Tagged: Clean Energy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:07 pm on February 13, 2018 Permalink | Reply
    Tags: , , Clean Energy, Lead-free perovskite material for solar cells   

    From Brown: “Researchers discover new lead-free perovskite material for solar cells” 

    Brown University
    Brown University

    February 13, 2018
    Kevin Stacey
    kevin_stacey@brown.edu
    401-863-3766

    1
    Getting the lead out
    Researchers have shown that titanium is an attractive choice to replace the toxic lead in the prevailing perovskite thin film solar cells. Padture Lab / Brown University

    A class of materials called perovskites has emerged as a promising alternative to silicon for making inexpensive and efficient solar cells. But for all their promise, perovskites are not without their downsides. Most contain lead, which is highly toxic, and include organic materials that are not particularly stable when exposed to the environment.

    Now a group of researchers at Brown University and University of Nebraska – Lincoln (UNL) has come up with a new titanium-based material for making lead-free, inorganic perovskite solar cells. In a paper published in the journal Joule (a new energy-focused sister journal to Cell), the researchers show that the material can be a good candidate, especially for making tandem solar cells — arrangements in which a perovskite cells are placed on top of silicon or another established material to boost the overall efficiency.

    “Titanium is an abundant, robust and biocompatible element that, until now, has been largely overlooked in perovskite research,” said the senior author of the new paper, Nitin Padture, the Otis E. Randall University Professor in Brown’s School of Engineering and director of Institute for Molecular and Nanoscale Innovation. “We showed that it’s possible to use titanium-based material to make thin-film perovskites and that the material has favorable properties for solar applications which can be tuned.”

    Interest in perovskites, a class of materials with a particular crystalline structure, for clean energy emerged in 2009, when they were shown to be able to convert sunlight into electricity. The first perovskite solar cells had a conversion efficiency of only about 4 percent, but that has quickly skyrocketed to near 23 percent, which rivals traditional silicon cells. And perovskites offer some intriguing advantages. They’re potentially cheaper to make than silicon cells, and they can be partially transparent, enabling new technologies like windows that generate electricity.

    “One of the big thrusts in perovskite research is to get away from lead-based materials and find new materials that are non-toxic and more stable,” Padture said. “Using computer simulations, our theoretician collaborators at UNL predicted [ACS Energy Letters] that a class of perovskites with cesium, titanium and a halogen component (bromine or/and iodine) was a good candidate. The next step was to actually make a solar cell using that material and test its properties, and that’s what we’ve done here.”

    The team made semi-transparent perovskite films that had bandgap — a measure of the energy level of photons the material can absorb — of 1.8 electron volts, which is considered to be ideal for tandem solar applications. The material had a conversion efficiency of 3.3 percent, which is well below that of lead-based cells, but a good start for an all-new material, the researchers say.

    “There’s a lot of engineering you can do to improve efficiency,” Yuanyuan Zhou, an assistant professor (research) of engineering at Brown and a study co-author. “We think this material has a lot of room to improve.”

    Min Chen, a Ph.D. student of materials science at Brown and the first author of the paper, used a high-temperature evaporation method to prepare the films, but says the team is investigating alternative methods. “We are also looking for new low-temperature and solvent-based methods to reduce the potential cost of cell fabrication,” he said.

    The research showed the material has several advantages over other lead-free perovskite alternatives. One contender for a lead-free perovskite is a material made largely from tin, which rusts easily when exposed to the environment. Titanium, on the hand, is rust-resistant. The titanium-perovskite also has an open-circuit voltage — a measure of the total voltage available from a solar cell — of over one volt. Other lead-free perovskites generally produce voltage smaller than 0.6 volts.

    “Open-circuit voltage is a key property that we can use to evaluate the potential of a solar cell material,” Padture said. “So, having such a high value at the outset is very promising.”

    The researchers say that material’s relatively large bandgap compared to silicon makes it a prime candidate to serve as the top layer in a tandem solar cell. The titanium-perovskite upper layer would absorb the higher-energy photons from the sun that the lower silicon layer can’t absorb because of its smaller bandgap. Meanwhile, lower energy photons would pass through the semi-transparent upper layer to be absorbed by the silicon, thereby increasing the cell’s total absorption capacity.

    “Tandem cells are the low-hanging fruit when it comes to perovskites,” Padture said. “We’re not looking to replace existing silicon technology just yet, but instead we’re looking to boost it. So if you can make a lead-free tandem cell that’s stable, then that’s a winner. This new material looks like a good candidate.”

    Other co-authors on the paper were Ming-Gang Ju, Alexander Carl, Yingxia Zong, Ronald Grimm, Jiajun Gu and Xiao Cheng Zeng. The research was supported by the National Science Foundation (OIA-1538893, DMR-1420645).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Welcome to Brown

    Brown U Robinson Hall
    Located in historic Providence, Rhode Island and founded in 1764, Brown University is the seventh-oldest college in the United States. Brown is an independent, coeducational Ivy League institution comprising undergraduate and graduate programs, plus the Alpert Medical School, School of Public Health, School of Engineering, and the School of Professional Studies.

    With its talented and motivated student body and accomplished faculty, Brown is a leading research university that maintains a particular commitment to exceptional undergraduate instruction.

    Brown’s vibrant, diverse community consists of 6,000 undergraduates, 2,000 graduate students, 400 medical school students, more than 5,000 summer, visiting and online students, and nearly 700 faculty members. Brown students come from all 50 states and more than 100 countries.

    Undergraduates pursue bachelor’s degrees in more than 70 concentrations, ranging from Egyptology to cognitive neuroscience. Anything’s possible at Brown—the university’s commitment to undergraduate freedom means students must take responsibility as architects of their courses of study.

    Advertisements
     
  • richardmitnick 1:26 pm on January 1, 2018 Permalink | Reply
    Tags: , Clean Energy,   

    From WIRED: “The Sunny Optimism of Clean Energy Shines Through Tech’s Gloom” 

    Wired logo

    WIRED

    01.01.18
    Clive Thompson

    1
    ZOHAR LAZAR

    The mood around tech is dark these days. Social networks are a cesspool of harassment and lies. On-demand firms are producing a bleak economy of gig labor. AI learns to be racist. Is there anyplace where the tech news is radiant with old-fashioned optimism? Where good cheer abounds?

    Why, yes, there is: clean energy. It is, in effect, the new Silicon Valley—filled with giddy, breathtaking ingenuity and flat-out good news.

    This might seem surprising given the climate-change denialism in Washington. But consider, first, residential solar energy. The price of panels has plummeted in the past decade and is projected to drop another 30 percent by 2022. Why? Clever engineering breakthroughs, like the use of diamond wire to slice silicon wafers into ever-skinnier slabs, producing higher yields with less raw material.

    Manufacturing costs are down. According to US government projections, the fastest-growing occupation of the next 10 years will be solar voltaic installer. And you know who switched to solar power last year, because it was so cheap? The Kentucky Coal Museum.

    Tech may have served up Nazis in social media streams, but, hey, it’s also creating microgrids—a locavore equivalent for the solar set. One of these efforts is Brooklyn-based LO3 Energy, a company that makes a paperback-sized device and software that lets owners of solar-equipped homes sell energy to their neighbors—verifying the transactions using the blockchain, to boot. LO3 is testing its system in 60 homes on its Brooklyn grid and hundreds more in other areas.

    “Buy energy and you’re buying from your community,” LO3 founder Lawrence Or­sini tells me. His chipsets can also connect to smart appliances, so you could save money by letting his system cycle down your devices when the network is low on power. The company uses internet logic—smart devices that talk to each other over a dumb network—to optimize power consumption on the fly, making local clean energy ever more viable.

    But wait, doesn’t blockchain number-crunching use so much electricity it generates wasteful heat? It does. So Orsini invented DareHenry, a rack crammed with six GPUs; while it processes math, phase-­changing goo absorbs the outbound heat and uses it to warm a house. Blockchain cogeneration, people! DareHenry is 4 feet of gorgeous, Victorian­esque steampunk aluminum—so lovely you’d want one to show off to guests.

    Solar and blockchain are only the tip of clean tech. Within a few years, we’ll likely see the first home fuel-cell systems, which convert natural gas to electricity. Such systems are “about 80 percent efficient,” marvels Garry Golden, a futurist who has studied clean energy. (He’s also on LO3’s grid, with the rest of his block.)

    The point is, clean energy has a utopian spirit that reminds me of the early days of personal computers. The pioneers of the 1970s were crazy hackers, hell-bent on making machines cheap enough for the masses. Everyone thought they were nuts, or small potatoes—yet they revolutionized communication. When I look at Orsini’s ­blockchain-based energy-trading routers, I see the Altair. And there are oodles more inventors like him.

    Mind you, early Silicon Valley had something crucial that clean energy now does not: massive federal government support. The military bought tons of microchips, helping to scale up computing. Trump’s band of climate deniers aren’t likely to be buyers of first resort for clean energy, but states can do a lot. California already has, for instance, by creating quotas for renewables. So even if you can’t afford this stuff yourself, you should pressure state and local officials to ramp up their solar energy use. It’ll give us all a boost of much-needed cheer.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:45 pm on December 7, 2017 Permalink | Reply
    Tags: , C3E 2017 Clean Energy Symposium, Clean Energy, , ,   

    From MIT: “A bipartisan message of clean energy progress” 

    MIT News
    MIT Widget

    MIT News

    December 7, 2017
    Francesca McCaffrey

    1
    MIT Vice President for Research Maria Zuber and former U.S. Secretary of Energy Ernest Moniz, the Cecil and Ida Green Professor of Physics and Engineering Systems emeritus at MIT, engaged in a fireside chat at the C3E Women in Clean Energy Symposium, discussing technology, policy, and the importance of women’s leadership in STEM fields. Photo: Justin Knight

    In the face of global challenges, leading women in energy and climate convene at the C3E 2017 Clean Energy Symposium.

    The diverse group of energy leaders who spoke at the 2017 Clean Energy, Education, and Empowerment (C3E) Women in Clean Energy Symposium hailed from different professional, personal, and political backgrounds, bringing many viewpoints on the conference’s theme of transforming energy infrastructure — nationally and internationally — for a transition to a low-carbon future. Though opinions on the best strategies to bring about this transition differed, all agreed on the urgency of deploying strategies and technologies to achieve it.

    “It’s inspiring to be surrounded by so many women at different stages of their careers, approaching clean energy issues from a wide range of perspectives and professions,” MIT Energy Initiative (MITEI) executive director Martha Broad told the audience, which included industry professionals, government officials, and academic researchers, as well as students who were giving poster presentations.

    3

    “MITEI is thrilled to host this event, celebrate our awardees, and hear from thought leaders in this space.” Broad is also a U.S. C3E ambassador — part of a cohort of senior leaders in business, government, and academia who serve as role models and advocates for women in clean energy.

    Now in its sixth year being held at MIT, the C3E Symposium brings women at all stages of their careers together to discuss solutions to the most pressing energy issues of the day and to celebrate awardees from various disciplines. Founded under the auspices of the 25-government Clean Energy Ministerial, the U.S. C3E Initiative aims to advance clean energy by helping to close the gender gap and enabling the full participation of women in the clean energy sector. MITEI and the U.S. Department of Energy (DOE) have collaborated on the symposium since 2012, and the Stanford Precourt Institute for Energy joined the collaboration in 2016.

    Inclusive clean energy solutions for the future

    Panels throughout the two-day conference focused on strategies across the technology, policy, and business spheres to address energy challenges both local and global. Nevada State Senator Pat Spearman stressed the importance of forward-looking governance on a panel about innovative policies. For Spearman, innovation means taking advantage of Nevada’s natural energy resources, from an abundance of solar energy in the south to the potential for geothermal in the north. It also means developing progressive policies that facilitate timely regulatory changes in response to new and emerging technologies.

    Spearman is particularly determined to account for low-income constituents with provisions in energy policy measures.

    “We need to always include the fact that those who are on the lower spectrum of the income level are usually the ones who are the least likely to adopt because the price has not come down far enough,” she said. ”So those who can afford it do, and those who can’t, don’t. For me, it’s a matter of environmental and economic justice.”

    On a panel about the future of the electric grid, Marcy Reed, National Grid’s chief of business operations, expanded on the importance of being mindful of customers’ needs.

    “We have 20th-century infrastructure operating in a world with 21st-century demands,” she said, adding that at Massachusetts-based National Grid, and her colleagues take their cue on how to best affect change from their customers. “They’re savvy and passionate and environmentally-minded. They also want their energy delivery system to be modern and responsive to their needs.” She added that having the right tools and information enables customers to make energy-efficient choices.

    Ugwem Eneyo, a Stanford University graduate and co-founder of Solstice Energy Solutions, explained how data are similarly important to her customers in sub-Saharan Africa.

    “With the development and integration of solar and storage into the energy mix, data and connectivity will play a significant role in enabling future distributed energy grids, and will also play a significant role in driving efficiency and productivity of these distributed energy assets,” Eneyo said. Her company’s technology uses a data-driven approach to intelligently manage distributed energy, helping consumers plan for their own cost- and energy-efficient power use.

    As a panelist for a session on international energy infrastructure developments, Radhika Khosla discussed ongoing changes in India’s energy system.

    “Not only is India a very large emitter, but it is also one of the most vulnerable countries to climate change,” said Khosla, who is a visiting scientist at the MIT Tata Center for Technology and Design. Citing rising temperatures, impending infrastructure and demographic transitions, and increased air pollution as a few among several factors, Khosla added, “What happens to India in terms of its growth trajectory matters not only in the global context, but also in the Indian context.”

    Leveraging women’s expertise for the clean energy transition

    Underscoring the bipartisan message of the importance of women’s involvement in the clean energy transition, U.S. Secretary of Energy Rick Perry gave a video keynote address in which he noted the positive effect that gatherings like the C3E Symposium can have in trying to address current energy challenges.

    “Each of you here today helps advance innovation, connect new ideas with existing markets, and use technology to promote clean energy solutions,” Perry said. “But even more importantly, your work will inspire the next generation of women leaders in STEM, and that is sorely needed.”

    Secretary Perry’s predecessor under President Obama, Ernest Moniz, engaged in a fireside chat with MIT Vice President for Research Maria T. Zuber, the E. A. Griswold Professor of Geophysics. Zuber and Moniz, who is the Cecil and Ida Green Professor of Physics and Engineering Systems Emeritus and special advisor to the MIT president, discussed the need for a rapid transition to a low-carbon economy and also highlighted the significance of initiatives like C3E in the mission to support and increase women’s involvement in STEM fields.

    “If you can see it, you can be it”

    Every year, C3E honors mid-career women who have made particular contributions to their area of energy and invites previous awardees to attend the conference. This year’s award-winners were: Anna Bautista, vice president of construction and workforce development for Grid Alternatives (Advocacy Award); Leslie Marshall, corporate energy engineering lead for General Mills (Business Award); Nicole Lautze, associate faculty member at the University of Hawaii Manoa and founder of the Hawaii Groundwater and Geothermal Resources Center (Education Award); Emily Kirsch, founder and CEO of intelligent energy incubator Powerhouse (Entrepreneurship Award); Chris LaFleur, program lead for Hydrogen Safety, Codes, and Standards at Sandia National Laboratories (Government Award); Allison Archambault, president of EarthSpark International (International Award); Sarah Valdovinos, co-founder of Walden Green Energy (Law and Finance Award); and Inês M.L. Azevedo, principal investigator and co-director for the Climate and Energy Decision-Making Center at Carnegie Mellon University (Research Award).

    Senators Lisa Murkowski (R-Alaska) and Maria Cantwell (D-Washington) were co-recipients of the C3E Lifetime Achievement award for their work on energy issues, including their leadership roles on the Senate Energy and Natural Resources Committee and their stewardship of the bipartisan Energy and Natural Resources Act of 2017.

    In her prerecorded remarks, Murkowski said “We all recognize [that] women bring a different perspective to problem-solving, so it’s imperative, whether in your fields or mine, if we want to find the best and most innovative solutions to our biggest challenges, the female perspective must be present and active at the decision table.”

    Cantwell, in written remarks delivered by C3E Ambassador Melanie Kenderdine, said, “I am proud to work alongside you as we continue to celebrate the women who are making incredible achievements in clean energy.”

    Carol Battershell, principal deputy director of the DOE’s Office of Energy Policy and Systems Analysis and a U.S. C3E ambassador, noted how meaningful it was for the C3E ambassadors to have the honor of choosing the awardees. Several other speakers also remarked on how it felt to be in the presence of a group of such impactful leaders and diverse practitioners in the clean energy sector.

    Sherina Maye Edwards, energy commissioner for the Illinois Commerce Commission, prefaced her comments by saying, “So often, I am on the road talking to rooms full of people who look nothing like me. It is so nice to see not just such a fantastic group of women, but also such a diverse group of women.”

    Awardee Emily Kirsch, who attended the first C3E conference in 2013, met many C3E ambassadors there who mentored and encouraged her while she was launching her company. Accepting the Entrepreneurship Award, Kirsch said, “C3E is a testament to the idea that if you can see it, you can be it.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 1:11 pm on November 30, 2017 Permalink | Reply
    Tags: AGU - From the Prow, , , , Clean Energy, ,   

    From AGU: “22 Years of Solar and Heliospheric Observatory” 

    AGU bloc

    American Geophysical Union

    1
    From the Prow

    30 November 2017
    Bernhard Fleck (ESA SOHO Project Scientist, NASA/GSFC)
    Joseph Gurman (NASA SOHO Project Scientist, NASA/GSFC)
    David Sibeck (Past President, AGU Space Physics and Aeronomy Section, NASA/GSFC)

    ESA/NASA SOHO

    1
    The Solar and Heliospheric Observatory (SOHO) studies the internal structure of the Sun, its outer atmosphere and solar winds, and the stream of ionized gas that is constantly blowing outward through the Solar System.

    The 2nd of December 2017 marks the 22nd launch anniversary of the European Space Agency (ESA) – NASA Solar and Heliospheric Observatory (SOHO). SOHO is the longest-lived heliophysics mission still operating and has provided a nearly continuous record of solar and heliospheric phenomena over a full 22-year magnetic cycle (two 11-year sunspot cycles).

    SOHO’s findings have been documented in over 5000 papers in the peer reviewed literature, authored by more than 4,000 scientists worldwide.

    SOHO provided the first ever images of structures and flows below the Sun’s surface and of activity on the far side of the Sun. SOHO discovered sunquakes and eliminated uncertainties in the internal structure of the Sun as a possible explanation for the “neutrino problem” which concerned the large discrepancy between the high flux of solar neutrinos – particles which are now believed to possess mass and travel at almost the speed of light – predicted from the Sun’s luminosity and the much lower flux that is observed.

    The ultraviolet imagers and spectrometers on SOHO have revealed an extremely dynamic solar atmosphere where plasma flows play an important role and discovered dynamic solar phenomena such as coronal waves.

    SOHO measured the acceleration profiles of both the slow and fast solar wind and identified the source regions of the fast solar wind.

    SOHO revolutionized our understanding of solar-terrestrial relations and dramatically boosted space weather forecasting capabilities by providing, in a near-continuous stream, a comprehensive suite of images covering the dynamic atmosphere and extended corona.

    SOHO has measured and characterized over 28,000 coronal mass ejections (CMEs). CMEs are the most energetic eruptions on the Sun and the major driver of space weather. They are responsible for all of the largest solar energetic particle events in the heliosphere and are the primary cause of major geomagnetic storms. SOHO’s visible-light CME measurements are considered a critical part of the US National Space Weather Action Plan.

    For two solar activity cycles SOHO has measured the total solar irradiance (the “solar constant”) as well as variations in the extreme ultraviolet flux, both of which are important to understand the impact of solar variability on Earth’s climate.

    Besides watching the Sun, SOHO has become the most prolific discoverer of comets in astronomical history: as of late 2017, more than 3,400 comets have been found by SOHO, most of them by amateurs accessing SOHO real-time data via the Internet.

    In such complex areas of research as solar physics, progress is not limited to the work of a few people working by themselves. The scientific achievements of the SOHO mission result from a concerted, multi-disciplinary effort by a large, international community of solar scientists, including sound investments in space hardware, coupled with vigorous and well-coordinated scientific operations and interpretation efforts.

    Also, it is important to note that SOHO was not conceived as a “stand-alone” mission. Together with Cluster – a set of four identical spacecraft operated as a single experiment to explore in three dimensions the plasma and small-scale structure in the Earth’s plasma environment – SOHO formed the Solar-Terrestrial Science Programme (STSP), the first cornerstone of the European Space Agency’s long-term program called “Space Science Horizon 2000”, which was implemented in collaboration with NASA.

    4
    ESA Cluster (4 spacecraft) which work with SOHO

    STSP itself was part of an even larger international effort by NASA, ESA, and JAXA: The International Solar-Terrestrial Physics (ISTP) program, which included SOHO, Cluster, Geotail, Wind, and Polar, achieved an unprecedented understanding of the physics of solar-terrestrial relations by coordinated, simultaneous investigations of the Sun-Earth space environment over an extended period of time and, thus, can be considered the predecessor of NASA’s Living With a Star (LWS) program.

    While SOHO’s continued operation into the 2020s depends only on the longevity of its solar arrays, there is as yet no defined mission to succeed it in providing continuous, earth-Sun-line coronagraph observations. Prior to SOHO, our maximum warning time for extreme, earth-directed solar storms was measured in minutes; now it is 1 – 2 days. It would be prudent to preserve that advantage.

    See the full post here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The purpose of the American Geophysical Union is to promote discovery in Earth and space science for the benefit of humanity.

    To achieve this mission, AGU identified the following core values and behaviors.

    Core Principles

    As an organization, AGU holds a set of guiding core values:

    The scientific method
    The generation and dissemination of scientific knowledge
    Open exchange of ideas and information
    Diversity of backgrounds, scientific ideas and approaches
    Benefit of science for a sustainable future
    International and interdisciplinary cooperation
    Equality and inclusiveness
    An active role in educating and nurturing the next generation of scientists
    An engaged membership
    Unselfish cooperation in research
    Excellence and integrity in everything we do

    When we are at our best as an organization, we embody these values in our behavior as follows:

    We advance Earth and space science by catalyzing and supporting the efforts of individual scientists within and outside the membership.
    As a learned society, we serve the public good by fostering quality in the Earth and space science and by publishing the results of research.
    We welcome all in academic, government, industry and other venues who share our interests in understanding the Earth, planets and their space environment, or who seek to apply this knowledge to solving problems facing society.
    Our scientific mission transcends national boundaries.
    Individual scientists worldwide are equals in all AGU activities.
    Cooperative activities with partner societies of all sizes worldwide enhance the resources of all, increase the visibility of Earth and space science, and serve individual scientists, students, and the public.
    We are our members.
    Dedicated volunteers represent an essential ingredient of every program.
    AGU staff work flexibly and responsively in partnership with volunteers to achieve our goals and objectives.

     
  • richardmitnick 6:12 am on October 19, 2017 Permalink | Reply
    Tags: A sharp rise in the content of sediments, , Clean Energy, , , Hydroelectric power plants, LMH-EPFL's Laboratory for Hydraulic Machines, Of all the electricity produced in Switzerland 56% comes from hydropower, One of the aims of Switzerland’s 2050 Energy Strategy is to increase hydroelectric production, SCCER-SoE-Swiss Competence Center for Energy Research - Supply of Electricity   

    From EPFL: “Hydroelectric power plants have to be adapted for climate change” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    19.10.17
    Clara Marc

    1
    © 2017 LMH – Grande Dixence dam. This hydroelectric power complex generates some 2 billion kWh of power per year
    Of all the electricity produced in Switzerland, 56% comes from hydropower. The life span of hydroelectric plants, which are massive and expensive to build and maintain, is measured in decades, yet the rivers and streams they depend on and the surrounding environment are ever-changing. These changes affect the machinery and thus the amount of electricity that can be revised. EPFL’s Laboratory for Hydraulic Machines (LMH) is working on an issue that will be very important in the coming years: the impact of sediment erosion on turbines, which are the main component of this machinery. The laboratory’s work could help prolong these plants’ ability to produce electricity for Switzerland’s more than eight million residents.

    One of the aims of Switzerland’s 2050 Energy Strategy is to increase hydroelectric production. The Swiss government therefore also needs to predict the environment in which these power plants will operate so that the underlying technology can keep pace with changing needs and future conditions. “In Switzerland, the glaciers and snow are melting more and more quickly. This affects the quality of the water, with a sharp rise in the content of sediments,” says François Avellan, who heads the LMH and is one of the study’s authors. “The sediments are very aggressive and erode the turbines.” This undermines the plants’ efficiency, leaves cavities in the equipment and leads to an increase in vibrations – and in the frequency and cost of repairs. To top things off, the turbines’ useful life is reduced. Under the umbrella of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE) and with the support of the Commission for Technology and Innovation (CTI), EPFL has teamed up with General Electric Renewable Energy in an effort to better understand and predict the process of sediment erosion. The aim is to lengthen the hydropower plants’ life span through improved turbines and more effective operating strategies.

    Tiny particles with an outsized impact

    One of the challenges facing researchers in the field of hydropower is that they cannot run experiments directly on power plants because of the impact and cost of a plant’s outage. They must therefore limit their investigations to simulations and reduced-scale physical model tests. In response to this challenge, the LMH has come up with a novel multiscale computer model that predicts sediment erosion in turbines with much greater accuracy than other approaches. The results have been published in the scientific journal Wear. “Sediment erosion, like many other problems in nature, is a multiscale phenomenon. It means that behavior observed at the macroscopic level is the result of a series of interactions at the microscopic level,” says Sebastián Leguizamón, an EPFL doctoral student and lead author of the study. “The sediments are extremely small and move very fast, and their impact lasts less than a microsecond. On the other hand, the erosion process we see is gradual, taking place over the course of many operating hours and affecting all the turbine.”

    A multiscale solution

    The researchers therefore opted for a multiscale solution and modeled the two processes involved in erosion separately. At the microscopic level, they focused on the extremely brief impact of the minuscule sediments that strike the turbines, taking into account parameters such as the angle, speed, size, shape – and even composition – of the slurry. At the macroscopic level, they looked at how the sediments are transported by water flow, as this affects the flux, distribution and density of sediments reaching the walls of the turbine flow passages. The results were then combined in order to develop erosion predictions. “It’s not possible to study the entire process of erosion as a whole. The sediments are so small and the period of time over which the process takes place so long that replicating the process would take hundreds of years of calculations and require a computer that doesn’t exist yet,” says Leguizamón. “But the problem becomes manageable when you decouple the different phases.”

    Adapting to the future

    With conclusive results in hand, the LMH has now moved on to the next phase, which consists in characterizing the materials used in the turbines. Following this step, the researchers will be able to apply the new model to existing hydroelectric facilities. The stakes are global when it comes to retrofitting turbines in response to climate change, as hydropower accounts for 17% of the world’s electricity production. Turbines offer little leeway and have to operate in a wide range of environments – including monsoon regions and anything from tropical to alpine climates. If turbines are to last, changes will have to be made to both their underlying design and how they are operated. “While I was evaluating a hydro plant in the Himalayas, my contacts there told me that if a turbine made it through more than one monsoon season, that was a success!” says Avellan.

    This study is part of CTI project No. 17568.1 PFEN-IW GPUSpheros. It was conducted in conjunction with General Electric Renewable Energy under the umbrella of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE).

    A multiscale model for sediment impact erosion simulation using the finite volume particle method, Sebastián Leguizamón, Ebrahim Jahanbakhsh, Audrey Maertens, Siamak Alimirzazadeh and François Avellan. Science Direct.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 10:51 am on September 29, 2017 Permalink | Reply
    Tags: , Borrowing from nature to tap the power of the sun, Clean Energy, , EU Horizon   

    From EU Horizon: “Borrowing from nature to tap the power of the sun” 

    1

    Horizon

    29 September 2017
    Julianna Photopoulos

    1
    By using knowledge of plant photosynthesis we could soon develop new forms of renewable energy through artificial leaves. Image credit – Dr Vincent Artero

    An artificial leaf that can harvest energy from the sun faster than a natural one could lead to a new generation of renewable energy and medical technologies.

    Over hundreds of millions of years, evolution has refined a process that allows plants to use the sun’s energy to turn carbon dioxide and water into the sugary fuel they need to grow.

    The elegant series of biochemical reactions involved in this process are some of the fundamental building blocks of life on this planet.

    But now scientists have beaten nature at its own game by creating a semi-artificial leaf that incorporates some of the components honed by evolution to produce a device that is up to six times more efficient.

    ‘When the natural components of photosynthesis are incorporated in artificial devices, these devices outperform the electron transfer ability found in the natural environment,’ said Dr Nicolas Plumeré, a chemist at the Ruhr-University Bochum in Germany.

    He and his colleagues, as part of the EU-funded PHOTOTECH project, used a protein found in real leaves that is responsible for transporting electrons during photosynthesis to create their semi-artificial leaf.

    ‘Under light, a protein found in natural leaves or algae can produce about 50 high-energy electrons every second,’ explained Dr Plumeré. ‘When this same protein is incorporated into artificial leaves, up to 300 high-energy electrons are produced every second.’

    Dr Plumeré hopes this approach could eventually deliver new, simple and cheap solar-cell technologies — also known as photovoltaic cells — based on photosynthesis, although he warns the technology is still years away from finding commercial applications.

    ‘Large-scale green photovoltaics could simply be painted on a wall to collect solar energy directly at their point of use,’ he said. The technology could also be used to power tiny medical devices, such as sensors implanted in contact lenses to monitor biomarkers in tears.

    As the protein needed for the devices can be obtained from algae, it can be produced at a low cost compared to the rare earth metals needed for current solar panel cells.

    ‘These photosynthetic materials can be grown on wastewater and the chemical elements necessary for their assembly are infinitely available,’ said Dr Plumeré. ‘As such, they open a great promise for future devices for sustainable energy harvesting, which themselves can be fabricated in a sustainable manner.’

    Producing devices that can generate renewable energy in an environmentally friendly way can play a key role in helping to replace the planet’s dependance on polluting fossil fuels. But the intermittent nature of such renewable energy sources makes this task difficult. How, for example, can the lights be kept on when solar cells do not produce electricity at night?

    Splitting water

    The answer lies in storing the energy produced by such renewable sources, although to date, modern batteries and other storage options offer only a limited ability to do this. But scientists believe photosynthesis may also provide a solution here too.

    ‘The most effective way to store renewable energy is to produce a fuel such as hydrogen,’ said Dr Vincent Artero, a chemist at the Grenoble Alpes University and CEA-Grenoble, France. ‘As solar energy is the most abundant renewable energy, why not develop a process that directly captures sunlight and transforms it into fuel?’

    Dr Artero and his team have copied the metabolism of some algae that use solar energy to split water into hydrogen and oxygen. Funded by the EU’s European Research Council, the PhotocatH2ode project is aimed at incorporating bio-inspired dyes and catalysts into a photo-electrochemical cell, producing a kind of artificial leaf that can generate hydrogen from sunlight and water.

    ‘Our approach uses molecular components, such as dyes, to absorb sunlight and catalysts to achieve hydrogen production, immobilised on transparent electrodes.’ said Dr Artero. ‘This work opens new horizons for the development of novel hydrogen production technologies.’

    Mimicking nature

    But understanding how algae, plants and bacteria can convert light energy on a molecular level could lead to even more efficient artificial light-harvesting systems. A team working on the EU-funded ENLIGHT project is developing new theoretical and computational models to unravel how these complex yet unique systems work.

    ‘In these organisms, light-harvesting is the first, fundamental step of photosynthesis,’ said Professor Benedetta Mennucci, a chemist at the University of Pisa in Italy, who is leading ENLIGHT. ‘The developed models can now be applied to different types of organisms to understand if nature has optimised some specific features — common to all systems — that can be mimicked in artificial ones.’

    This work could prove crucial in driving an emerging area of research: solar-driven chemistry. This aims to mimic nature by using solar energy directly for the production of fuels, chemicals and materials.

    ‘We could replace all our current methods for producing fuels and commodity chemicals with new ones that use water, nitrogen and carbon dioxide as the starting materials, along with light or renewable electricity as the energetic input,’ said Dr Artero. ‘This would be a revolution for Europe.’

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:17 pm on September 26, 2017 Permalink | Reply
    Tags: , Clean Energy, , EGS Collab- Enhanced Geothermal Systems Collaboration, , Listening to the Earth to harness geothermal energy, SIGMA-V,   

    From SURF: “Listening to the Earth to harness geothermal energy “ 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    September 25, 2017
    Constance Walter

    Geothermal energy has the potential to power 100 million homes in America.

    1
    Hunter Knox and Bill Roggenthen from South Dakota School of Mines lower sensors down a set of holes that were drilled for the kISMET experiment. Matthew Kapust

    As a geophysicist, Hunter Knox has worked all over the world testing bridges, dams and levees, and listening to the sounds of the earth. She even peered into the center of the earth from a volcano in Antarctica at an open connecting lake.

    “I’m a seismologist. It’s what I do.”

    Now, the field coordinator from Sandia National Laboratory (SNL), is setting her sights on Sanford Lab’s 4850 Level, where she’s planning the logistics for SIGMA-V, a project under the auspices of the Enhanced Geothermal Systems Collaboration (EGS Collab).

    Led by Lawrence Berkeley National Laboratory, the EGS Collab recently received a $9 million grant from the Department of Energy to study geothermal systems. It is believed this clean-energy technology could power up to 100 million American homes.

    But before that can happen, more studies need to be done.

    “We need to better understand how fractures created in deep, hard-rock environments can be used to produce geothermal energy,” Knox said.

    Building on data collected from the recent kISMET experiment at Sanford Lab, the collaboration hopes to expand its understanding of the rock stress and incorporate additional equipment to meet the needs of EGS technology.

    “A typical geothermal system mines heat from the earth by extracting steam or hot water,” said Tim Kneafsey, principal investigator for EGS Collab and a staff earth scientist with LBNL. But for that to happen, three things are needed: hot rock, fluid and the ability for fluid to move through rock.

    “These conditions are not met everywhere,” Kneafsey said. “There is a lot of accessible hot rock, but it may be missing the permeability or fluid or both.”

    “We know fracturing rock can be done. But can it be effective for geothermal purposes? We need good, well-monitored field tests of fracturing, particularly in crystalline rock, to better understand that,” he said.

    That’s where SIGMA-V—or Stimulation Investigations for Geothermal Modeling and Analysis—comes in. “SIGMA-V is shorthand for vertical stress,” Kneafsey said.

    The goal of the project is to collect data that will allow the team to create better predictive and geomechanic models that will allow them to better understand the subsurface of the earth. The team will drill two boreholes: one for injection and one for production. Each will be 60 meters long in the direction of the minimum horizontal stress. Six additional monitoring boreholes will contain seismic, electrical and fiber optic sensors.

    When the holes are drilled, the team will place “straddle packers”—a mandrel, or pipe, with two deflated balloons on either end—inside them. Once inside, they will inflate the balloons and flow water down the pipe to create an airtight section. They will continue to pump water until the rock fractures and use the monitoring equipment to listen for acoustic emissions, the sounds that will tell them what is happening within the rock.

    “One of the problems with EGS is that it is difficult to maintain the fracture network,” Knox said. “Since the boreholes are hard to drill in these hot and very hard rocks and the fracture networks can’t be sustained, it is challenging to maintain an adequate heat exchanger to pull the energy out. We want to figure out how to maintain these networks so we can use the heat for energy.”

    And so, she’ll continue to listen to the rock nearly a mile underground and, perhaps, learn the secret to using it for geothermal energy.

    Forging ahead

    Data collected from SIGMA-V will be applied toward the Frontier Observatory for Research in Geothermal Energy (FORGE), a flagship DOE geothermal project, Kneafsey said. FORGE aims to develop technologies needed to create large-scale, economically sustainable heat exchange systems, thus paving the way for a reproducible approach that will reduce risks associated with EGS development.

    The two FORGE sites are in Fallon, Nevada, which is led by Sandia National Laboratories; and Milford, Utah, led by the University of Utah. The FORGE initiative will include innovative drilling techniques, reservoir stimulation techniques and well connectivity and flow-testing efforts.

    The EGS Collab includes researchers from eight national labs—LBNL, SNL, Lawrence Livermore National Laboratory, Pacific Northwest National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, National Energy Research Laboratory, and Oak Ridge National Laboratory; and six universities—South Dakota School of Mines and Technology, Stanford, University of Wisconsin, University of Oklahoma, Colorado School of Mines and Penn State.

    Some information for this article was provided by LBNL: http://newscenter.lbl.gov/2017/07/20/berkeley-lab-lead-multimillion-dollar-geothermal-energy-project/

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 1:02 pm on September 23, 2017 Permalink | Reply
    Tags: , , Clean Energy, , , , New science,   

    From WCG: “Supercharging Environmental and Climate Change Research” 

    New WCG Logo

    WCGLarge

    World Community Grid (WCG)

    10 Jul 2017 {Just popped up in social media.]

    Summary
    IBM invites scientists to apply for grants of supercomputing power through World Community Grid, meteorological data from The Weather Company, and IBM Cloud storage to support their environmental and climate change research projects.

    World Community Grid supports research that tackles our planet’s most pressing challenges, including environmental issues. That’s why we’re pleased to announce a new partnership with The Weather Company (an IBM business) and IBM Cloud to provide free technology and data for environmental and climate change projects.

    Environmental scientists have long been warning the public about the effects of climate change, and many researchers attribute events such as this summer’s record temperatures in western Europe and the worst drought since the 1940s in parts of Africa to climate change caused by humankind’s activities. The future consequences of climate change could include rising sea levels, potential crop loss, and harsh economic consequences throughout the world. And as funding for scientific research shrinks in many countries, the gap between what scientists must discover–how to mitigate or adapt to climate change–and their resources for such discovery is growing ever wider.

    Thanks to the contributions of volunteers all over the globe, World Community Grid is ready to address that gap. Since 2004, our research partners have completed the equivalent of thousands of years of work in just a few years, including enabling advances in environmental science.

    For example, scientists at Harvard University used World Community Grid to run the Clean Energy Project [see below], the world’s largest quantum chemistry experiment with the goal of identifying new materials for solar energy. In just a few years, they analyzed millions of chemical compounds to predict their efficiency at converting sunlight into electricity. Their discovery of thousands of promising compounds could advance the development of cheap, flexible solar cell materials that we hope will be used worldwide to reduce carbon emissions and contribute to the fight against climate change.

    Other environmental research projects conducted with help from World Community Grid have included new water filtration technology [see below], watershed preservation and crop sustainability.

    That’s why we’re pleased to announce that IBM is inviting scientists around the world to apply for grants of supercomputing power from World Community Grid, meteorological data from The Weather Company, and IBM Cloud storage to support their climate change or environmental research projects. Up to five of the most promising environmental and climate-related research projects will be supported. This support, technology, and data can support many potential areas of inquiry, such as impacts on fresh water resources, predicting migration patterns, and developing models to improve crop resilience.

    Proposals for projects will be evaluated for scientific merit, potential to contribute to the global community’s understanding of specific climate and environmental challenges and development of effective strategies to mitigate them, and the capacity of the research team to manage a sustained research project. And like all other World Community Grid projects, researchers who receive these resources must agree to abide by our open data policy by publicly releasing the data from their collaboration with us.

    Scientists from around the world can apply at http://climate.worldcommunitygrid.org, with a first round deadline of September 15.

    There’s still time to mitigate or adapt to the effects of climate change, and scientific research will continue to play a crucial role in how our planet addresses this crisis. We hope you will join us by giving your computers the ability to work around the clock for science.

    Scientists Apply Here.

    See the full article here.

    Ways to access the blog:
    https://sciencesprings.wordpress.com
    http://facebook.com/sciencesprings

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    World Community Grid (WCG) brings people together from across the globe to create the largest non-profit computing grid benefiting humanity. It does this by pooling surplus computer processing power. We believe that innovation combined with visionary scientific research and large-scale volunteerism can help make the planet smarter. Our success depends on like-minded individuals – like you.”
    WCG projects run on BOINC software from UC Berkeley.
    BOINCLarge

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing.

    BOINC WallPaper

    CAN ONE PERSON MAKE A DIFFERENCE? YOU BET!!

    My BOINC
    MyBOINC
    “Download and install secure, free software that captures your computer’s spare power when it is on, but idle. You will then be a World Community Grid volunteer. It’s that simple!” You can download the software at either WCG or BOINC.

    Please visit the project pages-

    FightAIDS@home Phase II

    FAAH Phase II
    OpenZika

    Rutgers Open Zika

    Help Stop TB
    WCG Help Stop TB
    Outsmart Ebola together

    Outsmart Ebola Together

    Mapping Cancer Markers
    mappingcancermarkers2

    Uncovering Genome Mysteries
    Uncovering Genome Mysteries

    Say No to Schistosoma

    GO Fight Against Malaria

    Drug Search for Leishmaniasis

    Computing for Clean Water

    The Clean Energy Project

    Discovering Dengue Drugs – Together

    Help Cure Muscular Dystrophy

    Help Fight Childhood Cancer

    Help Conquer Cancer

    Human Proteome Folding

    FightAIDS@Home

    faah-1-new-screen-saver

    faah-1-new

    World Community Grid is a social initiative of IBM Corporation
    IBM Corporation
    ibm

    IBM – Smarter Planet
    sp

     
  • richardmitnick 9:04 am on September 6, 2017 Permalink | Reply
    Tags: , Clean Energy, , High-tech mirror-like optical surface, Stanford professor tests a cooling system that works without electricity,   

    From Stanford: “Stanford professor tests a cooling system that works without electricity” 

    Stanford University Name
    Stanford University

    September 4, 2017
    Taylor Kubota

    Stanford scientists cooled water without electricity by sending excess heat where it won’t be noticed – space. The specialized optical surfaces they developed are a major step toward applying this technology to air conditioning and refrigeration.

    1
    A fluid-cooling panel designed by Shanhui Fan, professor of electrical engineering at Stanford, and former research associates Aaswath Raman and Eli Goldstein being tested on the roof of the Packard Electrical Engineering Building. This is an updated version of the panels used in the research published in Nature Energy. (Image credit: Aaswath Raman)

    It looks like a regular roof, but the top of the Packard Electrical Engineering Building at Stanford University has been the setting of many milestones in the development of an innovative cooling technology that could someday be part of our everyday lives. Since 2013, Shanhui Fan, professor of electrical engineering, and his students and research associates have employed this roof as a testbed for a high-tech mirror-like optical surface that could be the future of lower-energy air conditioning and refrigeration.

    Research published in 2014 [Nature] first showed the cooling capabilities of the optical surface on its own. Now, Fan and former research associates Aaswath Raman and Eli Goldstein, have shown that a system involving these surfaces can cool flowing water to a temperature below that of the surrounding air. The entire cooling process is done without electricity.

    “This research builds on our previous work with radiative sky cooling but takes it to the next level. It provides for the first time a high-fidelity technology demonstration of how you can use radiative sky cooling to passively cool a fluid and, in doing so, connect it with cooling systems to save electricity,” said Raman, who is co-lead author of the paper detailing this research, published in Nature Energy Sept. 4.

    Together, Fan, Goldstein and Raman have founded the company SkyCool Systems, which is working on further testing and commercializing this technology.

    Sending our heat to space

    Radiative sky cooling is a natural process that everyone and everything does, resulting from the moments of molecules releasing heat. You can witness it for yourself in the heat that comes off a road as it cools after sunset. This phenomenon is particularly noticeable on a cloudless night because, without clouds, the heat we and everything around us radiates can more easily make it through Earth’s atmosphere, all the way to the vast, cold reaches of space.

    “If you have something that is very cold – like space – and you can dissipate heat into it, then you can do cooling without any electricity or work. The heat just flows,” explained Fan, who is senior author of the paper. “For this reason, the amount of heat flow off the Earth that goes to the universe is enormous.”

    Although our own bodies release heat through radiative cooling to both the sky and our surroundings, we all know that on a hot, sunny day, radiative sky cooling isn’t going to live up to its name. This is because the sunlight will warm you more than radiative sky cooling will cool you. To overcome this problem, the team’s surface uses a multilayer optical film that reflects about 97 percent of the sunlight while simultaneously being able to emit the surface’s thermal energy through the atmosphere. Without heat from sunlight, the radiative sky cooling effect can enable cooling below the air temperature even on a sunny day.

    “With this technology, we’re no longer limited by what the air temperature is, we’re limited by something much colder: the sky and space,” said Goldstein, co-lead author of the paper.

    The experiments published in 2014 were performed using small wafers of a multilayer optical surface, about 8 inches in diameter, and only showed how the surface itself cooled. Naturally, the next step was to scale up the technology and see how it works as part of a larger cooling system.

    Putting radiative sky cooling to work

    For their latest paper, the researchers created a system where panels covered in the specialized optical surfaces sat atop pipes of running water and tested it on the roof of the Packard Building in September 2015. These panels were slightly more than 2 feet in length on each side and the researchers ran as many as four at a time. With the water moving at a relatively fast rate, they found the panels were able to consistently reduce the temperature of the water 3 to 5 degrees Celsius below ambient air temperature over a period of three days.

    2
    This photo from 2014 shows the reflectivity of the mirror-like optical surface Fan, Raman and Goldstein have been researching, which allows for daytime radiative sky cooling by sending thermal energy into the sky while also blocking sunlight. The people in this photo (left to right) are Linxiano Zhu, PhD ‘16, co-author of the [Nature], Fan and Raman. (Image credit: Norbert von der Groeben)

    The researchers also applied data from this experiment to a simulation where their panels covered the roof of a two-story commercial office building in Las Vegas – a hot, dry location where their panels would work best – and contributed to its cooling system. They calculated how much electricity they could save if, in place of a conventional air-cooled chiller, they used vapor-compression system with a condenser cooled by their panels. They found that, in the summer months, the panel-cooled system would save 14.3 megawatt-hours of electricity, a 21 percent reduction in the electricity used to cool the building. Over the entire period, the daily electricity savings fluctuated from 18 percent to 50 percent.

    Right now, SkyCool Systems is measuring the energy saved when panels are integrated with traditional air conditioning and refrigeration systems at a test facility, and Fan, Goldstein and Raman are optimistic that this technology will find broad applicability in the years to come. The researchers are focused on making their panels integrate easily with standard air conditioning and refrigeration systems and they are particularly excited at the prospect of applying their technology to the serious task of cooling data centers.

    Fan has also carried out research on various other aspects of radiative cooling technology. He and Raman have applied the concept of radiative sky cooling to the creation of an efficiency-boosting coating for solar cells. With Yi Cui, a professor of materials science and engineering at Stanford and of photon science at SLAC National Accelerator Laboratory, Fan developed a cooling fabric.

    “It’s very intriguing to think about the universe as such an immense resource for cooling and all the many interesting, creative ideas that one could come up with to take advantage of this,” he said.

    Fan is also director of the Edward L. Ginzton Laboratory, a professor, by courtesy, of applied physics and an affiliate of the Stanford Precourt Institute for Energy.

    This work was funded by the Advanced Research Projects Agency – Energy (ARPA-E) of the Department of Energy.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 1:31 pm on August 28, 2017 Permalink | Reply
    Tags: Clean Energy, , , ,   

    From PPPL: “PPPL physicists essential to new campaign on world’s most powerful stellarator” 


    PPPL

    August 28, 2017
    John Greenwald

    KIT Wendelstein 7-X, built in Greifswald, Germany

    1
    Fish-eye view of interior of W7-X showing graphite tiles that cover magnetic coils. (Photo courtesy of IPP.)

    Physicists from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are providing critical expertise for the first full campaign of the world’s largest and most powerful stellarator, a magnetic confinement fusion experiment, the Wendelstein 7-X (W7-X) in Germany. The fusion facility resumes operating on August 28, 2017, and will investigate the suitability of its optimized magnetic fields to create steady state plasmas and to serve as a model for a future power plant for the production of a “star in a jar,” a virtually limitless source of safe and clean energy for generating electricity.

    The W7-X started up in December, 2015, and concluded its initial run in March, 2016. The facility has since been upgraded to prepare for the high-power campaign that is set to begin.

    Deeply involved in the new 15-week run are PPPL physicists Sam Lazerson and Novimir Pablant, who are spending two years at the Max Planck Institute of Plasma Physics in Greifswald, Germany. Lazerson, who previously mapped the W7-X magnetic fields with barn-door sized magnetic coils built by PPPL, heads a task force that will plan and run a series of experiments on the stellarator. Pablant, who designed an x-ray crystal spectrometer to record the behavior of W7-X plasma, will operate the diagnostic together with a German spectrometer and will contribute to planning and executing research.

    First run in designed configuration

    “This will be the first run of the machine in its designed configuration,” said David Gates, who heads the stellarator physics division at PPPL and oversees the laboratory’s role as lead U.S. collaborator in the W7-X project. The new run will test a device called an “island divertor” for exhausting thermal energy and impurities. The campaign will also increase the heating power of the stellarator to eight megawatts to enable operation at a higher beta — the ratio of plasma pressure to the magnetic field pressure, a key factor for plasma confinement.

    Such progress marks steps toward lengthening the confinement time of the hot, charged plasma gas that fuels fusion reactions within the optimized machine. “The goal is to increase plasma confinement compared with traditional stellarators,” said Gates.

    Going forward, Max Planck engineers plan to install a U.S.-built “scraper element” on the W7-X after completion of the initial 15-week campaign. The following phase will study the ability of the unit, originally designed at Oak Ridge National Laboratory and completed at PPPL, to intercept heat flowing toward the divertor and improve its performance. Plans call next for installation of a water-cooled divertor in 2019 to further increase the allowable pulse length of the stellarator.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition


    PPPL campus

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: