Tagged: Climatology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:18 am on February 7, 2023 Permalink | Reply
    Tags: "High and dry", A new supercomputer drought model projects dry times ahead for much of the nation-especially the Midwest., , , , Climatology,   

    From The DOE’s “ASCR Discovery”: “High and dry” 

    From The DOE’s “ASCR Discovery”


    A new supercomputer drought model projects dry times ahead for much of the nation-especially the Midwest.

    A detail from a recent map that depicts areas of intensive drought in the West and Midwest. Image courtesy of the North American Drought Monitor.

    Midwesterners needn’t bother choosing their poison: droughts or floods. They get a double dose of both.

    The region is experiencing what weather experts call a flash drought, says Rao Kotamarthi, who heads climate and earth system science at the DOE’s Argonne National Laboratory near Chicago.

    “One of the clearest indicators of climate change is that you get intense periods of precipitation,” he says. The Midwest today can experience intense downpours with drought-like conditions lasting for several weeks in between. “Now some farmers actually have to start irrigating even in northern Illinois, which is a big change from before.”

    Kotamarthi’s team published climate-modeling data in Scientific Reports [below] last year that could help U.S. policymakers better anticipate droughts and floods.

    Figure 1
    June, July, August, and September 2003 PDSI, SPEI (1-month), EDDI, and SDVI_NLDAS (SVDI). The black box represents a Flash Drought area from July 1–September 2, 2003. The USDM index is a weekly index, and dates represent the week ending that date. The SVDI index is a daily index, and the monthly value is averaged for each month. The EDDI index is averaged on the last day of each month for the previous 30 days. The SVDI, PDSI, SPEI, and EDDI plots were generated using the Matplotlib41 library for the Python programming language (https://matplotlib.org/). The USDM maps are courtesy of NDMC-UNL and were accessed from https://droughtmonitor.unl.edu/NADM/Maps.aspx. The USDM is jointly produced by the National Drought Mitigation Center (NDMC) at the University of Nebraska-Lincoln(UNL), the United States Department of Agriculture, and the National Oceanic and Atmospheric Administration.

    The paper expands upon an Argonne-AT&T collaboration that led to a 2019 AT&T white paper, The Road to Climate Resiliency, focusing on the southeastern U.S. AT&T and DOE’s Biological and Environmental Research and Advance Scientific Computing Research programs supported the latest work.

    The project also led to release of a Climate Risk and Resilience Portal (ClimRR), developed by Argonne’s Center for Climate Resilience and Decision Science in collaboration with AT&T and the Federal Emergency Management Agency. ClimRR lets users explore future precipitation, temperature and wind for the continental U.S. at high spatial resolution.

    There are more than 50 metrics for gauging when a drought occurs – factors such as temperature, precipitation and evapotranspiration. None of them, however, can quickly project drought onset. The Argonne team has established the Standardized Vapor Pressure Deficit drought index (SVDI) to do just that.

    “You can calculate vapor pressure deficit with temperature and relative humidity. It doesn’t include precipitation,” says Argonne’s Brandi Gamelin, lead author of the Scientific Reports paper. Instead, it includes a measure of evaporative demand.

    “If you have higher evaporative demand, it’s going to pull more moisture out of vegetation and the soil,” drying them, she says. The team also produced a separate wildfire index that is highly correlated to SVDI. In fact, SVDI also works for drought.

    Many indices rely on measures of reduced rainfall to define drought. But “We can go months in many California locations without rainfall,” says Gamelin, a native of the state. “It’s difficult to use the same measure in California than you would use, say, in the Midwest related to drought and agriculture or wildfire risk.”

    Gamelin compared her new drought index against other available measures and showed that it works just as well.

    “Her models gave us confidence that this is a good way to go,” Kotamarthi says. “Vapor pressure deficit is not complicated either to model or measure. One of the things that we push in the paper is how this is useful in the bigger context as climate change increases flash droughts.”

    The models forecast climate change at a high spatial resolution, calculating projections for areas measuring 12 square kilometers (4.6 square miles). The team ran the code on supercomputers at the National Energy Scientific Computing Center at The DOE’s Lawrence Berkeley National Laboratory, and at The DOE’s Argonne Leadership Computing Facility.

    The team aims to tighten the resolution to four square kilometers (1.5 square miles). That would generate about 4 petabytes of data, the equivalent of 200 billion pages of text.

    The goal: help zoom in the global climate model, which operates at a scale of 10,000 square kilometers (3,861 square miles), to 100 square kilometers (38.6 miles) and now to around 16 square kilometers. The simulations focus on extreme and quickly occurring events, generating data at three-hour intervals.

    The Scientific Reports paper projected the frequency of droughts that happen once in 10, 25 and 50 years. A 50-year drought, for example, has a 5% chance of happening and would be widespread, affecting the Midwest, Southwest and Northwest. “The areas affected by drought do increase,” Kotamarthi says. “By mid-century, you see larger portions of the Midwest experiencing drought in general.”

    Since publishing its drought index, the Argonne team has applied new machine-learning methods to identify both short-term and long-term drought. The team caps projections at 50 years to keep uncertainty values within reasonable limits.

    Last year’s study focused on a short-term drought index that worked well, Gamelin says. “Now we’re looking to understand long-term drought better with it.”

    A new study will test the index to see if it can identify where and when droughts happened between 1980 and 2021 and probe more deeply into why they began and ended. Then the researchers will apply the methods to projecting future droughts.

    Drought can dry the soil but so can wildfire. The heat from wildfires forms a barrier on mountain slopes, resulting in hydrophobic, or water-repellent, soils “so, you have a higher risk or incidence of flash flooding,” Gamelin says. These conditions often lead to droughts and floods happening in tandem. Water flowing downhill also lubricates debris flows, adding to the calamity. “That’s a risk up and down California in the mountains and hills.”

    Kotamarthi and Gamelin stress the importance of quantifying uncertainty when considering models of future droughts. “These are projections. They’re not predictions,” Gamelin says.

    To calculate uncertainty, the team statistically samples time series and location data 500 times from the Argonne model and three others that are widely used. Each new series then undergoes an extreme value analysis to create a range of minimum and maximum values. The uncertainty figures may help policymakers decide how best to plan for extreme events of varying magnitude.

    “Money is not unlimited,” Kotamarthi says. “You may want to make your system resilient to a 50-year drought or a once-a-year drought. We are hoping that this kind of information provides decision-makers some points to think about.”

    Scientific Reports

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    ASCR Discovery is a publication of The U.S. Department of Energy

    The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States’ policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation’s nuclear weapons program; nuclear reactor production for the United States Navy; energy conservation; energy-related research; radioactive waste disposal; and domestic energy production. It also directs research in genomics. the Human Genome Project originated in a DOE initiative. DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The agency is led by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.

    Formation and consolidation

    In 1942, during World War II, the United States started the Manhattan Project, a project to develop the atomic bomb, under the eye of the U.S. Army Corps of Engineers. After the war in 1946, the Atomic Energy Commission (AEC) was created to control the future of the project. The Atomic Energy Act of 1946 also created the framework for the first National Laboratories. Among other nuclear projects, the AEC produced fabricated uranium fuel cores at locations such as Fernald Feed Materials Production Center in Cincinnati, Ohio. In 1974, the AEC gave way to the Nuclear Regulatory Commission, which was tasked with regulating the nuclear power industry and the Energy Research and Development Administration, which was tasked to manage the nuclear weapon; naval reactor; and energy development programs.

    The 1973 oil crisis called attention to the need to consolidate energy policy. On August 4, 1977, President Jimmy Carter signed into law The Department of Energy Organization Act of 1977 (Pub.L. 95–91, 91 Stat. 565, enacted August 4, 1977), which created the Department of Energy. The new agency, which began operations on October 1, 1977, consolidated the Federal Energy Administration; the Energy Research and Development Administration; the Federal Power Commission; and programs of various other agencies. Former Secretary of Defense James Schlesinger, who served under Presidents Nixon and Ford during the Vietnam War, was appointed as the first secretary.

    President Carter created the Department of Energy with the goal of promoting energy conservation and developing alternative sources of energy. He wanted to not be dependent on foreign oil and reduce the use of fossil fuels. With international energy’s future uncertain for America, Carter acted quickly to have the department come into action the first year of his presidency. This was an extremely important issue of the time as the oil crisis was causing shortages and inflation. With the Three-Mile Island disaster, Carter was able to intervene with the help of the department. Carter made switches within the Nuclear Regulatory Commission in this case to fix the management and procedures. This was possible as nuclear energy and weapons are responsibility of the Department of Energy.


    On March 28, 2017, a supervisor in the Office of International Climate and Clean Energy asked staff to avoid the phrases “climate change,” “emissions reduction,” or “Paris Agreement” in written memos, briefings or other written communication. A DOE spokesperson denied that phrases had been banned.

    In a May 2019 press release concerning natural gas exports from a Texas facility, the DOE used the term ‘freedom gas’ to refer to natural gas. The phrase originated from a speech made by Secretary Rick Perry in Brussels earlier that month. Washington Governor Jay Inslee decried the term “a joke”.


    The Department of Energy operates a system of national laboratories and technical facilities for research and development, as follows:

    Ames Laboratory
    Argonne National Laboratory
    Brookhaven National Laboratory
    Fermi National Accelerator Laboratory
    Idaho National Laboratory
    Lawrence Berkeley National Laboratory
    Lawrence Livermore National Laboratory
    Los Alamos National Laboratory
    National Renewable Energy Laboratory
    Oak Ridge National Laboratory
    Pacific Northwest National Laboratory
    Princeton Plasma Physics Laboratory
    Sandia National Laboratories
    Savannah River National Laboratory
    SLAC National Accelerator Laboratory
    Thomas Jefferson National Accelerator Facility
    Other major DOE facilities include:
    Albany Research Center
    Bannister Federal Complex
    Bettis Atomic Power Laboratory – focuses on the design and development of nuclear power for the U.S. Navy
    Kansas City Plant
    Knolls Atomic Power Laboratory – operates for Naval Reactors Program Research under the DOE (not a National Laboratory)
    National Petroleum Technology Office
    Nevada Test Site
    New Brunswick Laboratory
    Office of Fossil Energy
    Office of River Protection
    Radiological and Environmental Sciences Laboratory
    Y-12 National Security Complex
    Yucca Mountain nuclear waste repository

    Pahute Mesa Airstrip – Nye County, Nevada, in supporting Nevada National Security Site

  • richardmitnick 9:56 am on January 11, 2023 Permalink | Reply
    Tags: "AI to monitor changes to globally important glacier", , , , Climatology, Crevassing is an important component of ice shelf dynamics., , , , , Un-corking the flow of ice - a process known as "unbuttressing", Using radar satellite images   

    From The University of Leeds (UK) And The University of Bristol (UK): “AI to monitor changes to globally important glacier” 

    U Leeds bloc

    From The University of Leeds (UK)


    The University of Bristol (UK)


    Crevasses on Antarctic ice shelves change the material properties of the ice and influence their flow-speed. Research shows this coupling to be relevant but more complicated than previously thought for the Thwaites Glacier Ice Tongue. Credit: Dr Anna Hogg, University of Leeds.

    Scientists have developed AI to track the development of crevasses – or fractures – on the Thwaites Glacier ice tongue in west Antarctica.

    Crevasses are indicators of stress building-up in the glacier. 

    A team of researchers from the University of Leeds and University of Bristol have adapted an AI algorithm originally developed to identify cells in microscope images to spot crevasses forming in the ice from satellite images.

    Thwaites is a particularly important part of the Antarctic Ice Sheet because it holds enough ice to raise global sea levels by around 60 centimetres and is considered by many to be at risk of rapid retreat, threatening coastal communities around the world.

    Use of AI will allow scientists to more accurately monitor and model changes to this important glacier. 

    Published in the journal Nature Geoscience [below], the research focussed on a part of the glacier system where the ice flows into the sea and begins to float. Where this happens is known as the grounding line and it forms the start of the Thwaites Eastern ice shelf and the Thwaites Glacier ice tongue, which is also an ice shelf.

    Despite being small in comparison to the size of the entire glacier, changes to these ice shelves could have wide-ranging implications for the whole glacier system and future sea-level rise. 

    The scientists wanted to know if crevassing or fracture formation was more likely to occur with changes to the speed of the ice flow. 

    Scientists have mapped the crevasses on the Thwaites Glacier Ice Tongue through time using deep learning. This new research marks a change in the way in which the structural and dynamic properties of ice shelves can be investigated. Credit: Trystan Surawy-Stepney, University of Leeds.

    Developing the algorithm

    Using machine learning, the researchers taught a computer to look at radar satellite images and identify changes over the last decade. The images were taken by the European Space Agency’s Sentinel-1 satellites, which can “see” through the top layer of snow and onto the glacier, revealing the fractured surface of the ice normally hidden from sight.

    The analysis revealed that over the last six years, the Thwaites Glacier ice tongue has sped up and slowed down twice, by around 40% each time – from four km/year to six km/year before slowing. This is a substantial increase in the magnitude and frequency of speed change compared with past records.

    The study found a complex interplay between crevasse formation and speed of the ice flow. When the ice flow quickens or slows, more crevasses are likely to form. In turn, the increase in crevasses causes the ice to change speed as the level of friction between the ice and underlying rock alters.

    Dr Anna Hogg, a glaciologist in the Satellite Ice Dynamics group at Leeds and an author on the study, said: “Dynamic changes on ice shelves are traditionally thought to occur on timescales of decades to centuries, so it was surprising to see this huge glacier speed up and slow down so quickly.”

    “The study also demonstrates the key role that fractures play in un-corking the flow of ice – a process known as “unbuttressing”.

    Scientists have used radar imagery from the European Space Agency’s Sentinel-1 satellites to measure flow speed of the Thwaites Glacier Ice Tongue (shown) and analyse its structural integrity using deep learning. Credit: Benjamin J. Davison, University of Leeds.

    “Ice sheet models must be evolved to account for the fact that ice can fracture, which will allow us to measure future sea level contributions more accurately.”

    Trystan Surawy-Stepney, lead author of the paper and a doctoral researcher at Leeds, added: “The nice thing about this study is the precision with which the crevasses were mapped.

    “It has been known for a while that crevassing is an important component of ice shelf dynamics and this study demonstrates that this link can be studied on a large scale with beautiful resolution, using computer vision techniques applied to the deluge of satellite images acquired each week.” 

    Satellites orbiting the Earth provide scientists with new data over the most remote and inaccessible regions of Antarctica. The radar on board Sentinel-1 allows places like Thwaites Glacier to be imaged day or night, every week, all year round.

    Dr Mark Drinkwater of the European Space Agency commented: “Studies like this would not be possible without the large volume of high-resolution data provided by Sentinel-1. By continuing to plan future missions, we can carry on supporting work like this and broaden the scope of scientific research on vital areas of the Earth’s climate system.”

    As for Thwaites Glacier ice tongue, it remains to be seen whether such short-term changes have any impact on the long-term dynamics of the glacier, or whether they are simply isolated symptoms of an ice shelf close to its end. 

    Science paper:
    Nature Geoscience

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Bristol (UK) is one of the most popular and successful universities in the UK and was ranked within the top 50 universities in the world in the QS World University Rankings 2018.

    The U Bristol (UK) is at the cutting edge of global research. We have made innovations in areas ranging from cot death prevention to nanotechnology.

    The University has had a reputation for innovation since its founding in 1876. Our research tackles some of the world’s most pressing issues in areas as diverse as infection and immunity, human rights, climate change, and cryptography and information security.

    The University currently has 40 Fellows of the Royal Society and 15 of the British Academy – a remarkable achievement for a relatively small institution.

    We aim to bring together the best minds in individual fields, and encourage researchers from different disciplines and institutions to work together to find lasting solutions to society’s pressing problems.

    We are involved in numerous international research collaborations and integrate practical experience in our curriculum, so that students work on real-life projects in partnership with business, government and community sectors.

    U Leeds Campus

    The University of Leeds is a public research university in Leeds, West Yorkshire, England. It was established in 1874 as the Yorkshire College of Science. In 1884 it merged with the Leeds School of Medicine (established 1831) and was renamed Yorkshire College. It became part of the federal Victoria University in 1887, joining Owens College (which became The University of Manchester (UK)) and University College Liverpool (which became The University of Liverpool (UK)). In 1904 a royal charter was granted to the University of Leeds by King Edward VII.

    The university has 36,330 students, the 5th largest university in the UK (out of 169). From 2006 to present, the university has consistently been ranked within the top 5 (alongside the University of Manchester, The Manchester Metropolitan University (UK), The University of Nottingham (UK) and The University of Edinburgh (SCT)) in the United Kingdom for the number of applications received. Leeds had an income of £751.7 million in 2020/21, of which £130.1 million was from research grants and contracts. The university has financial endowments of £90.5 million (2020–21), ranking outside the top ten British universities by financial endowment.

    Notable alumni include current Leader of the Labour Party Keir Starmer, former Secretary of State Jack Straw, former co-chairman of the Conservative Party Sayeeda Warsi, Piers Sellers (NASA astronaut) and six Nobel laureates.

    The university’s history is linked to the development of Leeds as an international centre for the textile industry and clothing manufacture in the United Kingdom during the Victorian era. The university’s roots can be traced back to the formation of schools of medicine in English cities to serve the general public.

    Before 1900, only six universities had been established in England and Wales: The University of Oxford (UK) (founded c. 1096–1201), The University of Cambridge (UK) (c. 1201), The University of London (UK) (1836), The University of Durham (UK) (1837), Victoria University (UK) (1880), and The University of Wales Trinity Saint David[ Prifysgol Cymru Y Drindod Dewi Sant](WLS) (1893).

    The Victoria University was established in Manchester in 1880 as a federal university in the North of England, instead of the government elevating Owens College to a university and grant it a royal charter. Owens College was the sole college of Victoria University from 1880 to 1884; in 1887 Yorkshire College was the third to join the university.

    Leeds was given its first university in 1887 when the Yorkshire College joined the federal Victoria University on 3 November. The Victoria University had been established by royal charter in 1880; Owens College being at first the only member college. Leeds now found itself in an educational union with close social cousins from Manchester and Liverpool.

    Unlike Owens College, the Leeds campus of the Victoria University had never barred women from its courses. However, it was not until special facilities were provided at the Day Training College in 1896 that women began enrolling in significant numbers. The first female student to begin a course at the university was Lilias Annie Clark, who studied Modern Literature and Education.

    The Victoria (Leeds) University was a short-lived concept, as the multiple university locations in Manchester and Liverpool were keen to establish themselves as separate, independent universities. This was partially due to the benefits a university had for the cities of Liverpool and Manchester whilst the institutions were also unhappy with the practical difficulties posed by maintaining a federal arrangement across broad distances. The interests of the universities and respective cities in creating independent institutions was further spurred by the granting of a charter to the University of Birmingham in 1900 after lobbying from Joseph Chamberlain.

    Following a Royal Charter and Act of Parliament in 1903, the then newly formed University of Liverpool began the fragmentation of the Victoria University by being the first member to gain independence. The University of Leeds soon followed suit and had been granted a royal charter as an independent body by King Edward VII by 1904.

    The Victoria University continued after the break-up of the group, with an amended constitution and renamed as the Victoria University of Manchester (though “Victoria” was usually omitted from its name except in formal usage) until September 2004. On 1 October 2004 a merger with the University of Manchester Institute of Science and Technology was enacted to form The University of Manchester.

    In December 2004, financial pressures forced the university’s governing body (the Council) to decide to close the Bretton campus. Activities at Bretton were moved to the main university campus in the summer of 2007 (allowing all Bretton-based students to complete their studies there). There was substantial opposition to the closure by the Bretton students. The university’s other satellite site, Manygates in Wakefield, also closed, but Lifelong Learning and Healthcare programmes are continuing on a new site next to Wakefield College.

    In May 2006, the university began re-branding itself to consolidate its visual identity to promote one consistent image. A new logo was produced, based on that used during the centenary celebrations in 2004, to replace the combined use of the modified university arms and the Parkinson Building, which has been in use since 2004. The university arms will still be used in its original form for ceremonial purposes only. Four university colours were also specified as being green, red, black and beige.

    Leeds provides the local community with over 2,000 university student volunteers. With 8,700 staff employed in 2019-20, the university is the third largest employer in Leeds and contributes around £1.23bn a year to the local economy – students add a further £211m through rents and living costs.

    The university’s educational partnerships have included providing formal accreditation of degree awards to The Leeds Arts University (UK) and The Leeds Trinity University (UK), although the latter now has the power to award its own degrees. The College of the Resurrection, an Anglican theological college in Mirfield with monastic roots, has, since its inception in 1904, been affiliated to the university, and ties remain close. The university is also a founding member of The Northern Consortium (UK).

    In August 2010, the university was one of the most targeted institutions by students entering the UCAS clearing process for 2010 admission, which matches undersubscribed courses to students who did not meet their firm or insurance choices. The university was one of nine The Russell Group Association(UK) universities offering extremely limited places to “exceptional” students after the universities in Birmingham, Bristol, Cambridge, Edinburgh and Oxford declared they would not enter the process due to courses being full to capacity.

    On 12 October 2010, The Refectory of the Leeds University Union hosted a live edition of the Channel 4 News, with students, academics and economists expressing their reaction to the Browne Review, an independent review of Higher Education funding and student finance conducted by John Browne, Baron Browne of Madingley. University of Leeds Vice-Chancellor and Russell Group chairman Michael Arthur participated, giving an academic perspective alongside current vice-chancellor of The Kingston University (UK) and former Pro Vice-Chancellor and Professor of Education at the University of Leeds, Sir Peter Scott. Midway through the broadcast a small group of protesters against the potential rise of student debt entered the building before being restrained and evacuated.

    In 2016, The University of Leeds became University of the Year 2017 in The Times and The Sunday Times’ Good University Guide. The university has risen to 13th place overall, which reflects impressive results in student experience, high entry standards, services and facilities, and graduate prospects.

    In 2018, the global world ranking of the University of Leeds is No.93. There are currently 30,842 students are studying in this university. The average tuition fee is 12,000 – US$14,000.


    Many of the academic departments have specialist research facilities, for use by staff and students to support research from internationally significant collections in university libraries to state-of-the-art laboratories. These include those hosted at the Institute for Transport Studies, such as the University of Leeds Driving Simulator which is one of the most advanced worldwide in a research environment, allowing transport researchers to watch driver behaviour in accurately controlled laboratory conditions without the risks associated with a live, physical environment.

    With extensive links to the St James’s University Hospital through the Leeds School of Medicine, the university operates a range of high-tech research laboratories for biomedical and physical sciences, food and engineering – including clean rooms for bionanotechnology and plant science greenhouses. The university is connected to Leeds General Infirmary and the institute of molecular medicine based at St James’s University Hospital which aids integration of research and practice in the medical field.

    The university also operate research facilities in the aviation field, with the Airbus A320 flight simulator. The simulator was devised with an aim to promote the safety and efficiency of flight operations; where students use the simulator to develop their reactions to critical situations such as engine failure, display malfunctioning and freak weather.

    In addition to these facilities, many university departments conduct research in their respective fields. There are also various research centres, including Leeds University Centre for African Studies.

    Leeds was ranked joint 19th (along with The University of St Andrews (SCT)) amongst multi-faculty institutions in the UK for the quality (GPA) of its research and 10th for its Research Power in the 2014 Research Excellence Framework.

    Between 2014-15, Leeds was ranked as the 10th most targeted British university by graduate employers, a two place decrease from 8th position in the previous 2014 rankings.

    The 2021 The Times Higher Education World University Rankings ranked Leeds as 153rd in the world. The university ranks 84th in the world in the CWTS Leiden Ranking. Leeds is ranked 91st in the world (and 15th in the UK) in the 2021 QS World University Rankings.

    The university won the biennially awarded Queen’s Anniversary Prize in 2009 for services to engineering and technology. The honour being awarded to the university’s Institute for Transport Studies (ITS) which for over forty years has been a world leader in transport teaching and research.

    The university is a founding member of The Russell Group Association(UK), comprising the leading research-intensive universities in the UK, as well as the N8 Group for research collaboration, The Worldwide Universities Network (UK), The Association of Commonwealth Universities (UK), The European University Association (EU), The White Rose University Consortium (UK), the Santander Network and the CDIO Initiative. It is also affiliated to The Universities (UK). The Leeds University Business School holds the ‘Triple Crown’ of accreditations from the Association to Advance Collegiate Schools of Business, the Association of MBAs and the European Quality Improvement System.

  • richardmitnick 12:33 pm on November 14, 2022 Permalink | Reply
    Tags: "Columbia Engineering Arts and Sciences and Columbia Climate School to Launch $25M Climate Modeling Center", "LEAP": Learning the Earth with Artificial Intelligence and Physics, , , Climatology, Data Sciences, , , Many parts of the world have been buffeted by extreme weather events., The expertise and deep knowledge of Columbia researchers and their partners will be the driving force behind the Learning the Earth with Artificial Intelligence and Physics Center., The Learning the Earth with Artificial Intelligence and Physics Center will capitalize on the broad and comprehensive expertise we have at Columbia in climate science and machine learning., The researchers aim to transform climate projection by converging geoscience with machine learning and training a new generation of scientists and engineers proficient in climate science.   

    From The Fu Foundation School of Engineering and Applied Science At Columbia University: “Columbia Engineering Arts and Sciences and Columbia Climate School to Launch $25M Climate Modeling Center” 

    From The Fu Foundation School of Engineering and Applied Science


    Columbia U bloc

    Columbia University

    Funded by the National Science Foundation, the new center will integrate Columbia’s expertise in geoscience, AI, and data science to revolutionize climate projections both locally and globally.

    9.9.21 [In social media today]

    Image By: Kiel Mutschelknaus/Columbia Engineering

    The ability to make accurate climate projections has never been more urgent, as we look back at a year when many parts of the world have been buffeted by extreme weather events–droughts, floods, wildfires, rising seas. While there is an ever-growing avalanche of raw data taken from the proliferation of observational technologies continuously monitoring the Earth’s system components–the atmosphere, ocean, land, and cryosphere–the sheer volume of the data has been very difficult to mine.

    Now, thanks to a $25 million five-year grant from the National Science Foundation Columbia University and partners are ready to launch a new Science and Technology Center focused on climate modeling, where Columbia researchers will get closer to building better climate models for a safer planet. The center, Learning the Earth with Artificial Intelligence and Physics (LEAP), will be led by Pierre Gentine, Maurice Ewing and J. Lamar Worzel Professor of Earth and Environmental Engineering at Columbia Engineering, who also has a joint appointment in Earth and Environmental Sciences in Arts and Sciences and is affiliated with the Earth Institute in the Climate School.

    “This NSF grant addresses a grand challenge facing our global society with long-term impact in many areas. Columbia University is uniquely positioned to develop transformative solutions by leveraging our transdisciplinary strengths and successful track records in convergent research. We are thrilled to be leading this important effort, together with our colleagues across the university and nationwide,” said Shih-Fu Chang, interim dean of Columbia Engineering. “Columbia University has long been at the forefront of climate science and AI research and we are excited to see where our work will take us.”

    The expertise and deep knowledge of Columbia researchers and their partners will be the driving force behind the Learning the Earth with Artificial Intelligence and Physics Center. Gentine will be joined by Deputy Director Galen McKinley, a professor of Earth and Environmental Sciences in the Faculty of Arts and Sciences who is based at Lamont-Doherty Earth Observatory, part of the Columbia Climate School.

    They will collaborate closely with Columbia faculty at the Engineering School, Lamont-Doherty Earth Observatory, the Faculty of Arts and Sciences, Teachers College, and Business and Social Work schools. The team will also collaborate with peers at the National Center for Atmospheric Research (NCAR), NASA’s Goddard Institute for Space Studies, New York University (NYU), and Universities of California-Irvine, Minnesota, and Montreal to provide a leap in the quality of the NSF-funded Community Earth System Model.

    “The Learning the Earth with Artificial Intelligence and Physics Center will capitalize on the broad, comprehensive expertise we have at Columbia in climate science and machine learning,” Gentine said. “Our goal is to eliminate some of the uncertainty about extreme weather across the globe–how hot the Earth will get and what this will mean for any one of us.”

    The researchers aim to transform climate projection by converging geoscience with machine learning and training a new generation of scientists and engineers proficient in climate science and data science, and by using AI to better understand and analyze the vast amount of data being collected. The center’s innovative approach to Earth system modeling is the first to use machine learning to address model structural deficiencies with new parameterizations, and develop new data products and model skill metrics. By embedding physical and biological knowledge into machine learning, the researchers expect the new center to revolutionize Earth system modeling.

    “This integration will spawn a new era of machine learning algorithms using physical knowledge to robustly extrapolate to future conditions,” McKinley added. “Our research will support climate adaptation around the world, as well as train the next generation of diverse students in the emerging new discipline of climate data science.”

    The Learning the Earth with Artificial Intelligence and Physics Center will be housed in Columbia Engineering and physically located in the School’s new Innovation hub on 125th street, just across from the Manhattanville campus. Joining Gentine and McKinley from Columbia Engineering, Arts and Sciences, and Lamont-Doherty are an interdisciplinary group of members actively contributing to data science, AI, and geoscience. Carl Vondrick from computer science at Columbia Engineering will serve as Director of Data Science of the center. Laure Zanna of NYU will serve as the Geoscience Director.

    At this highly collaborative center, Tian Zheng, chairperson and professor of statistics in Arts and Sciences, will serve as the Chief Convergence Officer and Education Director. Courtney Cogburn, a professor at Columbia’s School of Social Work, will lead the center’s diversity, equity, and inclusion efforts. Ryan Abernathey, an Arts and Sciences professor also based at Lamont-Doherty will lead development of data and computational tools. Vanessa Burbano, a professor at Columbia Business School, will lead the corporate engagement program.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Columbia University Fu Foundation School of Engineering and Applied Science is the engineering and applied science school of Columbia University. It was founded as the School of Mines in 1863 and then the School of Mines, Engineering and Chemistry before becoming the School of Engineering and Applied Science. On October 1, 1997, the school was renamed in honor of Chinese businessman Z.Y. Fu, who had donated $26 million to the school.

    The Fu Foundation School of Engineering and Applied Science maintains a close research tie with other institutions including National Aeronautics and Space Administration, IBM, Massachusetts Institute of Technology, and The Earth Institute. Patents owned by the school generate over $100 million annually for the university. Faculty and alumni are responsible for technological achievements including the developments of FM radio and the maser.

    The School’s applied mathematics, biomedical engineering, computer science and the financial engineering program in operations research are very famous and ranked high. The current faculty include 27 members of the National Academy of Engineering and one Nobel laureate. In all, the faculty and alumni of Columbia Engineering have won 10 Nobel Prizes in physics, chemistry, medicine, and economics.

    The school consists of approximately 300 undergraduates in each graduating class and maintains close links with its undergraduate liberal arts sister school Columbia College which shares housing with SEAS students.

    Original charter of 1754

    Included in the original charter for Columbia College was the direction to teach “the arts of Number and Measuring, of Surveying and Navigation […] the knowledge of […] various kinds of Meteors, Stones, Mines and Minerals, Plants and Animals, and everything useful for the Comfort, the Convenience and Elegance of Life.” Engineering has always been a part of Columbia, even before the establishment of any separate school of engineering.

    An early and influential graduate from the school was John Stevens, Class of 1768. Instrumental in the establishment of U.S. patent law. Stevens procured many patents in early steamboat technology; operated the first steam ferry between New York and New Jersey; received the first railroad charter in the U.S.; built a pioneer locomotive; and amassed a fortune, which allowed his sons to found the Stevens Institute of Technology.

    When Columbia University first resided on Wall Street, engineering did not have a school under the Columbia umbrella. After Columbia outgrew its space on Wall Street, it relocated to what is now Midtown Manhattan in 1857. Then President Barnard and the Trustees of the University, with the urging of Professor Thomas Egleston and General Vinton, approved the School of Mines in 1863. The intention was to establish a School of Mines and Metallurgy with a three-year program open to professionally motivated students with or without prior undergraduate training. It was officially founded in 1864 under the leadership of its first dean, Columbia professor Charles F. Chandler, and specialized in mining and mineralogical engineering. An example of work from a student at the School of Mines was William Barclay Parsons, Class of 1882. He was an engineer on the Chinese railway and the Cape Cod and Panama Canals. Most importantly he worked for New York, as a chief engineer of the city’s first subway system, the Interborough Rapid Transit Company. Opened in 1904, the subway’s electric cars took passengers from City Hall to Brooklyn, the Bronx, and the newly renamed and relocated Columbia University in Morningside Heights, its present location on the Upper West Side of Manhattan.

    Columbia U Campus
    Columbia University was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

  • richardmitnick 8:41 am on October 21, 2022 Permalink | Reply
    Tags: "National climate science satellite mission co-led by The University of Toronto secures more than $200 million", , , , Climatology, , , NASA’s international Atmosphere Observing System (AOS), , The HAWC satellite system – High-altitude Aerosol Water vapour and Clouds system,   

    From The University of Toronto (CA): “National climate science satellite mission co-led by The University of Toronto secures more than $200 million” 

    From The University of Toronto (CA)


    (Photo by Karen Nyberg/JSC/NASA)

    Scientists across Canada will be able to better predict and mitigate extreme weather events in the face of climate change thanks to a new satellite mission that’s received more than $200 million in federal funding.

    The HAWC satellite system – which stands for High-altitude, Aerosol, Water vapour and Clouds – is Canada’s contribution to NASA’s international Atmosphere Observing System (AOS), a multi-satellite initiative designed to provide critical atmospheric measurements for climate change projections.


    Currently slated to launch in 2028 and 2031, HAWC will use three innovative sensors to deliver the critical data needed to predict extreme weather, monitor for natural disasters and model climate-change impacts, especially in the Arctic.

    “Canada has always played a key role in international space programs, helping to find solutions to global challenges. Today’s more than $200 million announcement builds on those successes with our participation in NASA’s AOS program. It also speaks to our commitment to harnessing science and research to address climate change, natural disasters, and other issues that are important to Canadians,” said François-Philippe Champagne, Canada’s minister of innovation, science and industry in a release.

    “So many scientists and institutions have come together across the country, to pool their expertise and resources in support of this important and exciting mission,” said the University of Toronto’s Kaley Walker, HAWC co-lead and professor in the department of physics in the Faculty of Arts & Science. “The data we will capture through this satellite mission will help us better understand clouds, aerosols and their interactions – a major source of uncertainty in climate modelling – and strengthen our predictions.”

    New and improved data from HAWC will help scientists and policymakers make evidence-based decisions to combat climate change and help Canada and regions around the world prepare for extreme events such as winter storms, wildfire smoke plumes, heavy precipitation and volcanic eruptions, Walker said.

    “Professor Walker and her colleagues are addressing one of the most critical challenges of our time — the existential threat of climate change and the extreme weather associated with it,” said Leah Cowen, The University of Toronto’s vice-president, research and innovation, and strategic initiatives. “I congratulate Professor Walker for her leadership role in developing this important nationwide collaboration.”

    The HAWC mission is a collaboration between four co-lead institutions – The University of Toronto, The University of Saskatchewan, The Université du Québec à Montréal and McGill University – and other universities across the country, the Canadian Space Agency (CSA), Environment and Climate Change Canada, Natural Resources Canada, the National Research Council of Canada and Canadian aerospace companies with expertise in optics and satellite technology. The University of Toronto HAWC team members Walker and Kimberly Strong, professor and chair of the department of physics, will lead data quality and validation for HAWC and contribute expertise in satellite mission development.

    “I am thrilled to congratulate Professor Walker and her colleagues for their incredible contributions to science and research, particularly the significant impact on atmospheric science in Canada,” said Melanie Woodin, dean of the Faculty of Arts & Science. “I look forward to seeing not only the results from this mission, but also the training opportunities and enhanced expertise it will bring through key partnerships with our sector, industry and other stakeholders.”

    The coast-to-coast consortium of 13 universities collaborating on this mission includes: The University of Toronto, The University of Saskatchewan, The Université du Québec à Montréal, McGill University, The University of New Brunswick, The Université de Sherbrooke, The University of Waterloo, The Wilfrid Laurier University, St. Francis Xavier University, Saint Mary’s University, The University of Victoria, Western University and Dalhousie University.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities outside the United States, the other being McGill(CA).

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.


    Since 1926 the University of Toronto has been a member of the Association of American Universities a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

  • richardmitnick 12:55 pm on October 17, 2022 Permalink | Reply
    Tags: "Faster-developing and Wetter Hurricanes To Come", A warmer world is poised to bring hurricanes that intensify quicker and with them a heightened risk of flooding to the U.S. Atlantic Coast., , , , Climatology, , , Researchers find the rates at which hurricanes strengthen near the U.S. Atlantic Coast have climbed since 1979., , These findings have profound implications for coastal residents and decision- and policy-makers. This isn’t specific only to the Atlantic.   

    From The DOE’s Pacific Northwest National Laboratory: “Faster-developing and Wetter Hurricanes To Come” 

    From The DOE’s Pacific Northwest National Laboratory

    Brendan Bane

    In a new study, researchers at the Department of Energy’s Pacific Northwest National Laboratory find that the U.S. Atlantic Coast is becoming a breeding ground for rapidly intensifying hurricanes. Fueled by environmental conditions that beget increasingly severe storms—with climate change as a root contributor—the new research finds that hurricanes are growing wetter and strengthening faster near the already hurricane-battered coastline.

    Hurricane Ian, whose wide eye is shown here, is among the strongest storms to strike the U.S. coast. New research finds that rapidly intensifying hurricanes such as Ian will develop faster and grow wetter in a future marked by continued fossil fuel reliance. (Image: NASA)

    Looking at data that describe the past four decades of hurricane activity and the conditions that shaped them, researchers find the rates at which hurricanes strengthen near the U.S. Atlantic Coast have climbed since 1979. Looking into a future marked by continued fossil fuel reliance, the team finds this trend is likely to continue.

    A warmer world, said climate scientist Karthik Balaguru, is poised to bring hurricanes that intensify quicker and, with them, a heightened risk of flooding to the U.S. Atlantic Coast.

    “Our findings have profound implications for coastal residents, decision- and policy-makers,” said Balaguru. “And this isn’t specific only to the Atlantic. It’s happening in several prominent coastal regions across the world.”

    Balaguru’s team found that a unique coastal phenomenon lies at the heart of the bustling hurricane activity. A mix of environmental conditions caused by this phenomenon ultimately makes the coastline more conducive to hurricane development.

    The same mix of hurricane-favoring conditions doesn’t appear in the Gulf of Mexico, which the team explored. But they could form in many other regions, including those near the East Asian coastline and the northwest Arabian Sea.

    The new study was published today, October 17, in Geophysical Research Letters [below], a journal of the American Geophysical Union.

    When hurricanes rapidly intensify

    Some storms, like Hurricane Ian, which dealt extensive damage and is among the strongest to approach the U.S. coast, can suddenly turn severe. Supercharged by hurricane-friendly conditions like a warmer sea surface or greater atmospheric humidity, they can rapidly intensify, jumping multiple categories sometimes in short order.

    Because of the speed at which they build, such hurricanes can elude the predictions of the forecasting community’s best tools. That’s why members of that community—Balaguru among them—are working to better anticipate and understand the conditions that drive rapid hurricane intensification.

    The new study reveals that such hurricane-producing conditions are growing more common along the U.S. Atlantic Coast. The key to this changing environment, said Balaguru, begins with warming.

    As global temperatures rise, Earth’s surface warms. But that warming doesn’t happen uniformly. Earth’s surface, after all, isn’t made of uniform material. Rocks, dirt, water, trees—it all warms at different rates. And land, for instance, is generally warmer than the sea.

    But as greenhouse gases build, said atmospheric scientist and coauthor of the new study Ruby Leung, the temperature difference between warmer land and cooler sea grows more and more divergent.

    “Unlike the ocean with unlimited water supply,” said Leung, “there’s much less water in soil. That means the land can’t evaporate as much water, so it can’t get rid of the extra heat trapped by greenhouse gases as quickly as the ocean.” Indeed, global maps depicting past and future warming show the distinct pattern of land warming more than the sea. This increasingly strong difference can create stronger storms.

    What’s causing these faster-developing, wetter storms?

    The new study describes unique, hurricane-favoring conditions that come about from this difference in warming. Over the warmer land, air pressure is lower. Over the cooler sea, air pressure is relatively higher. The higher-pressure air blows inland toward those warmer, lower-pressure areas.

    Earth’s rotation guides these winds in a cyclonic, twisting direction. This spinning strengthens something called “vorticity,” a spinning motion of air that, in this case, happens in the lowest level of Earth’s atmosphere.

    This twisting motion pulls humid air near Earth’s surface up into the atmosphere. Hurricanes are often described as “heat engines,” continually sucking up warm, moist air and converting its energy into damaging winds. That energy comes in part from the condensation of water vapor.

    As moist air rises inside the hurricane’s core and cools toward the top, water vapor condenses and emits heat. The heat warms nearby air causing it to ascend further. This process invigorates the storm.

    Add greenhouse gases that warm the land even more, said Leung, and you strengthen this twisting motion that pulls humid air up. A warmer sea surface—also a product of climate change—adds even more humidity.

    Vertical wind shear, however, can throw a wrench into the “heat engine” by injecting dry air into the storm’s core, robbing the hurricane of heat and moisture. But Balaguru’s team found that this negating force has weakened on the U.S. Atlantic Coast over the past four decades, adding to the problem.

    “The nearshore environment has absolutely become more favorable for hurricanes near the Atlantic Coast,” said Balaguru, “and that’s very consistent with the rising hurricane intensification we’ve observed in the region.”

    What role does climate change play?

    The team wanted to identify what role climate change plays in shaping these hurricane-favoring conditions. They also wanted to explore how those conditions might change through the rest of the century.

    Using models that depict what consequences would follow in a fossil-fuel-based world economy, the team found that the same conditions will increasingly favor storm development, bringing even greater chances of wetter, faster-developing storms through 2100.

    Wind shear will weaken on the Atlantic coast. Potential intensity, which denotes the maximum intensity a storm can sustain under the prevailing conditions, will rise. Atmospheric humidity and nearshore vorticity will strengthen as well.

    By averaging their results across multiple climate models, the team reduced the “noise” of natural variability within Earth’s climate system. After comparing across models, what primarily remained was the clear and distinct signal of climate change.

    “The spatial patterns of change we’re seeing are consistent across models,” said Balaguru, “and that means that what we have seen is likely related to climate change. Natural variability does play a role, but to a lesser degree.”

    These increasingly stark land-sea temperature differences could arise in other coastal areas. Though this research only focused on the northern hemisphere, one would expect the same thing to happen on coastlines of the southern hemisphere, said Balaguru. Because more storms occur in the northern hemisphere, he added, the effect would likely be more prevalent there.

    The land-sea temperature differences hold other implications, too. “For example, they have been associated with increasing aridity over land and changing seasonality of precipitation in some regions,” said Leung. “Considering the land-sea warming contrast, this study adds a new and important consequence: changes to hurricane behavior in coastal regions that could affect large populations around the world.”

    This work was supported in part by DOE’s Earth and Environmental Systems Modeling Program in the Office of Science. Portions of the work were carried out at the National Energy Research Scientific Computing Center, a DOE Office of Science user facility. In addition to Balaguru and Leung, PNNL data scientist Wenwei Xu is also a coauthor, along with Gregory Foltz, Dongmin Kim, Hosmay Lopez and Robert West of the National Oceanic and Atmospheric Administration.

    Science paper:
    Geophysical Research Letters
    See the science paper for detailed material with images.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Pacific Northwest National Laboratory (PNNL) is one of the United States Department of Energy National Laboratories, managed by the Department of Energy’s Office of Science. The main campus of the laboratory is in Richland, Washington.

    PNNL scientists conduct basic and applied research and development to strengthen U.S. scientific foundations for fundamental research and innovation; prevent and counter acts of terrorism through applied research in information analysis, cyber security, and the nonproliferation of weapons of mass destruction; increase the U.S. energy capacity and reduce dependence on imported oil; and reduce the effects of human activity on the environment. PNNL has been operated by Battelle Memorial Institute since 1965.

  • richardmitnick 9:22 am on October 6, 2022 Permalink | Reply
    Tags: , As permafrost thaws bacteria and viruses that have been hidden underground for tens of thousands of years are being uncovered., As the planet’s ice disappears it’s exposing new surfaces and opportunities and threats, China; Japan; South Korea; Britain and EU members are becoming more focused on the region as well., , Climatology, , Eight countries claim territory in the Arctic: Canada; Denmark (because Greenland was its former colony); Finland; Iceland; Norway; Russia; Sweden; and the United States., , Greenland has deposits of coal and copper and gold and nickel and cobalt and rare-earth metals and zinc., Mining the ocean floor could cause serious harm to marine ecosystems including to the plankton that are the basis of the food chain., Permafrost-some of which has been frozen for tens or hundreds of thousands of years-stores the carbon-based remains of plants and animals that froze before they could decompose., , The International Seabed Authority has already approved 30 contracts for seabed exploration., , The resulting potential sea level rise would spell disaster for the 680 million people who live in low-lying coastal areas around the world-a number expected to top one billion by 2050., The U.S. Congressional Research Service estimated that the Arctic contains one trillion dollars’ worth of precious metals and minerals., The United States Geological Survey has estimated that about 30 percent of the world’s undiscovered gas and 13 percent of the world’s undiscovered oil may be found north of the Arctic Circle., , When the ice in permafrost melts the ground becomes unstable and can slump causing rock and landslides and floods and coastal erosion.   

    From The Lamont-Doherty Earth Observatory At Columbia University: “What Lies Beneath Melting Glaciers and Thawing Permafrost?” 


    From The Lamont-Doherty Earth Observatory


    Columbia U bloc

    Columbia University

    Renee Cho

    As the planet’s ice disappears, it’s exposing new surfaces, opportunities, and threats — including valuable mineral deposits, archaeological relics, novel viruses, and more.

    Greenland ice cap. Photo: Doc Searls.

    Across the planet, ice is rapidly disappearing. From mountain tops, the poles, the seas, and the tundra. As the ice melts, it’s exposing new surfaces, new opportunities, and new threats — including valuable mineral deposits, archaeological relics, novel viruses, and more.

    Melting glaciers and sea ice

    The Arctic is warming four times faster than the rest of the planet, and this means that glaciers, which sit on land, and sea ice, which floats on the ocean surface, are melting rapidly. Two-thirds of Arctic Sea ice has disappeared since 1958 when it was first measured. Between 2000 and 2019, the world’s glaciers lost 267 billon tons of ice each year. Himalayan glaciers are on a trajectory to lose one-third of their ice by 2100, and Alpine glaciers are projected to lose half of theirs.

    “I can tell you from our research that the bedrock underneath the ice will become exposed at a much higher speed than we think,” said Joerg Schaefer, a climate geochemist at the Columbia Climate School’s Lamont-Doherty Earth Observatory who is researching the Greenland ice sheet. “All of the predictions are way too conservative in terms of change—the change will be much faster. That’s true globally. But Greenland might be one of the areas where these predictions of ice change are way, way, way too conservative because of a variety of climate factors.”

    Some places, like Thailand, are already experiencing coastal flooding. Photo: UN DRR.

    Because of the global warming human activity has already caused, Greenland’s melting will cause sea levels to rise 10.6 inches, according to a new study [Nature Climate Change (below)]. This amount of melting is already locked in, said the study authors. They added that 10.6 inches is a low estimate; if emissions continue and Greenland’s record-breaking melting of 2012 becomes the norm, we could be facing 30 inches or more of sea level rise. The loss of ice from the West and East Antarctic ice sheets and from other glaciers would add to this.

    The resulting potential sea level rise would spell disaster for the 680 million people who live in low-lying coastal areas around the world, a number expected to top one billion by 2050.

    What lies under melting ice?

    Fossil fuels and precious metals

    Until recently, most exploitation of the Arctic’s oil and gas resources were on land. But summer ice cover in the Arctic could disappear as early as 2035, making the region more accessible to ships and providing new opportunities for fossil fuel extraction and mining.

    The United States Geological Survey has estimated that about 30 percent of the world’s undiscovered gas and 13 percent of the world’s undiscovered oil may be found north of the Arctic Circle, mostly offshore in the ocean. In addition to these fossil fuels, the U.S. Congressional Research Service estimated that the Arctic contains one trillion dollars’ worth of precious metals and minerals.

    Greenland has deposits of coal, copper, gold, nickel, cobalt, rare-earth metals, and zinc. As the melting ice uncovers land that has been inaccessible for thousands of years, prospectors are moving in.

    Schaefer’s research involves sampling underneath Greenland’s ice and using isotope tools to figure out when the area was last ice-free in order to identify the most vulnerable segments of the Greenland ice sheet. He is often questioned by mineral consortiums. “They just want to know what is underneath the ice sheet. ‘Send us your rocks, we need to know what minerals are in there. And when is it gone? Or what does it take to melt it?’ They just want to get into these mineral deposits,” he said.

    Valuable metals are also found in the deep seabed in the Arctic and elsewhere. Potato-like nodules on the Arctic Ocean floor contain copper, nickel, and rare earths such as scandium, used in the aerospace industry. Norway is exploring deep sea mining of the ocean floor to exploit deposits of copper, zinc, cobalt, gold, and silver. The International Seabed Authority has already approved 30 contracts for seabed exploration.

    Mining the ocean floor could cause serious harm to marine ecosystems including to the plankton that are the basis of the food chain. And while deep sea mining companies claim their environmental impacts are less than those of land mining, much of the deep sea and its ecosystems remain largely unexplored. Several companies and environmental groups are calling for a global moratorium on deep seabed mining until its environmental impacts are better understood.

    However, avoiding the worst impacts of climate change means transitioning from fossil fuels to renewable energy, which requires large quantities of minerals. As much as three billion tons of metals — including lithium, nickel, manganese, cobalt, copper, silicon, silver, zinc, iron ore, and aluminum — may be needed for technologies such as batteries for electric vehicles, wind turbines, solar panels, and other clean energy technologies. The World Bank estimates that the production of minerals could increase by nearly 500 percent by 2050 to meet the growing demand for renewable energy technologies.

    One ecologically sound alternative to mining the exposed land or deep seabed would be to extract valuable metals from recycled electronic waste, but the reality is that only about 20 percent of e-waste is recycled—the rest is discarded. In any case, more precious metals than are currently in circulation will be needed to supply materials for the transition to clean energy. As a member of the Deep Sea Conservation Coalition said, “You can’t recycle what you don’t have.”

    More shipping

    Melting sea ice has opened up waterways in the Arctic, enabling shipping to increase by 25 percent between 2013 and 2019.

    As more oil tankers and bulk carriers traverse the region, the result has also been an 85 percent increase in black carbon mainly from their use of heavy fuel oil. When black carbon — a form of air pollution that results from the incomplete combustion of fossil fuels — lands on snow or ice, it darkens it and hastens melting. Black carbon also causes respiratory and cardiovascular illnesses in humans. The U.N.’s International Maritime Organization has banned the use of heavy fuel oil in the Arctic, but the ban won’t go into effect until 2029.

    With the melting summer ice, cruise tourism is also increasing. In 2016, the first large cruise ship traversed the Arctic and stopped at Nome, AK. This summer, 27 cruise ships were scheduled to dock there. More cruise ships mean more carbon emissions that blacken the ice and disrupt marine ecosystems.

    Thawing permafrost

    Permafrost thawing near the Yukon. Photo: Boris Radosavljevic.

    Global warming is also causing the thawing of permafrost—ground that remains frozen for two or more consecutive years. It is found at high latitudes and high altitudes, mainly in Siberia, the Tibetan Plateau, Alaska, Northern Canada, Greenland, parts of Scandinavia and Russia. Permafrost, some of which has been frozen for tens or hundreds of thousands of years, stores the carbon-based remains of plants and animals that froze before they could decompose. Scientists estimate that the world’s permafrost holds 1,500 billion tons of carbon, almost double the amount of carbon currently in the atmosphere. As permafrost thaws, the microbes within consume the frozen organic matter and release carbon dioxide and methane into the atmosphere. This accelerates warming, precipitating even more permafrost thaw in an irreversible cycle. Scientists project that two-thirds of the Arctic’s near-surface permafrost could be gone by 2100.

    When the ice in permafrost melts, the ground becomes unstable and can slump, causing rock and landslides, floods, and coastal erosion. The buckling earth can damage buildings, roads, power lines, and other infrastructure. It is affecting many Indigenous communities that have lived and depended on the stability of frozen permafrost for hundreds of years.

    What lies under thawing permafrost?


    As permafrost thaws bacteria and viruses that have been hidden underground for tens of thousands of years are being uncovered. One gram of permafrost was found to harbor thousands of dormant microbe species [Nature Climate Change (below)]. Some of these species could be new viruses or ancient ones for which humans lack immunity and cures, or diseases that society has eliminated, such as smallpox or Bubonic plague. In 2016, a hundred people in Siberia were hospitalized and a boy died after contracting anthrax from an infected reindeer carcass that had frozen 75 years earlier and become exposed when the permafrost thawed. Anthrax spores entered the soil and water, and eventually the food supply.

    Much older specimens have also been uncovered. Scientists have revived a 30,000-year-old virus that infects amoebas and discovered microbes more than 400,000 years old. Some of these microorganisms may already be resistant to our antibiotics [Nature (below)].


    Because the Arctic has been covered by ice and permafrost for much of human history and was largely inaccessible, it was an ideal place to dump chemicals, biohazards, and even radioactive materials. The risks these materials pose in the light of thawing permafrost are poorly understood.

    Radioactive waste from nuclear reactors and submarines, nuclear testing, and dumped nuclear waste can be exposed by melting ice and thawing permafrost. Chemicals and pollutants, such as DDT and PCBs, that were transported through the atmosphere and frozen in the permafrost, may also resurface. Heavy metal mine waste resulting from decades of extensive mining in the Arctic is found in permafrost as well.

    The increased water flow resulting from thawing permafrost will enable pollutants and microorganisms to spread more easily, with potential risks to ecosystems, local communities, and the food chain. The increase in cruise ships, tourism, mining, and commerce in the Arctic could also expose more people to pathogens and pollutants.

    Is there anything positive about melting glaciers and thawing permafrost?

    There are many disasters that could result from melting glaciers and thawing permafrost, but there may also be a few potential benefits.

    Melting ice sheet in Greenland. Photo: NASA Goddard Space Flight Center.

    One study [PNAS (below)] found that the new shipping routes opened by melting ice in the Arctic could reduce the travel time between Asia and Europe substantially. The Arctic routes are 30 to 50 percent shorter than the Suez Canal and Panama Canal routes and can cut travel time by 14 to 20 days. Ships will thus be able to reduce their greenhouse gas emissions by 24 percent, while saving money on fuel and ship wear and tear.

    New mining opportunities in previously inaccessible areas and in the deep sea will make it possible to obtain the quantities of rare and precious metals needed to transition to a clean energy economy. The chairman of the Metals Company said, “The reality is that the clean-energy transition is not possible without taking billions of tons of metal from the planet.”

    The microbes and viruses that have lived in the permafrost for millennia had to develop many adaptations to withstand the harsh environment and may help to develop new antibiotics. To survive, bacteria competed with each other by producing antibiotics, some of which may be entirely new. While some microbes have been found to be antibiotic resistant, others might be able to help develop new antibiotics for medical use. In Arctic soil uncovered by thawing permafrost, scientists discovered new bacteriophages—bacteria eaters—each one of which consumes a different bacterium.

    Researchers found one bacterium that could survive in cold and biodegrade oil in contaminated Arctic soil; the bacterium was able to take up 60 percent of the oil around it. This could potentially help clean up oil spills in the Arctic. Two other bacteria species recovered from thawing permafrost were found to degrade dioxins and furans, volatile liquids, which could aid in remediating contaminated sites. One researcher is studying whether organisms in permafrost can produce enzymes that break down plastics.

    The melting ice and thawing permafrost have also revealed geography and ancient artifacts that are deepening archaeologists’ understanding of history and culture. In the mountains of Norway, melting ice revealed a remote ancient mountain pass and artifacts from the Roman Iron Age and the time of the Vikings. The pass was an important path for moving livestock between grazing sites and a passageway for travel and trade. Researchers also found numerous tools, artifacts, and weapons that had belonged to the Vikings. In the Jotunheimen Mountain Range of Norway, archaeologists discovered an iron arrowhead dating back to the Norwegian Iron Age.

    This year, when Antarctic sea ice cover hit a record low, researchers in the Weddell Sea, a remote part of the Antarctic, were searching for the wreckage of Sir Ernest Shackleton’s ship, Endurance. It had been trapped by the sea ice and sunk in 1915.

    They were able to find the ship almost 9,900 feet underwater, due in part to reduced ice cover.

    In the thawing permafrost of the Yukon, scientists found a perfectly preserved wolf pup that lived 57,000 years ago during the Ice Age, camel bones from 75,000 to 125,000 years ago, and teeth from a hyena-like creature that lived 850,000 to 1.4 million years ago. Because the specimens are well-preserved and contain genetic material, they can help scientists understand how species responded to climate change and human impacts long ago.

    As the planet warms, some countries and regions will lose out, while others will benefit. For example, Siberia will likely become a huge wheat producer, and Canada a major wine producer.

    Greenland’s economy currently relies on fishing, tourism, and hunting but it will need to exploit its natural resources to support an aging population. The sand and sediment released by Greenland’s melting glaciers could be worth more than $1.11 billion because the world faces a severe shortage of the sand needed to make concrete, computers, and glass. While dredging sand and transporting it could cause environmental damage, a clear majority of Greenlanders polled want their government to explore the extraction and exportation of sand.

    As Greenland’s glaciers retreat, they also leave behind silt crushed into nano-size particles by the weight of the ice. This nutrient-rich mud, called glacial rock flour, gives plants more access to nutrients such as potassium, calcium, and silicon, while absorbing CO2 from the air. Adding 27.5 tons of glacial rock flour per hectare increased barley yields in Denmark by 30 percent. Applying 1.1 tons of it to fields absorbs between 250 and 300 kilograms of CO2. The more than one billion tons of glacial rock flour deposited yearly on Greenland could enable farmers to sell carbon credits because of the CO2 absorbed, and boost the country’s economy.
    The changes raise complex questions

    Ultimately, these relatively small potential benefits cannot outweigh the enormous impacts climate change will have on local communities and the planet. “Do I believe that these kinds of changes [mining and shipping opportunities] are translating into something positive for the broader society on the planet? Absolutely not,” said Schaefer. “[They] will further enrich an already incredibly rich tiny minority of capitalists.”

    Map of the Arctic. Photo: Rosie Rosenberger

    Eight countries claim territory in the Arctic: Canada, Denmark (because Greenland was its former colony), Finland, Iceland, Norway, Russia, Sweden, and the United States, some with overlapping geological claims. As the region warms, and new opportunities for exploitation arise, “near-Arctic” countries such as China, Japan, South Korea, Britain, and EU members are becoming more focused on the region as well. Intelligence analyst Rebekah Koffler has warned, “The Arctic is going to be the future battlefield for economic dominance and possession of natural resources.”

    It is a geological reality that as ice melts and permafrost thaws, many surfaces will get exposed. Schaefer believes the best thing to do is to tighten laws so that outsiders or wealthy private companies cannot simply exploit resources without any responsibility to the planet or the people who own the land.

    The question of who will benefit from climate change impacts, and from the melting and thawing regions in particular, is complicated. Schaefer believes these issues are moving away from climate science and into law and ethics, and that perhaps the best framework for resolving them is to prioritize climate justice. He said, “The voices and votes of the people who live there and own the land need to be at the center of everything.”

    Science papers:
    Nature Climate Change
    Nature Climate Change
    See the science papers for instructive imagery.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Lamont–Doherty Earth Observatory is the scientific research center of the Columbia Climate School, and a unit of The Earth Institute at Columbia University.

    It focuses on climate and earth sciences and is located on a 189-acre (64 ha) campus in Palisades, New York, 18 miles (29 km) north of Manhattan on the Hudson River.

    The Lamont–Doherty Earth Observatory was established in 1949 as the Lamont Geological Observatory on the weekend estate of Thomas W. and Florence Haskell Corliss Lamont, which was donated to the university for that purpose. The Observatory’s founder and first director was Maurice “Doc” Ewing, a seismologist who is credited with advancing efforts to study the solid Earth, particularly in areas related to using sound waves to image rock and sediments beneath the ocean floor. He was also the first to collect sediment core samples from the bottom of the ocean, a common practice today that helps scientists study changes in the planet’s climate and the ocean’s thermohaline circulation.

    In 1969, the Observatory was renamed Lamont–Doherty in honor of a major gift from the Henry L. and Grace Doherty Charitable Foundation; in 1993, it was renamed the Lamont–Doherty Earth Observatory in recognition of its expertise in the broad range of Earth sciences. Lamont–Doherty Earth Observatory is Columbia University’s Earth sciences research center and is a core component of the Earth Institute, a collection of academic and research units within the university that together address complex environmental issues facing the planet and its inhabitants, with particular focus on advancing scientific research to support sustainable development and the needs of the world’s poor.

    The Lamont–Doherty Earth Observatory at Columbia University is one of the world’s leading research centers developing fundamental knowledge about the origin, evolution and future of the natural world. More than 300 research scientists and students study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean. From global climate change to earthquakes, volcanoes, nonrenewable resources, environmental hazards and beyond, Observatory scientists provide a rational basis for the difficult choices facing humankind in the planet’s stewardship.

    To support its research and the work of the broader scientific community, Lamont–Doherty operates the 235-foot (72 m) research vessel, the R/V Marcus Langseth, which is equipped to undertake a wide range of geological, seismological, oceanographic and biological studies.

    The Columbia University Lamont-Doherty Earth Observatory R/V Marcus Langseth.

    Lamont–Doherty also houses the world’s largest collection of deep-sea and ocean-sediment cores as well as many specialized research laboratories.

    Columbia U Campus
    Columbia University was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

  • richardmitnick 4:19 pm on July 11, 2022 Permalink | Reply
    Tags: "Glacial Maximum", "Milankovitch cycles", "Precession Helped Drive Glacial Cycles in the Pleistocene", By studying bits of rock scooped up by ancient glaciers researchers have pinned down that recent glacial variability was driven in part by changes in the direction of Earth’s axis of rotation., Climatology, , , Energy received from the Sun at any one point on Earth varies according to two long-term cycles: precession and obliquity., , , Gradual changes in the direction of Earth’s axis of rotation—has played an important role in the breakup of Northern Hemisphere ice sheets over the past 1.7 million years., Here and Gone Again and Again, , , Solar radiation is critically important researchers have agreed.   

    From “Eos” : “Precession Helped Drive Glacial Cycles in the Pleistocene” 

    Eos news bloc

    From “Eos”



    11 July 2022
    Katherine Kornei

    By studying bits of rock scooped up by ancient glaciers researchers have pinned down that recent glacial variability was driven in part by changes in the direction of Earth’s axis of rotation.

    Ice sheets wax and wane according to changes in Earth’s orbit. Credit: iStock.com/MagicDreamer.

    Ice sheets have ebbed and flowed over Earth’s surface for eons. Now scientists have analyzed tiny bits of rock transported by glaciers and gained a better understanding of recent glacial cycles. The team found that precession—gradual changes in the direction of Earth’s axis of rotation—has played an important role in the breakup of Northern Hemisphere ice sheets over the past 1.7 million years. And during the late Pleistocene, that precession-driven collapse coincided with deglaciation.

    Here and Gone Again and Again

    Just 30,000 years ago—a blink in geologic time—significant swaths of Earth’s landmasses were covered in glacial ice. That time period was the so-called Last “Glacial Maximum”, and large ice sheets reigned supreme, said Stephen Barker, a paleoclimatologist at Cardiff University in the United Kingdom. “Where I am here in South Wales, there would be an ice sheet right next door to me.”

    But the majority of those ice sheets have since retreated, and the planet is now in an interglacial period. That shift, from a largely ice covered world to one in which ice is sparser, represents a cycle that has repeated many times, said Barker. “Over the last million years, there have been seven or eight glacial cycles.”

    Eyes on the Sun

    The question of what has driven the planet’s glacial cycles over the past few million years has long preoccupied scientists. Solar radiation is critically important researchers have agreed. But the energy received from the Sun at any one point on Earth varies according to two long-term cycles: precession and obliquity. Precession refers to changes in the direction of Earth’s axis of rotation, and obliquity is the tilt of Earth’s rotational axis as the planet orbits the Sun.

    Orbital Forcing

    These two so-called “Milankovitch cycles” modulate the amount of solar energy received by Earth’s surface over periods of roughly 23,000 and 41,000 years, respectively. But it’s challenging to determine which of those rhythms correlates most strongly with the planet’s glacial cycles, said Barker. “People have been trying to pick one or the other.”

    To help answer that question, Barker and his colleagues analyzed more than 9,000 bits of rock larger than 0.15 millimeter in diameter. The researchers painstakingly picked that material out of a sediment core drilled several hundred kilometers off the southwestern coast of Iceland. These grains of rock reveal the timing of when ancient ice sheets in the Northern Hemisphere grew and ultimately broke up, Barker and his colleagues suggested. That’s because ice moving over Earth’s surface entrains debris, and such material sinks to the seafloor after it’s carried offshore by icebergs.

    Barker and his collaborators calculated the rate at which this so-called ice-rafted debris was deposited on the seafloor. “We literally count it,” he said. “We work out how much has been delivered per unit time.” Spikes in the concentration of ice-rafted debris correspond to the breakup of Northern Hemisphere ice sheets, the researchers concluded.

    A Hidden Role

    The ice-rafted debris the team studied was deposited over the past roughly 1.7 million years. That time span encompasses two important periods, said Barker. There’s the period prior to the Mid-Pleistocene Transition, when glacial cycles were roughly 41,000 years long. And there’s the more recent period, during which glacial cycles have consistently lasted about 100,000 years.

    Barker and his colleagues found that glacial cycles before and after the Mid-Pleistocene Transition were correlated with both precession and changes in obliquity. The team showed that minima in precession—meaning that summer in the Northern Hemisphere occurs when the planet is closest to the Sun—were tied to ice sheet breakup. And times of decreasing obliquity were associated with ice sheet growth.

    It was particularly surprising to uncover the role of precession prior to the Mid-Pleistocene Transition, said Barker. That’s because the shorter glacial cycles long have been assumed to have been driven solely by changes in obliquity occurring at the same cadence, without any influence from precession, he said. “I nearly fell off my chair when I saw that.”

    Furthermore, before the Mid-Pleistocene Transition, ice sheet breakup didn’t always spell the end of an ice age, Barker and his colleagues found. That’s perhaps because ice sheets at that time were limited to higher latitudes, exactly where the effects of obliquity are felt more acutely than those of precession, the researchers suggested. Conversely, after the Mid-Pleistocene Transition, such breakup was often linked to the end of an ice age. One explanation for that difference is that Northern Hemisphere ice sheets might have been larger after the Mid-Pleistocene Transition, and therefore the effects of both obliquity and precession would have been necessary to catapult the planet into a new state. “We need both to help get rid of these larger ice sheets when their time is up,” said Barker.

    These results shed light on long-term cycles that affect our planet’s climate, said Tim Naish, a paleoclimatologist at Victoria University of Wellington in New Zealand who was not involved in the research. “Earth’s climate system dances to the beat of these Milankovitch cycles.”

    The researchers reported in May in Science.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Eos” is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 9:58 am on April 14, 2022 Permalink | Reply
    Tags: "Computing our climate future", Climatology, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges., Scientists are continually working to refine climate models and improve their predictive power., , The team won’t just be trying to refine current climate models - they’re building a new one from the ground up.   

    From The Massachusetts Institute of Technology: “Computing our climate future” 

    MIT News

    From The Massachusetts Institute of Technology

    April 13, 2022
    Paige Colley

    The two leads on the Climate Grand Challenge flagship project “Bringing Computation to the Climate Challenge” are Raffaele Ferrari (left) and Noelle Selin. Photos courtesy of the subjects.

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Challenge.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with The California Institute of Technology, the Naval Postgraduate School, and NASA-JPL/Caltech. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.”

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

  • richardmitnick 8:12 am on February 10, 2022 Permalink | Reply
    Tags: "ESA hosts new office to coordinate global climate modelling push", , Climatology, , ,   

    From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) : “ESA hosts new office to coordinate global climate modelling push” 

    ESA Space For Europe Banner

    European Space Agency – United Space in Europe (EU)

    From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU)


    The European Centre for Space Applications and Telecommunications (ECSAT) is ESA’s facility in the United Kingdom. It is based at the Harwell Campus in Oxfordshire. © Harwell Campus.

    Climate models are an important tool for scientists to understand our past climate and provide projections of future change. As such, they are in increasing demand as part of efforts to avert global warming and reduce risks associated with environmental change. To meet this demand, the World Climate Research Programme will open a new international office in the United Kingdom on 1 March 2022 that will coordinate the programme’s Climate Model Intercomparison Project.

    The Climate Model Intercomparison Project (CMIP) brings together modelling centres from around the world, with the goal of benchmarking, intercomparing and improving state-of-the-art climate model simulations and future projections. CMIP is a large activity with 140 models from 52 institutions representing 26 countries. For the latest cycle alone, CMIP6, the volume of data downloaded reached over 28 petabytes and will only continue to increase.

    The project provides crucial impetus to climate science and the outputs provide foundational model datasets used by climate assessments that contribute to global climate negotiations and decision-making – as recently demonstrated in CMIP6 which was used extensively in the Intergovernmental Panel on Climate Change’s Sixth Assessment Report.

    In recent years, use of CMIP products and the demands on participating research groups has grown significantly to support not just these global climate negotiations, but also national climate assessments, climate services and private sectors striving to manage exposure to future risks and realise opportunities.

    The new office will be hosted alongside ESA’s Climate Office at its European Centre for Space Applications and Telecommunications (ECSAT) facility in the United Kingdom and will take the lead in coordinating scientific and technical planning, as well as stakeholder engagement.

    The new office will be under the leadership of The World Climate Research Programme (WCRP) Working Group on Coupled Modelling (WGCM), its Infrastructure Panel (WIP) and CMIP Panel. This will enable participating research groups to focus on the most urgent climate science questions, while also meeting the needs of a growing and diverse user base.

    Headed by incoming director, Eleanor O’Rourke, the new office will enhance the effectiveness and efficiency of support for national and international assessments, and coordinate discussions with the scientific and user communities on further standardisation protocols, data policy and quality-control of model output and analysis.

    “With five years of initial funding, the office will be key to ensuring CMIP has the support needed to perform the next generation of climate projections and climate assessments, thereby also supporting the move towards more regional-scale climate change information,” explains Detlef Stammer, Chair of WCRP’s Joint Scientific Committee.

    Earth observation data has great value in providing datasets that can be used for model evaluation and improvements, and the CMIP International Project Office will work closely with WCRP partners, including ESA, to provide seamless integration of model and observation information.

    A Short Introduction to Climate Models – CMIP & CMIP6.

    According to Susanne Mecklenburg, Head of ESA’s Climate Office, “Hosting the new CMIP office aligns with ESA’s long-term strategic commitment to provide high-quality observation-based climate data records to support the modelling community.

    “The accurate spatial and temporal view provided by satellites helps to reduce uncertainties in climate models, gives greater confidence in their results and ultimately supports nations to deliver effective climate action and fulfil their pledges under the Paris Agreement.”

    Mike Sparrow, Head of the WCRP Secretariat, comments, “Climate observations and modelling need to go hand-in-hand to provide the best possible projections of our future climate. The new project office will provide critical support for the new WCRP Strategy and we are looking forward to work with ESA to support the CMIP process with the new International Project Office.”

    Catherine Senior, Head of Understanding Climate Change at the UK Met Office Hadley Centre, comments, “The Met Office and UK academic partners welcome the new CMIP International Project Office. It will greatly enhance engagement in future CMIP activities and join-up the UK and international efforts on climate modelling with Earth observations.”

    The new office will be run by staff from HE Space Operations under contract to ESA.

    Jason Maroothynaden, UK Managing Director of HE Space Operations says, “We are delighted to have this opportunity to support both ESA and WCRP climate modelling activities. The CMIP International Project Office also aligns with HE Space’s focus on climate change and sustainability.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC (NL) in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the
    European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA’s space flight programme includes human spaceflight (mainly through participation in the International Space Station program); the launch and operation of uncrewed exploration missions to other planets and the Moon; Earth observation, science and telecommunication; designing launch vehicles; and maintaining a major spaceport, the The Guiana Space Centre [Centre Spatial Guyanais; CSG also called Europe’s Spaceport) at Kourou, French Guiana. The main European launch vehicle Ariane 5 is operated through Arianespace with ESA sharing in the costs of launching and further developing this launch vehicle. The agency is also working with NASA to manufacture the Orion Spacecraft service module that will fly on the Space Launch System.

    The agency’s facilities are distributed among the following centres:

    ESA European Space Research and Technology Centre (ESTEC) (NL)in Noordwijk, Netherlands;
    ESA Centre for Earth Observation [ESRIN] (IT) in Frascati, Italy;
    ESA Mission Control ESA European Space Operations Center [ESOC](DE) is in Darmstadt, Germany;
    ESA -European Astronaut Centre [EAC] trains astronauts for future missions is situated in Cologne, Germany;
    European Centre for Space Applications and Telecommunications (ECSAT) (UK), a research institute created in 2009, is located in Harwell, England;
    ESA – European Space Astronomy Centre [ESAC] (ES) is located in Villanueva de la Cañada, Madrid, Spain.
    European Space Agency Science Programme is a long-term programme of space science and space exploration missions.


    After World War II, many European scientists left Western Europe in order to work with the United States. Although the 1950s boom made it possible for Western European countries to invest in research and specifically in space-related activities, Western European scientists realized solely national projects would not be able to compete with the two main superpowers. In 1958, only months after the Sputnik shock, Edoardo Amaldi (Italy) and Pierre Auger (France), two prominent members of the Western European scientific community, met to discuss the foundation of a common Western European space agency. The meeting was attended by scientific representatives from eight countries, including Harrie Massey (United Kingdom).

    The Western European nations decided to have two agencies: one concerned with developing a launch system, ELDO (European Launch Development Organization), and the other the precursor of the European Space Agency, ESRO (European Space Research Organisation). The latter was established on 20 March 1964 by an agreement signed on 14 June 1962. From 1968 to 1972, ESRO launched seven research satellites.

    ESA in its current form was founded with the ESA Convention in 1975, when ESRO was merged with ELDO. ESA had ten founding member states: Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Sweden, Switzerland, and the United Kingdom. These signed the ESA Convention in 1975 and deposited the instruments of ratification by 1980, when the convention came into force. During this interval the agency functioned in a de facto fashion. ESA launched its first major scientific mission in 1975, Cos-B, a space probe monitoring gamma-ray emissions in the universe, which was first worked on by ESRO.

    ESA50 Logo large

    Later activities

    ESA collaborated with National Aeronautics Space Agency on the International Ultraviolet Explorer (IUE), the world’s first high-orbit telescope, which was launched in 1978 and operated successfully for 18 years.

    ESA Infrared Space Observatory.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics and Space Administration (US) Solar Orbiter annotated.

    A number of successful Earth-orbit projects followed, and in 1986 ESA began Giotto, its first deep-space mission, to study the comets Halley and Grigg–Skjellerup. Hipparcos, a star-mapping mission, was launched in 1989 and in the 1990s SOHO, Ulysses and the Hubble Space Telescope were all jointly carried out with NASA. Later scientific missions in cooperation with NASA include the Cassini–Huygens space probe, to which ESA contributed by building the Titan landing module Huygens.

    ESA/Huygens Probe from Cassini landed on Titan.

    As the successor of ELDO, ESA has also constructed rockets for scientific and commercial payloads. Ariane 1, launched in 1979, carried mostly commercial payloads into orbit from 1984 onward. The next two versions of the Ariane rocket were intermediate stages in the development of a more advanced launch system, the Ariane 4, which operated between 1988 and 2003 and established ESA as the world leader in commercial space launches in the 1990s. Although the succeeding Ariane 5 experienced a failure on its first flight, it has since firmly established itself within the heavily competitive commercial space launch market with 82 successful launches until 2018. The successor launch vehicle of Ariane 5, the Ariane 6, is under development and is envisioned to enter service in the 2020s.

    The beginning of the new millennium saw ESA become, along with agencies like National Aeronautics Space Agency(US), Japan Aerospace Exploration Agency, Indian Space Research Organisation, the Canadian Space Agency(CA) and Roscosmos(RU), one of the major participants in scientific space research. Although ESA had relied on co-operation with NASA in previous decades, especially the 1990s, changed circumstances (such as tough legal restrictions on information sharing by the United States military) led to decisions to rely more on itself and on co-operation with Russia. A 2011 press issue thus stated:

    “Russia is ESA’s first partner in its efforts to ensure long-term access to space. There is a framework agreement between ESA and the government of the Russian Federation on cooperation and partnership in the exploration and use of outer space for peaceful purposes, and cooperation is already underway in two different areas of launcher activity that will bring benefits to both partners.”

    Notable ESA programmes include SMART-1, a probe testing cutting-edge space propulsion technology, the Mars Express and Venus Express missions, as well as the development of the Ariane 5 rocket and its role in the ISS partnership. ESA maintains its scientific and research projects mainly for astronomy-space missions such as Corot, launched on 27 December 2006, a milestone in the search for exoplanets.

    On 21 January 2019, ArianeGroup and Arianespace announced a one-year contract with ESA to study and prepare for a mission to mine the Moon for lunar regolith.


    The treaty establishing the European Space Agency reads:

    The purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems…

    ESA is responsible for setting a unified space and related industrial policy, recommending space objectives to the member states, and integrating national programs like satellite development, into the European program as much as possible.

    Jean-Jacques Dordain – ESA’s Director General (2003–2015) – outlined the European Space Agency’s mission in a 2003 interview:

    “Today space activities have pursued the benefit of citizens, and citizens are asking for a better quality of life on Earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology. I think that space can do all of this: it can produce a higher quality of life, better security, more economic wealth, and also fulfill our citizens’ dreams and thirst for knowledge, and attract the young generation. This is the reason space exploration is an integral part of overall space activities. It has always been so, and it will be even more important in the future.”


    According to the ESA website, the activities are:

    Observing the Earth
    Human Spaceflight
    Space Science
    Space Engineering & Technology
    Telecommunications & Integrated Applications
    Preparing for the Future
    Space for Climate


    Copernicus Programme
    Cosmic Vision
    Horizon 2000
    Living Planet Programme


    Every member country must contribute to these programmes:

    Technology Development Element Programme
    Science Core Technology Programme
    General Study Programme
    European Component Initiative


    Depending on their individual choices the countries can contribute to the following programmes, listed according to:

    Earth Observation
    Human Spaceflight and Exploration
    Space Situational Awareness


    ESA has formed partnerships with universities. ESA_LAB@ refers to research laboratories at universities. Currently there are ESA_LAB@

    Technische Universität Darmstadt
    École des hautes études commerciales de Paris (HEC Paris)
    Université de recherche Paris Sciences et Lettres
    University of Central Lancashire

    Membership and contribution to ESA

    By 2015, ESA was an intergovernmental organisation of 22 member states. Member states participate to varying degrees in the mandatory (25% of total expenditures in 2008) and optional space programmes (75% of total expenditures in 2008). The 2008 budget amounted to €3.0 billion whilst the 2009 budget amounted to €3.6 billion. The total budget amounted to about €3.7 billion in 2010, €3.99 billion in 2011, €4.02 billion in 2012, €4.28 billion in 2013, €4.10 billion in 2014 and €4.33 billion in 2015. English is the main language within ESA. Additionally, official documents are also provided in German and documents regarding the Spacelab are also provided in Italian. If found appropriate, the agency may conduct its correspondence in any language of a member state.

    Non-full member states
    Since 2016, Slovenia has been an associated member of the ESA.

    Latvia became the second current associated member on 30 June 2020, when the Association Agreement was signed by ESA Director Jan Wörner and the Minister of Education and Science of Latvia, Ilga Šuplinska in Riga. The Saeima ratified it on July 27. Previously associated members were Austria, Norway and Finland, all of which later joined ESA as full members.

    Since 1 January 1979, Canada has had the special status of a Cooperating State within ESA. By virtue of this accord, the Canadian Space Agency takes part in ESA’s deliberative bodies and decision-making and also in ESA’s programmes and activities. Canadian firms can bid for and receive contracts to work on programmes. The accord has a provision ensuring a fair industrial return to Canada. The most recent Cooperation Agreement was signed on 15 December 2010 with a term extending to 2020. For 2014, Canada’s annual assessed contribution to the ESA general budget was €6,059,449 (CAD$8,559,050). For 2017, Canada has increased its annual contribution to €21,600,000 (CAD$30,000,000).


    After the decision of the ESA Council of 21/22 March 2001, the procedure for accession of the European states was detailed as described the document titled The Plan for European Co-operating States (PECS). Nations that want to become a full member of ESA do so in 3 stages. First a Cooperation Agreement is signed between the country and ESA. In this stage, the country has very limited financial responsibilities. If a country wants to co-operate more fully with ESA, it signs a European Cooperating State (ECS) Agreement. The ECS Agreement makes companies based in the country eligible for participation in ESA procurements. The country can also participate in all ESA programmes, except for the Basic Technology Research Programme. While the financial contribution of the country concerned increases, it is still much lower than that of a full member state. The agreement is normally followed by a Plan For European Cooperating State (or PECS Charter). This is a 5-year programme of basic research and development activities aimed at improving the nation’s space industry capacity. At the end of the 5-year period, the country can either begin negotiations to become a full member state or an associated state or sign a new PECS Charter.

    During the Ministerial Meeting in December 2014, ESA ministers approved a resolution calling for discussions to begin with Israel, Australia and South Africa on future association agreements. The ministers noted that “concrete cooperation is at an advanced stage” with these nations and that “prospects for mutual benefits are existing”.

    A separate space exploration strategy resolution calls for further co-operation with the United States, Russia and China on “LEO exploration, including a continuation of ISS cooperation and the development of a robust plan for the coordinated use of space transportation vehicles and systems for exploration purposes, participation in robotic missions for the exploration of the Moon, the robotic exploration of Mars, leading to a broad Mars Sample Return mission in which Europe should be involved as a full partner, and human missions beyond LEO in the longer term.”

    Relationship with the European Union

    The political perspective of the European Union (EU) was to make ESA an agency of the EU by 2014, although this date was not met. The EU member states provide most of ESA’s funding, and they are all either full ESA members or observers.


    At the time ESA was formed, its main goals did not encompass human space flight; rather it considered itself to be primarily a scientific research organisation for uncrewed space exploration in contrast to its American and Soviet counterparts. It is therefore not surprising that the first non-Soviet European in space was not an ESA astronaut on a European space craft; it was Czechoslovak Vladimír Remek who in 1978 became the first non-Soviet or American in space (the first man in space being Yuri Gagarin of the Soviet Union) – on a Soviet Soyuz spacecraft, followed by the Pole Mirosław Hermaszewski and East German Sigmund Jähn in the same year. This Soviet co-operation programme, known as Intercosmos, primarily involved the participation of Eastern bloc countries. In 1982, however, Jean-Loup Chrétien became the first non-Communist Bloc astronaut on a flight to the Soviet Salyut 7 space station.

    Because Chrétien did not officially fly into space as an ESA astronaut, but rather as a member of the French CNES astronaut corps, the German Ulf Merbold is considered the first ESA astronaut to fly into space. He participated in the STS-9 Space Shuttle mission that included the first use of the European-built Spacelab in 1983. STS-9 marked the beginning of an extensive ESA/NASA joint partnership that included dozens of space flights of ESA astronauts in the following years. Some of these missions with Spacelab were fully funded and organizationally and scientifically controlled by ESA (such as two missions by Germany and one by Japan) with European astronauts as full crew members rather than guests on board. Beside paying for Spacelab flights and seats on the shuttles, ESA continued its human space flight co-operation with the Soviet Union and later Russia, including numerous visits to Mir.

    During the latter half of the 1980s, European human space flights changed from being the exception to routine and therefore, in 1990, the European Astronaut Centre in Cologne, Germany was established. It selects and trains prospective astronauts and is responsible for the co-ordination with international partners, especially with regard to the International Space Station. As of 2006, the ESA astronaut corps officially included twelve members, including nationals from most large European countries except the United Kingdom.

    In the summer of 2008, ESA started to recruit new astronauts so that final selection would be due in spring 2009. Almost 10,000 people registered as astronaut candidates before registration ended in June 2008. 8,413 fulfilled the initial application criteria. Of the applicants, 918 were chosen to take part in the first stage of psychological testing, which narrowed down the field to 192. After two-stage psychological tests and medical evaluation in early 2009, as well as formal interviews, six new members of the European Astronaut Corps were selected – five men and one woman.

    Cooperation with other countries and organisations

    ESA has signed co-operation agreements with the following states that currently neither plan to integrate as tightly with ESA institutions as Canada, nor envision future membership of ESA: Argentina, Brazil, China, India (for the Chandrayan mission), Russia and Turkey.

    Additionally, ESA has joint projects with the European Union, NASA of the United States and is participating in the International Space Station together with the United States (NASA), Russia and Japan (JAXA).

    European Union
    ESA and EU member states
    ESA-only members
    EU-only members

    ESA is not an agency or body of the European Union (EU), and has non-EU countries (Norway, Switzerland, and the United Kingdom) as members. There are however ties between the two, with various agreements in place and being worked on, to define the legal status of ESA with regard to the EU.

    There are common goals between ESA and the EU. ESA has an EU liaison office in Brussels. On certain projects, the EU and ESA co-operate, such as the upcoming Galileo satellite navigation system. Space policy has since December 2009 been an area for voting in the European Council. Under the European Space Policy of 2007, the EU, ESA and its Member States committed themselves to increasing co-ordination of their activities and programmes and to organising their respective roles relating to space.

    The Lisbon Treaty of 2009 reinforces the case for space in Europe and strengthens the role of ESA as an R&D space agency. Article 189 of the Treaty gives the EU a mandate to elaborate a European space policy and take related measures, and provides that the EU should establish appropriate relations with ESA.

    Former Italian astronaut Umberto Guidoni, during his tenure as a Member of the European Parliament from 2004 to 2009, stressed the importance of the European Union as a driving force for space exploration, “…since other players are coming up such as India and China it is becoming ever more important that Europeans can have an independent access to space. We have to invest more into space research and technology in order to have an industry capable of competing with other international players.”

    The first EU-ESA International Conference on Human Space Exploration took place in Prague on 22 and 23 October 2009. A road map which would lead to a common vision and strategic planning in the area of space exploration was discussed. Ministers from all 29 EU and ESA members as well as members of parliament were in attendance.

    National space organisations of member states:

    The Centre National d’Études Spatiales(FR) (CNES) (National Centre for Space Study) is the French government space agency (administratively, a “public establishment of industrial and commercial character”). Its headquarters are in central Paris. CNES is the main participant on the Ariane project. Indeed, CNES designed and tested all Ariane family rockets (mainly from its centre in Évry near Paris)
    The UK Space Agency is a partnership of the UK government departments which are active in space. Through the UK Space Agency, the partners provide delegates to represent the UK on the various ESA governing bodies. Each partner funds its own programme.
    The Italian Space Agency A.S.I. – Agenzia Spaziale Italiana was founded in 1988 to promote, co-ordinate and conduct space activities in Italy. Operating under the Ministry of the Universities and of Scientific and Technological Research, the agency cooperates with numerous entities active in space technology and with the president of the Council of Ministers. Internationally, the ASI provides Italy’s delegation to the Council of the European Space Agency and to its subordinate bodies.
    The German Aerospace Center (DLR)[Deutsches Zentrum für Luft- und Raumfahrt e. V.] is the national research centre for aviation and space flight of the Federal Republic of Germany and of other member states in the Helmholtz Association. Its extensive research and development projects are included in national and international cooperative programmes. In addition to its research projects, the centre is the assigned space agency of Germany bestowing headquarters of German space flight activities and its associates.
    The Instituto Nacional de Técnica Aeroespacial (INTA)(ES) (National Institute for Aerospace Technique) is a Public Research Organization specialised in aerospace research and technology development in Spain. Among other functions, it serves as a platform for space research and acts as a significant testing facility for the aeronautic and space sector in the country.

    National Aeronautics Space Agency(US)

    ESA has a long history of collaboration with NASA. Since ESA’s astronaut corps was formed, the Space Shuttle has been the primary launch vehicle used by ESA’s astronauts to get into space through partnership programmes with NASA. In the 1980s and 1990s, the Spacelab programme was an ESA-NASA joint research programme that had ESA develop and manufacture orbital labs for the Space Shuttle for several flights on which ESA participate with astronauts in experiments.

    In robotic science mission and exploration missions, NASA has been ESA’s main partner. Cassini–Huygens was a joint NASA-ESA mission, along with the Infrared Space Observatory, INTEGRAL, SOHO, and others.

    National Aeronautics and Space Administration(US)/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Integral spacecraft

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU)/National Aeronautics and Space Administration(US) SOHO satellite. Launched in 1995.

    Also, the Hubble Space Telescope is a joint project of NASA and ESA.

    National Aeronautics and Space Administration(US)/European Space Agency[La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope

    Future ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna.

    National Aeronautics Space Agency(USA)/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation]Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Space Telescope annotated. Scheduled for launch in December 2021.

    Gravity is talking. Lisa will listen. Dialogos of Eide.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics and Space Administration (US) eLISA space based, the future of gravitational wave research.

    NASA has committed to provide support to ESA’s proposed MarcoPolo-R mission to return an asteroid sample to Earth for further analysis. NASA and ESA will also likely join together for a Mars Sample Return Mission. In October 2020 the ESA entered into a memorandum of understanding (MOU) with NASA to work together on the Artemis program, which will provide an orbiting lunar gateway and also accomplish the first manned lunar landing in 50 years, whose team will include the first woman on the Moon.

    NASA ARTEMIS spacecraft depiction.
    Cooperation with other space agencies

    Since China has started to invest more money into space activities, the Chinese Space Agency(CN) has sought international partnerships. ESA is, beside the Russian Space Agency, one of its most important partners. Two space agencies cooperated in the development of the Double Star Mission. In 2017, ESA sent two astronauts to China for two weeks sea survival training with Chinese astronauts in Yantai, Shandong.

    ESA entered into a major joint venture with Russia in the form of the CSTS, the preparation of French Guiana spaceport for launches of Soyuz-2 rockets and other projects. With India, ESA agreed to send instruments into space aboard the ISRO’s Chandrayaan-1 in 2008. ESA is also co-operating with Japan, the most notable current project in collaboration with JAXA is the BepiColombo mission to Mercury.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/Japan Aerospace Exploration Agency [国立研究開発法人宇宙航空研究開発機構](JP) Bepicolumbo in flight illustration. Artist’s impression of BepiColombo – ESA’s first mission to Mercury. ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

    ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

    Speaking to reporters at an air show near Moscow in August 2011, ESA head Jean-Jacques Dordain said ESA and Russia’s Roskosmos space agency would “carry out the first flight to Mars together.”

  • richardmitnick 1:17 pm on January 22, 2022 Permalink | Reply
    Tags: "Understanding Rare Rain Events in the Driest Desert on Earth", Additional research is needed to confidently show that the Amazon is the source of the moisture brought by some of the conveyor belts., , Climatology, , , It’s like a decade worth of rain within one single event within a couple hours., , Moisture conveyor belts, Moisture conveyor belts occur throughout the nearby Andes region about 4 times per year., Most of the moisture originates in the Amazon basin-a surprising result given the high Andes that divide the rain forest from the desert., ,   

    From Eos: “Understanding Rare Rain Events in the Driest Desert on Earth” 

    From AGU
    Eos news bloc

    From Eos

    18 January 2022
    Emily Cerf

    A new study reveals the atmospheric paths of storm events that can deliver a decade’s worth of rain in a few hours to the Atacama Desert.

    Parts of the Atacama Desert receive fewer than 5 millimeters of rainfall a year. Credit: Wescottm, CC BY 4.0.

    In the enduring dryness of the Atacama Desert in northern Chile where the average rainfall is as low as 5 millimeters per year, rare rain events can come swiftly and intensely. They shape the landscape and provide precious moisture to plants and other species that otherwise adapted to extended dry spells or harvesting coastal fog. Intense rain events like those seen in the Atacama are known to be associated with so-called ‘moisture conveyor belts”, which are high-altitude atmospheric phenomena known for transporting large volumes of water vapor. However, whether or not “moisture conveyor belts” are responsible for the Atacama’s intense rain events has yet to be shown.

    In a new study, Böhm et al.[Geophysical Research Letters] explain the atmospheric mechanisms behind the wettest of these precipitation events and propose that the water travels from the tropical Amazon across oceans and mountains to reach the desert. The research shows that 40%–80% of the total precipitation that occurs between the coast and the Andean foothills is associated with “moisture conveyor belts”.

    Rain events related to “moisture conveyor belts” can be devastating for local microbial species adapted to dry conditions, the authors say, but they could play a role in the germination of the blooming desert—an explosion of colorful wildflowers that occurs in the Atacama every 5 to 7 years. The authors’ understanding of the processes behind these rare events could change how scientists understand past and future climates in the region.

    Cataloging Conveyor Belts

    Böhm and colleagues cataloged the role of the conveyor belts in the Atacama for the first time. To figure out the role of “moisture conveyor belts” and track air masses, the researchers examined a 2017 precipitation event that brought more than 50 millimeters of rain to some regions of the Atacama. Modeling that tracked the paths of the air masses suggested that most of the moisture originated in the Amazon basin, a surprising result given the high Andes that divide the rain forest from the desert. The authors also discovered that “moisture conveyor belts” occur throughout the nearby Andes region about 4 times per year—some don’t bring much precipitation at all, but the wettest of them can be extreme.

    “It’s like a decade worth of rain within one single event within a couple hours,” said Christoph Böhm, lead author of the study from the Institute for Geophysics and Meteorology at The University of Cologne [Universität zu Köln](DE). Ten times the annual precipitation can be rained down by these conveyor belts in the midsection of Earth’s lowest atmospheric layer, the troposphere.

    In tracing how water moves in moisture conveyor belts across the continent, the researchers suggest that in the most humid of these extreme events, the moisture originates in the tropical Amazon basin rather than over the Pacific Ocean that lies west of the desert.

    However, additional research is needed to confidently show that the Amazon is the source of the moisture brought by some of the conveyor belts. An examination of isotopic data—the atomic chemical information of the water—from the rain events is necessary to support this idea, according to Cornell University (US) geologist Teresa Eileen Jordan, who studies the Atacama and was not involved in the research. The hypothetical path of the water from the Amazon over the Andes would fundamentally change the chemical composition of the water, she says.

    New ideas about how water is transported to these regions can shape how paleoclimatologists understand past eras in this region, affecting understandings of past civilizations that may also have depended on these processes, and can inform water resource management and predictions of future climate change in the Atacama Desert.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: