Tagged: Climate Change Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:22 am on October 19, 2019 Permalink | Reply
    Tags: "Stanford researchers create new catalyst that can turn carbon dioxide into fuels", , , , Climate Change, , Imagine grabbing carbon dioxide from car exhaust pipes and other sources and turning this main greenhouse gas into fuels like natural gas or propane., ,   

    From Stanford University: “Stanford researchers create new catalyst that can turn carbon dioxide into fuels” 

    Stanford University Name
    From Stanford University

    October 17, 2019
    Andrew Myers

    1
    Aisulu Aitbekova, left, and Matteo Cargnello in front of the reactor where Aitbekova performed much of the experiments for this project. (Image credit: Mark Golden)

    Imagine grabbing carbon dioxide from car exhaust pipes and other sources and turning this main greenhouse gas into fuels like natural gas or propane: a sustainability dream come true.

    Several recent studies have shown some success in this conversion, but a novel approach from Stanford University engineers yields four times more ethane, propane and butane than existing methods that use similar processes. While not a climate cure-all, the advance could significantly reduce the near-term impact on global warming.

    “One can imagine a carbon-neutral cycle that produces fuel from carbon dioxide and then burns it, creating new carbon dioxide that then gets turned back into fuel,” said Matteo Cargnello, an assistant professor of chemical engineering at Stanford who led the research, published in Angewandte Chemie.

    Although the process is still just a lab-based prototype, the researchers expect it could be expanded enough to produce useable amounts of fuel. Much work remains, however, before average consumer will be able to purchase products based on such technologies. Next steps include trying to reduce harmful byproducts from these reactions, such as the toxic pollutant carbon monoxide. The group is also developing ways to make other beneficial products, not just fuels. One such product is olefins, which can be used in a number of industrial applications and are the main ingredients for plastics.

    Two steps in one

    Previous efforts to convert CO2 to fuel involved a two-step process. The first step reduces CO2 to carbon monoxide, then the second combines the CO with hydrogen to make hydrocarbon fuels. The simplest of these fuels is methane, but other fuels that can be produced include ethane, propane and butane. Ethane is a close relative of natural gas and can be used industrially to make ethylene, a precursor of plastics. Propane is commonly used to heat homes and power gas grills. Butane is a common fuel in lighters and camp stoves.

    Cargnello thought completing both steps in a single reaction would be much more efficient, and set about creating a new catalyst that could simultaneously strip an oxygen molecule off of CO2 and combine it with hydrogen. (Catalysts induce chemical reactions without being used up in the reaction themselves.) The team succeeded by combining ruthenium and iron oxide nanoparticles into a catalyst.

    “This nugget of ruthenium sits at the core and is encapsulated in an outer sheath of iron,” said Aisulu Aitbekova, a doctoral candidate in Cargnello’s lab and lead author of the paper. “This structure activates hydrocarbon formation from CO2. It improves the process start to finish.”

    The team did not set out to create this core-shell structure but discovered it through collaboration with Simon Bare, distinguished staff scientist, and others at the SLAC National Accelerator Laboratory. SLAC’s sophisticated X-ray characterization technologies helped the researchers visualize and examine the structure of their new catalyst. Without this collaboration, Cargnello said they would not have discovered the optimal structure.

    “That’s when we began to engineer this material directly in a core-shell configuration. Then we showed that once we do that, hydrocarbon yields improve tremendously,” Cargnello said. “It is something about the structure specifically that helps the reactions along.”

    Cargnello thinks the two catalysts act in tag-team fashion to improve the synthesis. He suspects the ruthenium makes hydrogen chemically ready to bond with the carbon from CO2. The hydrogen then spills onto the iron shell, which makes the carbon dioxide more reactive.

    When the group tested their catalyst in the lab, they found that the yield for fuels such as ethane, propane and butane was much higher than their previous catalyst. However, the group still faces a few challenges. They’d like to reduce the use of noble metals such as ruthenium, and optimize the catalyst so that it can selectively make only specific fuels.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 8:17 am on July 26, 2019 Permalink | Reply
    Tags: , , Climate Change, ,   

    From National Geographics: “How artificial intelligence can tackle climate change” 

    National Geographic

    From National Geographics

    July 18, 2019
    Jackie Snow

    1
    Steam and smoke rise from the cooling towers and chimneys of a power plant. Artificial intelligence is being used to prove the case that plants that burn carbon-based fuels aren’t profitable. natgeo.com

    The biggest challenge on the planet might benefit from machine learning to help with solutions. Here are a just a few.

    Climate change is the biggest challenge facing the planet. It will need every solution possible, including technology like artificial intelligence (AI).

    Seeing a chance to help the cause, some of the biggest names in AI and machine learning—a discipline within the field—recently published a paper called Tackling Climate Change with Machine Learning The paper, which was discussed at a workshop during a major AI conference in June, was a “call to arms” to bring researchers together, said David Rolnick, a University of Pennsylvania postdoctoral fellow and one of the authors.

    “It’s surprising how many problems machine learning can meaningfully contribute to,” says Rolnick, who also helped organize the June workshop.

    The paper offers up 13 areas where machine learning can be deployed, including energy production, CO2 removal, education, solar geoengineering, and finance. Within these fields, the possibilities include more energy-efficient buildings, creating new low-carbon materials, better monitoring of deforestation, and greener transportation. However, despite the potential, Rolnick points out that this is early days and AI can’t solve everything.

    “AI is not a silver bullet,” he says.

    And though it might not be a perfect solution, it is bringing new insights into the problem. Here are three ways machine learning can help combat climate change.

    Better climate predictions

    This push builds on the work already done by climate informatics, a discipline created in 2011 that sits at the intersection of data science and climate science. Climate informatics covers a range of topics: from improving prediction of extreme events such as hurricanes, paleoclimatology, like reconstructing past climate conditions using data collected from things like ice cores, climate downscaling, or using large-scale models to predict weather on a hyper-local level, and the socio-economic impacts of weather and climate.

    AI can also unlock new insights from the massive amounts of complex climate simulations generated by the field of climate modeling, which has come a long way since the first system was created at Princeton in the 1960s. Of the dozens of models that have since come into existence, all represent atmosphere, oceans, land, cryosphere, or ice. But, even with agreement on basic scientific assumptions, Claire Monteleoni, a computer science professor at the University of Colorado, Boulder and a co-founder of climate informatics, points out that while the models generally agree in the short term, differences emerge when it comes to long-term forecasts.

    “There’s a lot of uncertainty,” Monteleoni said. “They don’t even agree on how precipitation will change in the future.”

    One project Monteleoni worked on uses machine learning algorithms to combine the predictions of the approximately 30 climate models used by the Intergovernmental Panel on Climate Change. Better predictions can help officials make informed climate policy, allow governments to prepare for change, and potentially uncover areas that could reverse some effects of climate change.

    Showing the effects of extreme weather

    Some homeowners have already experienced the effects of a changing environment. For others, it might seem less tangible. To make it more realistic for more people, researchers from Montreal Institute for Learning Algorithms (MILA), Microsoft, and ConscientAI Labs used GANs, a type of AI, to simulate what homes are likely to look like after being damaged by rising sea levels and more intense storms.

    “Our goal is not to convince people climate change is real, it’s to get people who do believe it is real to do more about that,” said Victor Schmidt, a co-author of the paper and Ph.D. candidate at MILA.

    So far, MILA researchers have met with Montreal city officials and NGOs eager to use the tool. Future plans include releasing an app to show individuals what their neighborhoods and homes might look like in the future with different climate change outcomes. But the app will need more data, and Schmidt said they eventually want to let people upload photos of floods and forest fires to improve the algorithm.

    “We want to empower these communities to help,” he said.

    Measuring where carbon is coming from

    Carbon Tracker is an independent financial think-tank working toward the UN goal of preventing new coal plants from being built by 2020. By monitoring coal plant emissions with satellite imagery, Carbon Tracker can use the data it gathers to convince the finance industry that carbon plants aren’t profitable.

    A grant from Google is expanding the nonprofit’s satellite imagery efforts to include gas-powered plants’ emissions and get a better sense of where air pollution is coming from. While there are continuous monitoring systems near power plants that can measure CO2 emissions more directly, they do not have global reach.

    “This can be used worldwide in places that aren’t monitoring,” said Durand D’souza, a data scientist at Carbon Tracker. “And we don’t have to ask permission.”

    AI can automate the analysis of images of power plants to get regular updates on emissions. It also introduces new ways to measure a plant’s impact, by crunching numbers of nearby infrastructure and electricity use. That’s handy for gas-powered plants that don’t have the easy-to-measure plumes that coal-powered plants have.

    Carbon Tracker will now crunch emissions for 4,000 to 5,000 power plants, getting much more information than currently available, and make it public. In the future, if a carbon tax passes, remote sensing Carbon Tracker’s could help put a price on emissions and pinpoint those responsible for it.

    “Machine learning is going to help a lot in this field,” D’souza said.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Geographic Society has been inspiring people to care about the planet since 1888. It is one of the largest nonprofit scientific and educational institutions in the world. Its interests include geography, archaeology and natural science, and the promotion of environmental and historical conservation.

     
  • richardmitnick 7:23 am on July 9, 2019 Permalink | Reply
    Tags: , Climate Change, Deleting mentions of ‘climate change’ from U.S. Geological Survey press releases, , ,   

    From Science Magazine: “Trump officials deleting mentions of ‘climate change’ from U.S. Geological Survey press releases” 

    AAAS
    From Science Magazine

    Jul. 8, 2019
    Scott Waldman

    1
    Under Director James Reilly, the U.S. Geological Survey has drawn criticism for deemphasizing concerns about climate change. NASA

    A March news release from the U.S. Geological Survey (USGS) touted a new study that could be useful for infrastructure planning along the California coastline.

    At least that’s how President Donald Trump’s administration conveyed it.

    The news release hardly stood out. It focused on the methodology of the study rather than its major findings, which showed that climate change could have a withering effect on California’s economy by inundating real estate over the next few decades.

    An earlier draft of the news release, written by researchers, was sanitized by Trump administration officials, who removed references to the dire effects of climate change after delaying its release for several months, according to three federal officials who saw it. The study, published in the journal Scientific Reports, showed that California, the world’s fifth-largest economy, would face more than $100 billion in damages related to climate change and sea-level rise by the end of the century. It found that three to seven times more people and businesses than previously believed would be exposed to severe flooding.

    “We show that for California, USA, the world’s fifth largest economy, over $150 billion of property equating to more than 6% of the state’s GDP and 600,000 people could be impacted by dynamic flooding by 2100,” the researchers wrote in the study.

    The release fits a pattern of downplaying climate research at USGS and in other agencies within the administration. While USGS does not appear to be halting the pursuit of science, it has publicly communicated an incomplete account of the peer-reviewed research or omitted it under President Trump.

    “It’s been made clear to us that we’re not supposed to use climate change in press releases anymore. They will not be authorized,” one federal researcher said, speaking anonymously for fear of reprisal.

    In the Obama administration, press releases related to climate change were typically approved within days, researchers said. Now, they can take more than six months and go through the offices of political appointees, where they are often altered, several researchers told E&E News.

    In the case of the California coastline study, the press release went through the office of James Reilly, the director of USGS, a former astronaut who is attempting to minimize the consideration of climate change in agency decisions. Reilly is preparing a directive for agency scientists to use climate models that predict changes through 2040, when the effect of emissions is expected to be less severe. The New York Times first reported on the directive.

    At his 2018 confirmation hearing, Reilly promised to protect the agency’s scientific integrity.

    “If someone were to come to me and say, ‘I want you to change this because it’s the politically right thing to do,’ I would politely decline,” Reilly told lawmakers. “I’m fully committed to scientific integrity.”

    A spokeswoman for USGS said the agency has no formal policy to avoid references to climate change.

    “There is no policy nor directive in place that directs us to avoid mentioning climate change in our communication materials,” said Karen Armstrong, the spokeswoman.

    “Scientists at USGS regularly develop new methods and tools to supply timely, relevant and useful information about our planet and its processes, and we are committed to promoting the science they develop and making it broadly available,” she added.

    The agency’s press release about the California coastline study was significantly altered to mask the potential impact of rising temperatures on the state’s economy. Instead, it described the methodology of the study and how it relied on “state-of-the-art computer models” and various sea-level rise predictions.

    “USGS scientists and collaborators used state-of-the-art computer models to determine the coastal flooding and erosion that could result from a range of peer-reviewed, published 21st-century sea level rise and storm scenarios,” the final press release said. “The authors then translated those hazards into a range of projected economic and social exposure data to show the lives and dollars that could be at risk from climate change in California during the 21st century.”

    The USGS release didn’t include the dollar figures outlined in the study.

    An earlier draft of the press release, which was put online by the environmental group Point Blue Conservation Science, a participant in the study, compared the possible effect on Californians to the devastation of Hurricane Katrina. The release had stark recommendations for coastal planners and emphasized that by the end of the century, a typical winter storm could threaten $100 billion in coastal real estate annually.

    “According to the study, even modest sea level rise projections of ten inches (25 centimeters) by 2040 could flood more than 150,000 residents and affect more than $30 billion in property value when combined with an extreme 100-year storm along California’s coast,” the draft stated. “Societal exposure that included storms was up to seven times greater than with sea level rise alone.”

    The agency has omitted climate change from other press releases.

    A release in 2017 that publicized a study on how polar bears were expending more energy due to a loss of sea ice did not mention climate change. It noted that a “moving treadmill of sea ice” in the warming Arctic forced polar bears to hunt for more seals and placed pressure on their population in the Beaufort and Chukchi seas, without stating that climate change is a key driver of sea ice conditions.

    Another USGS release, on shifting farming regions due to climate change, mentioned “future high-temperature extremes” and “future climate conditions” but not climate change. The first sentence of the study that it was intended to promote mentions climate change. It was published in Scientific Reports.

    Some of the USGS studies point to national security repercussions. One study released last year found that a military installation in the Pacific Ocean that would play a role in a possible nuclear strike by North Korea could become uninhabitable in less than two decades due to climate change. The study, which was ordered by the Department of Defense, was released by USGS without a press release.

    USGS conducts important climate research and manages the Landsat satellite system that has tracked human-caused global changes for almost 50 years. Government researchers study sea-level rise and glacial melt and manage regional climate adaptation centers housed at universities from Hawaii to Massachusetts.

    Allowing valuable information to fall through the cracks is a waste of taxpayer dollars and could prevent science from being included in policy decisions, said Joel Clement, a former climate staffer for the Department of the Interior, USGS’s parent agency. Clement, who is now a senior fellow at the Harvard Kennedy School’s Belfer Center for Science and International Affairs, said the promotion of studies is an important way to get information into the hands of planners, homeowners, and policymakers. He said Interior appears to be suppressing climate science.

    “It’s an insult to the science, of course, but it’s also an insult to the people who need this information and whose livelihoods and in some cases their lives depend on this,” Clement said. “What’s shocking about it is that this has been taken to a new level, where information that is essential to economic and health and safety—essentially American well-being—is essentially being shelved and being hidden.”

    In the last year of the Obama administration, USGS distributed at least 13 press releases that focused on climate change and highlighted it in the headline, according to an E&E News review. Since then — from 2017 through the first six months of 2019 — none has mentioned climate change in the headline of the press release, according to the list of state and national releases posted on the USGS website. Some briefly mentioned climate change in the body of the release, while others did not refer to it at all.

    Other studies have been quietly buried on the agency’s webpages.

    That subtle form of suppression fits a pattern elsewhere in the federal government.

    Politico recently reported that officials at the Department of Agriculture buried dozens of studies related to climate change. In one case, agency officials tried to prevent outside groups from disseminating a climate-related study. The research looked at how rice provides less nutrition in a carbon-rich environment. That could have global consequences because hundreds of millions of people have rice-based diets around the world.

    The Interior Department has been accused of deleting climate change references from previous press releases. In 2017, The Washington Post reported that the agency deleted a line mentioning climate change in a press release about a study on flood risks to coastal communities. That line was: “Global climate change drives sea-level rise, increasing the frequency of coastal flooding.”

    Interior Secretary David Bernhardt, a former energy lobbyist, is under investigation for his ties to the energy industry while serving in government. A separate investigation is exploring whether he sought to block an Interior Department study on the dangers that a pesticide posed to endangered species.

    There is no evidence that Trump political appointees at the agency have blocked climate studies from taking place, but the censoring of press releases has affected the work of researchers worried about their jobs, according to another federal researcher.

    “We are pretty cognizant of political pressures, and with these press releases people are definitely biting their nails over ‘how should we word this’ and if there are proposals within USGS, should we use climate change or not,” the researcher said. “It’s a lot of stuff that definitely filters down, and it affects the reality of people on the ground doing the work when you’re not sure of how I should present this. It’s definitely a huge waste of time.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 12:36 pm on June 26, 2019 Permalink | Reply
    Tags: , , Catherine Drennan, , Climate Change, Drennan seized on X-ray crystallography as a way to visualize molecular structures., ,   

    From MIT News: Women in STEM- “For Catherine Drennan, teaching and research are complementary passions” 

    MIT News

    From MIT News

    June 26, 2019
    Leda Zimmerman

    1
    “Really the most exciting thing for me is watching my students ask good questions, problem-solve, and then do something spectacular with what they’ve learned,” says Professor Catherine Drennan. Photo: James Kegley

    Professor of biology and chemistry is catalyzing new approaches in research and education to meet the climate challenge.

    Catherine Drennan says nothing in her job thrills her more than the process of discovery. But Drennan, a professor of biology and chemistry, is not referring to her landmark research on protein structures that could play a major role in reducing the world’s waste carbons.

    “Really the most exciting thing for me is watching my students ask good questions, problem-solve, and then do something spectacular with what they’ve learned,” she says.

    For Drennan, research and teaching are complementary passions, both flowing from a deep sense of “moral responsibility.” Everyone, she says, “should do something, based on their skill set, to make some kind of contribution.”

    Drennan’s own research portfolio attests to this sense of mission. Since her arrival at MIT 20 years ago, she has focused on characterizing and harnessing metal-containing enzymes that catalyze complex chemical reactions, including those that break down carbon compounds.

    She got her start in the field as a graduate student at the University of Michigan, where she became captivated by vitamin B12. This very large vitamin contains cobalt and is vital for amino acid metabolism, the proper formation of the spinal cord, and prevention of certain kinds of anemia. Bound to proteins in food, B12 is released during digestion.

    “Back then, people were suggesting how B12-dependent enzymatic reactions worked, and I wondered how they could be right if they didn’t know what B12-dependent enzymes looked like,” she recalls. “I realized I needed to figure out how B12 is bound to protein to really understand what was going on.”

    Drennan seized on X-ray crystallography as a way to visualize molecular structures. Using this technique, which involves bouncing X-ray beams off a crystallized sample of a protein of interest, she figured out how vitamin B12 is bound to a protein molecule.

    “No one had previously been successful using this method to obtain a B12-bound protein structure, which turned out to be gorgeous, with a protein fold surrounding a novel configuration of the cofactor,” says Drennan.

    Carbon-loving microbes show the way

    These studies of B12 led directly to Drennan’s one-carbon work. “Metallocofactors such as B12 are important not just medically, but in environmental processes,” she says. “Many microbes that live on carbon monoxide, carbon dioxide, or methane — eating carbon waste or transforming carbon — use metal-containing enzymes in their metabolic pathways, and it seemed like a natural extension to investigate them.”

    Some of Drennan’s earliest work in this area, dating from the early 2000s, revealed a cluster of iron, nickel, and sulfur atoms at the center of the enzyme carbon monoxide dehydrogenase (CODH). This so-called C-cluster serves hungry microbes, allowing them to “eat” carbon monoxide and carbon dioxide.

    Recent experiments by Drennan analyzing the structure of the C-cluster-containing enzyme CODH showed that in response to oxygen, it can change configurations, with sulfur, iron, and nickel atoms cartwheeling into different positions. Scientists looking for new avenues to reduce greenhouse gases took note of this discovery. CODH, suggested Drennan, might prove an effective tool for converting waste carbon dioxide into a less environmentally destructive compound, such as acetate, which might also be used for industrial purposes.

    Drennan has also been investigating the biochemical pathways by which microbes break down hydrocarbon byproducts of crude oil production, such as toluene, an environmental pollutant.

    “It’s really hard chemistry, but we’d like to put together a family of enzymes to work on all kinds of hydrocarbons, which would give us a lot of potential for cleaning up a range of oil spills,” she says.

    The threat of climate change has increasingly galvanized Drennan’s research, propelling her toward new targets. A 2017 study she co-authored in Science detailed a previously unknown enzyme pathway in ocean microbes that leads to the production of methane, a formidable greenhouse gas: “I’m worried the ocean will make a lot more methane as the world warms,” she says.

    Drennan hopes her work may soon help to reduce the planet’s greenhouse gas burden. Commercial firms have begun using the enzyme pathways that she studies, in one instance employing a proprietary microbe to capture carbon dioxide produced during steel production — before it is released into the atmosphere — and convert it into ethanol.

    “Reengineering microbes so that enzymes take not just a little, but a lot of carbon dioxide out of the environment — this is an area I’m very excited about,” says Drennan.

    Creating a meaningful life in the sciences

    At MIT, she has found an increasingly warm welcome for her efforts to address the climate challenge.

    “There’s been a shift in the past decade or so, with more students focused on research that allows us to fuel the planet without destroying it,” she says.

    In Drennan’s lab, a postdoc, Mary Andorfer, and a rising junior, Phoebe Li, are currently working to inhibit an enzyme present in an oil-consuming microbe whose unfortunate residence in refinery pipes leads to erosion and spills. “They are really excited about this research from the environmental perspective and even made a video about their microorganism,” says Drennan.

    Drennan delights in this kind of enthusiasm for science. In high school, she thought chemistry was dry and dull, with no relevance to real-world problems. It wasn’t until college that she “saw chemistry as cool.”

    The deeper she delved into the properties and processes of biological organisms, the more possibilities she found. X-ray crystallography offered a perfect platform for exploration. “Oh, what fun to tell the story about a three-dimensional structure — why it is interesting, what it does based on its form,” says Drennan.

    The elements that excite Drennan about research in structural biology — capturing stunning images, discerning connections among biological systems, and telling stories — come into play in her teaching. In 2006, she received a $1 million grant from the Howard Hughes Medical Institute (HHMI) for her educational initiatives that use inventive visual tools to engage undergraduates in chemistry and biology. She is both an HHMI investigator and an HHMI professor, recognition of her parallel accomplishments in research and teaching, as well as a 2015 MacVicar Faculty Fellow for her sustained contribution to the education of undergraduates at MIT.

    Drennan attempts to reach MIT students early. She taught introductory chemistry classes from 1999 to 2014, and in fall 2018 taught her first introductory biology class.

    “I see a lot of undergraduates majoring in computer science, and I want to convince them of the value of these disciplines,” she says. “I tell them they will need chemistry and biology fundamentals to solve important problems someday.”

    Drennan happily migrates among many disciplines, learning as she goes. It’s a lesson she hopes her students will absorb. “I want them to visualize the world of science and show what they can do,” she says. “Research takes you in different directions, and we need to bring the way we teach more in line with our research.”

    She has high expectations for her students. “They’ll go out in the world as great teachers and researchers,” Drennan says. “But it’s most important that they be good human beings, taking care of other people, asking what they can do to make the world a better place.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 10:50 am on June 26, 2019 Permalink | Reply
    Tags: , Climate Change, Two out of three Australians and four out of five people in NSW are likely to have significantly altered lifestyles if estuaries – tidal rivers and harbours – become impacted by climate change., UNSW takes on climate change in our estuaries,   

    From University of New South Wales: ” UNSW takes on climate change in our estuaries – where Australians live, work and play” 

    U NSW bloc

    From University of New South Wales

    26 Jun 2019
    Lachlan Gilbert

    A multi-disciplinary team led by UNSW Sydney researchers is releasing the first large-scale summary of how our estuaries – and the 80 per cent of NSW residents living on them – will be impacted by climate change.

    2
    An estuary is defined as the area that rivers meet the sea. In NSW, about four fifths of the population lives on or near estuaries. Picture: UNSW

    Two out of three Australians and four out of five people in NSW are likely to have significantly altered lifestyles if estuaries – tidal rivers and harbours – become impacted by climate change.

    To address this risk, UNSW Sydney’s water engineering researchers (working with NSW’s Government Scientists and Macquarie University) have today launched a free online resource that enables scientists and all levels of government to assess and act on threats posed to our coastal estuaries by climate change.

    Dr Valentin Heimhuber from the Water Research Laboratory of UNSW’s School of Civil and Environmental Engineering, and a lead researcher who helped develop the guide, describes estuaries as the “canary in the coal mine” for climate change.

    “Estuaries are subjected to a ‘double-whammy’ of climate change impacts,” Dr Heimhuber says. “On the land side, climate change is influencing rainfall and temperature patterns, which is critical for agricultural productivity and healthy ecosystems. On the ocean side, we have concerns with sea level rise and oceanic warming. Estuaries are where these two forces – land and ocean – collide, and it happens to be where most Australians live.”

    Associate Professor Will Glamore, Chief Investigator at the Water Research Laboratory, UNSW, sees estuaries as the lifeblood of Australian society. “Our estuaries are where 80% of people live, work and play.” he says. “This research highlights how the 180+ estuaries in NSW may be threatened by climate change.”

    Since European settlement, A/Professor Glamore says, estuaries and harbours have been impacted to the extent that ecosystems are now at risk across the state.

    “Our fear is that climate change, mixed with ongoing development, may be the tipping point for these systems,” he says.

    “Sydney Harbour is an iconic example but only one of the many estuaries at risk across the state. Our harbour is fighting a battle on all fronts. This includes an urbanising catchment, changing water quality, rising temperatures and rising tides.

    “This research shows that rising tides won’t just threaten our beaches. With climate change, the tide will penetrate into our harbours and estuaries, potentially impacting farm productivity and the environment.”

    “Cities like Sydney, Newcastle and Wollongong will need to adapt to the changing water regime. This includes our planning levels, our freshwater resources and everything that lives in and around our estuaries and harbours. The potential impact to our daily life is daunting and we are just beginning to understand the extent of the problem.”

    Beyond the direct impact to humans, climate change may be devastating to the environment, A/Professor Glamore says.

    “Climate change threatens our mangroves, oysters, sea grasses, fish, bird-life and saltmarsh,” he says. “Research presented in this study highlights our current knowledge on how these systems will respond when we face climate change and population growth pressures at the same time.”

    Launch of a Climate Change Risk Assessment Guide

    To understand the implications of climate change in estuaries, researchers from UNSW, Macquarie University, the Sydney Institute of Marine Science, and the NSW’s Office of Environment and Heritage have joined forces to prepare a guide for assessing climate change in our estuaries. Titled, Climate change in estuaries – state of the science and framework for assessment, the eight reports bring together the latest knowledge into an easy to understand and transparent guide. The reports are designed to empower planning authorities, local councils and businesses to make informed decisions about our harbours, ports and estuaries in a rapidly changing climate.

    3
    Ecosystems of estuaries are under stress from the impact of human development. Picture: UNSW

    An important component of the project is the Eco-Thresholds database developed by marine ecologists A/Professor Melanie Bishop and Dr. Gabriel Dominguez from Macquarie University’s Department of Biological Sciences. The Eco-Thresholds database is an online tool that compiles more than 300 research publications on the effects of climate change on estuarine species in Australia and worldwide.

    “Understanding how individual species respond to changes in their environment, such as increasing water temperature or salinity, is a critical factor in assessing climate change impacts in estuaries. To address this, we have collated information from every previous climate change study on flora and fauna – mangroves, salt marshes, oysters, fish – you name it,” A/Professor Melanie Bishop says.

    She says anyone can use the tool to see key findings from previous research or to add new research via an easy-to-use online map.

    “For example, you could use the database to search how increased salinity from sea level rise will affect the abundance and health of different fish species or how saltmarsh or oysters can withstand heatwave conditions from rising water temperature.

    “This work also highlights that there are many issues left to understand. The Eco-Thresholds Database and the reports are living documents, freely available to the global community. Researchers from all over the world can now contribute new information as it becomes available.”

    4
    Mangroves, which are part of an estuary ecosystem, could be drastically affected if tidal marks are altered by climate change. Picture: UNSW

    Renewed hope

    A/Professor Glamore says a sense of urgency is needed when acting to protect our estuaries. Thankfully, the NSW State Government has recently updated legislation protecting and planning for estuaries within the Coastal Management Act and the Marine Estate Management Act.

    “The legislation is an acknowledgment that we need to understand and plan for the impact of climate change on our estuaries,” A/Professor Glamore says.

    “Everyone hears about the threat of climate change, but few understand what it means to them locally.”

    “We believe our detailed guide and online resources will ensure this information is open, transparent and available for all. This is just the beginning of an important process to better manage the waters where we live, work and play.”

    This research was funded by the NSW Government via the OEH Adaptation Hub Coastal Node. More details about this research can be found at: http://estuaries.wrl.unsw.edu.au/index.php/climate-change/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    Welcome to UNSW Australia (The University of New South Wales), one of Australia’s leading research and teaching universities. At UNSW, we take pride in the broad range and high quality of our teaching programs. Our teaching gains strength and currency from our research activities, strong industry links and our international nature; UNSW has a strong regional and global engagement.

    In developing new ideas and promoting lasting knowledge we are creating an academic environment where outstanding students and scholars from around the world can be inspired to excel in their programs of study and research. Partnerships with both local and global communities allow UNSW to share knowledge, debate and research outcomes. UNSW’s public events include concert performances, open days and public forums on issues such as the environment, healthcare and global politics. We encourage you to explore the UNSW website so you can find out more about what we do.

     
  • richardmitnick 7:45 am on June 7, 2019 Permalink | Reply
    Tags: 25% of surveyed accommodation businesses situated close to the coast are unsure if sea level rise is even occurring., 50% of surveyed NSW coastal users don’t think that sea level rise will impact them a report into the NSW community’s views on coastal hazards shows., Climate Change, , Global warning, The My Coast NSW Study took place in 2017 and 2018 surveying more than 1000 people from all over the NSW coast.,   

    From University of New South Wales: “1 in 2 people in NSW’s coastal community don’t think sea level rise will impact them directly” 

    U NSW bloc

    From University of New South Wales

    07 Jun 2019
    Isabelle Dubach

    50% of surveyed NSW coastal users don’t think that sea level rise will impact them, a report into the NSW community’s views on coastal hazards shows.

    1
    Collaroy during the 2016 storm. Credit: UNSW’s Water Research Laboratory

    Half of NSW’s coastal community thinks rising sea levels will not impact them directly, new data released today by UNSW scientists has shown – and 25% of surveyed accommodation businesses situated close to the coast are unsure if sea level rise is even occurring.

    The report – released on the anniversary of the 2016 East Coast Low ‘superstorm’ that saw widespread damage along Australia’s east coast, including the collapse of a Collaroy swimming pool – describes what the NSW community understands about coastal erosion and inundation, as well as the driving forces behind these hazards: sea level rise and severe coastal storms.

    “Our coastline is changing. Many locations along the NSW coast are seeing amenity loss and infrastructure damage associated with erosion and inundation – that is, the flooding of normally dry land by sea water, often caused by storms surges or king tides,” says Professor Rob Brander from the School of Biological, Earth and Environmental Sciences, who is also known as “Dr Rip”.

    “These storm events will continue in the future. Combined with anticipated sea level rise, they’ll only enhance the extent and cost of coastal erosion damage and lead to greater inundation of coastal zones throughout NSW in the future, particularly in low-lying estuarine areas,” he says.

    The researchers say people’s understanding and perception of storms and sea level rise, and their associated impacts of erosion and inundation, can significantly influence how and whether they engage in coastal adaptation actions – often influencing the success or failure of those actions.

    “That’s why we wanted to find out what coastal communities understand and perceive about these hazards and how these hazards will affect their interactions with, and use of, the coast in the future,” says study author Anna Attard from UNSW Science.

    “We think that’s an important aspect of building community resiliency and preparedness to coastal erosion and inundation.”

    The My Coast NSW Study took place in 2017 and 2018, surveying more than 1000 people from all over the NSW coast, across three main groups: Coastal Management Professionals (i.e. government, academics, researchers and engineers), General Coastal Users (a cross section of people who use the NSW coast), and Coastal Accommodation Businesses (owners, managers or employees of accommodation businesses situated close to the coast).

    The researchers say the resulting report provides an evidence-based information platform to help local governments and coastal management professionals in the future development of effective educational strategies and programs.

    “Our ultimate goal is to help improve the ability of NSW coastal communities to adapt sustainably to the risk of coastal erosion and inundation,” Ms Attard says.

    Lack of community knowledge about the direct impact of sea level rise is one of the key aspects of the report – which the authors say is concerning, given that sea level rise is a key factor driving coastal erosion and inundation.

    “We found that only about 50% of general coastal users think that sea level rise will impact them directly – that’s a worry, given that estimates suggest that by 2100, sea level rise could increase by a metre or more if greenhouse gas emissions continue unchanged,” Ms Attard says.

    “Even more worryingly, 25% of coastal accommodation businesses don’t know or are unsure if sea levels are even rising at all.”

    The scientists say sea level rise will affect everybody, from those who use the coast day-to-day, to those who may visit a few times a year – and not just people on the front line living near the cost, either.

    “Rising sea levels mean far-reaching impacts on people’s transport, infrastructure, sewerage and water, to name just a few examples,” Ms Attard says.

    “It could also affect how you’re able to use your favourite beach, which you may only visit once a year.”

    The researchers also explored how often people thought big storms like the 2016 East Coast low event were occurring.

    “45% of the general coastal users we surveyed think storms like the one in 2016 occur only every 20 years, so they think it’s rarer than what’s actually happening. But over the last decade or so, we’ve actually had a few major storms in NSW – in 2016, 2015 and 2007, at least,” Ms Attard says.

    The report also found a clear disconnect between what coastal management professionals think the public should know about coastal hazards, and what the public flagged as wanting to know more about.

    “General coastal users told us that would like to know more about how climate change will impact their immediate coast, what the possible solutions are and who the ‘key players’ of coastal management are,” says Ms Attard.

    “But coastal professionals said that coastal communities need more information about direct personal and public risks associated with coastal hazards, general information about coastal hazards and processes, and their impacts on the greater NSW community – that’s very different from what the general users said their information needs are.

    “Community engagement needs to be a two-way process to address that disconnect.”

    The My Coast study was funded under the joint State and Commonwealth Natural Disaster Resilience Program. The grant was awarded to UNSW in March 2017 and the study was conducted in partnership with the Sydney Coastal Councils Group (SCCG), Surf Life Saving NSW (SLS NSW) and the NSW Government Office of Environment and Heritage (OEH).

    The full My Coast study report, along with multiple fact sheets and a guide for teachers, can be accessed online.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    Welcome to UNSW Australia (The University of New South Wales), one of Australia’s leading research and teaching universities. At UNSW, we take pride in the broad range and high quality of our teaching programs. Our teaching gains strength and currency from our research activities, strong industry links and our international nature; UNSW has a strong regional and global engagement.

    In developing new ideas and promoting lasting knowledge we are creating an academic environment where outstanding students and scholars from around the world can be inspired to excel in their programs of study and research. Partnerships with both local and global communities allow UNSW to share knowledge, debate and research outcomes. UNSW’s public events include concert performances, open days and public forums on issues such as the environment, healthcare and global politics. We encourage you to explore the UNSW website so you can find out more about what we do.

     
  • richardmitnick 11:08 pm on May 15, 2019 Permalink | Reply
    Tags: "Counting the costs of the major parties' climate change policies", , Climate Change,   

    From University of New South Wales: “Counting the costs of the major parties’ climate change policies” 

    U NSW bloc

    From University of New South Wales

    16 May 2019

    Cameron Allen
    Graciela Metternicht
    Tommy Wiedmann

    UNSW sustainability scientists have run their rulers over the major parties’ climate policies to determine whether taking action against climate change is more expensive than doing nothing.

    1
    Extreme climate events: an old ‘Queenslander’ house in Milton, Brisbane during the floods in January, 2011. Picture: Shutterstock

    Climate change has emerged as the issue most likely to determine the result in the upcoming federal election. It is no longer the exclusive concern of the ‘latte left’, with more conservative voters than ever before now listing it as a major election issue.
    At UNSW, we recently developed an integrated macro-economic simulation model (iSDG-Australia) capable of projecting the future impacts of a range of policy and investment scenarios, including additional policies to address greenhouse gas emissions.
    There are clear differences in the proposed responses to climate change from the major political parties. We can now model how these different policies affect Australia’s economy and greenhouse gas emissions trajectories in the future.
    The Coalition Government has committed to the Paris Agreement by setting a national target to reduce greenhouse gas emissions by 26-28% below 2005 levels by 2030. This represents a target level of 441 million tons of carbon dioxide equivalent (Mt CO2-e).
    The latest projections from the Department of Environment and Energy reveal that Australia is not on track to reach this target. In fact, emissions are projected to increase marginally over the period to 2030. Given the Coalition is still in power and has not released any substantive change in climate change policy ahead of this election, let us call this the ‘Business-As-Usual’ scenario.
    Labor, on the other hand, has released a more ambitious greenhouse gas emissions reduction target of 45% on 2005 levels by 2030. To achieve this, Labor has set out a suite of policies in its Climate Change Action Plan. This includes a target of 50% renewables by 2030, a target of 50% of electric vehicles in new cars sales by 2030, doubling energy productivity by 2030 and improving emissions standards, among other measures.
    Not surprisingly, the Greens have set an even more ambitious target of 63-82% reduction in emissions on 2005 levels by 2030.
    These more ambitious targets have sparked an explosive political row regarding the potential costs of addressing climate change to the economy and jobs.
    Modelling commissioned by the Government from the economist Brian Fisher concludes that Labor’s emissions target would subtract at least $264 billion from gross national product by 2030, or up to $542 billion depending on how it’s implemented. A minimum of 3% reduction in real wages and 167,000 fewer jobs are also predicted.
    These findings have been vehemently criticised by experts and Labor for relying on inaccurate assumptions and failing to consider the economic costs of inaction on climate change.
    The model we developed is a powerful tool to explore potential development pathways for Australia to achieve the global Sustainable Development Goals and other international targets.
    We used the model to explore potential impacts of some of Labor’s key climate policies on the economy, jobs and greenhouse gas reduction as compared with the Coalition’s business as usual scenario.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    Welcome to UNSW Australia (The University of New South Wales), one of Australia’s leading research and teaching universities. At UNSW, we take pride in the broad range and high quality of our teaching programs. Our teaching gains strength and currency from our research activities, strong industry links and our international nature; UNSW has a strong regional and global engagement.

    In developing new ideas and promoting lasting knowledge we are creating an academic environment where outstanding students and scholars from around the world can be inspired to excel in their programs of study and research. Partnerships with both local and global communities allow UNSW to share knowledge, debate and research outcomes. UNSW’s public events include concert performances, open days and public forums on issues such as the environment, healthcare and global politics. We encourage you to explore the UNSW website so you can find out more about what we do.

     
  • richardmitnick 9:57 am on May 14, 2019 Permalink | Reply
    Tags: "Spotlight on the pulse of our planet", , , Climate activist Jakob Blasel: “In my view world leaders do not take the climate crisis seriously.”, Climate Change, , , , ESA’s Living Planet Symposium, Information from space, The Living Planet Symposium is hosting over 2000 children with their own dedicated programmes.   

    From European Space Agency: “Spotlight on the pulse of our planet” 

    ESA Space For Europe Banner

    From European Space Agency

    13 May 2019


    ESA’s Earth Explorers surpassing expectations

    1
    Milan in focus


    2:36:47

    Satellites deliver crucial information to help solve what is our biggest global problem: climate change. As well as taking the pulse of our planet, satellite data are used in a myriad of daily applications, and are also used increasingly in business. It’s no surprise then that over 4 000 people have flocked to Milan to hear the latest scientific findings on Earth’s natural processes and global change, and to learn about the wealth of new opportunities that Earth observation has to offer.

    ESA’s holds its Living Planet Symposium – the largest Earth observation conference in the world – every three years, each time drawing more participants than the last. The current edition, which has been organised with support from the Italian Space Agency, got off to a flying start this morning in the heart of Milan, Italy.

    Traditionally, the focus of this series of symposiums has been on Earth science – and while this still takes centre stage, the importance of international cooperation in developing satellite observing systems that bring the most benefits to society is also very much at the forefront of discussions.

    In addition, the landscape of Earth observation is changing. Against the backdrop of commercial Earth observation and the digital revolution, participants will be talking about how satellite data and new technologies such as artificial intelligence and blockchain can benefit business, industry and science, and also ESA.

    2
    Living Planet Symposium opens

    With all these topics, and more, to be presented and discussed in the days ahead, the symposium was opened by Milan’s Councillor for Urban Planning, Parks and Agriculture, Pierfrancesco Maran, who wished everyone a warm welcome from the city.

    He noted, “Cites around the world are facing the issues of climate change and pollution, but while cities are part of the problem, they can also be part of the solution through better education and innovation.”

    Participants were also welcomed by ESA’s Director General Jan Wörner. Stressing the importance of information from space to address the global challenges of climate change, energy and resources shortages, he said, “Earth observation is expanding the frontiers of knowledge – through this we understand climate change and much more.

    “From space you don’t see borders and this is the same for us – the countries of Europe are working together for a coherent approach that includes common goals and a full integration of space to bring the biggest benefits to society.”

    Deputy Director-General of the EC DG GROW, Pierre Delsaux, noted, “Climate Change is not just a European issue, it is a world-wide issue. We work to involve, sometimes convince our partners around the word that new missions can give us clear scientific assessments of the changes happening to our planet.”

    Recent demonstrations by students around the world make it clear that the young have serious concerns about the health of the planet and are pushing for action.

    3
    Climate activist Jakob Blasel

    Young climate activist, Jakob Blasel from Fridays for Future talked passionately about his worries, “Our generation is the most conscious about climate change as we will have to live with the consequences in the next decades. I’m one of the people who fears the future.

    “In my view, world leaders do not take the climate crisis seriously.”

    The young are also in the spotlight this week. For the first time, the Living Planet Symposium is hosting over 2000 children with their own dedicated programmes. There are the Open Days available for 8–12 year olds and School Labs for 13–18 year olds. Students, for example, will be taking air pollution measurements, and much more.

    With the environment very much in the news, many governments, institutes, businesses and individuals are making different choices to reduce the impact we are having on our fragile planet.

    The EC’s Deputy Director General for Research and Innovation, Patrick Child, highlighted, “The transition towards a carbon-neutral economy and a sustainable Europe by 2030 requires advancing our knowledge of the Earth system, its dynamics and its interactions with human activities.

    “There is an urgent need to develop instruments to better predict and mitigate the consequences of climate change.

    “The global challenges our society faces requires knowledge-based policy-making, building on reliable observation systems, products and services.”

    Mr Child’s words are at the heart of the symposium – as science and understanding is critical to addressing environmental issues.

    ESA’s Director of Earth Observation Programmes, Josef Aschbacher, said, “I am thrilled to see so many people here – a true testament to the growing interest and importance of what Earth observation brings.

    “We are looking forward to hearing the latest scientific results. And, with ESA’s next ministerial council, Space19+, in November, we will also be talking about how we will take Earth observation into the future, particularly through innovation and partnerships.

    “But crucially we need the engagement of young people, the scientists of tomorrow.”

    With eyes now on Milan, the week not only promises to be a week of discovery about our changing planet, but also showcases how society at large benefits from Earth observation.

    We are changing our natural world faster than at any other time in history. Understanding the intricacies of how Earth works as a system and the impact that human activity is having on natural processes are huge environmental challenges. Satellites are vital for taking the pulse of our planet, delivering the information we need to understand and monitor our precious world, and for making decisions to safeguard our future. Earth observation data is also key to a myriad of practical applications to improve everyday life and to boost economies.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 11:38 am on August 8, 2018 Permalink | Reply
    Tags: Climate Change, , ,   

    From ESRF The European Synchrotron: “Research gives clues to CO2 trapping underground” 

    ESRF bloc
    From ESRF The European Synchrotron

    08-08-2018

    Carbon dioxide is a widespread simple molecule in the Universe.

    CO2 is an environmentally important gas that plays a crucial role in climate change. It is a compound that is also present in the depth of the Earth but very little information about it is available. What happens to CO2 in the Earth’s mantle? Could it be eventually hosted underground? A new publication in Nature Communications unveils some key findings.

    1
    2

    In spite of its simplicity, it has a very complex phase diagram, forming both amorphous and crystalline phases above the pressure of 40 GPa. In the depths of the Earth, CO2 does not appear as we know it in everyday life. Instead of being a gas consisting of molecules, it has a polymeric solid form that structurally resembles quartz (a main mineral of sand) due to the pressure it sustains, which is a million times bigger than that at the surface of the Earth.

    Researchers have been long studying what happens to carbonates at high temperature and high pressure, the same conditions as deep inside the Earth. Until now, the majority of experiments had shown that CO2 decomposes, with the formation of diamond and oxygen. These studies were all focused on CO2 at the upper mantle, with a 70 GPa of pressure and 1800-2800 Kelvin of temperature.

    A team of scientists from the European Laboratory for Non-linear Spectroscopy (LENS), the University of Florence, the National Research Council of Italy, the University of Vienna and the ESRF came to the high-pressure beamline ID27 to study, using x-ray diffraction and Raman scattering (the latter performed in the facilities of LENS), what happens to CO2 at the depth of 2000 to 2400 kilometres, i.e. at the boundary between the silicate minerals of the lower mantle and the metallic core.

    “One of the added value of our team is the fact that we all have different backgrounds: from chemists, to mineralogists and the physicists of the ESRF. This means that we complement each other and, together, we try to get a full picture of what happens to CO2 from our different points of view”, explains Dziubek, corresponding author of the study.

    In order to achieve these conditions, they used a diamond anvil cell and submitted the sample to 2400 degrees Celsius (2700K) and 120 GPa of pressure, which is almost double than previous research. “It was a very complex setup, in particular the laser heating with a 10 micron infrared laser at pressures above 100 GPa was very challenging”, explains Mohamed Mezouar, scientist in charge of ID27. Thinking that they would come up with similar results to existing literature, they were in for a surprise: CO2 is, in fact, stable in a crystalline form and does not dissociate like previously believed.

    3
    Mohamed Mezouar, scientist in charge of ID27, on the beamline. Credits: S. Candé.

    “Our results indicate that the crystalline extended form of carbon dioxide is stable in the thermodynamic conditions of the deep lower mantle and therefore could be helpful to understand the distribution and transport of carbon in the depths of our planet. It could even open doors to the possibility of trapping CO2 underground, if it stays there or just in its polymeric form”, explains Kamil Dziubek.

    CO2 sequestration in geological formations is one of the potential solutions for mitigating the climate changes associated with the greenhouse effect. It is important, however, to investigate the fate of carbon dioxide in deep geosphere and to recognize the form in which it can be stored within the host rock. If the neat polymeric CO2 stays stable in the deep mantle, it can represent a long-term storage of carbon.

    Therefore, the next step of the team is to mimic the real conditions not only in the terms of thermodynamics but also geochemistry, and study in detail stability and reactivity of the CO2 in presence of silicates, carbonates and other minerals, which are known to exist in the deepest parts of the Earth’s mantle.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ESRF

    The ESRF – the European Synchrotron Radiation Facility – is the most intense source of synchrotron-generated light, producing X-rays 100 billion times brighter than the X-rays used in hospitals. These X-rays, endowed with exceptional properties, are produced at the ESRF by the high energy electrons that race around the storage ring, a circular tunnel measuring 844 metres in circumference. Each year, the demand to use these X-ray beams increases and thousands of scientists from around the world come to Grenoble, to access the 43 highly specialised experimental stations, called “beamlines”, each equipped with state-of-the-art instrumentation, operating 24 hours a day, seven days a week.

    Thanks to the brilliance and quality of its X-rays, the ESRF functions like a “super-microscope” which “films” the position and motion of atoms in condensed and living matter, and reveals the structure of matter in all its beauty and complexity. It provides unrivalled opportunities for scientists in the exploration of materials and living matter in a very wide variety of fields: chemistry, material physics, archaeology and cultural heritage, structural biology and medical applications, environmental sciences, information science and nanotechnologies.

    Following on from 20 years of success and excellence, the ESRF has embarked upon an ambitious and innovative modernisation project, the Upgrade Programme, implemented in two phases: Phase I (2009-2015) and the ESRF-EBS (Extremely Brilliant Source) (2015-2022) programmes. With an investment of 330 million euros, the Upgrade Programme is paving the way to a new generation of synchrotron storage rings, that will produce more intense, coherent and stable X-ray beams. By constructing a new synchrotron, deeply rooted in the existing infrastructure, the ESRF will lead the way in pushing back the boundaries of scientific exploration of matter, and contribute to answering the great technological, economic, societal and environmental challenges confronting our society.

     
  • richardmitnick 9:19 am on August 7, 2018 Permalink | Reply
    Tags: , , Climate Change, , Pacific Ocean’s Effect on Arctic Warming   

    From Carnegie Institution for Science: “Pacific Ocean’s Effect on Arctic Warming” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    August 07, 2018

    1
    This image was taken in September 2016 showing the extent of Arctic sea ice then. The yellow line shows the average minimum extent of sea ice in the Arctic from 1981 to 2010. Image courtesy NASA

    New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than previously thought. The findings are published in the August 7, 2018, issue of Nature Communications.

    The Arctic is experiencing larger and more rapid increases in temperature from global warming more than any other region, with sea-ice declining faster than predicted. This effect, known as Arctic amplification, is a well-established response that involves many positive feedback mechanisms in polar regions.

    What has not been well understood is how sea-surface temperature patterns and oceanic heat flow from Earth’s different regions, including the temperate latitudes, affect these polar feedbacks. This new research suggests that the importance of changes occurring in the Pacific may have a stronger impact on Arctic climate than previously recognized.

    Paleoclimate records show that climate change in the Arctic can be very large and happen very rapidly. During the last deglaciation, as the planet was starting to warm from rising greenhouse gases, there were two episodes of accelerated warming in the Arctic—with temperatures increasing by 15°C (27°F) in Greenland over the course of decades. Both events were accompanied by rapid warming in the mid-latitude North Pacific and North Atlantic oceans.

    Using these past changes as motivation for the current study, the research team* modeled a series of ocean-to-atmosphere heat flow scenarios for the North Pacific and the North Atlantic. They used the National Center for Atmospheric Research’s Community Earth System Model (CESM), to assess the impacts to the Arctic’s surface temperature and climate feedbacks.

    Praetorius, who was at Carnegie at the time of the research and is now with the USGS in Menlo Park, CA explained: “Since there appeared to be coupling between abrupt Arctic temperature changes and sea surface temperature changes in both the North Atlantic and North Pacific in the past, we thought it was important to untangle how each region may affect the Arctic differently in order to provide insight into recent and future Arctic changes.”

    The researchers found that both cooling and warming anomalies in the North Pacific resulted in greater global and Arctic surface air temperature anomalies than the same perturbations modeled for the North Atlantic. Until now, this sensitivity had been underappreciated.

    The scientists looked at several mechanisms that could be causing the changes and found that the strong global and Arctic changes depended on the magnitude of water vapor transfer from the mid-latitude oceans to the Arctic. When warm moist air is carried poleward towards the Arctic, it can lead to more low-lying clouds that act like a blanket, trapping warmth near the surface. The poleward movement of heat and moisture drive the Arctic’s sea-ice retreat and low-cloud formation, amplifying Arctic warming.

    The so-called ice-albedo feedback causes retreating ice and snow to lead to ever greater warming through increasing absorption of solar energy on darker surfaces.

    In very recent years, the Arctic has experienced an even greater acceleration in warming. The authors note that the unusually warm ocean temperatures in the Northeast Pacific paralleled the uptick in Arctic warming, possibly signaling a stronger link between these regions than generally recognized.

    “While this is a highly idealized study, our results suggest that changes in the Pacific Ocean may have a larger influence on the climate system than generally recognized,” remarked Carnegie coauthor Ken Caldeira.

    • Co-authors are Summer Praetorius, USGS, Menlo Park, CA; Maria Rugenstein, Institute for Atmospheric and Climate Science, Zurich; and Geeta Persad and Ken Caldeira of Carnegie’s Department of Global Ecology, Stanford, CA.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: