Tagged: Clean Energy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:08 am on January 3, 2020 Permalink | Reply
    Tags: "Integrating Input to Forge Ahead in Geothermal Research", , Clean Energy, , ,   

    From Eos: “Integrating Input to Forge Ahead in Geothermal Research” 

    From AGU
    Eos news bloc

    From Eos

    Robert Rozansky
    Alexis McKittrick

    A road map for a major geothermal energy development initiative determines proposed priorities and goals by integrating input from stakeholders, data, and technological assessments.

    The road map for one U.S. geothermal energy initiative provides a methodology for integrating stakeholder input and priorities with information from research and technical sources to provide a set of common research priorities. Credit: iStock.com/DrAfter123

    Scientific communities often struggle to find consensus on how to achieve the next big leap in technology, methods, or understanding in their fields. Geothermal energy development is no exception. Here we describe a methodological approach to combining qualitative input from the geothermal research community with technical information and data. The result of this approach is a road map to overcoming barriers facing this important field of research.

    Geothermal energy accounts for merely 0.4% of U.S. electricity production today, but the country has vast, untapped geothermal energy resources—if only we can access them. The U.S. Geological Survey has found that unconventional geothermal sources could produce as much as 500 gigawatts of electricity—roughly half of U.S. electric power generating capacity. These sources have sufficient heat but insufficient fluid permeability to enable extraction of this heat [U.S. Geological Survey, 2008]. One approach to tapping these resources is to construct enhanced geothermal systems (EGS), in which techniques such as fluid injection are used to increase the permeability of the subsurface to make a reservoir suitable for heat exchange and extraction (Figure 1).

    Fig. 1. A geothermal power plant produces electricity from water that has been injected (blue pipe at center) into a subsurface reservoir, heated, and then pumped back to the surface (red pipes). Enhanced geothermal systems use techniques such as fluid injection to enhance the permeability of underground reservoirs that might otherwise not be accessible for geothermal heat extraction. Credit: U.S. Department of Energy.

    The United States and other countries have conducted experimental EGS projects since the 1970s. However, engineering a successful heat exchange reservoir in the high temperatures and pressures characteristic of EGS sites remains a significant technical challenge, one that must be overcome to enable commercial viability [Ziagos et al., 2013].

    Because of the great potential of this technology, the U.S. Department of Energy (DOE) is driving an ambitious initiative called the Frontier Observatory for Research in Geothermal Energy (FORGE) to accelerate research and development in EGS. The FORGE initiative will provide $140 million in funding over the next 5 years (subject to congressional appropriation) for cutting-edge research, drilling, and technology testing at a field laboratory and experimental EGS site in Milford, Utah, operated by the University of Utah [U.S. Department of Energy, 2018].

    Assessing Challenges of Enhanced Geothermal Systems

    DOE’s Geothermal Technologies Office (GTO) asked the Science and Technology Policy Institute (STPI) to develop a methodology for collecting input from the EGS community to produce a FORGE road map with strategic guidance for the managers and operators of the site. STPI is a federally funded research and development center established by Congress and operated by the nonprofit Institute for Defense Analyses, which provides analyses of scientific issues important to the White House Office of Science and Technology Policy and to other federal agencies.

    EGS faces numerous technical challenges. These include developing drilling equipment that can withstand the heat, pressure, and geology of the EGS environment; improving the ability to isolate specific targets in the subsurface for stimulation (called zonal isolation); and learning to better mitigate the risk of induced seismicity during operations. The EGS community has a variety of ideas for how FORGE can address these challenges and for the balance needed between conducting research that is novel, though potentially risky, and efforts that will maintain a functioning site for continued use.

    The time frame for FORGE is also relatively short, about 5 years, especially given the substantial effort required simply to drill and establish an EGS reservoir. In light of this, STPI designed and conducted a process to capture the community’s ideas for how FORGE can advance EGS, process this information methodically and impartially, and distill it into a document that is reflective of the community’s input and useful for planning research at FORGE.

    STPI’s process was designed specifically for the FORGE road map, but the general approach described here, or specific elements of it, could prove valuable for other efforts seeking to leverage collective community feedback to move a research field forward. Using this approach, a community struggling to make progress can prioritize research and technology needs without focusing on the individual approaches of different researchers or organizations.

    A Road Map for Geothermal Research

    The FORGE road map, published in February 2019, is intended to offer input from the EGS research community to help the managers of FORGE craft funding opportunities, operate the site in Utah, and work toward achieving DOE’s mission for FORGE: a set of rigorous and reproducible EGS technical solutions and a pathway to successful commercial EGS development.

    The document outlines discrete research activities—and highlights the most critical of these activities—that the EGS research community proposed for FORGE to address technical challenges. The road map also categorizes all research activities into three overarching areas of focus: stimulation planning and design, fracture control, and reservoir management.

    Engaging the Community

    In developing the road map, STPI, in coordination with DOE, first determined categories of information that could serve as building blocks for the road map. They did this by analyzing U.S. and foreign EGS road maps and vision studies from the past 2 decades. These categories included the major technical challenges facing EGS, such as developing optimal subsurface fracture networks, and the specific areas of research that could be investigated at FORGE to address those challenges, such as testing different zonal isolation methods.

    Higher-level questions included determining how progress or success could be recognized in these research areas and what accomplishments could serve as milestones for the FORGE project. Examples of potential milestones include drilling a well to a predetermined depth and measuring subsurface properties to a target resolution.

    STPI then conducted semistructured interviews with 24 stakeholders from DOE, national laboratories, industry, and academia to validate and expand the initially identified technical challenges, understand the barriers that researchers were facing when trying to address these challenges, and discuss technology that could overcome these barriers.

    STPI summarized the results of these interviews, including technical challenges and potential research activities for FORGE, in an informal memorandum. This memorandum served as a preliminary, skeletal draft of the road map, and it provided the starting point for discussion in a community workshop.

    In August 2018, STPI hosted a FORGE Roadmap Development Workshop at the National Renewable Energy Laboratory in Golden, Colo. Nearly 30 EGS subject matter experts from across academia, national laboratories, industry, and government attended and provided input. In a series of breakout sessions, attendees reviewed the technical challenges and research activities identified in STPI’s interviews, generated a list of technical milestones for FORGE’s 5 years of operation, discussed the dependencies among the research activities and milestones on the FORGE timeline, and produced qualitative and quantitative criteria to measure progress in each of the research activities.

    The steps in this process—a literature review, interviews with subject matter experts, and a stakeholder workshop—represent a progression of inputs that helped elucidate EGS community perspectives on current challenges to commercial EGS development and research activities that would help FORGE solve those challenges.

    After this information had been collected, STPI worked with DOE on the technical content of the road map in preparation for its publication last February. STPI and DOE consolidated, structured, and prioritized this content to provide the greatest utility to the FORGE managers and operators.

    The Way Ahead

    Clean, geothermal energy has the potential to make up a much larger share of the U.S. energy portfolio than it does at present, but to get there, the field of EGS will have to make substantial progress. The FORGE road map is designed to help the FORGE initiative move toward this goal as effectively as possible, especially given the variety of viewpoints on what research is most important with the limited funding and time available.

    The fundamental difficulties faced by the EGS community in charting a path forward are hardly unique, and so the successful process used in developing this road map could be applicable to other research communities. Collaborative processes such as the one described here look beyond literature reviews and individual research projects, and they build on themselves as they progress. Such processes can incorporate diverging viewpoints to bring out the common challenges and potential solutions that might help a research community gain consensus on how to move forward. Although a community may not agree on the exact path to success, having a common end point and a set of research priorities can help everyone forge ahead.


    U.S. Department of Energy (2018), Department of Energy selects University of Utah site for $140 million geothermal research and development, https://www.energy.gov/articles/department-energy-selects-university-utah-site-140-million-geothermal-research-and.

    U.S. Geological Survey (2008), Assessment of moderate- and high-temperature geothermal resources of the United States, U.S. Geol. Surv. Fact Sheet, 2008-3082, 4 pp., https://pubs.usgs.gov/fs/2008/3082/.

    Ziagos, J., et al. (2013), A technology roadmap for strategic development of enhanced geothermal systems, in Proceedings of the 38th Workshop on Geothermal Reservoir Engineering, pp. 11–13, Stanford Univ., Stanford, Calif., https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2013/Ziagos.pdf.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 8:44 am on December 27, 2019 Permalink | Reply
    Tags: "Stanford Researchers Have an Exciting Plan to Tackle The Climate Emergency Worldwide", , Clean Energy, ,   

    From Stanford University via Science Alert: “Stanford Researchers Have an Exciting Plan to Tackle The Climate Emergency Worldwide” 

    Stanford University Name
    From Stanford University



    27 DEC 2019

    (Thomas Richter/Unsplash)

    Things are pretty dire right now. Giant swaths of my country are burning as I write this, at a scale unlike anything we’ve ever seen. Countless animals, including koalas, are perishing along with our life-supporting greenery. People are losing homes and loved ones.

    These catastrophes are being replicated around the globe ever more frequently, and we know exactly what is exacerbating them. We know we need to rapidly make some drastic changes – and Stanford researchers have come up with a plan [Cell One Earth].

    Using the latest data available, they have outlined how 143 countries around the world can switch to 100 percent clean energy by the year 2050.

    This plan could not only contribute towards stabilising our dangerously increasing global temperatures, but also reduce the 7 million deaths caused by pollution every year and create millions more jobs than keeping our current systems.

    The plan would require a hefty investment of around US$73 trillion. But the researchers’ calculations show the jobs and savings it would earn would pay this back in as little as seven years.

    “Based on previous calculations we have performed, we believe this will avoid 1.5 degree global warming,” environmental engineer and lead author Mark Jacobson told ScienceAlert.

    “The timeline is more aggressive than any IPCC scenario – we concluded in 2009 that a 100 percent transition by 2030 was technically and economically possible – but for social and political reasons, a 2050 date is more practical.”

    Here’s how it would work. The plan involves transitioning all our energy sectors, including electricity, transport, industry, agriculture, fishing, forestry and the military to work entirely with renewable energy.

    Jacobson believes we have 95 percent of the technology we need already, with only solutions for long distance and ocean travel still to be commercialised.

    “By electrifying everything with clean, renewable energy, we reduce power demand by about 57 percent,” Jacobson explained.

    He and colleagues show it is possible to meet demand and maintain stable electricity grids using only wind, water, solar and storage, across all 143 countries.

    These technologies are already available, reliable and respond much faster than natural gas, so they are already cheaper. There’s also no need for nuclear which takes 10-19 years between planning and operation, biofuels that cause more air pollution, or the invention of new technologies.

    “‘Clean coal’ just doesn’t exist and never will,” Jacobson says, “because the technology does not work and only increases mining and emissions of air pollutants while reducing little carbon, and their is no guarantee at all the carbon that is captured will stay captured.”

    The team found that electrifying all energy sectors makes the demand for energy more flexible and the combination of renewable energy and storage is better suited to meet this flexibility than our current system.

    This plan “creates 28.6 million more full-time jobs in the long term than business as usual and only needs approximately 0.17 percent and approximately 0.48 percent land for new footprint and distance respectively,” the researchers write in their report.

    Building the infrastructure necessary for this transition would, of course, create CO2 emissions. The researchers calculated that the necessary steel and concrete would require about 0.914 percent of current CO2 emissions. But switching to renewables to produce the concrete would reduce this.

    With plans this big there are plenty of uncertainties, and some inconsistencies between databases. The team takes these into account by modelling several scenarios with different levels of costs and climate damage.

    “You’re probably not going to predict exactly what’s going to happen,” said Jacobson. “But there are many solutions and many scenarios that could work.”

    Technology writer Michael Barnard believes the study’s estimates are quite conservative – skewing towards the more expensive technologies and scenarios.

    “Storage is a solved problem,” he writes for CleanTechnica. “Even the most expensive and conservative projections as used by Jacobson are much, much cheaper than business as usual, and there are many more solutions in play.”

    The authors of the report stress that while implementing such an energy transition, it is also crucial that we simultaneously tackle emissions coming from other sources like fertilisers and deforestation.

    This proposal could earn push-back from industries and politicians that have the most to lose, especially those with a track record of throwing massive resources at delaying our progress towards a more sustainable future. Criticisms of the team’s previous work [Cell Joule] have already been linked back to these exact groups.

    The report has been published in the journal One Earth[above].

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

  • richardmitnick 8:39 am on November 8, 2019 Permalink | Reply
    Tags: , Clean Energy, , NREL-National Renewable Energy Laboratory, Paul Veers, Wind Farms   

    From National Renewable Energy Laboratory: “Wind Pioneer Paul Veers” 


    From National Renewable Energy Laboratory

    Nov. 6, 2019
    Ernie Tucker

    From Farm to Wind Farms, He’s Aloft as New Senior Research Fellow.

    Paul Veers (right) at NREL’s Flatirons Campus with Eric Lantz, Katherine Dykes, and Tyler Stehly, who together developed WISDEM, the wind-plant integrated system design and engineering model. Photo by Dennis Schroeder, NREL

    Tending cows on a Wisconsin dairy farm taught Paul Veers the value of hard work—and also that he didn’t want to be a farmer.

    “The routine starts at 6 a.m. and ends at 8 p.m., seven days a week,” said the newly appointed research fellow at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL).

    As Veers was finishing his bachelor’s degree, his father offered him a chance to take over the 160-acre farm, saying he’d keep the 35 cows around until his son decided. “I thought about it for a millisecond,” Veers laughed. “I said, ‘Go ahead and sell the herd. I’m going elsewhere.’”

    After studying engineering mechanics at the University of Wisconsin (a degree that, he says, “allows me to not do anything practical whatsoever—it’s really fundamental, the mechanics of engineering”), he earned his Ph.D. from Stanford University.

    In 1980, a rural connection helped launch his career in science and wind energy research when Veers interviewed for his first job in operations at Sandia National Laboratories in New Mexico. He met with “an old Tennessee farmer” who was impressed with Veers’ background. “He knew that on a farm, when the machinery breaks, the farmer had to get out there and fix it. There’s nothing else you can do.”

    Yet Veers’ experience was different.

    “My family wasn’t very mechanical,” Veers admitted. “I got the job under false pretenses” because his family relied on a friend who had a garage who could fix machines much more quickly.

    Nonetheless, Veers joined Sandia’s applied mechanics department, which consulted on projects across the laboratory. While he worked on a large assortment of technologies that included nuclear reactors, he also encountered wind turbines.

    His future career took off. “Wind energy was hands down the most interesting,” he said. “The field was wide open.”

    Back in the early 1980s, the question was: Why are these machines breaking, and how do we figure out how to build them so they don’t break? “No one really knew how to do that,” Veers said. “That’s what drew me in.”

    The Turbulent World of Wind

    Heading into the field of wind energy for a career wasn’t exactly a safe choice at the time. Veers recalled that, early on at Sandia, he was introduced to a senior staffer in nuclear weapons research at a cocktail party. “He asked me what I was focused on, and I said wind energy,” Veers said. The would-be mentor paused a moment, then said, “Oh, that is truly, truly trivial. You ought to find something worthwhile. That is never going to turn into anything.”

    Doubters did not deflect him. Veers persevered in the wild days of wind, when researchers did “dangerous stuff” with these balky new machines. And when federal funding became iffy for renewable energy development, he stayed put even as managers suggested staffers look elsewhere for secure jobs.

    “I wasn’t bright enough to realize this could be a problem,” he said. Still, he was not convinced that wind energy was the solution.

    “I really did not know if wind would become a major player,” Veers said. “I did not have a passion. Originally, I thought wind energy was an amazingly interesting problem to solve.”

    Gradually, his viewpoint shifted. “The more I learned, the more I thought this could work,” he said. “This could make a difference.”

    At that time, the general vision was that someday wind power might provide 5% of U.S. electricity. “Wouldn’t that be a wonderful success?” he recalled thinking. Now, it’s surpassed that figure and keeps climbing.

    “Our sense is we’re going to hit 10% easily,” Veers said. “The goal is 50%. We now have the vision, if we keep pushing the frontiers with the technology, that it is going to increase to 20% or 30% globally.”

    For Veers, it is “amazingly satisfying to see that this work we’re doing is paying off.”

    NREL Associate Laboratory Director for Mechanical and Thermal Engineering Sciences Johney Green welcomes Paul Veers as a new NREL research fellow. Photo by Dennis Schroeder, NREL.

    Early Contacts with NREL

    While based at Sandia, Veers had frequent contacts with NREL. “I worked with NREL from day one,” he said.

    Early on, he established himself as an expert in vertical-axis wind turbines (VAWTs) and wind inflow analytical modeling tools. Sandia operated one of the largest research VAWTs in the world, and Veers was one of the lead research engineers in that program.

    Brian Smith, partnership manager for the National Wind Technology Center (NWTC) at NREL, recalls meeting Veers in the 1980s. “Unfortunately, VAWTs never reached the commercial promised land,” Smith said. “And Paul, always taking the long view, adeptly switched to horizontal axis wind turbines without a hitch in his recognized expertise.”

    Still, Veers did make a trip up to NREL’s Flatirons Campus to check on the one vertical axis wind turbine located there.

    Also while at Sandia, he investigated wind turbine fatigue because he realized the assumptions regarding turbulence were inadequate. As a result, Veers developed one of the first analytical tools that modeled upwind flow characteristics. He also contributed to wind turbine system design tools that predict aerodynamic and structural dynamic performance.

    The system to simulate turbulence can be applied to wind turbine computational models, an approach often referred to as the “Veers Method.” Variations of it are still in use today.

    Aside from his technical talents, colleagues and peers value Veers’ communication skills.

    “Paul has the uncanny ability to understand the physics of wind energy across many scientific disciplines and communicate the complexities to non-experts in writing and in words,” Smith said. “This skill set is truly unique in the world and extremely valuable.”

    Take his explanation of a wind turbine for example: “It is a big piece of machinery that takes energy in one form and makes electricity.”

    For a variety of reasons, Veers impressed many at NREL early on. NREL Fellow Bob Thresher met Veers at a wind turbine dynamics workshop in 1984. “Even then, as a young researcher working at Sandia, he stood out as a clear and careful thinker with great ideas to drive wind energy research forward,” Thresher said.

    “Over the years, Paul has tirelessly worked across the national laboratory complex, contributing to the advancement of wind energy science and technology development,” he added.

    Thresher describes Veers as an enthusiastic collaborative partner in the creation of the North American Wind Energy Academy. Veers skillfully brought university researchers together with national laboratory and industry researchers to address the longer-term research issues facing wind energy today.

    Veers made it a point to reach out. “I was trying to make the other labs successful,” he said. “Unless we do that together, we’re not going to have a mission that’s fruitful.”

    With his ability to network, as well as his connections to NREL, it was only a matter of time before he headed north to Colorado.

    Paul Veers holds a photo of his four daughters—who provide one reason that he’ll continue to explore wind power and keep his job, he joked. Photo by Ernie Tucker, NREL.

    An Innate Affinity for NREL

    When NREL’s chief engineer position opened up in 2010, Veers jumped at the chance. United with old friends such as Thresher and Smith, as well as Sue Hock and Mike Robinson, Veers was set to join an established group. In his view, a major draw was, and is, NREL’s close-knit wind energy workforce.

    “We all have to work together to make something that’s useful,” he said. “That’s often why this group is like a family. The teamwork that goes on here is really exceptional.”

    Veers tackles leadership roles. He represents NREL on DOE’s Atmosphere to Electrons (A2e) Executive Management Committee. And for 12 years he was chief editor for Wind Energy, an international journal for progress and applications in wind power.

    Recently, he was the lead author of a Science article analyzing three challenges to wind energy potential. It followed NREL convening more than 70 wind experts representing 15 countries in 2017 to discuss a future electricity system where wind could serve the global demand for clean energy.

    “People think that because wind turbines have worked for decades there’s no room for improvement. And yet, there’s so much more to be done,” Veers said. “We distilled all the information into three big things connected to wind energy: the atmosphere, the machine, and the grid and [wind farm] plant.”

    The possible upside of such innovation is clear.

    “Addressing these challenges by taking an interdisciplinary wind energy science and engineering approach will lead to solutions that advance the state of the art in wind plant energy output,” said article co-author and NREL Associate Laboratory Director for Mechanical and Thermal Engineering Sciences Johney Green.

    For Veers, the challenge is real. It keeps him showing up for work—although he also jokes that the fact that he and his wife Karen have four daughters born over a span of five years is also an incentive to keep his job.

    Veers remains modest about his achievements. “I have many faults. I’m not very outgoing, and sometimes not very articulate,” he said. His colleagues back him up. Smith joked that Veers had an unbroken record of beginning presentations with a joke—that falls flat.

    Whatever his attributes, Veers believes the key to success is the team. “It is an attitude that attracted me to NREL and this wind group in the first place,” he said. “That attitude is where the mission is much more important than personal glory or success.”

    For Veers, choosing wind farms over dairy farms provided the best harvest of his talents.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition


    The National Renewable Energy Laboratory (NREL), located in Golden, Colorado, specializes in renewable energy and energy efficiency research and development. NREL is a government-owned, contractor-operated facility, and is funded through the United States Department of Energy. This arrangement allows a private entity to operate the lab on behalf of the federal government. NREL receives funding from Congress to be applied toward research and development projects. NREL also performs research on photovoltaics (PV) under the National Center for Photovoltaics. NREL has a number of PV research capabilities including research and development, testing, and deployment. NREL’s campus houses several facilities dedicated to PV research.

    NREL’s areas of research and development are renewable electricity, energy productivity, energy storage, systems integration, and sustainable transportation.

  • richardmitnick 9:58 am on November 6, 2019 Permalink | Reply
    Tags: "New technique lets researchers map strain in next-gen solar cells", A new type of electron backscatter diffraction, , Clean Energy, , , FOM Institute for Atomic and Molecular Physics in the Netherlands, Lead halide perovskites, ,   

    From University of Washington: “New technique lets researchers map strain in next-gen solar cells” 

    U Washington

    From University of Washington

    October 31, 2019
    James Urton


    People can be good at hiding strain, and we’re not alone. Solar cells have the same talent. For a solar cell, physical strain within its microscopic crystalline structure can interrupt its core function — converting sunlight into electricity — by essentially “losing” energy as heat. For an emerging type of solar cell, known as lead halide perovskites, reducing and taming this loss is key to improving efficiency and putting the perovskites on par with today’s silicon solar cells.

    In order to understand where strain builds up within a solar cell and triggers the energy loss, scientists must visualize the underlying grain structure of perovskite crystals within the solar cell. But the best approach involves bombarding the solar cell with high-energy electrons, which essentially burns the solar cell and renders it useless.

    Researchers from the University of Washington and the FOM Institute for Atomic and Molecular Physics in the Netherlands have developed a way to illuminate strain in lead halide perovskite solar cells without harming them. Their approach, published online Sept. 10 in Joule, succeeded in imaging the grain structure of a perovskite solar cell, showing that misorientation between microscopic perovskite crystals is the primary contributor to the buildup of strain within the solar cell. Crystal misorientation creates small-scale defects in the grain structure, which interrupt the transport of electrons within the solar cell and lead to heat loss through a process known as non-radiative recombination.

    Image of a perovskite solar cell, obtained by the team’s improved method for electron imaging, showing individual grain structure.Jariwala et al., Joule, 2019

    “By combining our optical imaging with the new electron detector developed at FOM, we can actually see how the individual crystals are oriented and put together within a perovskite solar cell,” said senior author David Ginger, a UW professor of chemistry and chief scientist at the UW-based Clean Energy Institute. “We can show that strain builds up due to the grain orientation, which is information researchers can use to improve perovskite synthesis and manufacturing processes to realize better solar cells with minimal strain — and therefore minimal heat loss due to non-radiative recombination.”

    Lead halide perovskites are cheap, printable crystalline compounds that show promise as low-cost, adaptable and efficient alternatives to the silicon or gallium arsenide solar cells that are widely used today. But even the best perovskite solar cells lose some electricity as heat at microscopic locations scattered across the cell, which dampens the efficiency.

    Scientists have long used fluorescence microscopy to identify the locations on perovskite solar cells’ surface that reduce efficiency. But to identify the locations of defects causing the heat loss, researchers need to image the true grain structure of the film, according to first author Sarthak Jariwala, a UW doctoral student in materials science and engineering and a Clean Energy Institute Graduate Fellow.

    “Historically, imaging the solar cell’s underlying true grain structure has not been possible to do without damaging the solar cell,” said Jariwala.

    Typical approaches to view the internal structure utilize a form of electron microscopy called electron backscatter diffraction, which would normally burn the solar cell. But scientists at the FOM Institute for Atomic and Molecular Physics, led by co-authors Erik Garnett and Bruno Ehrler, developed an improved detector that can capture electron backscatter diffraction images at lower exposure times, preserving the solar cell structure.

    The images of perovskite solar cells from Ginger’s lab reveal a grain structure that resembles a dry lakebed, with “cracks” representing the boundaries among thousands of individual perovskite grains. Using this imaging data, the researchers could for the first time map the 3D orientation of crystals within a functioning perovskite solar cell. They could also determine where misalignment among crystals created strain.

    The thin lines show the grain structure of a perovskite solar cell obtained using a new type of electron backscatter diffraction. Researchers can use a different technique to map sites of high energy loss (dark purple) and low energy loss (yellow).Jariwala et al., Joule, 2019

    When the researchers overlaid images of the perovskite’s grain structure with centers of non-radiative recombination, which Jariwala imaged using fluorescence microscopy, they discovered that non-radiative recombination could also occur away from visible boundaries.

    “We think that strain locally deforms the perovskite structure and causes defects,” said Ginger. “These defects can then disrupt the transport of electrical current within the solar cell, causing non-radiative recombination — even elsewhere on the surface.”

    While Ginger’s team has previously developed methods to “heal” some of these defects that serve as centers of non-radiative recombination in perovskite solar cells, ideally researchers would like to develop perovskite synthesis methods that would reduce or eliminate non-radiative recombination altogether.

    “Now we can explore strategies like controlling grain size and orientation spread during the perovskite synthesis process,” said Ginger. “Those might be routes to reduce misorientation and strain — and prevent defects from forming in the first place.”

    Co-authors on the paper are Hongyu Sun, Gede Adhyaksa, Adries Lof and Loreta Muscarella with the FOM Institute for Atomic and Molecular Physics. The research was funded by the U.S. Department of Energy, U.S. National Science Foundation, the UW Clean Energy Institute, TKI Urban Energy, the European Research Council and the Dutch Science Foundation.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

  • richardmitnick 11:52 am on November 4, 2019 Permalink | Reply
    Tags: "Stanford study casts doubt on carbon capture", , Clean Energy, , Focusing on renewables,   

    From Stanford University: “Stanford study casts doubt on carbon capture” 

    Stanford University Name
    From Stanford University

    October 25, 2019
    Taylor Kubota

    Current approaches to carbon capture can increase air pollution and are not efficient at reducing carbon in the atmosphere, according to research from Mark Z. Jacobson.

    Research by Mark Z. Jacobson, professor of civil and environmental engineering, suggests that carbon capture technologies are inefficient and increase air pollution. Given this analysis, he argues that the best solution is to instead focus on renewable options, such as wind or solar, replacing fossil fuels. (Image credit: Getty Images)

    One proposed method for reducing carbon dioxide (CO2) levels in the atmosphere – and reducing the risk of climate change – is to capture carbon from the air or prevent it from getting there in the first place. However, research from Mark Z. Jacobson at Stanford University, published in Energy and Environmental Science, suggests that carbon capture technologies can cause more harm than good.

    “All sorts of scenarios have been developed under the assumption that carbon capture actually reduces substantial amounts of carbon. However, this research finds that it reduces only a small fraction of carbon emissions, and it usually increases air pollution,” said Jacobson, who is a professor of civil and environmental engineering. “Even if you have 100 percent capture from the capture equipment, it is still worse, from a social cost perspective, than replacing a coal or gas plant with a wind farm because carbon capture never reduces air pollution and always has a capture equipment cost. Wind replacing fossil fuels always reduces air pollution and never has a capture equipment cost.”

    Jacobson, who is also a senior fellow at the Stanford Woods Institute for the Environment, examined public data from a coal with carbon capture electric power plant and a plant that removes carbon from the air directly. In both cases, electricity to run the carbon capture came from natural gas. He calculated the net CO2 reduction and total cost of the carbon capture process in each case, accounting for the electricity needed to run the carbon capture equipment, the combustion and upstream emissions resulting from that electricity, and, in the case of the coal plant, its upstream emissions. (Upstream emissions are emissions, including from leaks and combustion, from mining and transporting a fuel such as coal or natural gas.)

    Common estimates of carbon capture technologies – which only look at the carbon captured from energy production at a fossil fuel plant itself and not upstream emissions – say carbon capture can remediate 85-90 percent of carbon emissions. Once Jacobson calculated all the emissions associated with these plants that could contribute to global warming, he converted them to the equivalent amount of carbon dioxide in order to compare his data with the standard estimate. He found that in both cases the equipment captured the equivalent of only 10-11 percent of the emissions they produced, averaged over 20 years.

    This research also looked at the social cost of carbon capture – including air pollution, potential health problems, economic costs and overall contributions to climate change – and concluded that those are always similar to or higher than operating a fossil fuel plant without carbon capture and higher than not capturing carbon from the air at all. Even when the capture equipment is powered by renewable electricity, Jacobson concluded that it is always better to use the renewable electricity instead to replace coal or natural gas electricity or to do nothing, from a social cost perspective.

    Given this analysis, Jacobson argued that the best solution is to instead focus on renewable options, such as wind or solar, replacing fossil fuels.

    Efficiency and upstream emissions

    This research is based on data from two real carbon capture plants, which both run on natural gas. The first is a coal plant with carbon capture equipment. The second plant is not attached to any energy-producing counterpart. Instead, it pulls existing carbon dioxide from the air using a chemical process.

    Jacobson examined several scenarios to determine the actual and possible efficiencies of these two kinds of plants, including what would happen if the carbon capture technologies were run with renewable electricity rather than natural gas, and if the same amount of renewable electricity required to run the equipment were instead used to replace coal plant electricity.

    While the standard estimate for the efficiency of carbon capture technologies is 85-90 percent, neither of these plants met that expectation. Even without accounting for upstream emissions, the equipment associated with the coal plant was only 55.4 percent efficient over 6 months, on average. With the upstream emissions included, Jacobson found that, on average over 20 years, the equipment captured only 10-11 percent of the total carbon dioxide equivalent emissions that it and the coal plant contributed. The air capture plant was also only 10-11 percent efficient, on average over 20 years, once Jacobson took into consideration its upstream emissions and the uncaptured and upstream emissions that came from operating the plant on natural gas.

    Due to the high energy needs of carbon capture equipment, Jacobson concluded that the social cost of coal with carbon capture powered by natural gas was about 24 percent higher, over 20 years, than the coal without carbon capture. If the natural gas at that same plant were replaced with wind power, the social cost would still exceed that of doing nothing. Only when wind replaced coal itself did social costs decrease.

    For both types of plants this suggests that, even if carbon capture equipment is able to capture 100 percent of the carbon it is designed to offset, the cost of manufacturing and running the equipment plus the cost of the air pollution it continues to allow or increases makes it less efficient than using those same resources to create renewable energy plants replacing coal or gas directly.

    “Not only does carbon capture hardly work at existing plants, but there’s no way it can actually improve to be better than replacing coal or gas with wind or solar directly,” said Jacobson. “The latter will always be better, no matter what, in terms of the social cost. You can’t just ignore health costs or climate costs.”

    This study did not consider what happens to carbon dioxide after it is captured but Jacobson suggests that most applications today, which are for industrial use, result in additional leakage of carbon dioxide back into the air.

    Focusing on renewables

    People propose that carbon capture could be useful in the future, even after we have stopped burning fossil fuels, to lower atmospheric carbon levels. Even assuming these technologies run on renewables, Jacobson maintains that the smarter investment is in options that are currently disconnected from the fossil fuel industry, such as reforestation – a natural version of air capture – and other forms of climate change solutions focused on eliminating other sources of emissions and pollution. These include reducing biomass burning, and reducing halogen, nitrous oxide and methane emissions.

    “There is a lot of reliance on carbon capture in theoretical modeling, and by focusing on that as even a possibility, that diverts resources away from real solutions,” said Jacobson. “It gives people hope that you can keep fossil fuel power plants alive. It delays action. In fact, carbon capture and direct air capture are always opportunity costs.”

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

  • richardmitnick 9:10 am on October 26, 2019 Permalink | Reply
    Tags: "‘Artificial leaf’ successfully produces clean gas ", , , Clean Energy, , , ,   

    From University of Cambridge: “‘Artificial leaf’ successfully produces clean gas “ 

    U Cambridge bloc

    From University of Cambridge

    21 Oct 2019
    Sarah Collins

    Artificial leaf. Credit: Virgil Andrei

    A widely-used gas that is currently produced from fossil fuels can instead be made by an ‘artificial leaf’ that uses only sunlight, carbon dioxide and water, and which could eventually be used to develop a sustainable liquid fuel alternative to petrol.

    The carbon-neutral device sets a new benchmark in the field of solar fuels, after researchers at the University of Cambridge demonstrated that it can directly produce the gas – called syngas – in a sustainable and simple way.

    Rather than running on fossil fuels, the artificial leaf is powered by sunlight, although it still works efficiently on cloudy and overcast days. And unlike the current industrial processes for producing syngas, the leaf does not release any additional carbon dioxide into the atmosphere. The results are reported in the journal Nature Materials.

    Syngas is currently made from a mixture of hydrogen and carbon monoxide, and is used to produce a range of commodities, such as fuels, pharmaceuticals, plastics and fertilisers.

    “You may not have heard of syngas itself but every day, you consume products that were created using it. Being able to produce it sustainably would be a critical step in closing the global carbon cycle and establishing a sustainable chemical and fuel industry,” said senior author Professor Erwin Reisner from Cambridge’s Department of Chemistry, who has spent seven years working towards this goal.

    The device Reisner and his colleagues produced is inspired by photosynthesis – the natural process by which plants use the energy from sunlight to turn carbon dioxide into food.

    On the artificial leaf, two light absorbers, similar to the molecules in plants that harvest sunlight, are combined with a catalyst made from the naturally abundant element cobalt.

    When the device is immersed in water, one light absorber uses the catalyst to produce oxygen. The other carries out the chemical reaction that reduces carbon dioxide and water into carbon monoxide and hydrogen, forming the syngas mixture.

    As an added bonus, the researchers discovered that their light absorbers work even under the low levels of sunlight on a rainy or overcast day.

    “This means you are not limited to using this technology just in warm countries, or only operating the process during the summer months,” said PhD student Virgil Andrei, first author of the paper. “You could use it from dawn until dusk, anywhere in the world.”

    The research was carried out in the Christian Doppler Laboratory for Sustainable SynGas Chemistry in the University’s Department of Chemistry. It was co-funded by the Austrian government and the Austrian petrochemical company OMV, which is looking for ways to make its business more sustainable.

    “OMV has been an avid supporter of the Christian Doppler Laboratory for the past seven years. The team’s fundamental research to produce syngas as the basis for liquid fuel in a carbon neutral way is ground-breaking,” said Michael-Dieter Ulbrich, Senior Advisor at OMV.

    Other ‘artificial leaf’ devices have also been developed, but these usually only produce hydrogen. The Cambridge researchers say the reason they have been able to make theirs produce syngas sustainably is thanks the combination of materials and catalysts they used.

    These include state-of-the-art perovskite light absorbers, which provide a high photovoltage and electrical current to power the chemical reaction by which carbon dioxide is reduced to carbon monoxide, in comparison to light absorbers made from silicon or dye-sensitised materials. The researchers also used cobalt as their molecular catalyst, instead of platinum or silver. Cobalt is not only lower-cost, but it is better at producing carbon monoxide than other catalysts.

    The team is now looking at ways to use their technology to produce a sustainable liquid fuel alternative to petrol.

    Syngas is already used as a building block in the production of liquid fuels. “What we’d like to do next, instead of first making syngas and then converting it into liquid fuel, is to make the liquid fuel in one step from carbon dioxide and water,” said Reisner, who is also a Fellow of St John’s College.

    Although great advances are being made in generating electricity from renewable energy sources such as wind power and photovoltaics, Reisner says the development of synthetic petrol is vital, as electricity can currently only satisfy about 25% of our total global energy demand. “There is a major demand for liquid fuels to power heavy transport, shipping and aviation sustainably,” he said.

    “We are aiming at sustainably creating products such as ethanol, which can readily be used as a fuel,” said Andrei. “It’s challenging to produce it in one step from sunlight using the carbon dioxide reduction reaction. But we are confident that we are going in the right direction, and that we have the right catalysts, so we believe we will be able to produce a device that can demonstrate this process in the near future.”

    The research was also funded by the Winton Programme for the Physics of Sustainability, the Biotechnology and Biological Sciences Research Council, and the Engineering and Physical Sciences Research Council.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (abbreviated as Cantab in post-nominal letters) is a collegiate public research university in Cambridge, England. Founded in 1209, Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 constituent colleges and over 100 academic departments organised into six schools. The university occupies buildings throughout the town, many of which are of historical importance. The colleges are self-governing institutions founded as integral parts of the university. In the year ended 31 July 2014, the university had a total income of £1.51 billion, of which £371 million was from research grants and contracts. The central university and colleges have a combined endowment of around £4.9 billion, the largest of any university outside the United States. Cambridge is a member of many associations and forms part of the “golden triangle” of leading English universities and Cambridge University Health Partners, an academic health science centre. The university is closely linked with the development of the high-tech business cluster known as “Silicon Fen”.

  • richardmitnick 1:00 pm on September 21, 2019 Permalink | Reply
    Tags: "Germany Unveils $60 Billion Climate Package", , Clean Energy, ,   

    From The New York Times: “Germany Unveils $60 Billion Climate Package” 

    New York Times

    From The New York Times

    Sept. 20, 2019
    Melissa Eddy

    A wind turbine in front of a coal-fired power plant near Niederaussem, Germany. Once a global leader in climate action, the country has scaled back its ambitions in recent years. Credit Ina Fassbender/Agence France-Presse — Getty Images

    Chancellor Angela Merkel’s government on Friday agreed to support a $60 billion package of climate policies aimed at getting Germany back on track to meet its goal of reducing greenhouse gas emissions by 2030.

    Opposition politicians and experts on climate science quickly condemned the package as lacking the ambition needed to restore the country’s status as an international leader in efforts to battle climate change.

    Once a front-runner in climate action and a champion of an energy-transformation project aimed at weaning its energy sector from depending on fossil fuels, Germany has scaled back its ambitions in recent years. The government has said it will fail to reach its 2020 target to reduce emissions by 40 percent of 1990s levels.

    The proposed measures — which include a scheme to charge industrial polluters for carbon emissions and a raft of incentives — had been discussed for weeks, and Ms. Merkel’s conservatives and their junior partners, the center-left Social Democrats, took more than 18 hours to reach the agreement.

    As the leaders deliberated, tens of thousands of schoolchildren and their parents packed the streets of Berlin, the capital, and more than 500 cities across the country as part of global climate protests. The German demonstrators demanded that Ms. Merkel, who early in her tenure was known as the “climate chancellor,” take more concrete, ambitious action to reduce the country’s climate footprint.

    Under the terms of the new package, Germany will work to reduce carbon emissions by 55 percent of 1990 levels by 2030.

    A cornerstone of the agreement is to begin charging in 2021 for carbon emissions that are generated by transportation and heating fuels.

    Companies in the transportation industry will be required to buy certificates for 10 euros (about $11) per ton of carbon dioxide emitted. The price will increase to 35 euros per ton by 2025, and a free-market exchange will open afterward, allowing the polluters to auction their carbon pollution permits. Consumers will likely face higher gas prices that the government will offset by raising tax breaks for commuters.

    Another measure is establishing a panel that will regularly review the government’s progress toward reaching its climate goals, to adjust the plan along the way and keep the country on track.

    A Greenpeace activist held up a placard reading, “Climate Killer” as Chancellor Angela Merkel of Germany spoke at a car show in Frankfurt last week. Early in her tenure she was known as the “climate chancellor.”Credit Fridemann Vogel/EPA, via Shutterstock

    “I understand those who ask why should we believe you that you will achieve this,” Ms. Merkel told reporters. “The chances are very good, they have grown, that we will reach our climate goals this time,” she said, adding that the panel would help.

    Other measures include subsidies for electric cars and energy efficient heaters, with a ban on oil-burning furnaces starting in 2025. Taxes on flight tickets will be increased, while surcharges for train tickets will fall as part of efforts to encourage more people to switch to the rails from the air. Renewable energy sources, including wind and solar, will be expanded in an effort to increase their share to 65 percent of all energy by 2020.

    The measures are to be financed through tax levies and from Germany’s climate fund. Those sources will provide more than 54 billion euros, or $60 billion, in financing through 2023, averting loans and budget deficits, said Olaf Scholz, the finance minister.

    Critics said the package did not go far enough. “The whole package lacks courage,” said Ottmar Edenhofer, the director and chief economist of the Potsdam Institute for Climate Impact Research. “The commitment into the future is missing.”

    “The German government has failed to protect the climate,” the opposition Greens, who have enjoyed a surge in popularity recently said in response to the announcement.

    Climate experts had called for a carbon price of at least 50 euros in order to force industry to turn away from fossil fuels and to encourage innovation. Ms. Merkel conceded that the lower price had been a compromise, but insisted that combined with the incentives, it would be sufficient to help Germany reach its 2030 goal.

    “The price alone would not be enough,” the chancellor said. But coupled with the package of incentives, they can help ensure that the fight against climate change remains affordable and acceptable for everyone in society, she said.

    The agreement will be put to a vote in Parliament before year’s end, where it is expected to pass. While the measures may help stem the ecologically minded Greens party’s surge in popularity in recent months, they may increase pressure on the country’s industrial base at a time when there are signs that the economy could be on the brink of recession.

    Germans largely agree on the science showing that humans are responsible for the increased temperatures undergirding global warming, and a recent survey showed that 63 percent believed that measures to protect the climate should be introduced, even if it comes at a price to the country’s economic output.

    Record heat and droughts over the past two summers, along with increasingly severe storms, have brought home the immediate effect that climate change can have on ordinary Germans, as well as farmers and foresters. Only supporters of the far-right Alternative for Germany party have denounced the measures as “Climate Craziness” aimed at destroying the country’s standard of living.

    Ms. Merkel is headed to New York to take part in the United Nations climate change summit meeting, where she will give a speech on Monday.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 10:35 am on August 1, 2019 Permalink | Reply
    Tags: , At times renewable energy sources can produce more power than what is needed leaving some solar or wind energy to go to waste., Clean Energy, , , Investing in batteries and other energy storage technologies to capture the excess can be economically viable with proper policy support., ,   

    From University of Michigan: “Investing in energy storage for solar, wind power could greatly reduce greenhouse gas emissions” 

    U Michigan bloc

    From University of Michigan

    July 30, 2019
    Jim Erickson

    Written by Wendy Bowyer


    Drive through nearly any corner of America long enough and giant solar farms or rows of wind turbines come into view, all with the goal of increasing the country’s renewable energy use and reducing greenhouse gas emissions.

    But what some may not realize is at times these renewable energy sources can produce more power than what is needed, leaving some solar or wind energy to, in a sense, go to waste. This oversupply condition is a lost opportunity for these clean energy resources to displace pollution from fossil fuel-powered plants.

    But by creating complex models analyzing power systems in California and Texas, University of Michigan scientists show in a study scheduled for online publication July 30 in Nature Communications, that investing in batteries and other energy storage technologies can be economically viable with proper policy support.

    That, in turn, could radically reduce the emissions of greenhouse gases—by up to 90% in one scenario examined by the researchers—and increase the use of solar and wind energy at a time when climate change takes on greater urgency.

    “The cost of energy storage is very important,” said study co-author Maryam Arbabzadeh, a postdoctoral fellow at U-M’s School for Environment and Sustainability. “But there are some incentives we could use to make it attractive economically, one being an emissions tax.”

    Arbabzadeh led the research in collaboration with colleagues at Ohio State University and North Carolina State University. Gregory Keoleian, director of U-M’s Center for Sustainable Systems, served as her adviser and one of the co-authors of the study.

    “Electricity generation accounts for 28% of the greenhouse gas emissions in the United States, and given the urgency of climate change it is critical to accelerate the deployment of renewable sources such as wind and solar,” said Keoleian, a professor of environment and sustainability and civil and environmental engineering.

    “This research clearly demonstrates how energy storage technologies can play an important role in reducing renewable curtailment and greenhouse gas emissions from fossil fuel power plants.”

    Arbabzadeh and her fellow researchers created complex models analyzing nine different energy storage technologies. They looked at the environmental effects of renewable curtailment, which is the amount of renewable energy generated but unable to be delivered to meet demand for a variety of reasons.

    They also modeled what would happen if each state would add up to 20 gigawatts of wind and 40 gigawatts of solar capacity, and how all of this would be impacted economically by a carbon dioxide tax of up to $200 per ton.

    What they found was striking.

    Adding 60 gigawatts of renewable energy to California could achieve a 72% carbon dioxide reduction. Then, by adding some energy storage technologies on top of that in California could allow a 90% carbon dioxide reduction. In Texas, energy storage could allow a 57% emissions reduction.

    But for all of this to happen, utility companies would need a reason to invest in energy storage systems, which require large amounts of capital investment. That is where the use of a carbon tax could be helpful, Arbabzadeh said.

    All nine of the energy storage technologies studied, including high-tech batteries, require a significant capital investment and all had different pros and cons. Also adding to the complexity of the research is the different type of generation mix in Texas and California.

    Texas uses some coal and natural gas-fired units. California uses more inflexible resources, like nuclear, geothermal, biomass and hydroelectric energy units, which make its renewable curtailment rates much higher than Texas.

    The work was supported by the National Science Foundation, the Dow Sustainability Fellows Program and the Rackham Predoctoral Fellowship Program.

    See the full article here .


    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

  • richardmitnick 9:56 am on July 10, 2019 Permalink | Reply
    Tags: "A Brilliant New Kind of Solar Tech Could Provide Electricity And Clean Water to Millions", , Clean Energy, Desalination and Clean Electricity, Linking photovoltaics with water decontamination,   

    From Science Alert: “A Brilliant New Kind of Solar Tech Could Provide Electricity And Clean Water to Millions” 


    From Science Alert


    10 JUL 2019

    A compact device that uses waste heat shed by solar cells to purify water could one day change the lives of hundreds of millions of people around the globe.

    The new spin on old technology from King Abdullah University of Science and Technology in Saudi Arabia promises to ease increasing pressures on the nexus point between water and energy that threatens our future.

    These two resources are conveniences many of us take for granted. But more than 780 million people around the world currently lack easy access to clean water. Even more people don’t have electricity at the flick of a switch.

    Missing out on water and electricity not only puts communities at direct risk of illness through contamination, it makes it harder to grow crops, raise livestock, or maintain stocks of food and medicine.

    Perhaps even more importantly, there’s the Catch-22 relationship between clean water and electricity we rarely give much thought to.

    Limited access to relatively fresh water makes it impossible to efficiently generate the steam required for power on an appreciable scale. And without a convenient source of power, water can be harder to decontaminate or even reach in the first place.

    Fields of solar panels can bring electricity to populations in remote, dry places. But hosing them down with water is a good way to keep them clear of dust, which is not easily done in such arid locations.

    With two birds to kill, researchers behind this latest project realised they could solve both problems by creating a photovoltaic cell that uses sunlight as both a means to generate electricity and distill water.

    Unsurprisingly, linking photovoltaics with water decontamination isn’t novel. A US-based start-up called Zero Mass Water uses solar energy to condense liquid water absorbed straight out of atmosphere, for instance.

    To be useful, though, such devices need to be compact and affordable, leaving plenty of room for improvement.

    The engineers of this latest device designed their cell with efficiency in mind, folding the components for distillation under a fairly standard silicon photovoltaic cell in a way that doesn’t impact on the cell’s energy output.

    Just over 10 percent of the sunlight collected by their photovoltaic cell on a clear day goes towards generating an electrical current, an efficiency that isn’t too far behind conventional solar technology.

    A fraction of the remaining solar radiation becomes thermal energy, which would usually go to waste. That heat is instead absorbed by a pancake-like stack of hydrophobic membranes shuffled between materials selected to assist evaporation and condensation.

    Heat forces water to turn into vapour as with any solar still. But as it condenses, the heat energy is passed down into lower membranes for the process to repeat, making for a higher rate of distillation.

    By stacking the membranes this way, the researchers found they could improve on conventional solar stills, potentially producing about five times the amount of clean water.

    Schematic illustration of the device. (Wang et al., Nature Communications, 2019)

    Just a single square metre of this multi-stage membrane distillation device was shown to distil more than 1.6 litres of seawater per hour, all without compromising the amount of electricity being produced by the photovoltaic cell on top.

    Last year, solar energy accounted for more than 500 gigawatts of the world’s electricity. By 2025, the researchers think we might come close to doubling this figure.

    That’s good news, but to achieve it we’re going to need around 4 billion square metres of land. Doubling it up with distillation membranes could theoretically clean the equivalent of 10 percent of 2017’s drinking water.

    It’s an exciting idea, if it scales. The next step for the research team is to investigate ways to push the boundaries on the device’s efficiency and affordability.

    The interdependence between energy and water wages a heavy price on technologies that can potentially solve the problems of communities in need.

    For example, desalination also has the potential to service large populations, but only if the energy is available. In 2016, sea water contributed 3 percent of the freshwater in Middle Eastern nations, but required 5 percent of its electricity to make palatable.

    What’s more, the power required to separate out that salt demands a fraction of the very fresh water it produces.

    With the US looking down the barrel of major water shortages in coming decades, the water-energy nexus will hit home like never before.

    This kind of technology can’t come soon enough.

    This research was published in Nature Communications.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 10:15 am on May 4, 2019 Permalink | Reply
    Tags: "U of T research looks at how to take the ‘petro’ out of the petrochemicals industry", , , Clean Energy, , Phil De Luna, Renewable electrosynthesis,   

    From University of Toronto: “U of T research looks at how to take the ‘petro’ out of the petrochemicals industry” Phil De Luna 

    U Toronto Bloc

    From University of Toronto

    Phil De Luna is the lead author of an article in Science that analyzes how green electricity and carbon capture could displace fossil fuels in the production of everything from fertilizer to textiles (photo by Tyler Irving)

    April 30, 2019
    Tyler Irving

    Fossil fuels are the backbone of the global petrochemicals industry, which provides the world’s growing population with fuels, plastics, clothing, fertilizers and more. A new research paper, published last week in Science, charts a course for how an alternative technology – renewable electrosynthesis – could usher in a more sustainable chemical industry and ultimately enable us to leave much more oil and gas in the ground.

    Phil De Luna, a PhD candidate in the Faculty of Applied Science & Engineering, is the paper’s lead author. His research involved designing and testing catalysts for electrosynthesis, and last November he was named to the Forbes 30 under 30 list of innovators in the category of Energy. He and his supervisor, Professor Ted Sargent, collaborated on the paper with an international team of researchers from Stanford University and TOTAL American Services, Inc.

    Writer Tyler Irving sat down with De Luna to learn more about how renewable electrosynthesis could take the “petro” out of petrochemicals.

    Can you describe the challenge you’re trying to solve?

    Our society is addicted to fossil fuels – they’re in everything from the plastics in your phone to the synthetic fibres in your clothes. A growing world population and rising standards of living are driving demand higher every year.

    Changing the system requires a massive global transformation. In some areas, we have alternatives – for example, electric vehicles can replace internal combustion engines. Renewable electrosynthesis could do something similar for the petrochemical industry.

    What is renewable electrosynthesis?

    Think about what the petrochemical industry does: It takes heavy, long-chain carbon molecules and uses high heat and pressure to break them down into basic chemical building blocks. Then, those building blocks get reassembled into plastics, fertilizers, fibres, etc.

    Imagine that instead of using fossil fuels, you could use CO2 from the air. And instead of doing the reactions at high temperatures and pressures, you could make the chemical building blocks at room temperature using innovative catalysts and electricity from renewable sources, such as solar or hydro power. That’s renewable electrosynthesis.

    Once we do that initial transformation, the chemical building blocks fit into our existing infrastructure, so there is no change in the quality of the products. If you do it right, the overall process is carbon neutral or even carbon negative if powered completely by renewable energy.

    Plants also take CO2 from the air and make it into materials such as wood, paper and cotton. What is the advantage of electrosynthesis?

    The advantages are speed and throughput. Plants are great at turning CO2 into materials, but they also use their energy for things like metabolism and reproduction, so they aren’t very efficient. It can take 10 to 15 years to grow a tonne of usable wood. Electrosynthesis would be like putting the CO2 capture and conversion power of 50,000 trees into a box the size of a refrigerator.

    Why don’t we do this today?

    It comes down to cost. You need to prove that the cost to make a chemical building block via electrosynthesis is on par with the cost of producing it the conventional way.

    Right now there are some limited applications. For example, most of the hydrogen used to upgrade heavy oil comes from natural gas, but about four per cent is now produced by electrolysis – that is, using electricity to split water into hydrogen and oxygen. In the future, we could do something similar for carbon-based building blocks.

    What did your analysis find?

    We determined that there are two main factors: The first is the cost of electricity itself, and the second is the electrical-to-chemical conversion efficiency.

    In order to be competitive with conventional methods, electricity needs to cost less than four cents per kilowatt-hour, and the electrical-to-chemical conversion efficiency needs to be 60 per cent or greater.

    How close are we?

    There are some places in the world where renewable energy from solar can cost as little as two or three cents per kilowatt-hour. Even in a place like Quebec, which has abundant hydro power, there are times of the year where electricity is sold at negative prices, because there is no way to store it. So, from an economic potential perspective, I think we’re getting close in a number of important jurisdictions.

    Designing catalysts that can raise the electrical-to-chemical conversion efficiency is harder, and it’s what I spent my thesis doing. For ethylene, the best I’ve seen is about 35 per cent efficiency, but for some other building blocks, such as carbon monoxide, we’re approaching 50 per cent.

    Of course, all this has been done in labs – it’s a lot harder to scale that up to a plant that can make kilotonnes per day. But I think there are some applications out there that show promise.

    Can you give an example of what renewable electrosynthesis would look like?

    Let’s take ethylene, which is by volume the world’s most-produced petrochemical. You could in theory make ethylene using CO2 from the air – or from an exhaust pipe – using renewable electricity and the right catalyst. You could sell the ethylene to a plastic manufacturer, who would make it into plastic bags or lawn chairs or whatever.

    At the end of its life, you could incinerate this plastic – or any other carbon-intensive form of waste – capture the CO2, and start the process all over again. In other words, you’ve closed the carbon loop and eliminated the need for fossil fuels.

    What do you think the focus of future research should be?

    I’ve actually just taken a position as the program director of the clean energy materials challenge program at the National Research Council of Canada. I am building a $21 million collaborative research program, so this is something I think about a lot.

    We’re currently targeting parts of the existing petrochemical supply chain that could easily be converted to electrosynthesis. There is the example I mentioned above, which is the production of hydrogen for oil and gas upgrading using electrolysis.

    Another good building block to target would be carbon monoxide, which today is primarily produced from burning coal. We know how to make it via electrosynthesis, so if we could get the efficiency up, that would be a drop-in solution.

    How does renewable electrosynthesis fit into the large landscape of strategies to reduce emissions and combat climate change?

    I’ve always said that there’s no silver bullet. Instead, I think what we need is what I call a “silver buckshot” approach. We need recycled building materials, we need more efficient LEDs for lighting, we need better solar cells and better batteries.

    But even if emissions from the electricity grid and the transportation network dropped to zero tomorrow, it wouldn’t do anything to help the petrochemical industry that supplies so many of the products we use every day. If we can start by electrifying portions of the supply chain, that’s the first step to building an alternative system.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Founded in 1827, the University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: