Tagged: Clean Energy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:12 am on October 19, 2017 Permalink | Reply
    Tags: A sharp rise in the content of sediments, , Clean Energy, , , Hydroelectric power plants, LMH-EPFL's Laboratory for Hydraulic Machines, Of all the electricity produced in Switzerland 56% comes from hydropower, One of the aims of Switzerland’s 2050 Energy Strategy is to increase hydroelectric production, SCCER-SoE-Swiss Competence Center for Energy Research - Supply of Electricity   

    From EPFL: “Hydroelectric power plants have to be adapted for climate change” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    19.10.17
    Clara Marc

    1
    © 2017 LMH – Grande Dixence dam. This hydroelectric power complex generates some 2 billion kWh of power per year
    Of all the electricity produced in Switzerland, 56% comes from hydropower. The life span of hydroelectric plants, which are massive and expensive to build and maintain, is measured in decades, yet the rivers and streams they depend on and the surrounding environment are ever-changing. These changes affect the machinery and thus the amount of electricity that can be revised. EPFL’s Laboratory for Hydraulic Machines (LMH) is working on an issue that will be very important in the coming years: the impact of sediment erosion on turbines, which are the main component of this machinery. The laboratory’s work could help prolong these plants’ ability to produce electricity for Switzerland’s more than eight million residents.

    One of the aims of Switzerland’s 2050 Energy Strategy is to increase hydroelectric production. The Swiss government therefore also needs to predict the environment in which these power plants will operate so that the underlying technology can keep pace with changing needs and future conditions. “In Switzerland, the glaciers and snow are melting more and more quickly. This affects the quality of the water, with a sharp rise in the content of sediments,” says François Avellan, who heads the LMH and is one of the study’s authors. “The sediments are very aggressive and erode the turbines.” This undermines the plants’ efficiency, leaves cavities in the equipment and leads to an increase in vibrations – and in the frequency and cost of repairs. To top things off, the turbines’ useful life is reduced. Under the umbrella of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE) and with the support of the Commission for Technology and Innovation (CTI), EPFL has teamed up with General Electric Renewable Energy in an effort to better understand and predict the process of sediment erosion. The aim is to lengthen the hydropower plants’ life span through improved turbines and more effective operating strategies.

    Tiny particles with an outsized impact

    One of the challenges facing researchers in the field of hydropower is that they cannot run experiments directly on power plants because of the impact and cost of a plant’s outage. They must therefore limit their investigations to simulations and reduced-scale physical model tests. In response to this challenge, the LMH has come up with a novel multiscale computer model that predicts sediment erosion in turbines with much greater accuracy than other approaches. The results have been published in the scientific journal Wear. “Sediment erosion, like many other problems in nature, is a multiscale phenomenon. It means that behavior observed at the macroscopic level is the result of a series of interactions at the microscopic level,” says Sebastián Leguizamón, an EPFL doctoral student and lead author of the study. “The sediments are extremely small and move very fast, and their impact lasts less than a microsecond. On the other hand, the erosion process we see is gradual, taking place over the course of many operating hours and affecting all the turbine.”

    A multiscale solution

    The researchers therefore opted for a multiscale solution and modeled the two processes involved in erosion separately. At the microscopic level, they focused on the extremely brief impact of the minuscule sediments that strike the turbines, taking into account parameters such as the angle, speed, size, shape – and even composition – of the slurry. At the macroscopic level, they looked at how the sediments are transported by water flow, as this affects the flux, distribution and density of sediments reaching the walls of the turbine flow passages. The results were then combined in order to develop erosion predictions. “It’s not possible to study the entire process of erosion as a whole. The sediments are so small and the period of time over which the process takes place so long that replicating the process would take hundreds of years of calculations and require a computer that doesn’t exist yet,” says Leguizamón. “But the problem becomes manageable when you decouple the different phases.”

    Adapting to the future

    With conclusive results in hand, the LMH has now moved on to the next phase, which consists in characterizing the materials used in the turbines. Following this step, the researchers will be able to apply the new model to existing hydroelectric facilities. The stakes are global when it comes to retrofitting turbines in response to climate change, as hydropower accounts for 17% of the world’s electricity production. Turbines offer little leeway and have to operate in a wide range of environments – including monsoon regions and anything from tropical to alpine climates. If turbines are to last, changes will have to be made to both their underlying design and how they are operated. “While I was evaluating a hydro plant in the Himalayas, my contacts there told me that if a turbine made it through more than one monsoon season, that was a success!” says Avellan.

    This study is part of CTI project No. 17568.1 PFEN-IW GPUSpheros. It was conducted in conjunction with General Electric Renewable Energy under the umbrella of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE).

    A multiscale model for sediment impact erosion simulation using the finite volume particle method, Sebastián Leguizamón, Ebrahim Jahanbakhsh, Audrey Maertens, Siamak Alimirzazadeh and François Avellan. Science Direct.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

    Advertisements
     
  • richardmitnick 10:51 am on September 29, 2017 Permalink | Reply
    Tags: , Borrowing from nature to tap the power of the sun, Clean Energy, , EU Horizon   

    From EU Horizon: “Borrowing from nature to tap the power of the sun” 

    1

    Horizon

    29 September 2017
    Julianna Photopoulos

    1
    By using knowledge of plant photosynthesis we could soon develop new forms of renewable energy through artificial leaves. Image credit – Dr Vincent Artero

    An artificial leaf that can harvest energy from the sun faster than a natural one could lead to a new generation of renewable energy and medical technologies.

    Over hundreds of millions of years, evolution has refined a process that allows plants to use the sun’s energy to turn carbon dioxide and water into the sugary fuel they need to grow.

    The elegant series of biochemical reactions involved in this process are some of the fundamental building blocks of life on this planet.

    But now scientists have beaten nature at its own game by creating a semi-artificial leaf that incorporates some of the components honed by evolution to produce a device that is up to six times more efficient.

    ‘When the natural components of photosynthesis are incorporated in artificial devices, these devices outperform the electron transfer ability found in the natural environment,’ said Dr Nicolas Plumeré, a chemist at the Ruhr-University Bochum in Germany.

    He and his colleagues, as part of the EU-funded PHOTOTECH project, used a protein found in real leaves that is responsible for transporting electrons during photosynthesis to create their semi-artificial leaf.

    ‘Under light, a protein found in natural leaves or algae can produce about 50 high-energy electrons every second,’ explained Dr Plumeré. ‘When this same protein is incorporated into artificial leaves, up to 300 high-energy electrons are produced every second.’

    Dr Plumeré hopes this approach could eventually deliver new, simple and cheap solar-cell technologies — also known as photovoltaic cells — based on photosynthesis, although he warns the technology is still years away from finding commercial applications.

    ‘Large-scale green photovoltaics could simply be painted on a wall to collect solar energy directly at their point of use,’ he said. The technology could also be used to power tiny medical devices, such as sensors implanted in contact lenses to monitor biomarkers in tears.

    As the protein needed for the devices can be obtained from algae, it can be produced at a low cost compared to the rare earth metals needed for current solar panel cells.

    ‘These photosynthetic materials can be grown on wastewater and the chemical elements necessary for their assembly are infinitely available,’ said Dr Plumeré. ‘As such, they open a great promise for future devices for sustainable energy harvesting, which themselves can be fabricated in a sustainable manner.’

    Producing devices that can generate renewable energy in an environmentally friendly way can play a key role in helping to replace the planet’s dependance on polluting fossil fuels. But the intermittent nature of such renewable energy sources makes this task difficult. How, for example, can the lights be kept on when solar cells do not produce electricity at night?

    Splitting water

    The answer lies in storing the energy produced by such renewable sources, although to date, modern batteries and other storage options offer only a limited ability to do this. But scientists believe photosynthesis may also provide a solution here too.

    ‘The most effective way to store renewable energy is to produce a fuel such as hydrogen,’ said Dr Vincent Artero, a chemist at the Grenoble Alpes University and CEA-Grenoble, France. ‘As solar energy is the most abundant renewable energy, why not develop a process that directly captures sunlight and transforms it into fuel?’

    Dr Artero and his team have copied the metabolism of some algae that use solar energy to split water into hydrogen and oxygen. Funded by the EU’s European Research Council, the PhotocatH2ode project is aimed at incorporating bio-inspired dyes and catalysts into a photo-electrochemical cell, producing a kind of artificial leaf that can generate hydrogen from sunlight and water.

    ‘Our approach uses molecular components, such as dyes, to absorb sunlight and catalysts to achieve hydrogen production, immobilised on transparent electrodes.’ said Dr Artero. ‘This work opens new horizons for the development of novel hydrogen production technologies.’

    Mimicking nature

    But understanding how algae, plants and bacteria can convert light energy on a molecular level could lead to even more efficient artificial light-harvesting systems. A team working on the EU-funded ENLIGHT project is developing new theoretical and computational models to unravel how these complex yet unique systems work.

    ‘In these organisms, light-harvesting is the first, fundamental step of photosynthesis,’ said Professor Benedetta Mennucci, a chemist at the University of Pisa in Italy, who is leading ENLIGHT. ‘The developed models can now be applied to different types of organisms to understand if nature has optimised some specific features — common to all systems — that can be mimicked in artificial ones.’

    This work could prove crucial in driving an emerging area of research: solar-driven chemistry. This aims to mimic nature by using solar energy directly for the production of fuels, chemicals and materials.

    ‘We could replace all our current methods for producing fuels and commodity chemicals with new ones that use water, nitrogen and carbon dioxide as the starting materials, along with light or renewable electricity as the energetic input,’ said Dr Artero. ‘This would be a revolution for Europe.’

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:17 pm on September 26, 2017 Permalink | Reply
    Tags: , Clean Energy, , EGS Collab- Enhanced Geothermal Systems Collaboration, , Listening to the Earth to harness geothermal energy, SIGMA-V,   

    From SURF: “Listening to the Earth to harness geothermal energy “ 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    September 25, 2017
    Constance Walter

    Geothermal energy has the potential to power 100 million homes in America.

    1
    Hunter Knox and Bill Roggenthen from South Dakota School of Mines lower sensors down a set of holes that were drilled for the kISMET experiment. Matthew Kapust

    As a geophysicist, Hunter Knox has worked all over the world testing bridges, dams and levees, and listening to the sounds of the earth. She even peered into the center of the earth from a volcano in Antarctica at an open connecting lake.

    “I’m a seismologist. It’s what I do.”

    Now, the field coordinator from Sandia National Laboratory (SNL), is setting her sights on Sanford Lab’s 4850 Level, where she’s planning the logistics for SIGMA-V, a project under the auspices of the Enhanced Geothermal Systems Collaboration (EGS Collab).

    Led by Lawrence Berkeley National Laboratory, the EGS Collab recently received a $9 million grant from the Department of Energy to study geothermal systems. It is believed this clean-energy technology could power up to 100 million American homes.

    But before that can happen, more studies need to be done.

    “We need to better understand how fractures created in deep, hard-rock environments can be used to produce geothermal energy,” Knox said.

    Building on data collected from the recent kISMET experiment at Sanford Lab, the collaboration hopes to expand its understanding of the rock stress and incorporate additional equipment to meet the needs of EGS technology.

    “A typical geothermal system mines heat from the earth by extracting steam or hot water,” said Tim Kneafsey, principal investigator for EGS Collab and a staff earth scientist with LBNL. But for that to happen, three things are needed: hot rock, fluid and the ability for fluid to move through rock.

    “These conditions are not met everywhere,” Kneafsey said. “There is a lot of accessible hot rock, but it may be missing the permeability or fluid or both.”

    “We know fracturing rock can be done. But can it be effective for geothermal purposes? We need good, well-monitored field tests of fracturing, particularly in crystalline rock, to better understand that,” he said.

    That’s where SIGMA-V—or Stimulation Investigations for Geothermal Modeling and Analysis—comes in. “SIGMA-V is shorthand for vertical stress,” Kneafsey said.

    The goal of the project is to collect data that will allow the team to create better predictive and geomechanic models that will allow them to better understand the subsurface of the earth. The team will drill two boreholes: one for injection and one for production. Each will be 60 meters long in the direction of the minimum horizontal stress. Six additional monitoring boreholes will contain seismic, electrical and fiber optic sensors.

    When the holes are drilled, the team will place “straddle packers”—a mandrel, or pipe, with two deflated balloons on either end—inside them. Once inside, they will inflate the balloons and flow water down the pipe to create an airtight section. They will continue to pump water until the rock fractures and use the monitoring equipment to listen for acoustic emissions, the sounds that will tell them what is happening within the rock.

    “One of the problems with EGS is that it is difficult to maintain the fracture network,” Knox said. “Since the boreholes are hard to drill in these hot and very hard rocks and the fracture networks can’t be sustained, it is challenging to maintain an adequate heat exchanger to pull the energy out. We want to figure out how to maintain these networks so we can use the heat for energy.”

    And so, she’ll continue to listen to the rock nearly a mile underground and, perhaps, learn the secret to using it for geothermal energy.

    Forging ahead

    Data collected from SIGMA-V will be applied toward the Frontier Observatory for Research in Geothermal Energy (FORGE), a flagship DOE geothermal project, Kneafsey said. FORGE aims to develop technologies needed to create large-scale, economically sustainable heat exchange systems, thus paving the way for a reproducible approach that will reduce risks associated with EGS development.

    The two FORGE sites are in Fallon, Nevada, which is led by Sandia National Laboratories; and Milford, Utah, led by the University of Utah. The FORGE initiative will include innovative drilling techniques, reservoir stimulation techniques and well connectivity and flow-testing efforts.

    The EGS Collab includes researchers from eight national labs—LBNL, SNL, Lawrence Livermore National Laboratory, Pacific Northwest National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, National Energy Research Laboratory, and Oak Ridge National Laboratory; and six universities—South Dakota School of Mines and Technology, Stanford, University of Wisconsin, University of Oklahoma, Colorado School of Mines and Penn State.

    Some information for this article was provided by LBNL: http://newscenter.lbl.gov/2017/07/20/berkeley-lab-lead-multimillion-dollar-geothermal-energy-project/

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 1:02 pm on September 23, 2017 Permalink | Reply
    Tags: , , Clean Energy, , , , New science,   

    From WCG: “Supercharging Environmental and Climate Change Research” 

    New WCG Logo

    WCGLarge

    World Community Grid (WCG)

    10 Jul 2017 {Just popped up in social media.]

    Summary
    IBM invites scientists to apply for grants of supercomputing power through World Community Grid, meteorological data from The Weather Company, and IBM Cloud storage to support their environmental and climate change research projects.

    World Community Grid supports research that tackles our planet’s most pressing challenges, including environmental issues. That’s why we’re pleased to announce a new partnership with The Weather Company (an IBM business) and IBM Cloud to provide free technology and data for environmental and climate change projects.

    Environmental scientists have long been warning the public about the effects of climate change, and many researchers attribute events such as this summer’s record temperatures in western Europe and the worst drought since the 1940s in parts of Africa to climate change caused by humankind’s activities. The future consequences of climate change could include rising sea levels, potential crop loss, and harsh economic consequences throughout the world. And as funding for scientific research shrinks in many countries, the gap between what scientists must discover–how to mitigate or adapt to climate change–and their resources for such discovery is growing ever wider.

    Thanks to the contributions of volunteers all over the globe, World Community Grid is ready to address that gap. Since 2004, our research partners have completed the equivalent of thousands of years of work in just a few years, including enabling advances in environmental science.

    For example, scientists at Harvard University used World Community Grid to run the Clean Energy Project [see below], the world’s largest quantum chemistry experiment with the goal of identifying new materials for solar energy. In just a few years, they analyzed millions of chemical compounds to predict their efficiency at converting sunlight into electricity. Their discovery of thousands of promising compounds could advance the development of cheap, flexible solar cell materials that we hope will be used worldwide to reduce carbon emissions and contribute to the fight against climate change.

    Other environmental research projects conducted with help from World Community Grid have included new water filtration technology [see below], watershed preservation and crop sustainability.

    That’s why we’re pleased to announce that IBM is inviting scientists around the world to apply for grants of supercomputing power from World Community Grid, meteorological data from The Weather Company, and IBM Cloud storage to support their climate change or environmental research projects. Up to five of the most promising environmental and climate-related research projects will be supported. This support, technology, and data can support many potential areas of inquiry, such as impacts on fresh water resources, predicting migration patterns, and developing models to improve crop resilience.

    Proposals for projects will be evaluated for scientific merit, potential to contribute to the global community’s understanding of specific climate and environmental challenges and development of effective strategies to mitigate them, and the capacity of the research team to manage a sustained research project. And like all other World Community Grid projects, researchers who receive these resources must agree to abide by our open data policy by publicly releasing the data from their collaboration with us.

    Scientists from around the world can apply at http://climate.worldcommunitygrid.org, with a first round deadline of September 15.

    There’s still time to mitigate or adapt to the effects of climate change, and scientific research will continue to play a crucial role in how our planet addresses this crisis. We hope you will join us by giving your computers the ability to work around the clock for science.

    Scientists Apply Here.

    See the full article here.

    Ways to access the blog:
    https://sciencesprings.wordpress.com
    http://facebook.com/sciencesprings

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    World Community Grid (WCG) brings people together from across the globe to create the largest non-profit computing grid benefiting humanity. It does this by pooling surplus computer processing power. We believe that innovation combined with visionary scientific research and large-scale volunteerism can help make the planet smarter. Our success depends on like-minded individuals – like you.”
    WCG projects run on BOINC software from UC Berkeley.
    BOINCLarge

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing.

    BOINC WallPaper

    CAN ONE PERSON MAKE A DIFFERENCE? YOU BET!!

    My BOINC
    MyBOINC
    “Download and install secure, free software that captures your computer’s spare power when it is on, but idle. You will then be a World Community Grid volunteer. It’s that simple!” You can download the software at either WCG or BOINC.

    Please visit the project pages-

    FightAIDS@home Phase II

    FAAH Phase II
    OpenZika

    Rutgers Open Zika

    Help Stop TB
    WCG Help Stop TB
    Outsmart Ebola together

    Outsmart Ebola Together

    Mapping Cancer Markers
    mappingcancermarkers2

    Uncovering Genome Mysteries
    Uncovering Genome Mysteries

    Say No to Schistosoma

    GO Fight Against Malaria

    Drug Search for Leishmaniasis

    Computing for Clean Water

    The Clean Energy Project

    Discovering Dengue Drugs – Together

    Help Cure Muscular Dystrophy

    Help Fight Childhood Cancer

    Help Conquer Cancer

    Human Proteome Folding

    FightAIDS@Home

    faah-1-new-screen-saver

    faah-1-new

    World Community Grid is a social initiative of IBM Corporation
    IBM Corporation
    ibm

    IBM – Smarter Planet
    sp

     
  • richardmitnick 9:04 am on September 6, 2017 Permalink | Reply
    Tags: , Clean Energy, , High-tech mirror-like optical surface, Stanford professor tests a cooling system that works without electricity,   

    From Stanford: “Stanford professor tests a cooling system that works without electricity” 

    Stanford University Name
    Stanford University

    September 4, 2017
    Taylor Kubota

    Stanford scientists cooled water without electricity by sending excess heat where it won’t be noticed – space. The specialized optical surfaces they developed are a major step toward applying this technology to air conditioning and refrigeration.

    1
    A fluid-cooling panel designed by Shanhui Fan, professor of electrical engineering at Stanford, and former research associates Aaswath Raman and Eli Goldstein being tested on the roof of the Packard Electrical Engineering Building. This is an updated version of the panels used in the research published in Nature Energy. (Image credit: Aaswath Raman)

    It looks like a regular roof, but the top of the Packard Electrical Engineering Building at Stanford University has been the setting of many milestones in the development of an innovative cooling technology that could someday be part of our everyday lives. Since 2013, Shanhui Fan, professor of electrical engineering, and his students and research associates have employed this roof as a testbed for a high-tech mirror-like optical surface that could be the future of lower-energy air conditioning and refrigeration.

    Research published in 2014 [Nature] first showed the cooling capabilities of the optical surface on its own. Now, Fan and former research associates Aaswath Raman and Eli Goldstein, have shown that a system involving these surfaces can cool flowing water to a temperature below that of the surrounding air. The entire cooling process is done without electricity.

    “This research builds on our previous work with radiative sky cooling but takes it to the next level. It provides for the first time a high-fidelity technology demonstration of how you can use radiative sky cooling to passively cool a fluid and, in doing so, connect it with cooling systems to save electricity,” said Raman, who is co-lead author of the paper detailing this research, published in Nature Energy Sept. 4.

    Together, Fan, Goldstein and Raman have founded the company SkyCool Systems, which is working on further testing and commercializing this technology.

    Sending our heat to space

    Radiative sky cooling is a natural process that everyone and everything does, resulting from the moments of molecules releasing heat. You can witness it for yourself in the heat that comes off a road as it cools after sunset. This phenomenon is particularly noticeable on a cloudless night because, without clouds, the heat we and everything around us radiates can more easily make it through Earth’s atmosphere, all the way to the vast, cold reaches of space.

    “If you have something that is very cold – like space – and you can dissipate heat into it, then you can do cooling without any electricity or work. The heat just flows,” explained Fan, who is senior author of the paper. “For this reason, the amount of heat flow off the Earth that goes to the universe is enormous.”

    Although our own bodies release heat through radiative cooling to both the sky and our surroundings, we all know that on a hot, sunny day, radiative sky cooling isn’t going to live up to its name. This is because the sunlight will warm you more than radiative sky cooling will cool you. To overcome this problem, the team’s surface uses a multilayer optical film that reflects about 97 percent of the sunlight while simultaneously being able to emit the surface’s thermal energy through the atmosphere. Without heat from sunlight, the radiative sky cooling effect can enable cooling below the air temperature even on a sunny day.

    “With this technology, we’re no longer limited by what the air temperature is, we’re limited by something much colder: the sky and space,” said Goldstein, co-lead author of the paper.

    The experiments published in 2014 were performed using small wafers of a multilayer optical surface, about 8 inches in diameter, and only showed how the surface itself cooled. Naturally, the next step was to scale up the technology and see how it works as part of a larger cooling system.

    Putting radiative sky cooling to work

    For their latest paper, the researchers created a system where panels covered in the specialized optical surfaces sat atop pipes of running water and tested it on the roof of the Packard Building in September 2015. These panels were slightly more than 2 feet in length on each side and the researchers ran as many as four at a time. With the water moving at a relatively fast rate, they found the panels were able to consistently reduce the temperature of the water 3 to 5 degrees Celsius below ambient air temperature over a period of three days.

    2
    This photo from 2014 shows the reflectivity of the mirror-like optical surface Fan, Raman and Goldstein have been researching, which allows for daytime radiative sky cooling by sending thermal energy into the sky while also blocking sunlight. The people in this photo (left to right) are Linxiano Zhu, PhD ‘16, co-author of the [Nature], Fan and Raman. (Image credit: Norbert von der Groeben)

    The researchers also applied data from this experiment to a simulation where their panels covered the roof of a two-story commercial office building in Las Vegas – a hot, dry location where their panels would work best – and contributed to its cooling system. They calculated how much electricity they could save if, in place of a conventional air-cooled chiller, they used vapor-compression system with a condenser cooled by their panels. They found that, in the summer months, the panel-cooled system would save 14.3 megawatt-hours of electricity, a 21 percent reduction in the electricity used to cool the building. Over the entire period, the daily electricity savings fluctuated from 18 percent to 50 percent.

    Right now, SkyCool Systems is measuring the energy saved when panels are integrated with traditional air conditioning and refrigeration systems at a test facility, and Fan, Goldstein and Raman are optimistic that this technology will find broad applicability in the years to come. The researchers are focused on making their panels integrate easily with standard air conditioning and refrigeration systems and they are particularly excited at the prospect of applying their technology to the serious task of cooling data centers.

    Fan has also carried out research on various other aspects of radiative cooling technology. He and Raman have applied the concept of radiative sky cooling to the creation of an efficiency-boosting coating for solar cells. With Yi Cui, a professor of materials science and engineering at Stanford and of photon science at SLAC National Accelerator Laboratory, Fan developed a cooling fabric.

    “It’s very intriguing to think about the universe as such an immense resource for cooling and all the many interesting, creative ideas that one could come up with to take advantage of this,” he said.

    Fan is also director of the Edward L. Ginzton Laboratory, a professor, by courtesy, of applied physics and an affiliate of the Stanford Precourt Institute for Energy.

    This work was funded by the Advanced Research Projects Agency – Energy (ARPA-E) of the Department of Energy.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 1:31 pm on August 28, 2017 Permalink | Reply
    Tags: Clean Energy, , , ,   

    From PPPL: “PPPL physicists essential to new campaign on world’s most powerful stellarator” 


    PPPL

    August 28, 2017
    John Greenwald

    KIT Wendelstein 7-X, built in Greifswald, Germany

    1
    Fish-eye view of interior of W7-X showing graphite tiles that cover magnetic coils. (Photo courtesy of IPP.)

    Physicists from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are providing critical expertise for the first full campaign of the world’s largest and most powerful stellarator, a magnetic confinement fusion experiment, the Wendelstein 7-X (W7-X) in Germany. The fusion facility resumes operating on August 28, 2017, and will investigate the suitability of its optimized magnetic fields to create steady state plasmas and to serve as a model for a future power plant for the production of a “star in a jar,” a virtually limitless source of safe and clean energy for generating electricity.

    The W7-X started up in December, 2015, and concluded its initial run in March, 2016. The facility has since been upgraded to prepare for the high-power campaign that is set to begin.

    Deeply involved in the new 15-week run are PPPL physicists Sam Lazerson and Novimir Pablant, who are spending two years at the Max Planck Institute of Plasma Physics in Greifswald, Germany. Lazerson, who previously mapped the W7-X magnetic fields with barn-door sized magnetic coils built by PPPL, heads a task force that will plan and run a series of experiments on the stellarator. Pablant, who designed an x-ray crystal spectrometer to record the behavior of W7-X plasma, will operate the diagnostic together with a German spectrometer and will contribute to planning and executing research.

    First run in designed configuration

    “This will be the first run of the machine in its designed configuration,” said David Gates, who heads the stellarator physics division at PPPL and oversees the laboratory’s role as lead U.S. collaborator in the W7-X project. The new run will test a device called an “island divertor” for exhausting thermal energy and impurities. The campaign will also increase the heating power of the stellarator to eight megawatts to enable operation at a higher beta — the ratio of plasma pressure to the magnetic field pressure, a key factor for plasma confinement.

    Such progress marks steps toward lengthening the confinement time of the hot, charged plasma gas that fuels fusion reactions within the optimized machine. “The goal is to increase plasma confinement compared with traditional stellarators,” said Gates.

    Going forward, Max Planck engineers plan to install a U.S.-built “scraper element” on the W7-X after completion of the initial 15-week campaign. The following phase will study the ability of the unit, originally designed at Oak Ridge National Laboratory and completed at PPPL, to intercept heat flowing toward the divertor and improve its performance. Plans call next for installation of a water-cooled divertor in 2019 to further increase the allowable pulse length of the stellarator.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition


    PPPL campus

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

     
  • richardmitnick 1:40 pm on August 16, 2017 Permalink | Reply
    Tags: Clean Energy, , , , World's Biggest Solar Thermal Power Plant Just Got Approved in Australia   

    From Science Alert: “World’s Biggest Solar Thermal Power Plant Just Got Approved in Australia” 

    ScienceAlert

    Science Alert

    16 AUG 2017
    DAVID NIELD

    1
    Crescent Dunes near Las Vegas, the blueprint for the new plant. Credit: Solar Reserve.

    The onward march of renewables continues: an Australian state government has greenlit the biggest solar thermal power plant of its kind in the world, a 150-megawatt structure set to be built in Port Augusta in South Australia.

    As well as providing around 650 construction jobs for local workers, the plant will provide all the electricity needs for the state government, with some to spare – and it should help to make solar energy even more affordable in the future.

    Work on the AU$650 million (US$510 million) plant is getting underway next year and is slated to be completed in 2020, adding to Australia’s growing list of impressive renewable energy projects that already cover solar and tidal.

    “The significance of solar thermal generation lies in its ability to provide energy virtually on demand through the use of thermal energy storage to store heat for running the power turbines,” says sustainable energy engineering professor Wasim Saman, from the University of South Australia.

    “This is a substantially more economical way of storing energy than using batteries.”

    Solar photovoltaic plants convert sunlight directly into electricity, so they need batteries to store excess power for when the Sun isn’t shining; solar thermal plants, meanwhile, use mirrors to concentrate the sunlight into a heating system.

    A variety of heating systems are in use, but In this case, molten salt will be heated up – a more economical storage option than batteries – which is then used to boil water, spin a steam turbine, and generate electricity when required.

    The developers of the Port Augusta plant say it can continue to generate power at full load for up to 8 hours after the Sun’s gone down.

    The Crescent Dunes plant in Nevada will act as the blueprint for the one in Port Augusta, as it was built by the same contractor, Solar Reserve. That site has a 110-megawatt capacity.

    Renewable energy sources now account for more than 40 percent of the electricity generated in South Australia, and as solar becomes a more stable and reliable provider of energy, that in turn pushes prices lower.

    Importantly, the cost of the new plant is well below the estimated cost of a new coal-fired power station, giving the government another reason to back renewables. The cost-per-megawatt of the new plant works out about the same as wind power and solar photovoltaic plants.

    But engineering researcher Fellow Matthew Stocks, from the Australian National University, says we still have “lots to learn” about how solar thermal technologies can fit into an electric grid system.

    “One of the big challenges for solar thermal as a storage tool is that it can only store heat,” says Stocks. “If there is an excess of electricity in the system because the wind is blowing strong, it cannot efficiently use it to store electrical power to shift the energy to times of shortage, unlike batteries and pumped hydro.”

    Authorities say 50 full-time workers will be required to operate the plant, using similar skills to those needed to run a coal or gas station. That will encourage workers laid off after the region’s coal-fired power station was closed down last year.

    Solar thermal has been backed to the tune of AU$110m ($86m) of equity provided by the federal government.

    And as renewables become more and more important to our power grids, expect to see this huge solar thermal plant eventually get eclipsed by a bigger one.

    “This is first large scale application of solar thermal generation in Australia which has been operating successfully in Europe, USA and Africa,” says Saman.

    “While this technology is perhaps a decade behind solar PV generation, many future world energy forecasts include a considerable proportion of this technology in tomorrow’s energy mix.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:32 am on August 11, 2017 Permalink | Reply
    Tags: A copper catalyst that converts carbon dioxide into ethanol, , , Clean Energy, , How do you make ethanol without growing corn?,   

    From Stanford: “How do you make ethanol without growing corn?” 

    Stanford University Name
    Stanford University

    June 20, 2017 [Delayed waiting for a link to the science paper.]
    Mark Shwartz

    1
    SLAC scientist Christopher Hahn sees his reflection in a copper catalyst that converts carbon dioxide into ethanol. | Image credit: Mark Shwartz.

    Most cars and trucks in the United States run on a blend of 90 percent gasoline and 10 percent ethanol, a renewable fuel made primarily from fermented corn. But producing the 14 billion gallons of ethanol consumed annually by American drivers requires millions of acres of farmland.

    A recent discovery by Stanford University scientists could lead to a new, more sustainable way to make ethanol without corn or other crops. This technology has three basic components: water, carbon dioxide and electricity delivered through a copper catalyst. The results are published in Proceedings of the National Academy of Sciences.

    “One of our long-range goals is to produce renewable ethanol in a way that doesn’t impact the global food supply,” said study principal investigator Thomas Jaramillo, an associate professor of chemical engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory.

    “Copper is one of the few catalysts that can produce ethanol at room temperature,” he said. “You just feed it electricity, water and carbon dioxide, and it makes ethanol. The problem is that it also makes 15 other compounds simultaneously, including lower-value products like methane and carbon monoxide. Separating those products would be an expensive process and require a lot of energy.”

    Scientists would like to design copper catalysts that selectively convert carbon dioxide into higher-value chemicals and fuels, like ethanol and propanol, with few or no byproducts. But first they need a clear understanding of how these catalysts actually work. That’s where the recent findings come in.

    Copper crystals

    For the PNAS study, the Stanford team chose three samples of crystalline copper, known as copper (100), copper (111) and copper (751). Scientists use these numbers to describe the surface geometries of single crystals.

    “Copper (100), (111) and (751) look virtually identical but have major differences in the way their atoms are arranged on the surface,” said Christopher Hahn, an associate staff scientist at SLAC and co-lead lead author of the study. “The essence of our work is to understand how these different facets of copper affect electrocatalytic performance.”

    In previous studies, scientists had created single-crystal copper electrodes just 1-square millimeter in size. For this study, Hahn and his co-workers at SLAC developed a novel way to grow single crystal-like copper on top of large wafers of silicon and sapphire. This approach resulted in films of each form of copper with a 6-square centimeter surface, 600 times bigger than typical single crystals.

    Catalytic performance

    To compare electrocatalytic performance, the researchers placed the three large electrodes in water, exposed them to carbon dioxide gas and applied a potential to generate an electric current.

    The results were clear. When the team applied a specific voltage, the electrodes made of copper (751) were far more selective to liquid products, such as ethanol and propanol, than those made of copper (100) or (111).

    Ultimately, the Stanford team would like to develop a technology capable of selectively producing carbon-neutral fuels and chemicals at an industrial scale.

    “The eye on the prize is to create better catalysts that have game-changing potential by taking carbon dioxide as a feedstock and converting it into much more valuable products using renewable electricity or sunlight directly,” Jaramillo said. “We plan to use this method on nickel and other metals to further understand the chemistry at the surface. We think this study is an important piece of the puzzle and will open up whole new avenues of research for the community.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 2:55 pm on August 5, 2017 Permalink | Reply
    Tags: , , Clean Energy, Climate policies study shows Inland Empire economic boon, , ,   

    From UC Berkeley: “Climate policies study shows Inland Empire economic boon” 

    UC Berkeley

    UC Berkeley

    August 3, 2017
    Jacqueline Sullivan

    1
    UC Berkeley researchers found that the proliferation of renewable energy plants — like the San Gorgonio Pass wind farm shown above — is responsible for over 90 percent of the direct benefit of California’s climate and clean energy policies in the Inland Empire. (iStock photo).

    According to the first comprehensive study of the economic effects of climate programs in California’s Inland Empire, Riverside and San Bernardino counties experienced a net benefit of $9.1 billion in direct economic activity and 41,000 jobs from 2010 through 2016.

    Researchers at UC Berkeley’s Center for Labor Research and Education and the Center for Law, Energy and the Environment at Berkeley Law report that many of these jobs were created by one-time construction investments associated with building renewable energy power plants. These investments, they say, helped rekindle the construction industry, which experienced major losses during the Great Recession.

    When accounting for the spillover effects, the researchers report in their study commissioned by nonpartisan, nonprofit group Next 10, that state climate policies resulted in a total of $14.2 billion in economic activity and more than 73,000 jobs for the region during the same seven years.

    Study focal points

    2
    Inland Empire residents are at especially high risk for pollution-related health conditions. This hazy view from a Rancho Cucamonga street attests to the region’s smog problem. (Photo by Mikeetc via Creative Commons).

    Because smog in San Bernardino and Riverside counties is consistently among the worst in the state, residents are at especially high risk of pollution-related health conditions.

    “California has many at-risk communities — communities that are vulnerable to climate change, but also vulnerable to the policy solutions designed to slow climate change,” said Betony Jones, lead author of the report and associate director of the Green Economy Program at UC Berkeley’s Center for Labor Research and Education.

    In the Inland Empire, per capita income is approximately $23,000, compared to the state average of $30,000, and 17.5 percent of the residents of Riverside and San Bernardino counties live below the poverty line, compared to 14.7 percent of all Californians.

    The Net Economic Impacts of California’s Major Climate Programs in the Inland Empire study comes out right after the state’s recent decision to extend California’s cap-and-trade program, and as other states and countries look to California as a model.

    Cap-and-trade

    After accounting for compliance spending and investment of cap-and-trade revenue, researchers found cap and trade had net economic impacts of $25.7 million in San Bernardino and Riverside counties in the first four years of the program, from 2013 to 2016.

    That includes $900,000 in increased tax revenue and net employment growth of 154 jobs through the Inland Empire economy. When funds that have been appropriated but have not yet been spent are included, projected net economic benefits reach nearly $123 million, with 945 jobs created and $5.5 million in tax revenue.

    Proliferation of renewables

    The researchers found that the proliferation of renewable energy plants is responsible for over 90 percent of the direct benefit of California’s climate and clean energy policies in the Inland Empire. As of October 2016, San Bernardino and Riverside Counties were home to more than 17 percent of the state’s renewable generation capacity, according the California Energy Commission.

    3
    Researchers found that altogether, renewables like the solar panels pictured above, contributed more than 60,000 net jobs to the regional economy over seven years. (iStock photo)

    “Even after accounting for construction that would have taken place in a business-as-usual scenario, new renewable power plants created the largest number of jobs in the region over the seven-year period, generating 29,000 high-skilled, high-quality construction jobs,” said Jones.

    The authors compared the jobs created in the generation of renewable electricity with those that would have been created by maintaining natural gas electricity generation. “While renewables create fewer direct jobs, the multiplier effects are greater in the Inland Empire economy,” Jones said. “Altogether, renewable generation contributed over 60,000 net jobs to the regional economy over seven years.”

    Rooftop solar, energy efficiency programs

    The report looks at the costs and benefits of the California Solar Initiative, the federal renewables Investment Tax Credit, and investor-owned utility energy efficiency programs, which provide direct incentives for solar installation and energy efficiency retrofits at homes, businesses and institutions. These programs provided about $1.1 billion in subsidies for distributed solar and $612 million for efficiency in the Inland Empire between 2010 and 2016.

    While researchers calculated benefits for these two programs separately, they identified the costs of these programs to electricity ratepayers together. When the benefits are weighed against these costs, the total net impact of both programs resulted in the creation of more than 12,000 jobs and $1.68 billion across the economy over the seven years studied.

    The report’s authors suggest that officials and/or policymakers:

    Develop a comprehensive program for transportation, the greatest challenge facing in California’s climate goals;
    Expand energy efficiency programs to reduce energy use in the existing building and housing stock while reducing energy costs and creating jobs and economic activity;
    Ensure that the Inland Empire receives appropriate statewide spending based on its economic and environmental needs;
    Develop transition programs for workers and communities affected by the decline of the Inland Empire’s greenhouse gas-emitting industries.

    “California continues to demonstrate leadership on climate and clean energy, and results like these show that California’s models can be exported,” said Ethan Elkind, climate director at the UC Berkeley Center for Law, Energy and the Environment.

    Noel Perry, founder of Next 10, said the report gives policymakers and stakeholders the concrete data needed to weigh policy options and investments in the Inland Empire and beyond.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 9:44 am on June 14, 2017 Permalink | Reply
    Tags: , , , Clean Energy, , Human waste used as biosolids for fertilizer, Macdonald campus in Ste-Anne-de-Bellevue, , McGill gets $3 million to fund research into cutting greenhouse gases, Mitigating greenhouse gas emissions caused by water and fertilizer use in agriculture,   

    From McGill via Montreal Gazette: “McGill gets $3 million to fund research into cutting greenhouse gases” 

    McGill University

    McGill University

    1

    Montreal Gazette

    June 14, 2017
    John Meagher

    2
    McGill professor Grant Clark displays human waste used as biosolids for fertilizer, on test fields at Macdonald campus on Monday. The federal government is investing in the university to conduct research on greenhouse gas mitigation in agriculture. Pierre Obendrauf / Montreal Gazette

    McGill University researchers at Macdonald campus in Ste-Anne-de-Bellevue got some welcome news Monday when the federal government announced nearly $3 million in funding for research projects that will help farmers cut greenhouse gas emissions.

    Local Liberal MP Francis Scarpaleggia and Jean-Claude Poissant, Parliamentary Secretary for the Minister of Agriculture, announced $2.9 million in funding at a press conference for two McGill projects aimed at mitigating greenhouse gas emissions caused by water and fertilizer use in agriculture.

    Scarpaleggia said the funding will “enable our agricultural sector to be a world leader and to develop new clean technologies and practices to enhance the economic and environmental sustainability of Canadian farms.”

    A project led by Prof. Chandra Madramootoo, of McGill’s Department of Bioresource Engineering, will receive more than $1.6 million to study the effects of different water management systems in Eastern Canada.

    The aim is to provide information on water-management practices that reduce greenhouse gas emissions while increasing agricultural productivity.

    The second project, headed by McGill Prof. Grant Clark, also of the Department of Bioresource Engineering, will receive $1.3 million. The project will research best management practices for the use of municipal bio-solids, a by-product of wastewater treatment plants, as a crop fertilizer.

    “I’m a firm believer in science-based policy,” Clark said. “And we require the support of government to develop the knowledge to promote that policy.

    “I would also like to acknowledge the government’s support of real concrete action to (address) climate change and reduce greenhouse gas emissions.”

    Clark said the research project will examine how to “reduce, reuse, recycle, reclaim” the use of nutrients and organics in agriculture

    “If were are going to develop a sustainable agricultural system, we must be conscious of how we conserve resources, reduce inputs as well as reduce greenhouse gas emissions and build and preserve the health of our soils,” he said.

    “We are interested in linking the intensive food production required to support a growing global population with the recycling of organic wastes from our municipal centres,” Clark added.

    “The objective of the program is to use the residual solids from the treatment of municipal waste waters, or biosolids, as fertilizers for agricultural production. So this mirrors the natural cycling of nutrients or organic carbon that we see in nature. However, we can’t just go out and poop in the field. The cycle is a little more involved in order that we preserve public health and hygiene.”

    Scarpaleggia described the research work being done at the Macdonald campus in Ste-Anne as “world class.”

    “The federal government has always recognized the enormous value of Macdonald campus as a world-class research facility,” said the MP for Lac-St-Louis riding.

    “They’re doing groundbreaking work here in any areas of agriculture, including water management, which is a particular interest of mine. So it’s very important to channel some research funds to Macdonald campus.”

    Scarpaleggia said the McGill projects being funded by federal government will promote job growth in the green economy.

    “As we move ahead with climate change policies, we are, as a consequence, stimulating research, stimulating industrial innovation. We’re making that jump to the green economy with all its benefits in terms of employment and high value-added jobs.”

    The federal funding, which comes from the Agricultural Greenhouse Gases Program (AGGP), was made on behalf of Lawrence MacAuley, the Minister of Agriculture and Agri-Food Canada.

    “The Government of Canada continues to invest in research with partners like McGill University in order to provide our farmers with the best strategies for adapting to climate change and for producing more quality food for a growing population while keeping agriculture clean and sustainable,” said Poissant.

    The AGGP is $27-million initiative aimed at helping the agricultural sector adjust to climate change and improve soil and water conservation. McGill’s agronomists and scientists are involved in 20 new research projects being conducted across Canada, from British Columbia to the Maritimes.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    All about McGill

    With some 300 buildings, more than 38,500 students and 250,000 living alumni, and a reputation for excellence that reaches around the globe, McGill has carved out a spot among the world’s greatest universities.
    Founded in Montreal, Quebec, in 1821, McGill is a leading Canadian post-secondary institution. It has two campuses, 11 faculties, 11 professional schools, 300 programs of study and some 39,000 students, including more than 9,300 graduate students. McGill attracts students from over 150 countries around the world, its 8,200 international students making up 21 per cent of the student body.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: