,” she said. “Here at UD, we have the Nanofabrication Facility, and those fabrication skills are ones that we can use when we go to industry since we can do the entire fabrication process.”

    Doctoral student Dun Mao, who is working on the indium selenide project, says that while research in this field can be challenging, it’s encouraging when they are able to make breakthroughs and get good results. “The most exciting part is when we observe some interesting phenomenon from our experiments that can make a device faster or more efficient,” he said.

    Gu added that while there are many unanswered research questions in the field of photonics that their group could address, the work in her lab is always driven by her student’s interests and passions. “We try to take higher risk approaches in the lab, and sometimes it’s good, sometimes it’s not as good, but I think students learn a lot,” said Gu.  

    Both Mao and Xiao said that Gu’s support has been instrumental to their success in graduate school thus far, and Xiao added that having Gu as a woman mentor in a field that is typically male dominated has been additionally inspiring for her. “Dr. Gu is a really good example for me — I can learn a lot of things from her, she is really successful in this area, and with good projects, sponsors and connections. Overall, she has really encouraged me.”

    The complete list of co-authors on the Nature Communications paper includes UD’s Zi Wang, Lorry Chang, Feifan Wang, Tiantian Li (now an associate professor at Xi’an University of Posts and Telecommunications) and Tingyi Gu.

    The complete list of co-authors on the Advanced Materials paper includes Chris J. Benmore and Ganesh Sivaraman from The DOE’s Argonne National Laboratory and UD’s Tiantian Li (now an associate professor at Xi’an University of Posts and Telecommunications), Yong Wang, Wei Li, Dun Mao, Igor Evangelista, Huadan Xing, Qiu Li, Feifan Wang, Anderson Janotti, Stephanie Law and Tingyi Gu.

    Science papers:
    Nature Communications
    See this science paper for instructive material with images.
    Advanced Materials

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The University of Delaware is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    The University of Delaware is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    The University of Delaware is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    The University of Delaware traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, The University of Delaware signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km^2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 1:48 pm on October 18, 2022 Permalink | Reply
    Tags: "Banding together", "CommAwareNet": communication-aware and energy-efficient and reliable network architecture., "VLC": visible light communication, Computer Engineering, , Joining terahertz radio waves with visible light communication aiming to design the next generation of wireless and high-performance computing networks., Terahertz - the last frequency frontier, The 6G-plus cellular telephone and WiFi-plus networks of the future, The catch: There is no theoretically and experimentally proven strategy for switching between terehertz and VLC modes., , The electromagnetic spectrum we rely on for communication and more has become a packed multilane freeway., , The plan is to use the VLC links to carry control data that identifies transmitter and receiver locations and antenna types., The system’s third element: intelligent reflective surfaces that will direct radio and light signals around obstacles to receivers., The terahertz band-squeezed between standard radio frequencies and visible light and subject to the rules that govern both.   

    From The DOE’s ASCR Discovery And The Oklahoma State University : “Banding together” 

    From The DOE’s ASCR Discovery

    And

    The Oklahoma State University

    October 2022

    An Oklahoma State University researcher will join terahertz radio waves with visible light communication, aiming to design the next generation of wireless and high-performance computing networks.

    1
    An intelligent reflective surface can help a wireless communications system avoid blockages to extend network coverage and provide improved signals. Image courtesy of Sabit Ekin.

    The electromagnetic spectrum we rely on for communication and more has become a packed multilane freeway. Cellphones, WiFi, Bluetooth, radar, satellite radio and television, not to mention AM and FM radio, compete for finite frequency slices. And yet, communications companies and consumers demand even more bandwidth as wireless technology flourishes.

    Sabit Ekin wants to open an unused lane on this data turnpike: the terahertz band-squeezed between standard radio frequencies and visible light and subject to the rules that govern both.

    There are reasons, however, why terahertz is the last frequency frontier. To compensate for its shortcomings, the Oklahoma State University electrical and computer engineering professor will wed terahertz with visible light communication (VLC) in a hybrid network. He’ll pursue the pioneering approach with a five-year, $789,081 Early Career Research Program award from the Advanced Scientific Computing Research program in the Department of Energy (DOE) Office of Science.

    “We are going to holistically, backed by experiments, integrate these state-of-the art technologies, which are regarded as the key enablers for the 6G-plus cellular telephone and WiFi-plus networks of the future,” Ekin says. Such a system also would match DOE’s needs, providing short-range transfer between servers or processors in data and supercomputing centers or in facilities such as nuclear reactors and particle accelerators where radiation shielding limits standard radio communications.

    Ekin calls his project “CommAwareNet”, for communication-aware, energy-efficient and reliable network architecture. Communication awareness largely refers to his proposed system’s third element: intelligent reflective surfaces that will direct radio and light signals around obstacles to receivers. “Imagine if you build your walls in a way that they’re helping your communication links increase their coverage and data rates,” he says. To do that, “there has to be intelligence in the communication.”

    Ekin, a native of Turkey, joined Oklahoma State in 2016 after earning an electrical engineering doctorate from Texas A&M University and working four years for Qualcomm, a leading cellphone microchip manufacturer. After academic research that largely focused on simulations and theory, he enjoyed the hands-on practice of working across disciplines, including with software, hardware and testing engineers. Ekin says the combination of experiences equipped him to approach the CommAwareNet project both theoretically and experimentally.

    With the rise of networked thermostats, appliances and other devices comprising the Internet of Things, the demand for wireless spectrum capable of high data rates is accelerating and eventually will overload standard radio frequency technology. Most radio communication, including for cellphones, Bluetooth and WiFi, tap the sub-6 bands, so named because they’re at frequencies below 6 gigahertz, or 6 billion cycles per second. They’re the most useful because the waves penetrate most structures.

    Most researchers define the terahertz band as from 0.1 to 10 trillion cycles per second, at the border between the radio wave spectrum and visible light. “These frequencies have huge bandwidth,” Ekin says, with large and fast signal-carrying capacity – but can’t penetrate most structures. Transmissions must follow a line-of-sight path, with no obstacles between transmitters and receivers. Parts of the terahertz spectrum also suffer from signal loss over distances, and the waves are narrow and directional, providing limited coverage.

    VLC shares some of these faults, but it’s an inexpensive and tested technology. LEDs used for standard lighting can be made to flicker millions of times a second, sending data to optical receivers; the flashes are so brief that humans can’t perceive them. VLC is ineffective outdoors because sunlight washes out the signals, but it’s easier to manipulate than terahertz waves, Ekin says. In his hybrid system, “there will be cases where you don’t have terahertz communication and even reflecting from a wall fails. Optical communication will be there helping you. They complement each other.”

    The key measure of success, Ekin says, is reliability. Even someone walking between a receiver and transmitter could interrupt the signal. The hybrid, multimode system, combined with intelligent reflective surfaces, will address that.

    Mirrors are adequate VLC reflectors. Terahertz signal reflectors could simply be walls or ceilings with special, metal-powder or metamaterial coatings. Ekin’s plan takes those further, employing intelligent surfaces that adapt to changing communication needs. Reflectors will have control circuits that use information from the receiver – its previous location, GPS data or other signals – to amplify signals and adjust mirrors or surfaces, changing a beam’s width and direction.

    The catch: There is no theoretically and experimentally proven strategy for switching between terehertz and VLC modes. Seamlessly changing between the two transmitters and receivers is at the project’s center.

    Ekin plans to use the VLC links to carry control data that identifies transmitter and receiver locations and antenna types. “The terahertz beams are very narrow, so you want to know the users’ locations. Otherwise, you have to scan the whole environment,” wasting time and energy, he says. Terahertz links would carry the data. Once the information is translated from radio or optical frequencies to digital signals, the system will use off-the-shelf filters, analog converters and other devices for both bands. Machine-learning algorithms will help the devices adapt to varying conditions.

    High-performance computing will play a major role in the project, Ekin says, as he and his team model and analyze channel characteristics, network plans, reflective surfaces and more. His collaborators include computing and networking specialists at Oak Ridge, Idaho and Lawrence Berkeley national laboratories.

    “It’s really a big honor to work with DOE because it’s mission-oriented,” with defined networking and wireless communication objectives, Ekin says.

    “I believe that future communication technologies will rely on both optical and electromagnetic – radio frequency – signals. Using these together, complementing each other, will be the ultimate technology. We’re all going to use it. And I hope to be one of the leaders in these hybrid systems.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    3

    The Oklahoma State University is a public land-grant research university in Oklahoma. Oklahoma State University was founded in 1890 under the Morrill Act. Originally known as Oklahoma Agricultural and Mechanical College (Oklahoma A&M), it is the flagship institution of the Oklahoma State University System that holds more than 35,000 students across its five campuses with an annual budget of $1.5 billion. The main campus enrollment for the fall 2019 semester was 24,071, with 20,024 undergraduates and 4,017 graduate students. Oklahoma State University is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Oklahoma State University spent $191 million on research and development in 2017.

    The Oklahoma State Cowboys and Cowgirls have won 52 national championships, which ranks fourth in most NCAA team national championships after Stanford University,The University of California-Los Angeles,and The University of Southern California . The Oklahoma State University Cowboys wrestling is the most successful NCAA Division I program of all time in any sport. As of 2021, Oklahoma State University students and alumni have won 34 Olympic medals (21 gold, 5 silver, and 8 bronze). The university has produced 29 Goldwater Scholars, 18 Truman Scholars, 18 Udall Scholars, and 48 Fulbright Scholars, astronauts, and a billionaire.

    Students spend part of the fall semester preparing for Oklahoma State University’s Homecoming celebration, begun in 1913, which draws more than 40,000 alumni and over 70,000 participants each year to campus and is billed by the university as “America’s Greatest Homecoming Celebration.” The Oklahoma State University alumni network exceeds 250,000 graduates.

    On December 25, 1890, the Oklahoma Territorial Legislature finally gained approval for Oklahoma Territorial Agricultural and Mechanical (A&M) College, the land-grant institution established under the Morrill Act of 1862. The legislature specified that the college was to be within Payne County. Such an ambiguous description created a rivalry among towns in the county, with Stillwater ultimately gaining the campus. Upon statehood in 1907, “Territorial” was dropped from its title.

    The first students assembled for class on December 14, 1891. For two and a half years, classes were held in local churches, until the first academic building, later known as Old Central, was constructed and dedicated on June 15, 1894, on the southeast corner campus. It was surrounded by flat plowed prairie.[18]

    In 1896, Oklahoma A&M held its first commencement with six male graduates. The first Library was established in Old Central in one room shared with the English Department. The first campus building to have electricity, Williams Hall, was constructed in 1900. Because of its turreted architecture, it was referred to as the “Castle of the Prairies”; It survived until 1969.

    One of the earliest campus buildings was also a barn, used as part of an agricultural experiment station, which was served by a large reservoir pond created in 1895. The barn burned down in 1922, but the pond, enlarged and remodeled in 1928 and 1943, is now known as Theta Pond, a popular campus scenic landmark. In 1906, Morrill Hall was completed and became the principal building on campus. A fire gutted the building in 1914, but the outside structure survived intact, and the interior was reconstructed.

    On-campus housing at Oklahoma A&M College began in 1910, with the opening of the Boys’ Dormitory. Later renamed Crutchfield Hall, the Historic American Buildings Survey said it was significant as “… the first permanent boy’s dormitory in Oklahoma … [and] the sole surviving example of a pre-1930 utilitarian dormitory that is characteristic of modified Italian Renaissance Revival architecture”. Crutchfield Hall later served the School of Music and the College of Engineering, Architecture, and Technology before it was ranked as outdated and demolished in 1995.

    Also opened in 1910 was the Women’s Building, a dorm for female students that also containing a dining hall, home economics classes, and a women’s gymnasium. It was later named Garner Hall. Today it is known as the Bartlett Center for the Studio Arts and houses the Gardiner Art Gallery.

    By 1919 the campus included Morrill Hall, the Central Building, the Engineering Building (now Gundersen Hall), the Women’s building, the Auditorium (replaced later by the Seretean Center for Performing Arts), the Armory-Gymnasium (now the Architecture Building) and the Power Plant.

    At the beginning of World War II, Oklahoma A&M was one of six schools selected by the United States Navy to give the Primary School in the Electronics Training Program (ETP), also known as Naval Training School Elementary Electricity and Radio Materiel (NTS EE&RM). Starting in March 1942, each month a new group of 100 Navy students arrived for three months of 14-hour days in concentrated electrical engineering study. Cordell Hall, the newest dormitory, was used for housing and meals; lectures and lab sessions were held in the Engineering Building. Professor Emory B. Phillips was the Director of Instruction. ETP admission required passing the Eddy Test, one of the most selective qualifying exams given during the war years. At a given time, some 500 Navy students were on the campus, a significant fraction of the war-years enrollment. The training activity continued until June 1945 and served a total of about 7,000 students; among these was Robert B. Kamm, a future professor and president of Oklahoma State University. During some of the war years, the Navy also operated a Yeoman training activity for WAVES and SPARS on this campus.

    Much of the growth of Oklahoma A&M and the architectural integrity of the campus can be attributed to Henry G. Bennett, who served as the school’s president from 1928 to 1950. Early in his tenure, Dr. Bennett developed a strategic vision for the university campus’s physical expansion. The plan was adopted in 1937, and his vision was followed for more than fifty years, including the predominant Georgian architecture style that permeates the campus. He intended the focal point to be a centrally located library building: this was the Edmon Low Library, which opened in 1953. Another major addition to the campus during the Bennett years was the Student Union, which opened in 1950. Subsequent additions and renovations have made the building one of the largest student union buildings in the world at 611,000 sq ft (56,800 m^2). A complete renovation and further expansion of the building began in 2010.

    Oklahoma A&M’s global engagement at an institutional level began in the 1950s when President Bennett was appointed in 1950 to be the first director of US President Harry Truman’s “Point Four Program,” a technical assistance program for developing countries. As part of the Point Four program, Oklahoma A&M College entered into an agreement in 1952 with the government of Ethiopia to establish a technical high school, an agricultural university, and an agricultural extension service there. Faculty and staff from the Stillwater campus traveled to Ethiopia and established Jimma Agricultural Technical School (now Jimma University), the Imperial Ethiopian University of Agriculture and Mechanical Arts (now Haramaya University), and an agricultural and research station at Debra Zeit. In recognition of the contributions of the Oklahoma State University staff, Ethiopian Emperor Haile Selassie visited the Stillwater campus in 1954, the first foreign head of state to visit Oklahoma and the only one to visit Stillwater.

    On May 15, 1957, Oklahoma A&M changed its name to the Oklahoma State University of Agricultural and Applied Sciences, to reflect the broadening scope of its curriculum. Oklahoma Gov. Raymond Gary signed the bill authorizing the name change passed by the 26th Oklahoma Legislature on May 15, 1957. However, the bill only authorized the Board of Regents to change the college’s name, a measure they voted on at their meeting on June 6. However, the name was quickly shortened to Oklahoma State University for most purposes, and the “Agricultural & Applied Sciences” name was formally dropped in 1980. Subsequently, the Oklahoma State University System was created, with the Stillwater campus as the flagship institution and several outlying branches: Oklahoma State University-Institute of Technology in Okmulgee (1946), Oklahoma State University-Oklahoma City (1961), Oklahoma State University-Tulsa (1984), and the Center for Health Sciences also in Tulsa (1988).

    In 2005, Oklahoma State University announced its “Campus Master Plan”, a campaign to enhance academic, athletic, and administrative facilities. Over $800 million is earmarked for campus construction and renovation over twenty years. The Plan calls for an “athletic village”, where all of the university’s athletic facilities will be located on the main campus. To accomplish this goal, the athletic department bought all (or nearly all) the property north of Boone Pickens Stadium up to McElroy between Knoblock and Washington streets. The city of Stillwater and property owners criticized this land gram. While the vast majority of the real estate was rental property appealing to college students, a few owners were longtime residents. A lone holdout in this parcel of land sued Oklahoma State University over their right to use eminent domain to condemn and acquire their land. The case was decided in favor of the University. The project includes constructing an indoor practice facility for most sports, a soccer stadium/outdoor track, a tennis complex, and a baseball stadium.

    In 2006, Oklahoma State University received a gift of $165 million from an alumnus T. Boone Pickens to the university’s athletic department, and in 2008 received another gift from Pickens, of $100 million for endowed academic chairs. It was the largest gift for academics ever given in the state. Ethical concerns have been raised by the media questioning the propriety of some of the Pickens’ gifts, which were in media reports about the propriety of how some of the Pickens gifts have been made, were immediately returned to Pickens, and then placed in hedge funds owned by Pickens’ companies In February 2010, Pickens announced that he was pledging another $100 million to fund a scholarship endowment as part of a $1 billion fund-raising campaign titled “Branding Success.” The pledge brought the total pledged or contributed to Oklahoma State University by Pickens to over $500 million.

    On October 24, 2015 during the annual homecoming parade, Adacia Chambers drove her vehicle into a crowd of people, killing 4 people and injuring 47. She faced 2nd-degree murder charges.

    Colleges

    Oklahoma State University offers nearly 200 undergraduate degree majors through six Colleges:

    Ferguson College of Agriculture (Previously the College of Agricultural Sciences and Natural Resources)
    College of Arts and Sciences
    College of Education and Human Sciences
    College of Engineering, Architecture, and Technology
    Spears School of Business
    Center for Veterinary Health Sciences

    Oklahoma State University also has its main medical campus in Tulsa, Oklahoma called the Oklahoma State University Center for Health Sciences. While a separate campus in the Oklahoma State University System, the medical campus is jointly accredited with Oklahoma State University-Stillwater as one institution. It houses the following schools and colleges:

    College of Osteopathic Medicine
    School of Biomedical Sciences
    School of Forensic Sciences
    School of Healthcare Administration
    School of Allied Health

    The medical campus has an affiliation with Oklahoma State University Medical Center for clinical training and offers residency/fellowship opportunities.

    In 2020, the College of Education and Human Sciences was created, which merged the College of Human Sciences and College of Education, Health, and Aviation into a single college. In August 2021, the university announced the creation of the Oklahoma Aerospace Institute for Research and Education (OAIRE).

    Oklahoma State University provides further opportunities for select students to study through the Honors College.

    The graduate degree programs of all colleges are administered through the Graduate College.

    The Center for Veterinary Health Sciences (CVHS) has three academic Departments: Veterinary Pathobiology, Physiological Sciences, and Veterinary Clinical Sciences. Each of the three academic departments share responsibility for the four-year professional curriculum leading to the Doctor of Veterinary Medicine (D.V.M.) degree. The interdepartmental Veterinary Biomedical Sciences graduate program offers MS and Ph.D. degrees. It also offers ECFVG and PAVE programmes for foreign-trained veterinarians.

    The School of Global Studies and Partnerships (prior to 2017 the School of International Studies) offers a Masters of Science in Global Studies, as well as serving as the administrative hub for the university’s international activities. It incorporates several units, including:

    School of Global Studies Graduate Program
    Wes Watkins Center for International Trade Development
    Study Abroad/National Student Exchange
    International Students and Scholars
    English Language Institute

    Oklahoma State University has been named a Truman Honor Institution for its success in producing Truman scholars.
    Oklahoma State University is ranked top 10 nationally and top 100 in the world for contributions to United Nations Sustainable Development Goals.
    Oklahoma State University School of Accounting ranks among nation’s top 50 accounting schools.
    Oklahoma State University is the sixth most prolific institution in the U.S. based on publications in the top 10 regional science journals, and ranks 17th in the world (Growth and Change: A Journal of Urban and Regional Policy).
    The school of Entrepreneurship was recognized as one of the top 25 schools in the nation
    Among U.S. schools with Master of Business Administration programs, Oklahoma State University is ranked No. 73 out of nearly 500. In addition, Master in Business Analytics and Data Science is ranked among top 20 in the nation.
    Oklahoma State University places at 68th among public doctoral engineering colleges.
    Oklahoma State University is one of five U.S. universities where Sun Grant Research Initiative programs have been established by the U.S. Congress in the Sun Grant Research Initiative Act of 2003 for the purposes of researching and developing sustainable and environmentally-friendly bio-based energy alternatives.
    The Math Department has been recognized by the American Mathematics Association as one of four innovative programs in the nation and has produced four Sloan Fellowship winners.
    The Oklahoma Mesonet, a state-of-the-art network of environmental monitoring stations that is an University of Oklahoma(US)-Oklahoma State University partnership, won a special award from the American Meteorological Society (AMS), the nation’s leading professional society for those in the atmospheric and related sciences at the National Weather Center.
    Oklahoma State University is headquarters for the International Ground Source Heat Pump Association, which has members from as far away as Sweden, Japan, Australia, England and South Africa.
    Oklahoma State University is home to Fire Protection Publications and the International Fire Service Training Association, the largest publisher of fire and emergency services books in North America.
    Since 2010, Oklahoma State University has hosted SpeedFest, a collegiate and high school unmanned systems competition held annually in April at the Oklahoma State University Unmanned Aircraft Flight Station. Originally focused on remote control aircraft design and flight demonstration only, the event has recently expanded to include autonomous ground vehicles. It typically attracts around 1,000 spectators.
    Oklahoma State University is home to the Unmanned Systems Research Institute which focuses on autonomous systems research, particularly unmanned aircraft. The campus wide institute was created in 2015. In addition to STEM and outreach, USRI serves the campus and statewide UAS needs. Along with Counter-UAS projects, high profile activities include using unmanned aircraft for advanced weather observations. The institute has led several large national efforts, including NSF and NASA ULI programs, in this area.
    Oklahoma State University’s Homecoming was awarded the Council for Advancement and Support of Education (CASE) Seal of Excellence. Presented each year by the Oklahoma State University Alumni Association, “America’s Greatest Homecoming Celebration” began in 1913 and today draws more than 70,000 alumni and fans back to Stillwater for events like the Harvest Carnival, Walkaround and Sea of Orange Parade. It is widely regarded as one of the best homecoming celebrations in the U.S.
    Each year the School of Entrepreneurship hosts the “Experiential Classroom”, an intensive 3-day seminar for entrepreneurship educators. It has been widely recognized as being the top program of its kind. In 2011, the program hosted entrepreneurship faculty from 29 states, 17 countries, and 65 different universities.

    ASCR Discovery is a publication of The U.S. Department of Energy

    The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States’ policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation’s nuclear weapons program; nuclear reactor production for the United States Navy; energy conservation; energy-related research; radioactive waste disposal; and domestic energy production. It also directs research in genomics. the Human Genome Project originated in a DOE initiative. DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The agency is led by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.

    Formation and consolidation

    In 1942, during World War II, the United States started the Manhattan Project, a project to develop the atomic bomb, under the eye of the U.S. Army Corps of Engineers. After the war in 1946, the Atomic Energy Commission (AEC) was created to control the future of the project. The Atomic Energy Act of 1946 also created the framework for the first National Laboratories. Among other nuclear projects, the AEC produced fabricated uranium fuel cores at locations such as Fernald Feed Materials Production Center in Cincinnati, Ohio. In 1974, the AEC gave way to the Nuclear Regulatory Commission, which was tasked with regulating the nuclear power industry and the Energy Research and Development Administration, which was tasked to manage the nuclear weapon; naval reactor; and energy development programs.

    The 1973 oil crisis called attention to the need to consolidate energy policy. On August 4, 1977, President Jimmy Carter signed into law The Department of Energy Organization Act of 1977 (Pub.L. 95–91, 91 Stat. 565, enacted August 4, 1977), which created the Department of Energy. The new agency, which began operations on October 1, 1977, consolidated the Federal Energy Administration; the Energy Research and Development Administration; the Federal Power Commission; and programs of various other agencies. Former Secretary of Defense James Schlesinger, who served under Presidents Nixon and Ford during the Vietnam War, was appointed as the first secretary.

    President Carter created the Department of Energy with the goal of promoting energy conservation and developing alternative sources of energy. He wanted to not be dependent on foreign oil and reduce the use of fossil fuels. With international energy’s future uncertain for America, Carter acted quickly to have the department come into action the first year of his presidency. This was an extremely important issue of the time as the oil crisis was causing shortages and inflation. With the Three-Mile Island disaster, Carter was able to intervene with the help of the department. Carter made switches within the Nuclear Regulatory Commission in this case to fix the management and procedures. This was possible as nuclear energy and weapons are responsibility of the Department of Energy.

    Recent

    On March 28, 2017, a supervisor in the Office of International Climate and Clean Energy asked staff to avoid the phrases “climate change,” “emissions reduction,” or “Paris Agreement” in written memos, briefings or other written communication. A DOE spokesperson denied that phrases had been banned.

    In a May 2019 press release concerning natural gas exports from a Texas facility, the DOE used the term ‘freedom gas’ to refer to natural gas. The phrase originated from a speech made by Secretary Rick Perry in Brussels earlier that month. Washington Governor Jay Inslee decried the term “a joke”.

    Facilities
    Supercomputing

    The Department of Energy operates a system of national laboratories and technical facilities for research and development, as follows:

    Ames Laboratory
    Argonne National Laboratory
    Brookhaven National Laboratory
    Fermi National Accelerator Laboratory
    Idaho National Laboratory
    Lawrence Berkeley National Laboratory
    Lawrence Livermore National Laboratory
    Los Alamos National Laboratory
    National Renewable Energy Laboratory
    Oak Ridge National Laboratory
    Pacific Northwest National Laboratory
    Princeton Plasma Physics Laboratory
    Sandia National Laboratories
    Savannah River National Laboratory
    SLAC National Accelerator Laboratory
    Thomas Jefferson National Accelerator Facility
    Other major DOE facilities include:
    Albany Research Center
    Bannister Federal Complex
    Bettis Atomic Power Laboratory – focuses on the design and development of nuclear power for the U.S. Navy
    Kansas City Plant
    Knolls Atomic Power Laboratory – operates for Naval Reactors Program Research under the DOE (not a National Laboratory)
    National Petroleum Technology Office
    Nevada Test Site
    New Brunswick Laboratory
    Office of Fossil Energy
    Office of River Protection
    Pantex
    Radiological and Environmental Sciences Laboratory
    Y-12 National Security Complex
    Yucca Mountain nuclear waste repository
    Other:

    Pahute Mesa Airstrip – Nye County, Nevada, in supporting Nevada National Security Site

     
  • richardmitnick 2:09 pm on September 29, 2022 Permalink | Reply
    Tags: "Collaboration between engineering and astrophysics will develop cutting-edge spectrometers-on-a-chip", , Computer Engineering, ,   

    From The University of California-Santa Cruz: “Collaboration between engineering and astrophysics will develop cutting-edge spectrometers-on-a-chip” 

    From The University of California-Santa Cruz

    9.28.22
    Emily Cerf
    ecerf@ucsc.edu

    1
    The Shane AO camera at Lick Observatory with the researchers’ photonics testing platform attached.

    A few years ago, UC Santa Cruz Assistant Professor of Astronomy and Astrophysics Kevin Bundy became intrigued by the potential of photonic devices, which can detect and manipulate light on small scales, to miniaturize the methods used to capture information about objects in the night sky.

    Excited by the possibility of this astrophotonics technology, he reached out to Holger Schmidt, distinguished professor of electrical and computer engineering and an expert in the field of photonics, to open a conversation about the potential for collaboration.

    Now, the two researchers have won an NSF grant that will allow them to pursue this emerging technology of making spectrometers on a chip – tiny devices for separating and measuring light at ultraviolet, visible, and infrared wavelengths to to study the properties of objects in the sky, including their composition and distance. They believe that this technology can not only enable advances in astronomy when used as part of telescope instrumentation, but can be leveraged for a wide variety of applications across fields such as chemical analysis, environmental monitoring, and biosensing.

    “There’s a lot of technology now that can be brought to bear in taking these spectrometers – these color analyzers – and shrinking them down from about the size of a car to something much more compact, and in some senses more powerful,” Schmidt said.

    Spectrometers-on-a-chip have the potential to be very impactful in that sizing down the technology to split and detect wavelengths of light can mean many can be packed on to one single telescope, making it possible to one day collect spectra from tens or even hundreds of thousands of celestial sources simultaneously.

    Their small size also means they can be produced at a lower cost, transported more easily, and integrated with other components to create a device with a wide range of functionality – all of the benefits we typically associate with the miniaturization of tech.

    “The general benefit is just the ability to collect a lot more information from the sky a lot more powerfully and cheaply,” Bundy said. “You can imagine putting these devices on a satellite or on a balloon, because they would be so much smaller and lighter.”

    But there are two main challenges the researchers must address before their spectrometers-on-a-chip can be successfully implemented in telescopes and potential other applications.

    The first is the issue of optimizing the chip itself, which includes making them more efficient, making sure they can record and provide the right information about the light they detect, learning how to integrate them so they can pack multiple chips side-by-side on one device. The researchers need to operationalize the chips so that they can become a robust component of a larger instrument, such as one mounted on a telescope, and not just a device that is studied in the lab.

    The other main challenge is to couple the light received through the telescope into the miniature spectrometers. Because of Earth’s atmosphere, ground-based telescopes never produce a perfectly stable image of a star, but instead the star is always wobbling slightly in the image. This effect is not conducive to photonic spectrometers, which work best when the light they receive is pure and undisturbed. This requires the scientists to think innovatively about how to best feed light from the telescopes to the spectrometers.

    “That challenge is the reason why this is an interesting problem, and it’s one of the reasons we don’t have this technology on existing telescopes,” Bundy said.

    Bundy believes there is growing momentum for this area of research, and that it can be of great benefit to ongoing efforts within the astronomy community. For example, a current project at the Rubin Observatory will capture images of and catalog billions of objects in the night sky. Current technology only allows scientists to capture the spectra of 5,000 objects at a time, making a project to follow up on the images captured and measure spectra at this scale nearly impossible. But Bundy hopes that the new devices the UCSC researchers develop will make this affordable and feasible.

    “For cosmology and galaxy formation, I don’t see another way to continue our forward momentum in terms of better instruments in the 10 to 20 year timescale,” Bundy said. “In about ten years, there has to be some technological transformation, or we’re kind of stuck. I think there’s going to be growing interest in making this work.”

    Schmidt’s lab will focus on designing and testing the miniature spectrometers, with fabrication of the devices spearheaded by collaborators at Brigham Young University. Bundy’s group, led by graduate student Matt DeMartino, will establish the requirements for the device in order to optimize and test its performance.

    “I think this will be the first step in hopefully a broader set of programs and projects that combine photonics and astronomy,” Schmidt said.

    The researchers will work to integrate their miniaturized spectrometers onto the telescope at Lick Observatory, which is managed by UC Observatories and located close to Santa Cruz. In the near future, the team hopes to test their devices on the telescope there, meaning the three-meter, nearly 80-year old device can play an important role for developing cutting-edge astronomical instrumentation.

    The grant will also fund several STEM outreach programs taken on by the researchers. The researchers will run experiments related to photonics as part of the Seeds Spoon Science program, which teaches local school children and their families science through gardening. They will also participate in the UC LEADS and CAMP programs which sponsor promising students from underrepresented groups, and continue successful outreach programs at local elementary and middle schools.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Cruz campus.

    The University of California-Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.

    UC Santa Cruz Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch.)
    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    Alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument, developed at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) and brought to The University of California-San Diego and installed at the UC Santa Cruz Lick Observatory Nickel Telescope (Photo by Laurie Hatch). “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA).


    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, The University of California-San Diego Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    Frank Drake with his Drake Equation. Credit Frank Drake.

    Drake Equation, Frank Drake, Seti Institute.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

     
  • richardmitnick 3:58 pm on September 19, 2022 Permalink | Reply
    Tags: "Compact Electron Accelerator Reaches New Speeds with Nothing But Light", , , Computer Engineering, , , Laser wakefield acceleration, , The DOE's SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS),   

    From The University of Maryland And Colorado State University: “Compact Electron Accelerator Reaches New Speeds with Nothing But Light” 

    From The University of Maryland

    And

    Colorado State University

    9.2.22
    Dina Genkina

    1
    An image from a simulation in which a laser pulse (red) drives a plasma wave, accelerating electrons in its wake. The bright yellow spot is the area with the highest concentration of electrons. In an experiment, scientists used this technique to accelerate electrons to nearly the speed of light over a span of just 20 centimeters. (Credit Bo Miao/Institute of Research Electronics and Applied Physics)

    Scientists harnessing precise control of ultrafast lasers have accelerated electrons over a 20-centimeter stretch to speeds usually reserved for particle accelerators the size of 10 football fields.

    A team at the University of Maryland (UMD) headed by Professor of Physics and Electrical and Computer Engineering Howard Milchberg, in collaboration with the team of Jorge J. Rocca at Colorado State University, achieved this feat using two laser pulses sent through a jet of hydrogen gas. The first pulse tore apart the hydrogen, punching a hole through it and creating a channel of plasma. That channel guided a second, higher power pulse that scooped up electrons out of the plasma and dragged them along in its wake, accelerating them to nearly the speed of light in the process. With this technique, the team accelerated electrons to almost 40% of the energy achieved at massive facilities like the kilometer-long Linac Coherent Light Source (LCLS), the accelerator at The DOE’s SLAC National Accelerator Laboratory. The paper was published in the journal Physical Review X [below] on September 16, 2022

    “This is the first multi-GeV electron accelerator powered entirely by lasers,” says Milchberg, who is also affiliated with the Institute of Research Electronics and Applied Physics at UMD. “And with lasers becoming cheaper and more efficient, we expect that our technique will become the way to go for researchers in this field.”

    Motivating the new work are accelerators like LCLS, a kilometer-long runway that accelerates electrons to 13.6 billion electron volts (GeV)—the energy of an electron that’s moving at 99.99999993% the speed of light. LCLS’s predecessor is behind three Nobel-prize-winning discoveries about fundamental particles. Now, a third of the original accelerator has been converted to the LCLS, using its super-fast electrons to generate the most powerful X-ray laser beams in the world.

    Scientists use these X-rays to peer inside atoms and molecules in action, creating videos of chemical reactions. These videos are vital tools for drug discovery, optimized energy storage, innovation in electronics, and much more.

    Accelerating electrons to energies of tens of GeV is no easy feat. SLAC’s linear accelerator gives electrons the push they need using powerful electric fields propagating in a very long series of segmented metal tubes. If the electric fields were any more powerful, they would set off a lightning storm inside the tubes and seriously damage them. Being unable to push electrons harder, researchers have opted to simply push them for longer, providing more runway for the particles to accelerate. Hence the kilometer-long slice across northern California. To bring this technology to a more manageable scale, the UMD and CSU teams worked to boost electrons to nearly the speed of light using—fittingly enough—light itself.

    “The goal ultimately is to shrink GeV-scale electron accelerators to a modest size room,” says Jaron Shrock, a graduate student in physics at UMD and co-first author on the work. “You’re taking kilometer-scale devices, and you have another factor of 1000 stronger accelerating field. So, you’re taking kilometer-scale to meter scale, that’s the goal of this technology.”

    Creating those stronger accelerating fields in a lab employs a process called laser wakefield acceleration, in which a pulse of tightly focused and intense laser light is sent through a plasma, creating a disturbance and pulling electrons along in its wake.

    “You can imagine the laser pulse like a boat,” says Bo Miao, a postdoctoral fellow in physics at the University of Maryland and co-first author on the work. “As the laser pulse travels in the plasma, because it is so intense, it pushes the electrons out of its path, like water pushed aside by the prow of a boat. Those electrons loop around the boat and gather right behind it, traveling in the pulse’s wake.”

    Laser wakefield acceleration was first proposed in 1979 [Physical Review Letters] and demonstrated in 1995. But the distance over which it could accelerate electrons remained stubbornly limited to a couple of centimeters. What enabled the UMD and CSU team to leverage wakefield acceleration more effectively than ever before was a technique the UMD team pioneered [Physical Review Research] to tame the high-energy beam and keep it from spreading its energy too thin. Their technique punches a hole through the plasma, creating a waveguide that keeps the beam’s energy focused.

    “A waveguide allows a pulse to propagate over a much longer distance,” Shrock explains. “We need to use plasma because these pulses are so high energy, they’re so bright, they would destroy a traditional fiber optic cable. Plasma cannot be destroyed because in some sense it already is.”

    Their technique creates something akin to fiber optic cables—the things that carry fiber optic internet service and other telecommunications signals—out of thin air. Or, more precisely, out of carefully sculpted jets of hydrogen gas.

    A conventional fiber optic waveguide consists of two components: a central “core” guiding the light, and a surrounding “cladding” preventing the light from leaking out. To make their plasma waveguide, the team uses an additional laser beam and a jet of hydrogen gas. As this additional “guiding” laser travels through the jet, it rips the electrons off the hydrogen atoms and creates a channel of plasma. The plasma is hot and quickly starts expanding, creating a lower density plasma “core” and a higher density gas on its fringe, like a cylindrical shell. Then, the main laser beam (the one that will gather electrons in its wake) is sent through this channel. The very front edge of this pulse turns the higher density shell to plasma as well, creating the “cladding.”

    “It’s kind of like the very first pulse clears an area out,” says Shrock, “and then the high-intensity pulse comes down like a train with somebody standing at the front throwing down the tracks as it’s going.”

    Using UMD’s optically generated plasma waveguide technique, combined with the CSU team’s high-powered laser and expertise, the researchers were able to accelerate some of their electrons to a staggering 5 GeV. This is still a factor of 3 less than SLAC’s massive accelerator, and not quite the maximum achieved with laser wakefield acceleration (that honor belongs to a team at The DOE’s Lawrence Berkeley National Labs). However, the laser energy used per GeV of acceleration in the new work is a record, and the team says their technique is more versatile: It can potentially produce electron bursts thousands of times per second (as opposed to roughly once per second), making it a promising technique for many applications, from high energy physics to the generation of X-rays that can take videos of molecules and atoms in action like at LCLS. Now that the team has demonstrated the success of the method, they plan to refine the setup to improve performance and increase the acceleration to higher energies.

    “Right now, the electrons are generated along the full length of the waveguide, 20 centimeters long, which makes their energy distribution less than ideal,” says Miao. “We can improve the design so that we can control where they are precisely injected, and then we can better control the quality of the accelerated electron beam.”

    While the dream of LCLS on a tabletop is not a reality quite yet, the authors say this work shows a path forward. “There’s a lot of engineering and science to be done between now and then,” Shrock says. “Traditional accelerators produce highly repeatable beams with all the electrons having similar energies and traveling in the same direction. We are still learning how to improve these beam attributes in multi-GeV laser wakefield accelerators. It’s also likely that to achieve energies on the scale of tens of GeV, we will need to stage multiple wakefield accelerators, passing the accelerated electrons from one stage to the next while preserving the beam quality. So there’s a long way between now and having an LCLS type facility relying on laser wakefield acceleration.”

    Science papers:
    Physical Review Letters 1979
    Physical Review Research 2020
    Physical Review X

    In addition to Milchberg, Rocca, Shrock and Miao, authors on the paper included Linus Feder, formerly a graduate student in physics at UMD and now a postdoctoral researcher at the University of Oxford, Reed Hollinger, John Morrison, Huanyu Song, and Shoujun Wang, all research scientists at CSU, Ryan Netbailo, a graduate student in electrical and computer engineering at CSU, and Alexander Picksley, formerly a graduate student in physics at the University of Oxford and now a postdoctoral researcher at Lawrence Berkeley National Lab.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    From Colorado State University is a public research university. The university is the state’s land grant university, and the flagship university of the Colorado State University System.

    The current enrollment is approximately 37,198 students, including resident and non-resident instruction students and the University is planning on having 42,000 students by 2020. The university has approximately 2,000 faculty in eight colleges and 55 academic departments. Bachelor’s degrees are offered in 65 fields of study, with master’s degrees in 55 fields. Colorado State confers doctoral degrees in 40 fields of study, in addition to a professional degree in veterinary medicine.

    U Maryland Campus

    The University of Maryland is a public land-grant research university. Founded in 1856, The University of Maryland is the flagship institution of the University System of Maryland. It is also the largest university in both the state and the Washington metropolitan area, with more than 41,000 students representing all fifty states and 123 countries, and a global alumni network of over 388,000. Its twelve schools and colleges together offer over 200 degree-granting programs, including 92 undergraduate majors, 107 master’s programs, and 83 doctoral programs. The University of Maryland is a member of The Association of American Universities and competes in intercollegiate athletics as a member of the Big Ten Conference.

    The University of Maryland’s proximity to the nation’s capital has resulted in many research partnerships with the federal government; faculty receive research funding and institutional support from agencies such as The National Institutes of Health (US), The National Aeronautics and Space Administration, The National Institute of Standards and Technology, The Food and Drug Administration, The National Security Agency, and The Department of Homeland Security. It is classified among “R1: Doctoral Universities – Very high research activity” and is labeled a “Public Ivy”, denoting a quality of education comparable to the private Ivy League. The University of Maryland is ranked among the top 100 universities both nationally and globally by several indices, including its perennially top-ranked criminology and criminal justice department.

    In 2016, the University of Maryland-College Park and The University of Maryland- Baltimore formalized their strategic partnership after their collaboration successfully created more innovative medical, scientific, and educational programs, as well as greater research grants and joint faculty appointments than either campus has been able to accomplish on its own. According to The National Science Foundation, the university spent a combined $1.1 billion on research and development in 2019, ranking it 14th overall in the nation and 8th among all public institutions. As of 2021, the operating budget of the University of Maryland is approximately $2.2 billion.

    On March 6, 1856, the forerunner of today’s University of Maryland was chartered as the Maryland Agricultural College. Two years later, Charles Benedict Calvert (1808–1864), a future U.S. Representative (Congressman) from the sixth congressional district of Maryland, 1861–1863, during the American Civil War and descendant of the first Lord Baltimores, colonial proprietors of the Province of Maryland in 1634, purchased 420 acres (1.7 km^2) of the Riversdale Mansion estate nearby today’s College Park, Maryland. Later that year, Calvert founded the school and was the acting president from 1859 to 1860. On October 5, 1859, the first 34 students entered the Maryland Agricultural College. The school became a land grant college in February 1864.

    Following the Civil War, in February 1866, the Maryland legislature assumed half ownership of the school. The college thus became in part a state institution. By October 1867, the school reopened with 11 students. In 1868, the former Confederate admiral Franklin Buchanan was appointed President of the school, and in his tenure of just over a year, he reorganized it, established a system of strict economy in its business transactions, applied some of its revenues for the paying off of its debts, raised its standards, and attracted patrons through his personal influence: enrollment grew to 80 at the time of his resignation, and the school’s debt was soon paid off. In 1873, Samuel Jones, a former Confederate Major General, became president of the college.

    Twenty years later, the federally funded Agricultural Experiment Station was established there. During the same period, state laws granted the college regulatory powers in several areas—including controlling farm disease, inspecting feed, establishing a state weather bureau and geological survey, and housing the board of forestry. Morrill Hall (the oldest instructional building still in use on campus) was built the following year.

    The state took control of the school in 1916, and the institution was renamed Maryland State College. That year, the first female students enrolled at the school. On April 9, 1920, the college became part of the existing University of Maryland, replacing St. John’s College, Annapolis as the university’s undergraduate campus. In the same year, the graduate school on the College Park campus awarded its first PhD degrees and the university’s enrollment reached 500 students. In 1925 the university was accredited by The Association of American Universities.

    By the time the first black students enrolled at the university in 1951, enrollment had grown to nearly 10,000 students—4,000 of whom were women. Prior to 1951, many black students in Maryland were enrolled at The University of Maryland-Eastern Shore.

    In 1957, President Wilson H. Elkins made a push to increase academic standards at the university. His efforts resulted in the creation of one of the first Academic Probation Plans. The first year the plan went into effect, 1,550 students (18% of the total student body) faced expulsion.

    On October 19, 1957, Queen Elizabeth II of the United Kingdom attended her first and only college football game at the University of Maryland after expressing interest in seeing a typical American sport during her first tour of the United States. The Maryland Terrapins beat the North Carolina Tar Heels 21 to 7 in the historical game now referred to as “The Queen’s Game”.

    Phi Beta Kappa established a chapter at UMD in 1964. In 1969, the university was elected to The Association of American Universities. The school continued to grow, and by the fall of 1985 reached an enrollment of 38,679. Like many colleges during the Vietnam War, the university was the site of student protests and had curfews enforced by the National Guard.

    In a massive restructuring of the state’s higher education system in 1988, the school was designated as the flagship campus of the newly formed University of Maryland System (later changed to the University System of Maryland in 1997), and was formally named the University of Maryland-College Park. All of the five campuses in the former network were designated as distinct campuses in the new system. However, in 1997 the Maryland General Assembly passed legislation allowing the University of Maryland-College Park to be known simply as The University of Maryland, recognizing the campus’ role as the flagship institution of the University System of Maryland.

    The other University System of Maryland institutions with the name “University of Maryland” are not satellite campuses of the University of Maryland-College Park. The University of Maryland-Baltimore, is the only other school permitted to confer certain degrees from the “University of Maryland”.

    In 1994, the National Archives at College Park completed construction and opened on a parcel of land adjoining campus donated by the University of Maryland, after lobbying by President William Kirwan and congressional leaders to foster academic collaboration between the institutions.

    In 2004, the university began constructing the 150-acre (61 ha) “M Square Research Park,” which includes facilities affiliated with The Department of Defense , Food and Drug Administration, and the new National Center for Weather and Climate Prediction, affiliated with The National Oceanic and Atmospheric Administration. In May 2010, ground was broken on a new $128-million, 158,068-square-foot (14,685.0 m^2) Physical Science Complex, including an advanced quantum science laboratory.

    The university’s Great Expectations campaign from 2006 to 2012 exceeded $1 billion in private donations.

    The university suffered multiple data breaches in 2014. The first resulted in the loss of over 300,000 student and faculty records. A second data breach occurred several months later. The second breach was investigated by the FBI and Secret Service and found to be done by David Helkowski. Despite the attribution, no charges were filed. As a result of the data breaches, the university offered free credit protection for five years to the students and faculty affected.

    In 2012, the University of Maryland-College Park and the University of Maryland- Baltimore united under the MPowering the State initiative to leverage the strengths of both institutions. The University of Maryland Strategic Partnership Act of 2016 officially formalized this partnership.

    The University of Maryland’s University District Plan, developed in 2011 under President Wallace Loh and the College Park City Council, seeks to make the City of College Park a top 20 college town by 2020 by improving housing and development, transportation, public safety, local pre-K–12 education, and supporting sustainability projects. As of 2018, the university is involved with over 30 projects and 1.5 million square feet of development as part of its Greater College Park Initiative, worth over $1 billion in public-private investments. The university’s vision is to revitalize the campus to foster a dynamic and innovative academic environment, as well as to collaborate with the surrounding neighborhoods and local government to create a vibrant downtown community for students and faculty

    In October 2017, the university received a record-breaking donation of $219.5 million from the A. James & Alice B. Clark Foundation, ranking among the largest philanthropic gifts to a public university in the country.

    As of February 12, 2020, it has been announced that Darryll J. Pines will be the 34th President of the University of Maryland-College Park effective July 1, 2020. Darryll J. Pines is the dean of the A. James Clark School of Engineering and the Nariman Farvardin Professor of Aerospace Engineering since January 2009. Darryll J. Pines has been with the University of Maryland College Park for 25 years since he arrived in 1995 and started as an assistant professor.

    In 2021, the university announced it had achieved its record goal of $1.5 billion raised in donations since 2018 as part of its Fearless Ideas: The Campaign for Maryland for investments in faculty, students, research, scholarships, and capital projects.

    The university hosts “living-learning” programs which allow students with similar academic interests to live in the same residential community, take specialized courses, and perform research in those areas of expertise. An example is the Honors College, which is geared towards undergraduate students meeting high academic requirements and consists of several of the university’s honors programs. The Honors College welcomes students into a community of faculty and undergraduates. The Honors College offers seven living and learning programs: Advanced Cybersecurity Experience for Students, Design Cultures and Creativity, Entrepreneurship and Innovation, Honors Humanities, Gemstone, Integrated Life Sciences, and University Honors.

    Advanced Cybersecurity Experience for Students (ACES), started in 2013, is directed by Michel Cukier and run by faculty and graduate students. ACES students are housed in Prince Frederick Hall and take a 14 credit, two year curriculum that educates future leaders in the field of cybersecurity. ACES also offers a complementary two-year minor in cybersecurity.

    Design Cultures and Creativity (DCC), started in 2009, is directed by artist Jason Farman and run by faculty and graduate students. The DCC program encourages students to explore the relationship between emerging media, society, and creative practices. DCC students are housed in Prince Frederick residence hall together and take a 16 credit, two year interdisciplinary curriculum which culminates in a capstone.

    Entrepreneurship and Innovation Program (EIP) is a living and learning program for Honors College freshmen and sophomores, helping build entrepreneurial mindsets, skill sets, and relationships for the development of solutions to today’s problems. Through learning, courses, seminars, workshops, competitions, and volunteerism, students receive an education in entrepreneurship and innovation. In collaboration with faculty and mentors who have launched new ventures, all student teams develop an innovative idea and write a product plan.

    Honors Humanities is the honors program for beginning undergraduates with interests in the humanities and creative arts. The selective two-year living-learning program combines a small liberal arts college environment with the resources of a large research university.

    Gemstone is a multidisciplinary four-year research program for select undergraduate honors students of all majors. Under guidance of faculty mentors and Gemstone staff, teams of students design, direct and conduct research, exploring the interdependence of science and technology with society.

    Integrated Life Sciences (ILS) is the honors program for students interested in all aspects of biological research and biomedicine. The College of Computer, Mathematical, and Natural Sciences has partnered with the Honors College to create the ILS program, which offers nationally recognized innovations in the multidisciplinary training of life science and pre-medical students. The objective of the ILS experience is to prepare students for success in graduate, medical, dental, or other professional schools.

    University Honors (UH) is the largest living-learning program in the Honors College and allows students the greatest independence in shaping their education. University Honors students are placed into a close-knit community of the university’s faculty and other undergraduates, committed to acquiring a broad and balanced education. Students choose from over 130 seminars exploring interdisciplinary topics in three broad areas: Contemporary Issues and Challenges, Arts and Sciences in Today’s World, and Using the World as a Classroom.

    The College Park Scholars programs are two-year living-learning programs for first- and second-year students. Students are selected to enroll in one of 12 thematic programs: Arts; Business, Society, and the Economy; Environment, Technology, and Economy; Global Public Health; International Studies; Life Sciences; Media, Self, and Society; Public Leadership; Science and Global Change; Science, Discovery, and the Universe; Science, Technology, and Society. Students live in dormitories in the Cambridge Community on North Campus.

    The nation’s first living-learning entrepreneurship program, Hinman CEOs, is geared toward students who are interested in starting their own business. Students from all academic disciplines live together and are provided the resources to explore business ventures.

    The QUEST (Quality Enhancement Systems and Teams) Honors Fellows Program engages undergraduate students from business, engineering, and computer, mathematical, and physical sciences. QUEST Students participate in courses focused on cross-functional collaboration, innovation, quality management, and teamwork. The Department of Civil & Environmental Engineering (CEE) has also been long considered an outstanding engineering division of the university since its inception in 1908.

    Other living-learning programs include: CIVICUS, a two-year program in the College of Behavioral and Social Sciences based on the five principles of civil society; Global Communities, a program that immerses students in a diverse culture (students from all over the world live in a community), and the Language House, which allows students pursuing language courses to live and practice with other students learning the same language.

    The Mock Trial Team engages in intercollegiate mock trial competition. The team, which first began competing in 1990, has won five national championships (2008, 2000, 1998, 1996, 1992), which ranks the most of any university, and was also the national runner-up in 1992 and 1993.

    Research

    On October 14, 2004, the university added 150 acres (61 ha) in an attempt to create the largest research park inside the Washington, D.C., Capital Beltway, formerly known as “M Square,” and now known as the “Discovery District”.

    Many of the faculty members have funding from federal agencies such as the National Science Foundation, the National Institutes of Health, NASA, the Department of Homeland Security, the National Institute of Standards and Technology, and the National Security Agency. These relationships have created numerous research opportunities for the university including:

    Taking the lead in the nationwide research initiative into the transmission and prevention of human and avian influenza.
    Creating a new research center to study the behavioral and social foundations of terrorism with funding from the U.S. Department of Homeland Security
    Launching the joint NASA-University of Maryland Deep Impact spacecraft in early January 2005.

    The University of Maryland Libraries provide access to scholarly information resources required to meet the missions of the university.

    The University of Maryland is an international center for the study of language, hosting the largest community of language scientists in North America, including more than 200 faculty, researchers, and graduate students, who collectively comprise the Maryland Language Science Center. Since 2008 the university has hosted an NSF-IGERT interdisciplinary graduate training program that has served as a catalyst for broader integrative efforts in language science, with 50 participating students and contributions from 50 faculty. The University of Maryland is also home to two key ‘migrator’ centers that connect basic research to critical national needs in education and national security: the Center for Advanced Study of Language (CASL) and the National Foreign Language Center.

    The Center for American Politics and Citizenship provides citizens and policy-makers with research on issues related to the United States’ political institutions, processes, and policies. CAPC is a non-partisan, non-profit research institution within the Department of Government and Politics in the College of Behavioral and Social Sciences.

    The Space Systems Laboratory researches human-robotic interaction for astronautics applications, and includes the only neutral buoyancy facility at a university.

    The Joint Quantum Institute conducts theoretical and experimental research on quantum and atomic physics. The institute was founded in 2006 as a collaboration between the University of Maryland and the National Institute of Standards and Technology (NIST).

    The Center for Technology and Systems Management (CTSM) aims to advance the state of technology and systems analysis for the benefit of people and the environment. The focus is on enhancing safety, efficiency and effectiveness by performing reliability, risk, uncertainty or decision analysis studies.

    The Joint Global Change Research Institute was formed in 2001 by the University of Maryland and the DOE’s Pacific Northwest National Laboratory. The institute focuses on multidisciplinary approaches of climate change research.

    The Center for Advanced Life Cycle Engineering (CALCE) was formed in 1985 at the University of Maryland. CALCE is dedicated to providing a knowledge and resource base to support the development of electronic components, products and systems.

    The National Consortium for the Study of Terrorism and Responses to Terrorism (START) launched in 2005 as one of the Centers of Excellence supported by the Department of Homeland Security in the United States. START is focused on the scientific study of the causes and consequences of terrorism in the United States and around the world.

    The university is tied for 58th in the 2021 U.S. News & World Report rankings of “National Universities” across the United States, and it is ranked tied for 19th nationally among public universities. The Academic Ranking of World Universities ranked Maryland as 43rd in the world in 2015. The 2017–2018 Times Higher Education World University Rankings placed Maryland 69th in the world. The 2016/17 QS World University Rankings ranked Maryland 131st in the world.

    The university was ranked among Peace Corps’ 25 Top Volunteer-Producing Colleges for the tenth consecutive year in 2020. The University of Maryland is ranked among Teach for America’s Top 20 Colleges and Universities, contributing the greatest number of graduating seniors to its 2017 teaching corps. Kiplinger’s Personal Finance ranked the University 10th for in-state students and 16th for out-of-state students in its 2019 Best College Value ranking. Money Magazine ranked the university 1st in the state of Maryland for public colleges in its 2019 Best College for Your Money ranking.

    For the fourth consecutive year in 2015, the university is ranked 1st in the U.S. for the number of Boren Scholarship recipients – with 9 students receiving awards for intensive international language study. The university is ranked as a Top Producing Institution of Fulbright U.S. Students and Scholars for the 2017–2018 academic year by the United States Department of State’s Bureau of Educational and Cultural Affairs.

    In 2017, the University of Maryland was ranked among the top 50 universities in the 2018 Best Global Universities Rankings by U.S. News & World Report based on its high academic research performance and global reputation.

    In 2021, the university was ranked among the top 10 universities in The Princeton Review’s annual survey of the Top Schools for Innovation & Entrepreneurship; this was the sixth consecutive such ranking.

    WMUC-FM (88.1 FM) is the university non-commercial radio station, staffed by UMD students and volunteers. WMUC is a freeform radio station that broadcasts at 10 watts. Its broadcasts can be heard throughout the Washington metropolitan area. Notable WMUC alumni include Connie Chung, Bonnie Bernstein, Peter Rosenberg and Aaron McGruder.

     
  • richardmitnick 8:38 am on September 15, 2022 Permalink | Reply
    Tags: "First light at the most powerful laser in the U.S.", "ZEUS": Zetawatt-Equivalent Ultrashort pulse laser System, , , , Computer Engineering, , In this first run the ZEUS team is starting at a power of 30 terawatts (30 trillion watts) or about 3% of the current most powerful lasers in the U.S. and 1% of ZEUS’s eventual maximum power., , , , The first test using the target area for ZEUS’s signature experiment is anticipated in 2023., , The ZEUS laser at the University of Michigan has begun its commissioning experiments.   

    From The University of Michigan: “First light at the most powerful laser in the U.S.” 

    U Michigan bloc

    From The University of Michigan

    9.14.22
    Kate McAlpine

    The ZEUS laser at the University of Michigan has begun its commissioning experiments.


    The ZEUS Laser – the most powerful laser in the U.S.
    The ZEUS laser system will be the most powerful laser in the United States, located exclusively at the University of Michigan. Funded by the National Science Foundation, it will be a destination for researchers studying extreme plasmas around the U.S. and internationally.

    The laser that will be the most powerful in the United States is preparing to send its first pulses into an experimental target at the University of Michigan.

    Funded by the National Science Foundation, it will be a destination for researchers studying extreme plasmas around the U.S. and internationally.

    Called ZEUS, the Zetawatt-Equivalent Ultrashort pulse laser System, it will explore the physics of the quantum universe as well as outer space, and it is expected to contribute to new technologies in medicine, electronics and national security.

    “ZEUS will be the highest peak power laser in the U.S. and among the most powerful laser systems in the world. We’re looking forward to growing the research community and bringing in people with new ideas for experiments and applications,” said Karl Krushelnick, director of the Center for Ultrafast Optical Science, which houses ZEUS, and the Henry J. Gomberg Collegiate Professor of Engineering.

    The first target area to get up and running is the high-repetition target area, which runs experiments with more frequent but lower power laser pulses. Michigan alum Franklin Dollar, an associate professor of physics and astronomy at the University of California-Irvine, is the first user, and his team is exploring a new kind of X-ray imaging.

    They will use ZEUS to send infrared laser pulses into a gas target of helium, turning it into plasma. That plasma accelerates electrons to high energies, and those electron beams then wiggle to produce very compact X-ray pulses.

    Dollar’s team investigates how to make and use these new kinds of X-ray sources. Because soft tissues absorb X-rays at very similar rates, basic medical X-ray machines have to deliver high doses of radiation before they can distinguish between a tumor and healthy tissue, he said.

    But during his doctoral studies under Krushelnick, Dollar used ZEUS’s predecessor to image a damselfly, showing the promise of laser-like X-ray pulses. Different soft tissues within the damselfly’s carapace delayed X-rays to different degrees, creating interference patterns in the X-ray waves. Those patterns revealed the soft structures with very short X-ray pulses—a few millionths of a billionth of a second—and hence small X-ray doses.

    “We could see every little organ as well as the tiny micro hairs on its leg,” Dollar said. “It’s very exciting to think of how we could use these laser-like X-rays to do low-dose imaging, taking advantage of the fact that they’re laser-like rather than having to rely on the absorption imaging of the past.”

    In this first run, the ZEUS team is starting at a power of 30 terawatts (30 trillion watts), about 3% of the current most powerful lasers in the U.S. and 1% of ZEUS’s eventual maximum power.

    “During the experiment here, we’ll put the first light through to the target chamber and develop towards that 300 terawatt level,” said John Nees, a research scientist in electrical and computer engineering.

    Nees leads the building of the laser alongside Anatoly Maksimchuk, a research scientist in electrical and computer engineering, who leads the development of the experimental areas.

    2
    (From left) Laser engineer Lauren Weinberg, research scientist John Nees and research engineer Galina Kalinchenko pose for photos while working on the ZEUS laser at the NSF ZEUS laser facility in a Michigan Engineering lab. Image credit: Marcin Szczepanski, Michigan Engineering.

    Dollar’s team plans to return late in the fall for another run, aiming for the full power intended for the high repetition target area, 500 terawatts. The maximum power of 3 petawatts, or quadrillion watts, will go to different target areas to be completed later. The first test using the target area for ZEUS’s signature experiment is anticipated in 2023.

    That experiment will use the laser to generate a beam of high-speed electrons and then run the electrons directly into the laser pulses. For the electrons, that simulates a zetawatt laser pulse—a million times more powerful than ZEUS’s 3 petawatts. In addition to probing the foundations of our understanding of the quantum universe, ZEUS will enable researchers to study what’s going on inside some of the most extreme objects in space.

    “Magnetars, which are neutron stars with extremely strong magnetic fields around them, and objects like active galactic nuclei surrounded by very hot plasma—we can recreate the microphysics of hot plasma in extremely strong fields in the laboratory,” said Louise Willingale, associate director of ZEUS and an associate professor of electrical and computer engineering.

    ZEUS offers not only scientific and technological opportunities, but with the discipline-wide effort to grow the laser physics workforce, it creates career opportunities as well. Dollar brought his whole team to get the hands-on experience of a commissioning experiment at a world-class laser.

    “At Michigan Engineering, we’re fortunate to have some of the strongest academic and research capabilities in the world, and we’re leveraging that strength to improve the lives of real people. ZEUS exemplifies our commitment to fundamental science—using engineering to understand matter at its most basic levels and then using that knowledge to build solutions to real-world problems,” said Alec D. Gallimore, the Robert J. Vlasic Dean of Engineering.

    The first experiment milestone feels especially hard-earned because of the way the pandemic disrupted construction early on, when the team was still reconfiguring the building to accommodate a much larger laser. Project manager Franko Bayer reconsidered the schedules, identifying work that could be done in parallel rather than in sequence, to keep as close as possible to the initial timelines.

    “Our team at ZEUS is very excited that our hard work paid off, and despite all the post-pandemic equipment delivery delays, we are on schedule to our original timeline. This experiment is the beginning to gradually ramp up the power until full commissioning in the fall of 2023,” Bayer said.

    Krushelnick is also a professor of nuclear engineering and radiological sciences and electrical and computer engineering. Gallimore is also the Richard F. and Eleanor A. Towner Professor of Engineering, an Arthur F. Thurnau Professor and a professor of aerospace engineering.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    The University of Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, The University of Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, The University of Michigan signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, The University of Michigan ‘s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The University of Michigan is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s The University of Michigan researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    The University of Michigan is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The The University of Michigan library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. The University of Michigan was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the The University of Michigan library system.

    In the late 1960s The University of Michigan, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by The University of Michigan. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 8:54 am on September 13, 2022 Permalink | Reply
    Tags: "Optical rule was made to be broken", "The Moss rule": A trade-off between a material’s optical absorption and how it refracts light., A number of “super-Mossian” semiconductors exist., A way to manipulate light at the nanoscale that breaks the Moss rule, , , Computer Engineering, , If you’re going to break a rule with style make sure everybody sees it., , , Rice engineers’ formula IDs materials for virtual reality and 3D displays,   

    From Rice University: “Optical rule was made to be broken” 

    From Rice University

    9.12.22
    Mike Williams
    713-348-6728
    mikewilliams@rice.edu

    Jeff Falk
    713-348-6775
    jfalk@rice.edu

    Rice engineers’ formula IDs materials for virtual reality and 3D displays

    If you’re going to break a rule with style make sure everybody sees it. That’s the goal of engineers at Rice University who hope to improve screens for virtual reality, 3D displays and optical technologies in general.

    1
    A scanning electron microscope image of an iron pyrite metasurface created at Rice University to test its ability to transcend the Moss rule, which describes a trade-off between a material’s optical absorption and how it refracts light. The research shows potential to improve screens for virtual reality and 3D displays along with optical technologies in general. Courtesy of The Naik Lab.

    Gururaj Naik, an associate professor of electrical and computer engineering at Rice’s George R. Brown School of Engineering, and Applied Physics Graduate Program alumna Chloe Doiron found a way to manipulate light at the nanoscale that breaks the Moss rule, which describes a trade-off between a material’s optical absorption and how it refracts light.

    Apparently, it’s more like a guideline than an actual rule, because a number of “super-Mossian” semiconductors do exist. Fool’s gold, aka iron pyrite, is one of them.

    For their study in Advanced Optical Materials [below], Naik, Doiron and co-author Jacob Khurgin, a professor of electrical and computer engineering at Johns Hopkins University, find iron pyrite works particularly well as a nanophotonic material and could lead to better and thinner displays for wearable devices.

    More important is that they’ve established a method for finding materials that surpass the Moss rule and offer useful light-handling properties for displays and sensing applications.

    “In optics, we’re still limited to a very few materials,” Naik said. “Our periodic table is really small. But there are so many materials that are simply unknown, just because we haven’t developed any insight on how to find them.

    “That’s what we wanted to show: There are physics that can be applied here to short-list the materials, and then help us look for those that can get us to whatever the industrial needs are,” he said.

    “Let’s say I want to design an LED or a waveguide operating at a given wavelength, say 1.5 micrometers,” Naik said. “For this wavelength, I want the smallest possible waveguide, which has the smallest loss, meaning that can confine light the best.”

    Choosing a material with the highest possible refractive index at that wavelength would normally guarantee success, according to Moss. “That’s generally the requirement for all optical devices at the nanoscale,” he said. “The materials must have a bandgap slightly above the wavelength of interest, because that’s where we begin to see less light getting through.

    “Silicon has a refractive index of about 3.4, and is the gold standard,” Naik said. “But we started asking if we could go beyond silicon to an index of 5 or 10.”

    That prompted their search for other optical options. For that, they developed their formula to identify super-Mossian dielectrics.

    “In this work, we give people a recipe that can be applied to the publicly available database of materials to identify them,” Naik said.

    The researchers settled on experiments with iron pyrite after applying their theory to a database of 1,056 compounds, searching in three bandgap ranges for those with the highest refractive indices. Three compounds along with pyrite were identified as super-Mossian candidates, but pyrite’s low cost and long use in photovoltaic and catalytic applications made it the best choice for experiments.

    “Fool’s gold has traditionally been studied in astrophysics because it’s commonly found in interstellar debris,” Naik said. “But in the context of optics, it’s little-known.”

    He noted iron pyrite has been studied for use in solar cells. “In that context, they showed optical properties in the visible wavelengths, where it’s really lossy,” he said. “But that was a clue for us, because when something is extremely lossy in the visible frequencies, it’s likely going to have a very high refractive index in the near-infrared.”

    So the lab made optical-grade iron pyrite films. Tests of the material revealed a refractive index of 4.37 with a band gap of 1.03 electron volts, surpassing the performance predicted by the Moss rule by about 40%.

    That’s great, Naik said, but the search protocol could — and likely will — find materials that are even better.

    “There are many candidates, some of which haven’t even been made,” he said.

    The National Science Foundation (1935446) and the Army Research Office (W911NF2120031) supported the research.

    Science paper:
    Advanced Optical Materials

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Stem Education Coalition

    Rice University [formally William Marsh Rice University] is a private research university in Houston, Texas. It is situated on a 300-acre campus near the Houston Museum District and is adjacent to the Texas Medical Center.
    Opened in 1912 after the murder of its namesake William Marsh Rice, Rice is a research university with an undergraduate focus. Its emphasis on education is demonstrated by a small student body and 6:1 student-faculty ratio. The university has a very high level of research activity. Rice is noted for its applied science programs in the fields of artificial heart research, structural chemical analysis, signal processing, space science, and nanotechnology. Rice has been a member of the Association of American Universities since 1985 and is classified among “R1: Doctoral Universities – Very high research activity”.
    The university is organized into eleven residential colleges and eight schools of academic study, including the Wiess School of Natural Sciences, the George R. Brown School of Engineering, the School of Social Sciences, School of Architecture, Shepherd School of Music and the School of Humanities. Rice’s undergraduate program offers more than fifty majors and two dozen minors, and allows a high level of flexibility in pursuing multiple degree programs. Additional graduate programs are offered through the Jesse H. Jones Graduate School of Business and the Susanne M. Glasscock School of Continuing Studies. Rice students are bound by the strict Honor Code, which is enforced by a student-run Honor Council.
    Rice competes in 14 NCAA Division I varsity sports and is a part of Conference USA, often competing with its cross-town rival the University of Houston. Intramural and club sports are offered in a wide variety of activities such as jiu jitsu, water polo, and crew.
    The university’s alumni include more than two dozen Marshall Scholars and a dozen Rhodes Scholars. Given the university’s close links to National Aeronautics Space Agency, it has produced a significant number of astronauts and space scientists. In business, Rice graduates include CEOs and founders of Fortune 500 companies; in politics, alumni include congressmen, cabinet secretaries, judges, and mayors. Two alumni have won the Nobel Prize.

    Background

    Rice University’s history began with the demise of Massachusetts businessman William Marsh Rice, who had made his fortune in real estate, railroad development and cotton trading in the state of Texas. In 1891, Rice decided to charter a free-tuition educational institute in Houston, bearing his name, to be created upon his death, earmarking most of his estate towards funding the project. Rice’s will specified the institution was to be “a competitive institution of the highest grade” and that only white students would be permitted to attend. On the morning of September 23, 1900, Rice, age 84, was found dead by his valet, Charles F. Jones, and was presumed to have died in his sleep. Shortly thereafter, a large check made out to Rice’s New York City lawyer, signed by the late Rice, aroused the suspicion of a bank teller, due to the misspelling of the recipient’s name. The lawyer, Albert T. Patrick, then announced that Rice had changed his will to leave the bulk of his fortune to Patrick, rather than to the creation of Rice’s educational institute. A subsequent investigation led by the District Attorney of New York resulted in the arrests of Patrick and of Rice’s butler and valet Charles F. Jones, who had been persuaded to administer chloroform to Rice while he slept. Rice’s friend and personal lawyer in Houston, Captain James A. Baker, aided in the discovery of what turned out to be a fake will with a forged signature. Jones was not prosecuted since he cooperated with the district attorney, and testified against Patrick. Patrick was found guilty of conspiring to steal Rice’s fortune and he was convicted of murder in 1901 (he was pardoned in 1912 due to conflicting medical testimony). Baker helped Rice’s estate direct the fortune, worth $4.6 million in 1904 ($131 million today), towards the founding of what was to be called the Rice Institute, later to become Rice University. The board took control of the assets on April 29 of that year.

    In 1907, the Board of Trustees selected the head of the Department of Mathematics and Astronomy at Princeton University, Edgar Odell Lovett, to head the Institute, which was still in the planning stages. He came recommended by Princeton University‘s president, Woodrow Wilson. In 1908, Lovett accepted the challenge, and was formally inaugurated as the Institute’s first president on October 12, 1912. Lovett undertook extensive research before formalizing plans for the new Institute, including visits to 78 institutions of higher learning across the world on a long tour between 1908 and 1909. Lovett was impressed by such things as the aesthetic beauty of the uniformity of the architecture at the University of Pennsylvania, a theme which was adopted by the Institute, as well as the residential college system at University of Cambridge (UK) in England, which was added to the Institute several decades later. Lovett called for the establishment of a university “of the highest grade,” “an institution of liberal and technical learning” devoted “quite as much to investigation as to instruction.” [We must] “keep the standards up and the numbers down,” declared Lovett. “The most distinguished teachers must take their part in undergraduate teaching, and their spirit should dominate it all.”
    Establishment and growth

    In 1911, the cornerstone was laid for the Institute’s first building, the Administration Building, now known as Lovett Hall in honor of the founding president. On September 23, 1912, the 12th anniversary of William Marsh Rice’s murder, the William Marsh Rice Institute for the Advancement of Letters, Science, and Art began course work with 59 enrolled students, who were known as the “59 immortals,” and about a dozen faculty. After 18 additional students joined later, Rice’s initial class numbered 77, 48 male and 29 female. Unusual for the time, Rice accepted coeducational admissions from its beginning, but on-campus housing would not become co-ed until 1957.

    Three weeks after opening, a spectacular international academic festival was held, bringing Rice to the attention of the entire academic world.

    Per William Marsh Rice’s will and Rice Institute’s initial charter, the students paid no tuition. Classes were difficult, however, and about half of Rice’s students had failed after the first 1912 term. At its first commencement ceremony, held on June 12, 1916, Rice awarded 35 bachelor’s degrees and one master’s degree. That year, the student body also voted to adopt the Honor System, which still exists today. Rice’s first doctorate was conferred in 1918 on mathematician Hubert Evelyn Bray.

    The Founder’s Memorial Statue, a bronze statue of a seated William Marsh Rice, holding the original plans for the campus, was dedicated in 1930, and installed in the central academic quad, facing Lovett Hall. The statue was crafted by John Angel. In 2020, Rice students petitioned the university to take down the statue due to the founder’s history as slave owner.

    During World War II, Rice Institute was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program, which offered students a path to a Navy commission.

    The residential college system proposed by President Lovett was adopted in 1958, with the East Hall residence becoming Baker College, South Hall residence becoming Will Rice College, West Hall becoming Hanszen College, and the temporary Wiess Hall becoming Wiess College.

    In 1959, the Rice Institute Computer went online. 1960 saw Rice Institute formally renamed William Marsh Rice University. Rice acted as a temporary intermediary in the transfer of land between Humble Oil and Refining Company and NASA, for the creation of NASA’s Manned Spacecraft Center (now called Johnson Space Center) in 1962. President John F. Kennedy then made a speech at Rice Stadium reiterating that the United States intended to reach the moon before the end of the decade of the 1960s, and “to become the world’s leading space-faring nation”. The relationship of NASA with Rice University and the city of Houston has remained strong to the present day.

    The original charter of Rice Institute dictated that the university admit and educate, tuition-free, “the white inhabitants of Houston, and the state of Texas”. In 1963, the governing board of Rice University filed a lawsuit to allow the university to modify its charter to admit students of all races and to charge tuition. Ph.D. student Raymond Johnson became the first black Rice student when he was admitted that year. In 1964, Rice officially amended the university charter to desegregate its graduate and undergraduate divisions. The Trustees of Rice University prevailed in a lawsuit to void the racial language in the trust in 1966. Rice began charging tuition for the first time in 1965. In the same year, Rice launched a $33 million ($268 million) development campaign. $43 million ($283 million) was raised by its conclusion in 1970. In 1974, two new schools were founded at Rice, the Jesse H. Jones Graduate School of Management and the Shepherd School of Music. The Brown Foundation Challenge, a fund-raising program designed to encourage annual gifts, was launched in 1976 and ended in 1996 having raised $185 million. The Rice School of Social Sciences was founded in 1979.

    On-campus housing was exclusively for men for the first forty years, until 1957. Jones College was the first women’s residence on the Rice campus, followed by Brown College. According to legend, the women’s colleges were purposefully situated at the opposite end of campus from the existing men’s colleges as a way of preserving campus propriety, which was greatly valued by Edgar Odell Lovett, who did not even allow benches to be installed on campus, fearing that they “might lead to co-fraternization of the sexes”. The path linking the north colleges to the center of campus was given the tongue-in-cheek name of “Virgin’s Walk”. Individual colleges became coeducational between 1973 and 1987, with the single-sex floors of colleges that had them becoming co-ed by 2006. By then, several new residential colleges had been built on campus to handle the university’s growth, including Lovett College, Sid Richardson College, and Martel College.

    Late twentieth and early twenty-first century

    The Economic Summit of Industrialized Nations was held at Rice in 1990. Three years later, in 1993, the James A. Baker III Institute for Public Policy was created. In 1997, the Edythe Bates Old Grand Organ and Recital Hall and the Center for Nanoscale Science and Technology, renamed in 2005 for the late Nobel Prize winner and Rice professor Richard E. Smalley, were dedicated at Rice. In 1999, the Center for Biological and Environmental Nanotechnology was created. The Rice Owls baseball team was ranked #1 in the nation for the first time in that year (1999), holding the top spot for eight weeks.

    In 2003, the Owls won their first national championship in baseball, which was the first for the university in any team sport, beating Southwest Missouri State in the opening game and then the University of Texas and Stanford University twice each en route to the title. In 2008, President David Leebron issued a ten-point plan titled “Vision for the Second Century” outlining plans to increase research funding, strengthen existing programs, and increase collaboration. The plan has brought about another wave of campus constructions, including the erection the newly renamed BioScience Research Collaborative building (intended to foster collaboration with the adjacent Texas Medical Center), a new recreational center and the renovated Autry Court basketball stadium, and the addition of two new residential colleges, Duncan College and McMurtry College.

    Beginning in late 2008, the university considered a merger with Baylor College of Medicine, though the merger was ultimately rejected in 2010. Rice undergraduates are currently guaranteed admission to Baylor College of Medicine upon graduation as part of the Rice/Baylor Medical Scholars program. According to History Professor John Boles’ recent book University Builder: Edgar Odell Lovett and the Founding of the Rice Institute, the first president’s original vision for the university included hopes for future medical and law schools.

    In 2018, the university added an online MBA program, MBA@Rice.

    In June 2019, the university’s president announced plans for a task force on Rice’s “past in relation to slave history and racial injustice”, stating that “Rice has some historical connections to that terrible part of American history and the segregation and racial disparities that resulted directly from it”.

    Campus

    Rice’s campus is a heavily wooded 285-acre (115-hectare) tract of land in the museum district of Houston, located close to the city of West University Place.

    Five streets demarcate the campus: Greenbriar Street, Rice Boulevard, Sunset Boulevard, Main Street, and University Boulevard. For most of its history, all of Rice’s buildings have been contained within this “outer loop”. In recent years, new facilities have been built close to campus, but the bulk of administrative, academic, and residential buildings are still located within the original pentagonal plot of land. The new Collaborative Research Center, all graduate student housing, the Greenbriar building, and the Wiess President’s House are located off-campus.

    Rice prides itself on the amount of green space available on campus; there are only about 50 buildings spread between the main entrance at its easternmost corner, and the parking lots and Rice Stadium at the West end. The Lynn R. Lowrey Arboretum, consisting of more than 4000 trees and shrubs (giving birth to the legend that Rice has a tree for every student), is spread throughout the campus.
    The university’s first president, Edgar Odell Lovett, intended for the campus to have a uniform architecture style to improve its aesthetic appeal. To that end, nearly every building on campus is noticeably Byzantine in style, with sand and pink-colored bricks, large archways and columns being a common theme among many campus buildings. Noteworthy exceptions include the glass-walled Brochstein Pavilion, Lovett College with its Brutalist-style concrete gratings, Moody Center for the Arts with its contemporary design, and the eclectic-Mediterranean Duncan Hall. In September 2011, Travel+Leisure listed Rice’s campus as one of the most beautiful in the United States.

    The university and Houston Independent School District jointly established The Rice School-a kindergarten through 8th grade public magnet school in Houston. The school opened in August 1994. Through Cy-Fair ISD Rice University offers a credit course based summer school for grades 8 through 12. They also have skills based classes during the summer in the Rice Summer School.

    Innovation District

    In early 2019 Rice announced the site where the abandoned Sears building in Midtown Houston stood along with its surrounding area would be transformed into the “The Ion” the hub of the 16-acre South Main Innovation District. President of Rice David Leebron stated “We chose the name Ion because it’s from the Greek ienai, which means ‘go’. We see it as embodying the ever-forward motion of discovery, the spark at the center of a truly original idea.”

    Students of Rice and other Houston-area colleges and universities making up the Student Coalition for a Just and Equitable Innovation Corridor are advocating for a Community Benefits Agreement (CBA)-a contractual agreement between a developer and a community coalition. Residents of neighboring Third Ward and other members of the Houston Coalition for Equitable Development Without Displacement (HCEDD) have faced consistent opposition from the City of Houston and Rice Management Company to a CBA as traditionally defined in favor of an agreement between the latter two entities without a community coalition signatory.

    Organization

    Rice University is chartered as a non-profit organization and is governed by a privately appointed board of trustees. The board consists of a maximum of 25 voting members who serve four-year terms. The trustees serve without compensation and a simple majority of trustees must reside in Texas including at least four within the greater Houston area. The board of trustees delegates its power by appointing a president to serve as the chief executive of the university. David W. Leebron was appointed president in 2004 and succeeded Malcolm Gillis who served since 1993. The provost six vice presidents and other university officials report to the president. The president is advised by a University Council composed of the provost, eight members of the Faculty Council, two staff members, one graduate student, and two undergraduate students. The president presides over a Faculty Council which has the authority to alter curricular requirements, establish new degree programs, and approve candidates for degrees.

    The university’s academics are organized into several schools. Schools that have undergraduate and graduate programs include:

    The Rice University School of Architecture
    The George R. Brown School of Engineering
    The School of Humanities
    The Shepherd School of Music
    The Wiess School of Natural Sciences
    The Rice University School of Social Sciences

    Two schools have only graduate programs:

    The Jesse H. Jones Graduate School of Management
    The Susanne M. Glasscock School of Continuing Studies

    Rice’s undergraduate students benefit from a centralized admissions process which admits new students to the university as a whole, rather than a specific school (the schools of Music and Architecture are decentralized). Students are encouraged to select the major path that best suits their desires; a student can later decide that they would rather pursue study in another field or continue their current coursework and add a second or third major. These transitions are designed to be simple at Rice with students not required to decide on a specific major until their sophomore year of study.

    Rice’s academics are organized into six schools which offer courses of study at the graduate and undergraduate level, with two more being primarily focused on graduate education, while offering select opportunities for undergraduate students. Rice offers 360 degrees in over 60 departments. There are 40 undergraduate degree programs, 51 masters programs, and 29 doctoral programs.

    Faculty members of each of the departments elect chairs to represent the department to each School’s dean and the deans report to the Provost who serves as the chief officer for academic affairs.

    Rice Management Company

    The Rice Management Company manages the $6.5 billion Rice University endowment (June 2019) and $957 million debt. The endowment provides 40% of Rice’s operating revenues. Allison Thacker is the President and Chief Investment Officer of the Rice Management Company, having joined the university in 2011.

    Academics

    Rice is a medium-sized highly residential research university. The majority of enrollments are in the full-time four-year undergraduate program emphasizing arts & sciences and professions. There is a high graduate coexistence with the comprehensive graduate program and a very high level of research activity. It is accredited by the Southern Association of Colleges and Schools Commission on Colleges as well as the professional accreditation agencies for engineering, management, and architecture.

    Each of Rice’s departments is organized into one of three distribution groups, and students whose major lies within the scope of one group must take at least 3 courses of at least 3 credit hours each of approved distribution classes in each of the other two groups, as well as completing one physical education course as part of the LPAP (Lifetime Physical Activity Program) requirement. All new students must take a Freshman Writing Intensive Seminar (FWIS) class, and for students who do not pass the university’s writing composition examination (administered during the summer before matriculation), FWIS 100, a writing class, becomes an additional requirement.

    The majority of Rice’s undergraduate degree programs grant B.S. or B.A. degrees. Rice has recently begun to offer minors in areas such as business, energy and water sustainability, and global health.

    Student body

    As of fall 2014, men make up 52% of the undergraduate body and 64% of the professional and post-graduate student body. The student body consists of students from all 50 states, including the District of Columbia, two U.S. Territories, and 83 foreign countries. Forty percent of degree-seeking students are from Texas.

    Research centers and resources

    Rice is noted for its applied science programs in the fields of nanotechnology, artificial heart research, structural chemical analysis, signal processing and space science.

    Rice Alliance for Technology and Entrepreneurship – supports entrepreneurs and early-stage technology ventures in Houston and Texas through education, collaboration, and research, ranked No. 1 among university business incubators.
    Baker Institute for Public Policy – a leading nonpartisan public policy think-tank
    BioScience Research Collaborative (BRC) – interdisciplinary, cross-campus, and inter-institutional resource between Rice University and Texas Medical Center
    Boniuk Institute – dedicated to religious tolerance and advancing religious literacy, respect and mutual understanding
    Center for African and African American Studies – fosters conversations on topics such as critical approaches to race and racism, the nature of diasporic histories and identities, and the complexity of Africa’s past, present and future
    Chao Center for Asian Studies – research hub for faculty, students and post-doctoral scholars working in Asian studies
    Center for the Study of Women, Gender, and Sexuality (CSWGS) – interdisciplinary academic programs and research opportunities, including the journal Feminist Economics
    Data to Knowledge Lab (D2K) – campus hub for experiential learning in data science
    Digital Signal Processing (DSP) – center for education and research in the field of digital signal processing
    Ethernest Hackerspace – student-run hackerspace for undergraduate engineering students sponsored by the ECE department and the IEEE student chapter
    Humanities Research Center (HRC) – identifies, encourages, and funds innovative research projects by faculty, visiting scholars, graduate, and undergraduate students in the School of Humanities and beyond
    Institute of Biosciences and Bioengineering (IBB) – facilitates the translation of interdisciplinary research and education in biosciences and bioengineering
    Ken Kennedy Institute for Information Technology – advances applied interdisciplinary research in the areas of computation and information technology
    Kinder Institute for Urban Research – conducts the Houston Area Survey, “the nation’s longest running study of any metropolitan region’s economy, population, life experiences, beliefs and attitudes”
    Laboratory for Nanophotonics (LANP) – a resource for education and research breakthroughs and advances in the broad, multidisciplinary field of nanophotonics
    Moody Center for the Arts – experimental arts space featuring studio classrooms, maker space, audiovisual editing booths, and a gallery and office space for visiting national and international artists
    OpenStax CNX (formerly Connexions) and OpenStax – an open source platform and open access publisher, respectively, of open educational resources
    Oshman Engineering Design Kitchen (OEDK) – space for undergraduate students to design, prototype and deploy solutions to real-world engineering challenges
    Rice Cinema – an independent theater run by the Visual and Dramatic Arts department at Rice which screens documentaries, foreign films, and experimental cinema and hosts film festivals and lectures since 1970
    Rice Center for Engineering Leadership (RCEL) – inspires, educates, and develops ethical leaders in technology who will excel in research, industry, non-engineering career paths, or entrepreneurship
    Religion and Public Life Program (RPLP) – a research, training and outreach program working to advance understandings of the role of religion in public life
    Rice Design Alliance (RDA) – outreach and public programs of the Rice School of Architecture
    Rice Center for Quantum Materials (RCQM) – organization dedicated to research and higher education in areas relating to quantum phenomena
    Rice Neuroengineering Initiative (NEI) – fosters research collaborations in neural engineering topics
    Rice Space Institute (RSI) – fosters programs in all areas of space research
    Smalley-Curl Institute for Nanoscale Science and Technology (SCI) – the nation’s first nanotechnology center
    Welch Institute for Advanced Materials – collaborative research institute to support the foundational research for discoveries in materials science, similar to the model of Salk Institute and Broad Institute
    Woodson Research Center Special Collections & Archives – publisher of print and web-based materials highlighting the department’s primary source collections such as the Houston African American, Asian American, and Jewish History Archives, University Archives, rare books, and hip hop/rap music-related materials from the Swishahouse record label and Houston Folk Music Archive, etc.

    Residential colleges

    In 1957, Rice University implemented a residential college system, which was proposed by the university’s first president, Edgar Odell Lovett. The system was inspired by existing systems in place at University of Oxford (UK) and University of Cambridge (UK) and at several other universities in the United States, most notably Yale University. The existing residences known as East, South, West, and Wiess Halls became Baker, Will Rice, Hanszen, and Wiess Colleges, respectively.

    Student-run media

    Rice has a weekly student newspaper (The Rice Thresher), a yearbook (The Campanile), college radio station (KTRU Rice Radio), and now defunct, campus-wide student television station (RTV5). They are based out of the RMC student center. In addition, Rice hosts several student magazines dedicated to a range of different topics; in fact, the spring semester of 2008 saw the birth of two such magazines, a literary sex journal called Open and an undergraduate science research magazine entitled Catalyst.

    The Rice Thresher is published every Wednesday and is ranked by Princeton Review as one of the top campus newspapers nationally for student readership. It is distributed around campus, and at a few other local businesses and has a website. The Thresher has a small, dedicated staff and is known for its coverage of campus news, open submission opinion page, and the satirical Backpage, which has often been the center of controversy. The newspaper has won several awards from the College Media Association, Associated Collegiate Press and Texas Intercollegiate Press Association.

    The Rice Campanile was first published in 1916 celebrating Rice’s first graduating class. It has published continuously since then, publishing two volumes in 1944 since the university had two graduating classes due to World War II. The website was created sometime in the early to mid 2000’s. The 2015 won the first place Pinnacle for best yearbook from College Media Association.

    KTRU Rice Radio is the student-run radio station. Though most DJs are Rice students, anyone is allowed to apply. It is known for playing genres and artists of music and sound unavailable on other radio stations in Houston, and often, the US. The station takes requests over the phone or online. In 2000 and 2006, KTRU won Houston Press’ Best Radio Station in Houston. In 2003, Rice alum and active KTRU DJ DL’s hip-hip show won Houston PressBest Hip-hop Radio Show. On August 17, 2010, it was announced that Rice University had been in negotiations to sell the station’s broadcast tower, FM frequency and license to the University of Houston System to become a full-time classical music and fine arts programming station. The new station, KUHA, would be operated as a not-for-profit outlet with listener supporters. The FCC approved the sale and granted the transfer of license to the University of Houston System on April 15, 2011, however, KUHA proved to be an even larger failure and so after four and a half years of operation, The University of Houston System announced that KUHA’s broadcast tower, FM frequency and license were once again up for sale in August 2015. KTRU continued to operate much as it did previously, streaming live on the Internet, via apps, and on HD2 radio using the 90.1 signal. Under student leadership, KTRU explored the possibility of returning to FM radio for a number of years. In spring 2015, KTRU was granted permission by the FCC to begin development of a new broadcast signal via LPFM radio. On October 1, 2015, KTRU made its official return to FM radio on the 96.1 signal. While broadcasting on HD2 radio has been discontinued, KTRU continues to broadcast via internet in addition to its LPFM signal.

    RTV5 is a student-run television network available as channel 5 on campus. RTV5 was created initially as Rice Broadcast Television in 1997; RBT began to broadcast the following year in 1998, and aired its first live show across campus in 1999. It experienced much growth and exposure over the years with successful programs like Drinking with Phil, The Meg & Maggie Show, which was a variety and call-in show, a weekly news show, and extensive live coverage in December 2000 of the shut down of KTRU by the administration. In spring 2001, the Rice undergraduate community voted in the general elections to support RBT as a blanket tax organization, effectively providing a yearly income of $10,000 to purchase new equipment and provide the campus with a variety of new programming. In the spring of 2005, RBT members decided the station needed a new image and a new name: Rice Television 5. One of RTV5’s most popular shows was the 24-hour show, where a camera and couch placed in the RMC stayed on air for 24 hours. One such show is held in fall and another in spring, usually during a weekend allocated for visits by prospective students. RTV5 has a video on demand site at rtv5.rice.edu. The station went off the air in 2014 and changed its name to Rice Video Productions. In 2015 the group’s funding was threatened, but ultimately maintained. In 2016 the small student staff requested to no longer be a blanket-tax organization. In the fall of 2017, the club did not register as a club.

    The Rice Review, also known as R2, is a yearly student-run literary journal at Rice University that publishes prose, poetry, and creative nonfiction written by undergraduate students, as well as interviews. The journal was founded in 2004 by creative writing professor and author Justin Cronin.

    The Rice Standard was an independent, student-run variety magazine modeled after such publications as The New Yorker and Harper’s. Prior to fall 2009, it was regularly published three times a semester with a wide array of content, running from analyses of current events and philosophical pieces to personal essays, short fiction and poetry. In August 2009, The Standard transitioned to a completely online format with the launch of their redesigned website, http://www.ricestandard.org. The first website of its kind on Rice’s campus, The Standard featured blog-style content written by and for Rice students. The Rice Standard had around 20 regular contributors, and the site features new content every day (including holidays). In 2017 no one registered The Rice Standard as a club within the university.

    Open, a magazine dedicated to “literary sex content,” predictably caused a stir on campus with its initial publication in spring 2008. A mixture of essays, editorials, stories and artistic photography brought Open attention both on campus and in the Houston Chronicle. The third and last annual edition of Open was released in spring of 2010.

    Athletics

    Rice plays in NCAA Division I athletics and is part of Conference USA. Rice was a member of the Western Athletic Conference before joining Conference USA in 2005. Rice is the second-smallest school, measured by undergraduate enrollment, competing in NCAA Division I FBS football, only ahead of Tulsa.

    The Rice baseball team won the 2003 College World Series, defeating Stanford, giving Rice its only national championship in a team sport. The victory made Rice University the smallest school in 51 years to win a national championship at the highest collegiate level of the sport. The Rice baseball team has played on campus at Reckling Park since the 2000 season. As of 2010, the baseball team has won 14 consecutive conference championships in three different conferences: the final championship of the defunct Southwest Conference, all nine championships while a member of the Western Athletic Conference, and five more championships in its first five years as a member of Conference USA. Additionally, Rice’s baseball team has finished third in both the 2006 and 2007 College World Series tournaments. Rice now has made six trips to Omaha for the CWS. In 2004, Rice became the first school ever to have three players selected in the first eight picks of the MLB draft when Philip Humber, Jeff Niemann, and Wade Townsend were selected third, fourth, and eighth, respectively. In 2007, Joe Savery was selected as the 19th overall pick.

    Rice has been very successful in women’s sports in recent years. In 2004–05, Rice sent its women’s volleyball, soccer, and basketball teams to their respective NCAA tournaments. The women’s swim team has consistently brought at least one member of their team to the NCAA championships since 2013. In 2005–06, the women’s soccer, basketball, and tennis teams advanced, with five individuals competing in track and field. In 2006–07, the Rice women’s basketball team made the NCAA tournament, while again five Rice track and field athletes received individual NCAA berths. In 2008, the women’s volleyball team again made the NCAA tournament. In 2011 the Women’s Swim team won their first conference championship in the history of the university. This was an impressive feat considering they won without having a diving team. The team repeated their C-USA success in 2013 and 2014. In 2017, the women’s basketball team, led by second-year head coach Tina Langley, won the Women’s Basketball Invitational, defeating UNC-Greensboro 74–62 in the championship game at Tudor Fieldhouse. Though not a varsity sport, Rice’s ultimate frisbee women’s team, named Torque, won consecutive Division III national championships in 2014 and 2015.

    In 2006, the football team qualified for its first bowl game since 1961, ending the second-longest bowl drought in the country at the time. On December 22, 2006, Rice played in the New Orleans Bowl in New Orleans, Louisiana against the Sun Belt Conference champion, Troy. The Owls lost 41–17. The bowl appearance came after Rice had a 14-game losing streak from 2004–05 and went 1–10 in 2005. The streak followed an internally authorized 2003 McKinsey report that stated football alone was responsible for a $4 million deficit in 2002. Tensions remained high between the athletic department and faculty, as a few professors who chose to voice their opinion were in favor of abandoning the football program. The program success in 2006, the Rice Renaissance, proved to be a revival of the Owl football program, quelling those tensions. David Bailiff took over the program in 2007 and has remained head coach. Jarett Dillard set an NCAA record in 2006 by catching a touchdown pass in 13 consecutive games and took a 15-game overall streak into the 2007 season.

    In 2008, the football team posted a 9-3 regular season, capping off the year with a 38–14 victory over Western Michigan University in the Texas Bowl. The win over Western Michigan marked the Owls’ first bowl win in 45 years.

    Rice Stadium also serves as the performance venue for the university’s Marching Owl Band, or “MOB.” Despite its name, the MOB is a scatter band that focuses on performing humorous skits and routines rather than traditional formation marching.

    Rice Owls men’s basketball won 10 conference titles in the former Southwest Conference (1918, 1935*, 1940, 1942*, 1943*, 1944*, 1945, 1949*, 1954*, 1970; * denotes shared title). Most recently, guard Morris Almond was drafted in the first round of the 2007 NBA Draft by the Utah Jazz. Rice named former Cal Bears head coach Ben Braun as head basketball coach to succeed Willis Wilson, fired after Rice finished the 2007–2008 season with a winless (0-16) conference record and overall record of 3-27.

     
  • richardmitnick 8:10 pm on August 15, 2022 Permalink | Reply
    Tags: "2D array of electron and nuclear spin qubits opens new frontier in quantum science", A 2D nuclear spin lattice can work at higher temperatures than superconducting qubits., , By using photons and electron spin qubits to control nuclear spins in a two-dimensional material researchers at Purdue University have opened a new frontier in quantum science and technology., Computer Engineering, , , , , Quantum technology depends on the qubit which is the quantum version of a classical computer bit., The Purdue Quantum Science and Engineering Institute, The research team used electron spin qubits as atomic-scale sensors.   

    From The Purdue Quantum Science and Engineering Institute: “2D array of electron and nuclear spin qubits opens new frontier in quantum science” 

    From The Purdue Quantum Science and Engineering Institute

    At

    Purdue University

    8.15.22

    By using photons and electron spin qubits to control nuclear spins in a two-dimensional material researchers at Purdue University have opened a new frontier in quantum science and technology, enabling applications like atomic-scale nuclear magnetic resonance spectroscopy, and to read and write quantum information with nuclear spins in 2D materials.

    As published Monday (Aug. 15) in Nature Materials [below], the research team used electron spin qubits as atomic-scale sensors, and also to effect the first experimental control of nuclear spin qubits in ultrathin hexagonal boron nitride.

    “This is the first work showing optical initialization and coherent control of nuclear spins in 2D materials,” said corresponding author Tongcang Li, a Purdue associate professor of physics and astronomy and electrical and computer engineering, and member of the Purdue Quantum Science and Engineering Institute.

    1
    Using photons and electron spin qubits, researchers demonstrated atomic-scale sensing for use in NMR, and by controlling nuclear spin, creating nuclear qubits with longer coherence times than previously used electron spin qubits.

    “Now we can use light to initialize nuclear spins and with that control, we can write and read quantum information with nuclear spins in 2D materials. This method can have many different applications in quantum memory, quantum sensing, and quantum simulation.”

    2

    Quantum technology depends on the qubit which is the quantum version of a classical computer bit. It is often built with an atom, subatomic particle, or photon instead of a silicon transistor. In an electron or nuclear spin qubit, the familiar binary “0” or “1” state of a classical computer bit is represented by spin, a property that is loosely analogous to magnetic polarity — meaning the spin is sensitive to an electromagnetic field. To perform any task, the spin must first be controlled and coherent, or durable.

    The spin qubit can then be used as a sensor, probing, for example, the structure of a protein, or the temperature of a target with nanoscale resolution. Electrons trapped in the defects of 3D diamond crystals have produced imaging and sensing resolution in the 10-100 nanometer range.

    But qubits embedded in single-layer, or 2D materials, can get closer to a target sample, offering even higher resolution and stronger signal. Paving the way to that goal, the first electron spin qubit in hexagonal boron nitride, which can exist in a single layer, was built in 2019 by removing a boron atom from the lattice of atoms and trapping an electron in its place. So-called boron vacancy electron spin qubits also offered a tantalizing path to controlling the nuclear spin of the nitrogen atoms surrounding each electron spin qubit in the lattice.

    In this work, Li and his team established an interface between photons and nuclear spins in ultrathin hexagonal boron nitrides.

    The nuclear spins can be optically initialized – set to a known spin — via the surrounding electron spin qubits. Once initialized, a radio frequency can be used to change the nuclear spin qubit, essentially “writing” information, or to measure changes in the nuclear spin qubits, or “read” information. Their method harnesses three nitrogen nuclei at a time, with more than 30 times longer coherence times than those of electron qubits at room temperature. And the 2D material can be layered directly onto another material, creating a built-in sensor.

    “A 2D nuclear spin lattice will be suitable for large-scale quantum simulation,” Li said. “It can work at higher temperatures than superconducting qubits.”

    To control a nuclear spin qubit, researchers began by removing a boron atom from the lattice and replacing it with an electron. The electron now sits in the center of three nitrogen atoms. At this point, each nitrogen nucleus is in a random spin state, which may be -1, 0, or +1.

    Next, the electron is pumped to a spin-state of 0 with laser light, which has a negligible effect on the spin of the nitrogen nucleus.

    Finally, a hyperfine interaction between the excited electron and the three surrounding nitrogen nuclei forces a change in the spin of the nucleus. When the cycle is repeated multiple times, the spin of the nucleus reaches the +1 state, where it remains regardless of repeated interactions. With all three nuclei set to the +1 state, they can be used as a trio of qubits.

    At Purdue, Li was joined by Xingyu Gao, Sumukh Vaidya, Peng Ju, Boyang Jiang, Zhujing Xu, Andres E. Llacsahuanga Allcca, Kunhong Shen, Sunil A. Bhave, and Yong P. Chen, as well as collaborators Kejun Li and Yuan Ping at the University of California, Santa Cruz, and Takashi Taniguchi and Kenji Watanabe at the National Institute for Materials Science in Japan.

    The science paper was published with support from Purdue Quantum Science and Engineering Institute, DARPA, National Science Foundation, U.S. Department of Energy, Office of Naval Research, Tohoku AIMR and FriDUO program, and JSPS KAKENHI.

    Science paper:
    Nature Materials

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Purdue Quantum Science and Engineering Institute was established at Purdue University in order to foster the development of practical and impactful aspects of quantum science. The Institute focuses on discovering and studying new materials and basic physical quantum systems that will be best suited for integration into tomorrow’s technology. It encourages interdisciplinary collaboration leading to the design and realization of industry-friendly quantum devices with enhanced functionality and performance close to the fundamental limits in order to produce systems based on these devices that will impact a vast community of users. Finally, we work to train the next generation of quantum scientists and engineers in order to meet the growing quantum workforce demands.

    Atomic & Molecular Optics
    Quantum Nanophotonics
    Solid-State Quantum Systems
    Quantum Information & Communication
    Quantum Informatics and Data Analytics Team

    The Purdue Quantum Informatics and Data Analytics Team is a collaboration between the Purdue Quantum Science and Engineering Institute at Discovery Park, the Institute for Business Analytics at Krannert School of Management, and the Center for Systems in College of Engineering. We use quantum information science, quantum computing, and quantum algorithms to solve real-world problems such as optimization, data science, business, finance, and economics.

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.

    1

    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.

    Campuses

    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.

    Research

    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.

    Sustainability

    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.

    Rankings

    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

     
  • richardmitnick 6:26 am on July 29, 2022 Permalink | Reply
    Tags: "Becoming a Quantum Mechanic", An interdisciplinary program will train the next generation of quantum scientists., , , , , Biomolecular Science, , Computer Engineering, , , , ,   

    From The University of California-Santa Barbara: “Becoming a Quantum Mechanic” 

    UC Santa Barbara Name bloc

    From The University of California-Santa Barbara

    July 26, 2022
    Harrison Tasoff
    (805) 893-7220
    harrisontasoff@ucsb.edu

    An interdisciplinary program will train the next generation of quantum scientists.

    1
    An undergraduate and two graduate students work on a laser stabilization setup for trapped ion experiments. Photo Credit:
    Andrew Jayich.

    Although it may study the universe at its smallest scales, quantum science has become a big field. “And as a scientific field gets more mature, you bump into problems that take you in new directions,” said University of California-Santa Barbara physicist David Weld. Progress requires a collaborative approach and familiarity with a variety of techniques.

    That’s why Weld is leading the development of a new endeavor to train doctoral students in a multidisciplinary approach to quantum science. The Integrative Training in Quantum Assembly & Technology (InTriQATE) initiative is supported by a nearly $3 million grant from the National Science Foundation. Weld and his eight co-principal investigators anticipate training 75 Ph.D. students — including 30 funded “trainees” — from the Departments of Physics, Chemistry, Materials Science, Biochemistry, Electrical & Computer Engineering, and Biomolecular Science and Engineering.

    “The field of quantum science has evolved to the point where people who are going to make contributions to it need to know things from many disciplines,” Weld said. “They need a combination of insights and techniques from multiple fields.”

    This NSF Research Traineeship will exemplify the collaborative spirit that is ubiquitous at University of California- Santa Barbara. The program will introduce young scientists to different fields so they learn where to look for solutions to their research problems in the increasingly interdisciplinary topic of quantum science. Hopefully, this will help the doctoral students avoid tunnel vision even as they begin specializing in a specific area.

    The multifaceted program encompasses new course offerings, professional support and research opportunities. A quantum lab class will serve as its centerpiece. “It’s going to be less of an introduction to the and two-by-two matrices of quantum science and more of the nuts and bolts of how you actually build a quantum technology or do a quantum science experiment in the lab,” Weld said.

    The grant provides funding for the 30 trainees to pursue research at University of California-Santa Barbara and at other institutions and companies through an exchange program. What’s more, students from across the sciences and engineering will have access to the NRT’s courses, job fairs, workshops and even faculty mentorships. The faculty plan to develop a seminar series, informal lunches and inter-departmental team projects as well.

    “The program has many different facets, and we want to adapt it as best we can to the particular students and provide them with a lot of exposure to different fields,” said Associate Professor Andrew Jayich, one of the NRT’s eight co-principal investigators. “We’re going to evaluate the program and adapt as it moves forward.”

    The program’s leadership is excited about opportunities for productive synergies between the NRT and other enterprises on campus, such as the education component of the University of California-Santa Barbara NSF Quantum Foundry. “The NRT lab course is sort of the experimental version of the Quantum Foundry’s introduction to quantum science course,” Weld said. “We hope that a lot of students will take both of these, and they should feed off of each other in a productive way.”

    The NRT kicks off in spring 2023 with five years of funding. Jayich noted that, If it goes well, it could serve as a model for similar initiatives at other campuses.

    “We’re really excited about this as a new approach to training and educating quantum scientists,” Weld said. “We’re excited about the focus on experiment. We’re excited about people learning from different disciplines. And we think this will be, hopefully, a pretty fun and high-impact program for the campus at large.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Barbara Seal

    The University of California-Santa Barbara is a public land-grant research university in Santa Barbara, California, and one of the ten campuses of the University of California system. Tracing its roots back to 1891 as an independent teachers’ college, The University of California-Santa Barbara joined the University of California system in 1944, and is the third-oldest undergraduate campus in the system.

    The university is a comprehensive doctoral university and is organized into five colleges and schools offering 87 undergraduate degrees and 55 graduate degrees. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, The University of California-Santa Barbara spent $235 million on research and development in fiscal year 2018, ranking it 100th in the nation. In his 2001 book The Public Ivies: America’s Flagship Public Universities, author Howard Greene labeled The University of California-Santa Barbara a “Public Ivy”.

    The University of California-Santa Barbara is a research university with 10 national research centers, including the Kavli Institute for Theoretical Physics and the Center for Control, Dynamical-Systems and Computation. Current University of California-Santa Barbara faculty includes six Nobel Prize laureates; one Fields Medalist; 39 members of the National Academy of Sciences; 27 members of the National Academy of Engineering; and 34 members of the American Academy of Arts and Sciences. The University of California-Santa Barbara was the No. 3 host on the ARPANET and was elected to The Association of American Universities in 1995. The faculty also includes two Academy and Emmy Award winners and recipients of a Millennium Technology Prize; an IEEE Medal of Honor; a National Medal of Technology and Innovation; and a Breakthrough Prize in Fundamental Physics.
    The University of California-Santa Barbara Gauchos compete in the Big West Conference of the NCAA Division I. The Gauchos have won NCAA national championships in men’s soccer and men’s water polo.

    History

    The University of California-Santa Barbara traces its origins back to the Anna Blake School, which was founded in 1891, and offered training in home economics and industrial arts. The Anna Blake School was taken over by the state in 1909 and became the Santa Barbara State Normal School which then became the Santa Barbara State College in 1921.

    In 1944, intense lobbying by an interest group in the City of Santa Barbara led by Thomas Storke and Pearl Chase persuaded the State Legislature, Gov. Earl Warren, and the Regents of the University of California to move the State College over to the more research-oriented University of California system. The State College system sued to stop the takeover but the governor did not support the suit. A state constitutional amendment was passed in 1946 to stop subsequent conversions of State Colleges to University of California campuses.

    From 1944 to 1958, the school was known as Santa Barbara College of the University of California, before taking on its current name. When the vacated Marine Corps training station in Goleta was purchased for the rapidly growing college Santa Barbara City College moved into the vacated State College buildings.

    Originally the regents envisioned a small several thousand–student liberal arts college a so-called “Williams College of the West”, at Santa Barbara. Chronologically, The University of California-Santa Barbara is the third general-education campus of the University of California, after The University of California-Berzerkeley and The University of California-Los Angeles (the only other state campus to have been acquired by the University of California system). The original campus the regents acquired in Santa Barbara was located on only 100 acres (40 ha) of largely unusable land on a seaside mesa. The availability of a 400-acre (160 ha) portion of the land used as Marine Corps Air Station Santa Barbara until 1946 on another seaside mesa in Goleta, which the regents could acquire for free from the federal government, led to that site becoming the Santa Barbara campus in 1949.

    Originally only 3000–3500 students were anticipated but the post-WWII baby boom led to the designation of general campus in 1958 along with a name change from “Santa Barbara College” to “University of California-Santa Barbara,” and the discontinuation of the industrial arts program for which the state college was famous. A chancellor- Samuel B. Gould- was appointed in 1959.

    In 1959 The University of California-Santa Barbara professor Douwe Stuurman hosted the English writer Aldous Huxley as the university’s first visiting professor. Huxley delivered a lectures series called The Human Situation.

    In the late ’60s and early ’70s The University of California-Santa Barbara became nationally known as a hotbed of anti–Vietnam War activity. A bombing at the school’s faculty club in 1969 killed the caretaker Dover Sharp. In the spring of 1970 multiple occasions of arson occurred including a burning of the Bank of America branch building in the student community of Isla Vista during which time one male student Kevin Moran was shot and killed by police. The University of California-Santa Barbara ‘s anti-Vietnam activity impelled then-Gov. Ronald Reagan to impose a curfew and order the National Guard to enforce it. Armed guardsmen were a common sight on campus and in Isla Vista during this time.

    In 1995 The University of California-Santa Barbara was elected to The Association of American Universities– an organization of leading research universities with a membership consisting of 59 universities in the United States (both public and private) and two universities in Canada.

    On May 23, 2014 a killing spree occurred in Isla Vista, California, a community in close proximity to the campus. All six people killed during the rampage were students at The University of California-Santa Barbara. The murderer was a former Santa Barbara City College student who lived in Isla Vista.

    Research activity

    According to the National Science Foundation, The University of California-Santa Barbara spent $236.5 million on research and development in fiscal 2013, ranking it 87th in the nation.

    From 2005 to 2009 UCSB was ranked fourth in terms of relative citation impact in the U.S. (behind Massachusetts Institute of Technology, California Institute of Technology, and Princeton University) according to Thomson Reuters.

    The University of California-Santa Barbara hosts 12 National Research Centers, including The Kavli Institute for Theoretical Physics, the National Center for Ecological Analysis and Synthesis, the Southern California Earthquake Center, the UCSB Center for Spatial Studies, an affiliate of the National Center for Geographic Information and Analysis, and the California Nanosystems Institute. Eight of these centers are supported by The National Science Foundation. UCSB is also home to Microsoft Station Q, a research group working on topological quantum computing where American mathematician and Fields Medalist Michael Freedman is the director.

    Research impact rankings

    The Times Higher Education World University Rankings ranked The University of California-Santa Barbara 48th worldwide for 2016–17, while the Academic Ranking of World Universities (ARWU) in 2016 ranked https://www.nsf.gov/ 42nd in the world; 28th in the nation; and in 2015 tied for 17th worldwide in engineering.

    In the United States National Research Council rankings of graduate programs, 10 University of California-Santa Barbara departments were ranked in the top ten in the country: Materials; Chemical Engineering; Computer Science; Electrical and Computer Engineering; Mechanical Engineering; Physics; Marine Science Institute; Geography; History; and Theater and Dance. Among U.S. university Materials Science and Engineering programs, The University of California-Santa Barbara was ranked first in each measure of a study by the National Research Council of the NAS.

    The Global Research Report: United States published by Thomson Reuters in November 2010 rated The University of California-Santa Barbara ‘s research fourth nationally in citation impact.

    Among U.S. university economics programs, in 2010 The University of California-Santa Barbara was ranked sixth for experimental economics; third for environmental economics; and 12th for cognitive and behavioral economics by RePEc.

    Washington Monthly named The University of California-Santa Barbara as the 20th best national university in 2020 based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: