Tagged: Climate Change Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:16 pm on February 19, 2020 Permalink | Reply
    Tags: "Polar bears in Baffin Bay skinnier and having fewer cubs due to less sea ice", , Climate Change, , The study compared the movements of adult female polar bears during two time periods.,   

    From University of Washington: “Polar bears in Baffin Bay skinnier, having fewer cubs due to less sea ice” 

    From University of Washington

    February 12, 2020
    Hannah Hickey

    A polar bear in Baffin Bay, West Greenland in 2012 seen from the air.Kristin Laidre/University of Washington.

    Polar bears are spending more time on land than they did in the 1990s due to reduced sea ice, new University of Washington-led research shows. Bears in Baffin Bay are getting thinner and adult females are having fewer cubs than when sea ice was more available.

    The new study, recently published in Ecological Applications, includes satellite tracking and visual monitoring of polar bears in the 1990s compared with more recent years.

    “Climate-induced changes in the Arctic are clearly affecting polar bears,” said lead author Kristin Laidre, a UW associate professor of aquatic and fishery sciences. “They are an icon of climate change, but they’re also an early indicator of climate change because they are so dependent on sea ice.”

    The international research team focused on a subpopulation of polar bears around Baffin Bay, the large expanse of ocean between northeastern Canada and Greenland. The team tracked adult female polar bears’ movements and assessed litter sizes and the general health of this subpopulation between the 1990s and the period from 2009 to 2015.

    The study compared the movements of adult female polar bears during two time periods. In the 1990s (left), sea ice in mid-July still spanned Baffin Bay, providing polar bears with a large area to hunt and travel. In more recent summers (right), Baffin Bay was mostly open water in mid-July, and polar bears were stuck closer to shore.Joshua Stevens, NASA Earth Observatory/National Snow & Ice Data Center.

    Polar bears’ movements generally follow the annual growth and retreat of sea ice. In early fall, when sea ice is at its minimum, these bears end up on Baffin Island, on the west side of the bay. They wait on land until winter when they can venture out again onto the sea ice.

    When Baffin Bay is covered in ice, the bears use the solid surface as a platform for hunting seals, their preferred prey, to travel and even to create snow dens for their young.

    “These bears inhabit a seasonal ice zone, meaning the sea ice clears out completely in summer and it’s open water,” Laidre said. “Bears in this area give us a good basis for understanding the implications of sea ice loss.”

    Satellite tags that tracked the bears’ movements show that polar bears spent an average of 30 more days on land in recent years compared to in the 1990s. The average in the 1990s was 60 days, generally between late August and mid-October, compared with 90 days spent on land in the 2000s. That’s because Baffin Bay sea ice retreats earlier in the summer and the edge is closer to shore, with more recent summers having more open water.

    The authors compared the movements of 43 adult female polar bears with tags that recorded their positions from 1991 to 1997 (left) with those of 38 adult females tracked from 2009 to 2015 (right). With less sea ice, the bears’ movements are restricted to a smaller area and they spend more time close to shore, especially in Greenland.Joshua Stevens/NASA Earth Observatory and Kristin Laidre/Uiversity of Washington.

    “When the bears are on land, they don’t hunt seals and instead rely on fat stores,” said Laidre. “They have the ability to fast for extended periods, but over time they get thinner.”

    To assess the females’ health, the researchers quantified the condition of bears by assessing their level of fatness after sedating them, or inspecting them visually from the air. Researchers classified fatness on a scale of 1 to 5. The results showed the bears’ body condition was linked with sea ice availability in the current and previous year — following years with more open water, the polar bears were thinner.

    The body condition of the mothers and sea ice availability also affected how many cubs were born in a litter. The researchers found larger litter sizes when the mothers were in a good body condition and when spring breakup occurred later in the year — meaning bears had more time on the sea ice in spring to find food.

    The authors also used mathematical models to forecast the future of the Baffin Bay polar bears. The models took into account the relationship between sea ice availability and the bears’ body fat and variable litter sizes. The normal litter size may decrease within the next three polar bear generations, they found, mainly due to a projected continuing sea ice decline during that 37-year period.

    “We show that two-cub litters — usually the norm for a healthy adult female — are likely to disappear in Baffin Bay in the next few decades if sea ice loss continues,” Laidre said. “This has not been documented before.”

    Laidre studies how climate change is affecting polar bears and other marine mammals in the Arctic. She led a 2016 study [The Cryosphere] showing that polar bears across the Arctic have less access to sea ice than they did 40 years ago, meaning less access to their main food source and their preferred den sites. The new study uses direct observations to link the loss of sea ice to the bears’ health and reproductive success.

    “This work just adds to the growing body of evidence that loss of sea ice has serious, long-term conservation concerns for this species,” Laidre said. “Only human action on climate change can do anything to turn this around.”

    Co-authors of the study are Eric Regehr and Harry Stern at the UW; Stephen Atkinson and Markus Dyck at the Government of Nunavut in Canada; Erik Born at the Greenland Institute of Natural Resources; Øystein Wiig at the Natural History Museum in Norway; and Nicholas Lunn of Environment and Climate Change Canada. Main funders of the research include NASA and the governments of Nunavut, Canada, Greenland, Denmark and the United States.

    For more information, contact Laidre at klaidre@uw.edu or 206-616-9030.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

  • richardmitnick 10:53 am on February 17, 2020 Permalink | Reply
    Tags: "Edaphic Factors Are Important to Explain and Predict Impact of Climate Change on Species Distribution", , , , , Climate Change,   

    From Chinese Academy of Sciences: “Edaphic Factors Are Important to Explain and Predict Impact of Climate Change on Species Distribution” 

    From Chinese Academy of Sciences

    Feb 14, 2020
    ZHANG Nannan

    Examples of habitats that support edaphic specialists (Image by Wikimedia Commons)

    The climate change crisis has resulted in an emphasis on the role of broad-scale climate in controlling species distributions. A key metric for predicting the impacts of climate change on species and ecosystems is the local velocity of climate change: how fast a species must move across the landscape to track its preferred climate in space. However, other ecologically important environmental variables will move much more slowly (e.g., some soil properties) or not at all (e.g., underlying geology).

    In a review published in Trends in Ecology & Evolution, researchers from Xishuangbanna Tropical Botanical Garden (XTBG) pointed out that the relative neglect of local edaphic factors risks weakening people’s ability to explain past responses to climate change and predict future ones.

    The researchers focused on some immovable environmental variables and specifically on the soil types with extreme chemical and/or physical properties that develop on regionally rare geological substrates, such as limestone karsts, ultramafic rocks, and granite inselbergs (i.e. isolated hills or mountains rising abruptly from a plain, like islands in the sea).

    By consulting a large amount of literature, the researchers found that in warmer regions of the world, the edaphic specialists (i.e. species of plants and animals in specific substrates) appear to have accumulated in situ over millions of years, persisting despite climate change by local movements, plastic responses, and genetic adaptation. However, past climates were usually cooler than today and rates of warming slower, while edaphic islands are now exposed to multiple additional threats, including mining.

    They further found that species distribution models used to predict climate change responses can include edaphic factors, but these are rarely mapped at a high enough spatial resolution.

    “Using low-resolution edaphic data for predictions is likely to give misleading results”, said Prof. Richard Corlett, principal investigator of the study.

    “We need to improve our understanding of the mechanistic basis for edaphic endemism, in order to predict the vulnerability of these endemics to climate change and other anthropogenic impacts. Reciprocal transplants and resource-addition experiments should be useful for this” said Prof. Richard Corlett.

    “We also need to improve the species distribution models used to predict climate change impacts”, added Dr. Corlett.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences is the linchpin of China’s drive to explore and harness high technology and the natural sciences for the benefit of China and the world. Comprising a comprehensive research and development network, a merit-based learned society and a system of higher education, CAS brings together scientists and engineers from China and around the world to address both theoretical and applied problems using world-class scientific and management approaches.

    Since its founding, CAS has fulfilled multiple roles — as a national team and a locomotive driving national technological innovation, a pioneer in supporting nationwide S&T development, a think tank delivering S&T advice and a community for training young S&T talent.

    Now, as it responds to a nationwide call to put innovation at the heart of China’s development, CAS has further defined its development strategy by emphasizing greater reliance on democratic management, openness and talent in the promotion of innovative research. With the adoption of its Innovation 2020 programme in 2011, the academy has committed to delivering breakthrough science and technology, higher caliber talent and superior scientific advice. As part of the programme, CAS has also requested that each of its institutes define its “strategic niche” — based on an overall analysis of the scientific progress and trends in their own fields both in China and abroad — in order to deploy resources more efficiently and innovate more collectively.

    As it builds on its proud record, CAS aims for a bright future as one of the world’s top S&T research and development organizations.

  • richardmitnick 12:48 pm on February 16, 2020 Permalink | Reply
    Tags: "The U.S. power grid desperately needs upgrades to handle climate change", A few communities are taking matters into their own hands by building microgrids which can get power from solar panels when the electricity supply from the power company gets cut off., America’s energy infrastructure is a sprawling network of millions of power lines overseen by a patchwork of grid operators., , “There isn’t enough money in the world” to retrofit the entire grid with all new equipment that’s more firesafe and sturdy against storms., Climate Change, Reliability fears stoke calls to action., , The aging U.S. power grid is not expected to hold up well to the coming climate stresses., The U.S. power grid is a 19th century system operating under the stresses of a 21st century climate.   

    From Science News: “The U.S. power grid desperately needs upgrades to handle climate change” 

    From Science News

    February 12, 2020
    Maria Temming

    Reliability fears stoke calls to action.

    Under climate change, power lines are more likely to be lashed by storms, bake in heat waves and spark wildfires in dry terrain. Revamping parts of the grid could make it safer in severe weather. Nicolle Rager Fuller.

    Derek Krause likes to be prepared. The 59-year-old retired fire chief used to teach courses on how to be self-sufficient in the wake of a natural disaster. So last October, when he and his wife arrived home to find their Oakland, Calif., neighborhood blacked out, Krause was ready with solar panels and battery backup.

    Most people weren’t so fortunate. While solar power kept Krause’s lights on and refrigerator and Wi-Fi running over the three-day outage, the neighbors drove around in search of ice and lined up to buy generators. “My wife said, ‘It’s sort of like the movie The Purge,’ ” Krause recalls. “Your security system doesn’t work, your garage doesn’t work, your phone doesn’t work, and streetlights and the traffic signals don’t work. Good luck; you’re on your own.”

    That October outage was part of a series of deliberate blackouts that plunged millions of Californians into darkness. Pacific Gas and Electric shut off the power to prevent power lines from sparking wildfires in dry, windy conditions (SN Online: 11/1/19). It was one of many examples of how the U.S. power grid fails to stand up against weather hazards. In July 2019 in New York, the energy company Con Edison unplugged tens of thousands of customers to avoid equipment damage due to overheating during a heat wave. In 2017, Hurricane Harvey — whose severity has been linked to human-driven climate change — ripped through Houston and cut power to more than 300,000 customers (SN: 1/20/18, p. 6).

    More than half of major U.S. power outages from 2000 to 2016 were caused by natural hazards like hurricanes, heat waves and wildfires, according to research reported July 2018 in Reliability Engineering & System Safety. Climate change is making such extreme weather more likely and more intense (SN Online: 12/10/19). The aging U.S. power grid is not expected to hold up well to the coming climate stresses: “Americans will likely experience longer and more frequent power interruptions,” the American Society of Civil Engineers predicted in a 2017 report.

    Burying power lines underground where it makes sense, such as in higher density areas, could keep the lines safe from storms and prevent them from igniting fires. Nicolle Rager Fuller.


    America’s energy infrastructure is a sprawling network of millions of power lines overseen by a patchwork of grid operators. “There isn’t enough money in the world” to retrofit the entire grid with all new equipment that’s more firesafe and sturdy against storms, says electrical engineer B. Don Russell of Texas A&M University in College Station. “We’re going to have to live with what we’ve got for a long, long time.”

    Realistically, there are two main ways to make electricity access more reliable in severe weather: getting smarter about how to patch up precarious parts of the grid, and building backup plans for when the grid fails. Some utilities are using new computer algorithms that pinpoint grid vulnerabilities sooner and figure out the best fixes. Meanwhile, a few communities are taking matters into their own hands by building microgrids, which can get power from solar panels when the electricity supply from the power company gets cut off.

    The U.S. power grid is a 19th century system operating under the stresses of a 21st century climate. When the first power lines went up, they were designed to operate with very little babysitting, says Alexandra von Meier, an electric grid researcher at the University of California, Berkeley. It just wasn’t practical for utilities to regularly inspect their entire electrical systems. Instead, utilities have maintained power lines under a run-to-failure mentality — assuming everything is fine until someone calls in to complain about an outage.

    Electrical network

    The power grid of the contiguous United States is a vast web of high-voltage transmission lines (shown) that carry electricity from power plants to substations to lower-voltage distribution lines that wend through neighborhoods.
    U.S. EIA

    Today power companies are bringing new technology to bear on this centuries-old setup to keep better tabs on power lines and identify weather-related hazards before they cause trouble. With earlier warning of potential failures, utilities have been able to repair equipment more proactively and can better judge which lines should be powered down during weather conditions that boost fire risk. For instance, companies can use drone surveillance to keep a closer eye on trees near lines that could ignite a wildfire on a blustery day.

    Russell and colleagues have developed a system that more directly monitors power lines for potential fire hazards. The system relies on sensors at substations — facilities where high-voltage lines that travel long distances meet low-voltage lines that snake through neighborhoods. These sensors monitor how electricity is flowing through power lines connected to the substation. The system can recognize subtle electrical signatures of malfunctioning wires, electrical switches, insulators and other components days or weeks before those components break and cause an outage. These electrical signals also contain clues about where the problem is — sometimes down to the exact location on an individual power line.

    Sensors that recognize electrical signatures of potential problems, like trees hitting power lines, could warn repair crews before damage happens. Nicolle Rager Fuller.

    To create the system, described in November 2019 at the Grid of the Future Symposium in Atlanta, Russell’s team analyzed data recorded during device failures at a dozen power companies’ substations over 15 years. That allowed the researchers to tease out the electrical fingerprints of different equipment malfunctions. To date, over 20 utilities in the United States, as well as several in Australia, have deployed the Texas A&M automated system at their substations. “We have hundreds … if not thousands of examples where we [have found] a piece of failing equipment” or other ignition risks, Russell says. Those include power lines getting yanked down or brushing against trees, as well as components melting or sparking.

    Utilities can also make the grid more reliable by redesigning parts of it and adding new equipment in vulnerable areas. That might involve running some lines underground in areas prone to wildfires, or building new power lines that provide detours for electricity if other lines go down during a storm. But renovations are expensive. Burying wires can cost between $300,000 and $1.25 million per kilometer, compared with $80,000 to $240,000 for overhead wires, according to a 2019 World Bank report. And figuring out which upgrades will keep the power on for the most people is a complex puzzle.


    Tinderbox terrain

    Climate change is expected to increase the number of weeks in a year when weather conditions favor very large wildfires. This map shows the percent increase from 1971–2000 to 2041–2070. The most severe upticks are expected in the West, Southeast and parts of the Great Lakes region.

    The number of possible new installations and renovations across a network of power lines is often so high that a computer cannot simulate every combination of upgrades to calculate how many customers would benefit. “If you have on the table 100 or 150 or more different things you could do to your system and you look at all the possible combinations … very quickly the number of combinations exceeds the number of atoms in the universe,” says computer scientist Russell Bent of Los Alamos National Laboratory in New Mexico.

    To tackle this problem, Bent and colleagues developed a computer program that doesn’t simulate every possible combination. Instead, it strategically samples upgrades from the pool of options that a utility has funding for and evaluates how the utility’s network would fare in different disasters — such as earthquakes and hurricanes — with each upgrade option. The system judges the benefit of each option by the fraction of “critical loads,” such as hospitals and police stations, served during the disaster, as well as the overall fraction of customers served.

    The program might think, “I’ve got a solution that costs $50 million, and it gives me the resilience benefit I’m looking for. Therefore, I should not be considering any solution that’s more expensive,” Bent says. Splitting a grid into smaller chunks and identifying optimal upgrades for each also helps the computer system determine which potential solutions to consider for the network.

    Bent’s team ran scenarios for hypothetical power line networks in urban and rural distribution systems, describing the results online at arXiv.org in January 2018. Those results are slated to be published in the INFORMS Journal on Computing. For the rural network with long power lines that would be expensive to duplicate, the program was more likely to suggest installing extra localized backup generators. For urban networks with shorter lines, the program tended to favor building backup power lines. Utilities that belong to the U.S. National Rural Electric Cooperative Association can now use the Los Alamos group’s tool online to see what upgrades it recommends for their systems.

    Installing more generators near crucial facilities, like hospitals, police stations and firehouses, could keep electricity flowing to emergency responders. Nicolle Rager Fuller.

    Going off grid

    Strategic upgrades to make the grid more climate-­ready are likely to roll out slowly. “There are very few requirements for what those in the industry have to do to comport with climate change,” says Robert Verchick, who studies disaster and climate change law at Loyola University New Orleans. So companies often don’t invest in building more climate-­ready systems until a disaster has already struck. When companies do decide to upgrade or add on to their existing systems, the work can take years.

    In some locations, people have pressured utilities into action. After Superstorm Sandy cut power to over a million Con Edison customers in New York in 2012, a group led by the Sabin Center for Climate Change Law at Columbia University successfully petitioned the New York Public Service Commission to make Con Edison account for sea level rise, heat waves and other effects of climate change in any planned renovations. Other communities could push their public utility commissions to impose similar requirements, Verchick says.

    But no amount of strategic repair or new infrastructure will make the power grid perfect. “There are always [weather] possibilities that are beyond the control of any utility company,” says von Meier, of UC Berkeley. Inevitably, preemptive shutdowns or weather-related blackouts will leave some in the dark.

    People whose homes have solar panels and battery backup, like Oakland resident Derek Krause, can sometimes silo themselves off from the main grid and run independently during outages. Solar energy is growing in popularity; the number of residential, business and utility solar panel installations in the United States have about doubled since 2016, reaching 2 million in May 2019, according to the U.S. trade group Solar Energy Industries Association. But that’s still small potatoes: Solar power accounted for about 90 billion kilowatt hours of electricity in the United States in 2018, compared with over 2,600 billion kilowatt hours generated by fossil fuels.

    Rather than each house forming a little energy island, von Meier and colleagues believe that the more energy-efficient approach is for a city block to share a community microgrid powered by rooftop solar panels. Von Meier’s team simulated how much energy demand could be met by rooftop solar when houses were cut off from the main grid for different durations and times of year. The researchers based their analysis [IEEE Xplore], presented at the April 2018 IEEE Green Technologies Conference in Austin, Texas, on real-world power consumption data from Austin homes over one year. The team compared hypothetical, 30-home microgrids with rooftop solar panels against identical city blocks where each home ran separately on solar power.

    The simulation played through outages lasting four hours, one day and eight days, starting on each day of the year, at either midnight or in midafternoon. On average, a block-sized microgrid met a greater fraction of its total energy demand than about 70 percent of the individual homes. Block-scale microgrids can meet more energy demand, overall, because power use in individual homes tends to vary more over time than the power use of an entire block, the researchers argue. Turning on a single appliance can change a home’s energy demand by a lot. That same appliance has a much smaller effect on a 30-home block.

    Block-sized microgrids may not be more efficient in all cases. But this kind of simulation offers a way for developers to judge the benefits of potential neighborhood microgrids with different energy demands and generation capacities. The researchers are preparing to field-test their microgrid idea in a soon-to-be-selected city block in Oakland, and plan to start building the microgrid within two years.

    Neighborhoods could form energy islands: micro­grids that share electricity from rooftop solar panels when the main grid goes down. Nicolle Rager Fuller.

    “Microgrids are certainly a very important and rapidly developing solution” to power outages, says Gregory Reed, who studies power grid technology at the University of Pittsburgh. Some university campuses, airports and other businesses have built their own microgrids. The Blue Lake Rancheria tribe in northwestern California has constructed a solar-powered microgrid on its reservation, which supplied electricity to the tribe and its neighbors when PG&E powered down last October. The Native American tribe’s $6.3 million microgrid was built with funding from its casino plus a state grant.

    “Microgrids are an expensive proposition,” Reed says. “People who can afford microgrids … they’re leaving behind a whole part of the population that can’t.”

    Power to the people

    Extreme weather has already left some people with no choice but to go off-grid. Take the small mountain community of Adjuntas, in central Puerto Rico. “It’s an extremely peaceful place to live,” says Arturo Massol-Deyá, who was born and raised there. “Everyone knows each other.”

    But in 2017, Hurricane Maria laid waste to Puerto Rico’s power grid, causing the largest blackout in U.S. history. Six months after the storm, more than 100,000 Puerto Ricans were still without electricity. “Our neighborhood was without power for four months,” Massol-Deyá says. “But the rural communities … were without power for almost a year.” The only place in town with power was a local environmental nonprofit that Massol-Deyá runs, called Casa Pueblo, thanks to its rooftop solar panels.

    After Hurricane Maria obliterated Puerto Rico’s power grid in 2017, the nonprofit Casa Pueblo began building rooftop solar systems on homes and businesses in the mountain town of Adjuntas (aerial view shown) to help the community become more energy self-sufficient. “After the Dark,” Google Earth.

    Casa Pueblo became an “energy oasis” where people recharged their devices, Massol-Deyá says. The organization also powered the local radio station and installed solar power systems in the homes of people who needed power for dialysis equipment or respiratory machines.

    Puerto Rico’s government-owned power company has released a plan to build a new-and-improved power grid across the island, featuring eight smaller grid networks that can operate independently in an emergency. But Massol-Deyá’s team hasn’t been waiting around for change. Because Adjuntas has a high poverty rate, Casa Pueblo has outfitted dozens of homes in Adjuntas, along with the fire station, eldercare facility, barbershop and other businesses with solar power. The system held up during January’s string of earthquakes, Massol-Deyá says. Now the organization is gearing up to build a solar-powered microgrid to supply businesses in the town’s main square.

    Massol-Deyá hopes that other communities will also become more self-sufficient with local, renewable energy resources. Reliable electricity is not just a convenience, he says. “It’s for survival.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 12:14 pm on January 20, 2020 Permalink | Reply
    Tags: "Platypus on brink of extinction", , Climate Change, , Human impact on the environment,   

    From University of New South Wales: “Platypus on brink of extinction” 

    U NSW bloc

    From University of New South Wales

    20 Jan 2020
    Caroline Tang
    Media & Content
    02 9385 8809

    Additional media contacts:

    Dr Gilad Bino
    Researcher, UNSW Centre for Ecosystem Science
    0404 796 809

    Professor Richard Kingsford
    Director, UNSW Centre for Ecosystem Science
    0419 634 215

    New UNSW research calls for national action to minimise the risk of the platypus vanishing due to habitat destruction, dams and weirs.

    New UNSW research shows the possibility of the iconic Australian platypus becoming extinct because of threats including climate change and human-related habitat loss. Picture: UNSW Science

    Australia’s devastating drought is having a critical impact on the iconic platypus, a globally unique mammal, with increasing reports of rivers drying up and platypuses becoming stranded.

    Platypuses were once considered widespread across the eastern Australian mainland and Tasmania, although not a lot is known about their distribution or abundance because of the species’ secretive and nocturnal nature.

    A new study led by UNSW Sydney’s Centre for Ecosystem Science, funded through a UNSW-led Australian Research Council project and supported by the Taronga Conservation Society, has for the first time examined the risks of extinction for this intriguing animal.

    Published in the international scientific journal Biological Conservation this month, the study examined the potentially devastating combination of threats to platypus populations, including water resource development, land clearing, climate change and increasingly severe periods of drought.

    Lead author Dr Gilad Bino, a researcher at the UNSW Centre for Ecosystem Science, said action must be taken now to prevent the platypus from disappearing from our waterways.

    “There is an urgent need for a national risk assessment for the platypus to assess its conservation status, evaluate risks and impacts, and prioritise management in order to minimise any risk of extinction,” Dr Bino said.

    The UNSW-led project raises concerns about the decline of platypus populations. Picture: Flickr

    Alarmingly, the study estimated that under current climate conditions and due to land clearing and fragmentation by dams, platypus numbers almost halved, leading to the extinction of local populations across about 40 per cent of the species’ range, reflecting ongoing declines since European colonisation.

    Under predicted climate change, the losses forecast were far greater because of increases in extreme drought frequencies and duration, such as the current dry spell.

    Dr Bino added: “These dangers further expose the platypus to even worse local extinctions with no capacity to repopulate areas.”

    Documented declines and local extinctions of the platypus show a species facing considerable risks, while the International Union for Conservation of Nature (IUCN) recently downgraded the platypus’ conservation status to “Near Threatened”.

    But the platypus remains unlisted in most jurisdictions in Australia – except South Australia, where it is endangered.

    Director of the UNSW Centre for Ecosystem Science and study co-author Professor Richard Kingsford said it was unfortunate that platypuses lived in areas undergoing extensive human development that threatened their lives and long-term viability.

    “These include dams that stop their movements, agriculture which can destroy their burrows, fishing gear and yabby traps which can drown them and invasive foxes which can kill them,” Prof Kingsford said.

    UNSW Sydney’s Centre for Ecosystem Science leads new research into the extinction risk of the platypus. Picture: Tahnael Hawke

    Study co-author Professor Brendan Wintle at The University of Melbourne said it was important that preventative measures were taken now.

    “Even for a presumed ‘safe’ species such as the platypus, mitigating or even stopping threats, such as new dams, is likely to be more effective than waiting for the risk of extinction to increase and possible failure,” Prof Wintle said.

    “We should learn from the peril facing the koala to understand what happens when we ignore the warning signs.”

    Dr Bino said the researchers’ paper added to the increasing body of evidence which showed that the platypus, like many other native Australian species, was on the path to extinction.

    “There is an urgent need to implement national conservation efforts for this unique mammal and other species by increasing monitoring, tracking trends, mitigating threats, and protecting and improving management of freshwater habitats,” Dr Bino said.

    The platypus research team is continuing to research the ecology and conservation of this enigmatic animal, collaborating with the Taronga Conservation Society, to ensure its future by providing information for effective policy and management.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    Welcome to UNSW Australia (The University of New South Wales), one of Australia’s leading research and teaching universities. At UNSW, we take pride in the broad range and high quality of our teaching programs. Our teaching gains strength and currency from our research activities, strong industry links and our international nature; UNSW has a strong regional and global engagement.

    In developing new ideas and promoting lasting knowledge we are creating an academic environment where outstanding students and scholars from around the world can be inspired to excel in their programs of study and research. Partnerships with both local and global communities allow UNSW to share knowledge, debate and research outcomes. UNSW’s public events include concert performances, open days and public forums on issues such as the environment, healthcare and global politics. We encourage you to explore the UNSW website so you can find out more about what we do.

  • richardmitnick 10:22 am on January 2, 2020 Permalink | Reply
    Tags: , Climate Change, ,   

    From Science Alert: “This Intense Infographic Breaks Down The Biggest Climate News of 2019” 


    From Science Alert

    2 JAN 2020


    It’s easy to feel overwhelmed with climate news these days. Every week there’s another story on deforestation, coral bleaching, heat records being smashed… and then smashed again a few months later.

    Which is why sometimes it’s good to pull back and reflect on the big picture. And no surprises here: in 2019, for the most part, that picture was bleak.

    But for all the overwhelmingly bad news, there were also some really powerful and momentous moments of action and progress that are worth remembering.

    Each week at ScienceAlert we wrap up the biggest science news story of the past seven days in an infographic shared across our social platforms – if you’re not familiar with This Week in Science, you can check out the back catalogue here.

    This weekly picture was our way of cutting through the noise and showing what science had achieved in just seven short days, in a format people could easily share with their friends.

    When making our special end of year wrap-up version, we couldn’t help but notice that the vast majority of the ‘most important’ and world-shifting announcements in 2019 were to do with climate science. We’re not the first to remark this, but it really was a turning point for climate change – in both the positive and negative sense of the word.

    To make sure these huge, literally world-changing stories don’t get lost in the fake news and Twitter shouting matches of the past year, we created a special climate-themed This Year in Science.

    Here are the climate stories we felt were the most note-worthy of the past 12 months:


    Human-Caused Climate Change Reached ‘Gold Standard’

    Atmospheric CO2 Exceeded 415 ppm For The First Time in Human History

    Millions of People Rose Up For The Global Climate Strike

    More Than 11,000 Scientists Officially Declared a Global Climate Emergency

    Scientist Warned Several Tipping Points That Could Unleash a Planetary Emergency Are Now Active

    It’s Official: We Just Had The Hottest Decade in Recorded History

    Scientists and many others around the world are working hard to help us out of this mess and we’ll be here to keep you updated on whatever 2020 has to bring. Happy new year, science fans.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 10:13 am on December 7, 2019 Permalink | Reply
    Tags: "Drone images show Greenland Ice Sheet becoming more unstable as it fractures", , Climate Change, ,   

    From University of Cambridge: “Drone images show Greenland Ice Sheet becoming more unstable as it fractures” 

    U Cambridge bloc

    From University of Cambridge

    Sarah Collins


    The world’s second-largest ice sheet, and the single largest contributor to global sea level rise, is potentially becoming unstable because of fractures developing in response to faster ice flow and more meltwater forming on its surface.

    Using custom-built drones strong enough to withstand the extreme Arctic conditions, researchers led by the University of Cambridge made the first drone-based observations of how fractures form under meltwater lakes on the Greenland Ice Sheet. These fractures cause catastrophic lake drainages, in which huge quantities of surface water are transferred to the sensitive environment beneath the ice.

    The study, published in the Proceedings of the National Academy of Sciences, shows how the water is transferred and how the ice sheet responds. The researchers found that inflowing meltwater expanded the lake and drainage began when the edge of the lake intersected a fracture, which formed one year earlier.

    U Cambridge

    Each summer, thousands of lakes form on the Greenland Ice Sheet as the weather warms. Many of these lakes can drain in just a few hours, creating caverns known as moulins, through which water descends to the bottom of the ice sheet.

    These cavities typically stay open for the remainder of the melt season, as meltwater from streams and rivers on the surface descends beneath the ice. Given that the ice sheet is typically a kilometre thick or more, the flow of water into the moulins may well be the world’s largest waterfalls.

    While conducting the research from a camp on Store Glacier in northwest Greenland, the team witnessed how this fracture became active and how it propagated 500 metres further into the lake, causing the lake to drain rapidly. In multiple drone flights, the team was able to document the flow of water into the fracture and the water’s subsequent pathway under the ice.

    After draining, lakes leave behind holes called ‘moulins’, which allow meltwater to continue to travel to the bottom of the ice sheet.

    In a detailed reconstruction of the event, which is rarely observed directly, the team, which also included researchers from Aberystwyth and Lancaster Universities, showed how the meltwater causes the formation of new fractures, as well as the expansion of dormant fractures.

    In just five hours, five million cubic metres of water – the equivalent of 2,000 Olympic-sized swimming pools – drained to the bottom of the ice sheet via the fracture, causing a new cavity to form and reducing the lake to a third of its original volume. This caused the ice flow to accelerate from a speed of two metres per day to more than five metres per day as surface water was transferred to the bed, which in turn lifted the ice sheet by half a metre.

    The drone footage supports computer models used by the same team of researchers to show that drainage of melt lakes in Greenland can occur in a chain reaction. The new study provides an insight as to how these chain reactions might be triggered, via lakes that can drain through existing fractures.

    “It’s possible we’ve under-estimated the effects of these glaciers on the overall instability of the Greenland Ice Sheet,” said first author Tom Chudley, a PhD student at the Scott Polar Research Institute and the team’s drone pilot. “It’s a rare thing to actually observe these fast-draining lakes – we were lucky to be in the right place at the right time.”

    “These glaciers are already moving quite fast, so the effect of the lakes may not appear to be as dramatic as it is on slower-moving glaciers elsewhere, but the overall effect is in fact very significant,” said Dr Poul Christoffersen, who led the expedition. “To date, most observations are provided by satellites. These allow us to see what’s happening over the whole ice sheet, but drone-based observations give a lot more nuance to our understanding of these lake drainages. We can also observe the formation and re-opening of fractures, which isn’t possible from satellites.”

    The drones, which were built at the Scott Polar Research Institute, were fitted with autopilot and navigated autonomously along pre-programmed flight paths in missions that lasted up to an hour each. By also fitting on-board GPS, the team was able to accurately geo-locate and stitch together hundreds of photos taken during each survey. The photos were used to create detailed 3D reconstructions of the ice sheet surface.

    The findings show that fast-flowing glaciers in Greenland are subject to significant forcing by surface meltwater. They also show that changes in ice flow occur on much shorter timescales than considered possible so far.

    Christoffersen leads the EU-funded RESPONDER project, of which this study was a part. The RESPONDER team are using the drone footage to identify ‘hotspots’ where the ice sheet behaves sensitively.

    Using drilling equipment, the team is now exploring how the water is accommodated in the basal drainage system and how the ice sheet may change over the coming decades as the climate continues to warm.

    The difference between snow accumulation and loss of ice in Greenland ice sheet currently amounts to one billion tonnes of ice being lost every day. This net loss of ice is growing, making the Greenland Ice Sheet the single largest contributor to global sea level rise.

    The RESPONDER project is funded by the European Research Council under the European Union’s Horizon 2020 programme. Chudley is supported by the Natural Environment Research Council.

    Researchers flew drones over the lake as it was draining, building 3D models of the ice sheet surface as well as capturing spectacular images of waterfalls entering the depths of the ice sheet. Credit: Tom Chudley


    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (abbreviated as Cantab in post-nominal letters) is a collegiate public research university in Cambridge, England. Founded in 1209, Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 constituent colleges and over 100 academic departments organised into six schools. The university occupies buildings throughout the town, many of which are of historical importance. The colleges are self-governing institutions founded as integral parts of the university. In the year ended 31 July 2014, the university had a total income of £1.51 billion, of which £371 million was from research grants and contracts. The central university and colleges have a combined endowment of around £4.9 billion, the largest of any university outside the United States. Cambridge is a member of many associations and forms part of the “golden triangle” of leading English universities and Cambridge University Health Partners, an academic health science centre. The university is closely linked with the development of the high-tech business cluster known as “Silicon Fen”.

  • richardmitnick 9:10 am on October 26, 2019 Permalink | Reply
    Tags: "‘Artificial leaf’ successfully produces clean gas ", , , , Climate Change, , ,   

    From University of Cambridge: “‘Artificial leaf’ successfully produces clean gas “ 

    U Cambridge bloc

    From University of Cambridge

    21 Oct 2019
    Sarah Collins

    Artificial leaf. Credit: Virgil Andrei

    A widely-used gas that is currently produced from fossil fuels can instead be made by an ‘artificial leaf’ that uses only sunlight, carbon dioxide and water, and which could eventually be used to develop a sustainable liquid fuel alternative to petrol.

    The carbon-neutral device sets a new benchmark in the field of solar fuels, after researchers at the University of Cambridge demonstrated that it can directly produce the gas – called syngas – in a sustainable and simple way.

    Rather than running on fossil fuels, the artificial leaf is powered by sunlight, although it still works efficiently on cloudy and overcast days. And unlike the current industrial processes for producing syngas, the leaf does not release any additional carbon dioxide into the atmosphere. The results are reported in the journal Nature Materials.

    Syngas is currently made from a mixture of hydrogen and carbon monoxide, and is used to produce a range of commodities, such as fuels, pharmaceuticals, plastics and fertilisers.

    “You may not have heard of syngas itself but every day, you consume products that were created using it. Being able to produce it sustainably would be a critical step in closing the global carbon cycle and establishing a sustainable chemical and fuel industry,” said senior author Professor Erwin Reisner from Cambridge’s Department of Chemistry, who has spent seven years working towards this goal.

    The device Reisner and his colleagues produced is inspired by photosynthesis – the natural process by which plants use the energy from sunlight to turn carbon dioxide into food.

    On the artificial leaf, two light absorbers, similar to the molecules in plants that harvest sunlight, are combined with a catalyst made from the naturally abundant element cobalt.

    When the device is immersed in water, one light absorber uses the catalyst to produce oxygen. The other carries out the chemical reaction that reduces carbon dioxide and water into carbon monoxide and hydrogen, forming the syngas mixture.

    As an added bonus, the researchers discovered that their light absorbers work even under the low levels of sunlight on a rainy or overcast day.

    “This means you are not limited to using this technology just in warm countries, or only operating the process during the summer months,” said PhD student Virgil Andrei, first author of the paper. “You could use it from dawn until dusk, anywhere in the world.”

    The research was carried out in the Christian Doppler Laboratory for Sustainable SynGas Chemistry in the University’s Department of Chemistry. It was co-funded by the Austrian government and the Austrian petrochemical company OMV, which is looking for ways to make its business more sustainable.

    “OMV has been an avid supporter of the Christian Doppler Laboratory for the past seven years. The team’s fundamental research to produce syngas as the basis for liquid fuel in a carbon neutral way is ground-breaking,” said Michael-Dieter Ulbrich, Senior Advisor at OMV.

    Other ‘artificial leaf’ devices have also been developed, but these usually only produce hydrogen. The Cambridge researchers say the reason they have been able to make theirs produce syngas sustainably is thanks the combination of materials and catalysts they used.

    These include state-of-the-art perovskite light absorbers, which provide a high photovoltage and electrical current to power the chemical reaction by which carbon dioxide is reduced to carbon monoxide, in comparison to light absorbers made from silicon or dye-sensitised materials. The researchers also used cobalt as their molecular catalyst, instead of platinum or silver. Cobalt is not only lower-cost, but it is better at producing carbon monoxide than other catalysts.

    The team is now looking at ways to use their technology to produce a sustainable liquid fuel alternative to petrol.

    Syngas is already used as a building block in the production of liquid fuels. “What we’d like to do next, instead of first making syngas and then converting it into liquid fuel, is to make the liquid fuel in one step from carbon dioxide and water,” said Reisner, who is also a Fellow of St John’s College.

    Although great advances are being made in generating electricity from renewable energy sources such as wind power and photovoltaics, Reisner says the development of synthetic petrol is vital, as electricity can currently only satisfy about 25% of our total global energy demand. “There is a major demand for liquid fuels to power heavy transport, shipping and aviation sustainably,” he said.

    “We are aiming at sustainably creating products such as ethanol, which can readily be used as a fuel,” said Andrei. “It’s challenging to produce it in one step from sunlight using the carbon dioxide reduction reaction. But we are confident that we are going in the right direction, and that we have the right catalysts, so we believe we will be able to produce a device that can demonstrate this process in the near future.”

    The research was also funded by the Winton Programme for the Physics of Sustainability, the Biotechnology and Biological Sciences Research Council, and the Engineering and Physical Sciences Research Council.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (abbreviated as Cantab in post-nominal letters) is a collegiate public research university in Cambridge, England. Founded in 1209, Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 constituent colleges and over 100 academic departments organised into six schools. The university occupies buildings throughout the town, many of which are of historical importance. The colleges are self-governing institutions founded as integral parts of the university. In the year ended 31 July 2014, the university had a total income of £1.51 billion, of which £371 million was from research grants and contracts. The central university and colleges have a combined endowment of around £4.9 billion, the largest of any university outside the United States. Cambridge is a member of many associations and forms part of the “golden triangle” of leading English universities and Cambridge University Health Partners, an academic health science centre. The university is closely linked with the development of the high-tech business cluster known as “Silicon Fen”.

  • richardmitnick 10:22 am on October 19, 2019 Permalink | Reply
    Tags: "Stanford researchers create new catalyst that can turn carbon dioxide into fuels", , , , Climate Change, , Imagine grabbing carbon dioxide from car exhaust pipes and other sources and turning this main greenhouse gas into fuels like natural gas or propane., ,   

    From Stanford University: “Stanford researchers create new catalyst that can turn carbon dioxide into fuels” 

    Stanford University Name
    From Stanford University

    October 17, 2019
    Andrew Myers

    Aisulu Aitbekova, left, and Matteo Cargnello in front of the reactor where Aitbekova performed much of the experiments for this project. (Image credit: Mark Golden)

    Imagine grabbing carbon dioxide from car exhaust pipes and other sources and turning this main greenhouse gas into fuels like natural gas or propane: a sustainability dream come true.

    Several recent studies have shown some success in this conversion, but a novel approach from Stanford University engineers yields four times more ethane, propane and butane than existing methods that use similar processes. While not a climate cure-all, the advance could significantly reduce the near-term impact on global warming.

    “One can imagine a carbon-neutral cycle that produces fuel from carbon dioxide and then burns it, creating new carbon dioxide that then gets turned back into fuel,” said Matteo Cargnello, an assistant professor of chemical engineering at Stanford who led the research, published in Angewandte Chemie.

    Although the process is still just a lab-based prototype, the researchers expect it could be expanded enough to produce useable amounts of fuel. Much work remains, however, before average consumer will be able to purchase products based on such technologies. Next steps include trying to reduce harmful byproducts from these reactions, such as the toxic pollutant carbon monoxide. The group is also developing ways to make other beneficial products, not just fuels. One such product is olefins, which can be used in a number of industrial applications and are the main ingredients for plastics.

    Two steps in one

    Previous efforts to convert CO2 to fuel involved a two-step process. The first step reduces CO2 to carbon monoxide, then the second combines the CO with hydrogen to make hydrocarbon fuels. The simplest of these fuels is methane, but other fuels that can be produced include ethane, propane and butane. Ethane is a close relative of natural gas and can be used industrially to make ethylene, a precursor of plastics. Propane is commonly used to heat homes and power gas grills. Butane is a common fuel in lighters and camp stoves.

    Cargnello thought completing both steps in a single reaction would be much more efficient, and set about creating a new catalyst that could simultaneously strip an oxygen molecule off of CO2 and combine it with hydrogen. (Catalysts induce chemical reactions without being used up in the reaction themselves.) The team succeeded by combining ruthenium and iron oxide nanoparticles into a catalyst.

    “This nugget of ruthenium sits at the core and is encapsulated in an outer sheath of iron,” said Aisulu Aitbekova, a doctoral candidate in Cargnello’s lab and lead author of the paper. “This structure activates hydrocarbon formation from CO2. It improves the process start to finish.”

    The team did not set out to create this core-shell structure but discovered it through collaboration with Simon Bare, distinguished staff scientist, and others at the SLAC National Accelerator Laboratory. SLAC’s sophisticated X-ray characterization technologies helped the researchers visualize and examine the structure of their new catalyst. Without this collaboration, Cargnello said they would not have discovered the optimal structure.

    “That’s when we began to engineer this material directly in a core-shell configuration. Then we showed that once we do that, hydrocarbon yields improve tremendously,” Cargnello said. “It is something about the structure specifically that helps the reactions along.”

    Cargnello thinks the two catalysts act in tag-team fashion to improve the synthesis. He suspects the ruthenium makes hydrogen chemically ready to bond with the carbon from CO2. The hydrogen then spills onto the iron shell, which makes the carbon dioxide more reactive.

    When the group tested their catalyst in the lab, they found that the yield for fuels such as ethane, propane and butane was much higher than their previous catalyst. However, the group still faces a few challenges. They’d like to reduce the use of noble metals such as ruthenium, and optimize the catalyst so that it can selectively make only specific fuels.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

  • richardmitnick 8:17 am on July 26, 2019 Permalink | Reply
    Tags: , , Climate Change, ,   

    From National Geographics: “How artificial intelligence can tackle climate change” 

    National Geographic

    From National Geographics

    July 18, 2019
    Jackie Snow

    Steam and smoke rise from the cooling towers and chimneys of a power plant. Artificial intelligence is being used to prove the case that plants that burn carbon-based fuels aren’t profitable. natgeo.com

    The biggest challenge on the planet might benefit from machine learning to help with solutions. Here are a just a few.

    Climate change is the biggest challenge facing the planet. It will need every solution possible, including technology like artificial intelligence (AI).

    Seeing a chance to help the cause, some of the biggest names in AI and machine learning—a discipline within the field—recently published a paper called Tackling Climate Change with Machine Learning The paper, which was discussed at a workshop during a major AI conference in June, was a “call to arms” to bring researchers together, said David Rolnick, a University of Pennsylvania postdoctoral fellow and one of the authors.

    “It’s surprising how many problems machine learning can meaningfully contribute to,” says Rolnick, who also helped organize the June workshop.

    The paper offers up 13 areas where machine learning can be deployed, including energy production, CO2 removal, education, solar geoengineering, and finance. Within these fields, the possibilities include more energy-efficient buildings, creating new low-carbon materials, better monitoring of deforestation, and greener transportation. However, despite the potential, Rolnick points out that this is early days and AI can’t solve everything.

    “AI is not a silver bullet,” he says.

    And though it might not be a perfect solution, it is bringing new insights into the problem. Here are three ways machine learning can help combat climate change.

    Better climate predictions

    This push builds on the work already done by climate informatics, a discipline created in 2011 that sits at the intersection of data science and climate science. Climate informatics covers a range of topics: from improving prediction of extreme events such as hurricanes, paleoclimatology, like reconstructing past climate conditions using data collected from things like ice cores, climate downscaling, or using large-scale models to predict weather on a hyper-local level, and the socio-economic impacts of weather and climate.

    AI can also unlock new insights from the massive amounts of complex climate simulations generated by the field of climate modeling, which has come a long way since the first system was created at Princeton in the 1960s. Of the dozens of models that have since come into existence, all represent atmosphere, oceans, land, cryosphere, or ice. But, even with agreement on basic scientific assumptions, Claire Monteleoni, a computer science professor at the University of Colorado, Boulder and a co-founder of climate informatics, points out that while the models generally agree in the short term, differences emerge when it comes to long-term forecasts.

    “There’s a lot of uncertainty,” Monteleoni said. “They don’t even agree on how precipitation will change in the future.”

    One project Monteleoni worked on uses machine learning algorithms to combine the predictions of the approximately 30 climate models used by the Intergovernmental Panel on Climate Change. Better predictions can help officials make informed climate policy, allow governments to prepare for change, and potentially uncover areas that could reverse some effects of climate change.

    Showing the effects of extreme weather

    Some homeowners have already experienced the effects of a changing environment. For others, it might seem less tangible. To make it more realistic for more people, researchers from Montreal Institute for Learning Algorithms (MILA), Microsoft, and ConscientAI Labs used GANs, a type of AI, to simulate what homes are likely to look like after being damaged by rising sea levels and more intense storms.

    “Our goal is not to convince people climate change is real, it’s to get people who do believe it is real to do more about that,” said Victor Schmidt, a co-author of the paper and Ph.D. candidate at MILA.

    So far, MILA researchers have met with Montreal city officials and NGOs eager to use the tool. Future plans include releasing an app to show individuals what their neighborhoods and homes might look like in the future with different climate change outcomes. But the app will need more data, and Schmidt said they eventually want to let people upload photos of floods and forest fires to improve the algorithm.

    “We want to empower these communities to help,” he said.

    Measuring where carbon is coming from

    Carbon Tracker is an independent financial think-tank working toward the UN goal of preventing new coal plants from being built by 2020. By monitoring coal plant emissions with satellite imagery, Carbon Tracker can use the data it gathers to convince the finance industry that carbon plants aren’t profitable.

    A grant from Google is expanding the nonprofit’s satellite imagery efforts to include gas-powered plants’ emissions and get a better sense of where air pollution is coming from. While there are continuous monitoring systems near power plants that can measure CO2 emissions more directly, they do not have global reach.

    “This can be used worldwide in places that aren’t monitoring,” said Durand D’souza, a data scientist at Carbon Tracker. “And we don’t have to ask permission.”

    AI can automate the analysis of images of power plants to get regular updates on emissions. It also introduces new ways to measure a plant’s impact, by crunching numbers of nearby infrastructure and electricity use. That’s handy for gas-powered plants that don’t have the easy-to-measure plumes that coal-powered plants have.

    Carbon Tracker will now crunch emissions for 4,000 to 5,000 power plants, getting much more information than currently available, and make it public. In the future, if a carbon tax passes, remote sensing Carbon Tracker’s could help put a price on emissions and pinpoint those responsible for it.

    “Machine learning is going to help a lot in this field,” D’souza said.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Geographic Society has been inspiring people to care about the planet since 1888. It is one of the largest nonprofit scientific and educational institutions in the world. Its interests include geography, archaeology and natural science, and the promotion of environmental and historical conservation.

  • richardmitnick 7:23 am on July 9, 2019 Permalink | Reply
    Tags: , Climate Change, Deleting mentions of ‘climate change’ from U.S. Geological Survey press releases, , ,   

    From Science Magazine: “Trump officials deleting mentions of ‘climate change’ from U.S. Geological Survey press releases” 

    From Science Magazine

    Jul. 8, 2019
    Scott Waldman

    Under Director James Reilly, the U.S. Geological Survey has drawn criticism for deemphasizing concerns about climate change. NASA

    A March news release from the U.S. Geological Survey (USGS) touted a new study that could be useful for infrastructure planning along the California coastline.

    At least that’s how President Donald Trump’s administration conveyed it.

    The news release hardly stood out. It focused on the methodology of the study rather than its major findings, which showed that climate change could have a withering effect on California’s economy by inundating real estate over the next few decades.

    An earlier draft of the news release, written by researchers, was sanitized by Trump administration officials, who removed references to the dire effects of climate change after delaying its release for several months, according to three federal officials who saw it. The study, published in the journal Scientific Reports, showed that California, the world’s fifth-largest economy, would face more than $100 billion in damages related to climate change and sea-level rise by the end of the century. It found that three to seven times more people and businesses than previously believed would be exposed to severe flooding.

    “We show that for California, USA, the world’s fifth largest economy, over $150 billion of property equating to more than 6% of the state’s GDP and 600,000 people could be impacted by dynamic flooding by 2100,” the researchers wrote in the study.

    The release fits a pattern of downplaying climate research at USGS and in other agencies within the administration. While USGS does not appear to be halting the pursuit of science, it has publicly communicated an incomplete account of the peer-reviewed research or omitted it under President Trump.

    “It’s been made clear to us that we’re not supposed to use climate change in press releases anymore. They will not be authorized,” one federal researcher said, speaking anonymously for fear of reprisal.

    In the Obama administration, press releases related to climate change were typically approved within days, researchers said. Now, they can take more than six months and go through the offices of political appointees, where they are often altered, several researchers told E&E News.

    In the case of the California coastline study, the press release went through the office of James Reilly, the director of USGS, a former astronaut who is attempting to minimize the consideration of climate change in agency decisions. Reilly is preparing a directive for agency scientists to use climate models that predict changes through 2040, when the effect of emissions is expected to be less severe. The New York Times first reported on the directive.

    At his 2018 confirmation hearing, Reilly promised to protect the agency’s scientific integrity.

    “If someone were to come to me and say, ‘I want you to change this because it’s the politically right thing to do,’ I would politely decline,” Reilly told lawmakers. “I’m fully committed to scientific integrity.”

    A spokeswoman for USGS said the agency has no formal policy to avoid references to climate change.

    “There is no policy nor directive in place that directs us to avoid mentioning climate change in our communication materials,” said Karen Armstrong, the spokeswoman.

    “Scientists at USGS regularly develop new methods and tools to supply timely, relevant and useful information about our planet and its processes, and we are committed to promoting the science they develop and making it broadly available,” she added.

    The agency’s press release about the California coastline study was significantly altered to mask the potential impact of rising temperatures on the state’s economy. Instead, it described the methodology of the study and how it relied on “state-of-the-art computer models” and various sea-level rise predictions.

    “USGS scientists and collaborators used state-of-the-art computer models to determine the coastal flooding and erosion that could result from a range of peer-reviewed, published 21st-century sea level rise and storm scenarios,” the final press release said. “The authors then translated those hazards into a range of projected economic and social exposure data to show the lives and dollars that could be at risk from climate change in California during the 21st century.”

    The USGS release didn’t include the dollar figures outlined in the study.

    An earlier draft of the press release, which was put online by the environmental group Point Blue Conservation Science, a participant in the study, compared the possible effect on Californians to the devastation of Hurricane Katrina. The release had stark recommendations for coastal planners and emphasized that by the end of the century, a typical winter storm could threaten $100 billion in coastal real estate annually.

    “According to the study, even modest sea level rise projections of ten inches (25 centimeters) by 2040 could flood more than 150,000 residents and affect more than $30 billion in property value when combined with an extreme 100-year storm along California’s coast,” the draft stated. “Societal exposure that included storms was up to seven times greater than with sea level rise alone.”

    The agency has omitted climate change from other press releases.

    A release in 2017 that publicized a study on how polar bears were expending more energy due to a loss of sea ice did not mention climate change. It noted that a “moving treadmill of sea ice” in the warming Arctic forced polar bears to hunt for more seals and placed pressure on their population in the Beaufort and Chukchi seas, without stating that climate change is a key driver of sea ice conditions.

    Another USGS release, on shifting farming regions due to climate change, mentioned “future high-temperature extremes” and “future climate conditions” but not climate change. The first sentence of the study that it was intended to promote mentions climate change. It was published in Scientific Reports.

    Some of the USGS studies point to national security repercussions. One study released last year found that a military installation in the Pacific Ocean that would play a role in a possible nuclear strike by North Korea could become uninhabitable in less than two decades due to climate change. The study, which was ordered by the Department of Defense, was released by USGS without a press release.

    USGS conducts important climate research and manages the Landsat satellite system that has tracked human-caused global changes for almost 50 years. Government researchers study sea-level rise and glacial melt and manage regional climate adaptation centers housed at universities from Hawaii to Massachusetts.

    Allowing valuable information to fall through the cracks is a waste of taxpayer dollars and could prevent science from being included in policy decisions, said Joel Clement, a former climate staffer for the Department of the Interior, USGS’s parent agency. Clement, who is now a senior fellow at the Harvard Kennedy School’s Belfer Center for Science and International Affairs, said the promotion of studies is an important way to get information into the hands of planners, homeowners, and policymakers. He said Interior appears to be suppressing climate science.

    “It’s an insult to the science, of course, but it’s also an insult to the people who need this information and whose livelihoods and in some cases their lives depend on this,” Clement said. “What’s shocking about it is that this has been taken to a new level, where information that is essential to economic and health and safety—essentially American well-being—is essentially being shelved and being hidden.”

    In the last year of the Obama administration, USGS distributed at least 13 press releases that focused on climate change and highlighted it in the headline, according to an E&E News review. Since then — from 2017 through the first six months of 2019 — none has mentioned climate change in the headline of the press release, according to the list of state and national releases posted on the USGS website. Some briefly mentioned climate change in the body of the release, while others did not refer to it at all.

    Other studies have been quietly buried on the agency’s webpages.

    That subtle form of suppression fits a pattern elsewhere in the federal government.

    Politico recently reported that officials at the Department of Agriculture buried dozens of studies related to climate change. In one case, agency officials tried to prevent outside groups from disseminating a climate-related study. The research looked at how rice provides less nutrition in a carbon-rich environment. That could have global consequences because hundreds of millions of people have rice-based diets around the world.

    The Interior Department has been accused of deleting climate change references from previous press releases. In 2017, The Washington Post reported that the agency deleted a line mentioning climate change in a press release about a study on flood risks to coastal communities. That line was: “Global climate change drives sea-level rise, increasing the frequency of coastal flooding.”

    Interior Secretary David Bernhardt, a former energy lobbyist, is under investigation for his ties to the energy industry while serving in government. A separate investigation is exploring whether he sought to block an Interior Department study on the dangers that a pesticide posed to endangered species.

    There is no evidence that Trump political appointees at the agency have blocked climate studies from taking place, but the censoring of press releases has affected the work of researchers worried about their jobs, according to another federal researcher.

    “We are pretty cognizant of political pressures, and with these press releases people are definitely biting their nails over ‘how should we word this’ and if there are proposals within USGS, should we use climate change or not,” the researcher said. “It’s a lot of stuff that definitely filters down, and it affects the reality of people on the ground doing the work when you’re not sure of how I should present this. It’s definitely a huge waste of time.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: