Tagged: Clean Energy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:20 am on October 22, 2016 Permalink | Reply
    Tags: , , Clean Energy, From greenhouse gas to usable ethanol, ,   

    From Science Node: “From greenhouse gas to usable ethanol” 

    Science Node bloc
    Science Node

    19 Oct, 2016
    Morgan McCorkle

    ORNL scientists find a way to use nano-spike catalysts to convert carbon dioxide directly into ethanol.

    In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory (ORNL) have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.

    Access mp4 video here .
    Serendipitous science. Looking to understand a chemical reaction, scientists accidentally discovered a method for converting combustion waste products into ethanol. The chance discovery may revolutionize the ability to use variable energy sources. Courtesy ORNL.

    “We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the team’s study published in ChemistrySelect. “We were trying to study the first step of a proposed reaction when we realized that the catalyst was doing the entire reaction on its own.”

    The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 percent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

    “We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise — it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

    The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

    “By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

    The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

    “They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

    Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

    “A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

    The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behavior.

    ORNL’s Yang Song, Rui Peng, Dale Hensley, Peter Bonnesen, Liangbo Liang, Zili Wu, Harry Meyer III, Miaofang Chi, Cheng Ma, Bobby Sumpter and Adam Rondinone are coauthors on the study.

    The work was supported by DOE’s Office of Science and used resources at the ORNL’s Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Science Node is an international weekly online publication that covers distributed computing and the research it enables.

    “We report on all aspects of distributed computing technology, such as grids and clouds. We also regularly feature articles on distributed computing-enabled research in a large variety of disciplines, including physics, biology, sociology, earth sciences, archaeology, medicine, disaster management, crime, and art. (Note that we do not cover stories that are purely about commercial technology.)

    In its current incarnation, Science Node is also an online destination where you can host a profile and blog, and find and disseminate announcements and information about events, deadlines, and jobs. In the near future it will also be a place where you can network with colleagues.

    You can read Science Node via our homepage, RSS, or email. For the complete iSGTW experience, sign up for an account or log in with OpenID and manage your email subscription from your account preferences. If you do not wish to access the website’s features, you can just subscribe to the weekly email.”

  • richardmitnick 7:53 am on October 6, 2016 Permalink | Reply
    Tags: "Energy and Climate: Vision for the Future", , Clean Energy, , Michael McElroy   

    From Harvard: “A way forward on climate” 

    Harvard University

    Harvard University

    October 5, 2016
    Alvin Powell

    Atop the roof of the Science Center with solar panels in the background, SEAS/EPS Professor Michael McElroy talks about his new book, Energy and Climate: Vision for the Future, on the global energy challenge with climate change.

    Headlines focus on international agreements, sea levels, melting ice, and superstorms, but climate change is most of all an energy problem. Burning fossil fuels to power our cars and heat our homes produces carbon dioxide that transforms the atmosphere into a greenhouse, trapping heat that otherwise would radiate into space.

    While the fundamentals are solid, everything else about climate change is evolving. Climate science is advancing and economic pressures have dramatically altered the national fuel mix — for the better, most agree, though we still have miles to go. Even the political landscape that determines national climate action — or inaction — is in flux.

    Michael McElroy, Gilbert Butler Professor of Environmental Studies, has long helped explain the complexities of climate to students, scholars, and government leaders. His most recent book, Energy and Climate: Vision for the Future, published in August by Oxford University Press, is a continuation of that work. He discussed the book in a recent interview with the Gazette.


    GAZETTE: In Energy and Climate, you talk about the U.S. energy picture being transformed over the last five years in ways that may make needed changes regarding climate tougher to accomplish. How has the U.S. energy scene changed into the one we’re in now?

    McELROY: The big change is that we no longer have the previous driving concern about national energy security. What has made the difference was the shale revolution. Ten years ago we were projecting that the U.S. would not only be dependent on imports for oil but also for natural gas. We now have a surplus of both. The U.S. is presently a net exporter of petroleum products. Prices for both natural gas and oil have plummeted. I had a student who wrote a beautiful senior thesis four or five years ago, in which he tried to analyze the break-even price for production of natural gas from shale. His conclusion was it would be about $5 per million BTU at a time when natural gas prices — wholesale prices — were $7, $8, $9. Now they’re below $3. So it’s a different world. Oil prices were $168 a barrel in 2008 just before the economic crisis. They are now below $50.

    The U.S. also has abundant sources of coal. Were it not for the climate issue, we could contemplate taking advantage of this resource also, doing so as efficiently as possible to eliminate conventional sources of pollution such as sulfur and nitrogen oxides and particulates. Emissions of CO2 could go through the roof under these scenarios. There is no cost-effective means to capture CO2. Concerning the potentially expanded emphasis [that] coal — not to mention oil and natural gas — could have on our energy system, this would be a disaster for climate. Bottom line is that we can no longer rely on policies that could be adopted to address concerns about energy security, looking to climate policy as a silent secondary beneficiary. We must now confront the climate issue directly. Clearly many in the body politic are reluctant to do so.

    GAZETTE: And the electricity supply has gotten cleaner, hasn’t it? But not because of climate change efforts?

    McELROY: Not because of climate change, but for economic reasons, largely. If you’re a utility and you’re able to vary the mix of generation options you can tap to produce electricity, your primary choice is likely to be between coal and natural gas. Old coal-fired power plants are very inefficient compared to new gas-fired power plants. The efficiency to turn the energy of coal into electricity in some of the older plants is as low as 20 percent. If you’re just worrying about efficiency, if you have the opportunity to turn off that inefficient coal plant and switch to a gas system and additionally save money [since gas is cheaper than coal], you’re going to do it. The choice is economically driven and the consumers are actually benefiting.

    GAZETTE: In your vision for the future, you emphasize that more electricity usage could be part of the solution. Clearly, electricity is already a big part of our energy picture; why should it be even larger?

    McELROY: Dealing with CO2 emissions from the transportation sector is extremely difficult if the transportation sector is fueled with liquid fossil fuels. You can’t capture CO2 from the tailpipe of every vehicle on the road — 260 million cars in the U.S. At the same time, there’s another a good reason to want to use electricity more in this application. If you drive your car with gasoline, the fraction of the energy in the gasoline that turns the wheels of your car may be as low as about 20 percent. If you drive your car with electricity, the fraction of electricity that turns the wheels could be as high as 95 percent. So, on an efficiency basis, electricity is better. As I discussed in the book, if I had to pay the retail price for electricity here in Cambridge, 19.8 cents a kilowatt hour when I was writing the relevant chapter, the equivalent gasoline price would be as low as $1.46 a gallon, as low as 67 cents a gallon in Washington state where electricity prices average about 9 cents per kilowatt-hour. So on a cost basis, it’s a good thing to do. Then, in addition, air quality would improve if we switched to driving electrically, so long as the electricity was produced from a nonpolluting source. The climate issue would be the obvious beneficiary.

    GAZETTE: You go chapter by chapter on possible fuels, and settle on wind and solar as the cleanest and most likely sources to power a future clean electricity grid. What are their drawbacks and can those be addressed?

    McELROY: The economics of wind in the United States is actually quite favorable. You can produce electricity for about 5 cents a kilowatt-hour with wind at present. So it’s competitive. The really serious drawback is that the wind is strongest in winter and our demand for electricity is highest in summer. The wind is also generally stronger at night than it is during the day and our big demand is during the day. And wind doesn’t blow all the time. So we need to find some way to deal with that particular issue.

    There are a number of possible strategies. You could integrate the electrical system over a large part of the country — so if wind is blowing in one place and not in another, by combining outputs you could reduce the net variability. If you had the opportunity to store electricity, that could minimize the problem also. So putting an emphasis on storage systems is a good thing to do. There’s important work going on here at Harvard by Mike Aziz and Roy Gordon on the flow battery idea. It’s something that might actually scale up as a utility scale opportunity to store electricity.

    I am enthusiastic also about the idea of taking advantage of the distributed storage available potentially in the batteries of large numbers of electrically propelled vehicles. I discuss this idea at some length in the book. You could imagine charging your car at night when prices of electricity are low and then selling power back to the grid during the day when prices are high, assuming you don’t need to drive at that time. This could represent a win-win strategy.

    You would still have the issue of summer demand for electricity when wind conditions will be less favorable. That’s where solar comes in. Solar, however, to this point, is still more expensive than wind. Despite this, solar is doing quite well in the U.S. We have a house on Cape Cod and five years ago or so we installed PV cells on the roof. We did this by making a deal with a particular company, Solar City, one in which they actually own the solar cells. They sized the solar cells to meet our projected historical annual demand for electricity. They gave us a deal where we have a fixed price for electricity for 20 years at half of what we were paying previously. How do they manage to do that? Turns out the retail cost for electricity on Cape Cod is very high. It’s very high because the delivery cost is high. The retail price is about 26 cents a kilowatt-hour, more than half of which is for delivery. So they’re giving us a deal at 13 cents per kilowatt-hour.

    There are requirements in almost all of the states now that some fraction of the electricity has to be renewable. If the utilities are not able to meet that requirement from their own resources, which generally they’re not, then they have to buy it. So the Solar Cities of the world are auctioning their renewable energy for incorporation in the grid. If New England Electric is looking for a certain amount of electricity from a renewable source, then Solar City can supply this by packaging sources from large numbers of houses under their control.

    The other thing that’s happening in the U.S. is that meters in many states are allowed to run in reverse. We’re not typically present on Cape Cod in winter. The sun is still shining most of the time and the house continues to produce electricity. Solar City is selling this electricity to the grid at the retail price. Our meter is running in reverse. So, for a lot of reasons, solar has done very well.

    GAZETTE: You say that one of the top priorities for this country should be upgrading the transmission grid. I think a lot of people, when thinking about climate change, think wind farm, solar farm, but not transmission grid. Why do we need that?

    McELROY: Think of the role played more than 100 years ago by Thomas Alva Edison. Edison was an incredible inventor. He was also a very smart guy and he built the first electricity-generating system in Manhattan. Then Westinghouse came along and suddenly we began to see electricity generated in central facilities and distributed more widely to local customers. We’ve built our electrical system in a piecemeal way. We didn’t say, “What’s the best national electricity system?” If we had done that, we would have had an interconnected national electricity system.

    The U.S. has three electricity systems: East Coast grid, West Coast grid, and Texas. It’s very difficult to move electricity across those boundaries. At a minimum, we should invest to interconnect the boundaries. That’s a no-brainer and it would not be very expensive. I like to think about being able to move electricity efficiently over several thousand miles, coast to coast, border to border. We have wonderful wind resources in the middle of the country. The key location to produce electricity from the sun is in the southwest, where we have great solar conditions. The ideal would be to bring both those sources to where the markets are, on the East Coast and West Coast and in major cities like Chicago. But if you’re going to serve those markets you have to be able to deliver.

    In addition, the demand for electricity peaks in the morning and peaks in the evening: when people get up and when they come back from work. If we had a system that was interconnected from California to Massachusetts, at a minimum we’d take advantage of the three-hour time shift to smooth out the peaks in demand.

    What are the obstacles? The obstacles are largely political — the fact that you have to bring power across state boundaries, and you may have to go across individuals’ property. The federal government has the authority to overrule objections if it’s declared to be in the national interest or if it’s in effect a matter of national security. That’s largely why we have a reasonably efficient natural gas distribution system. It could be done for electricity also if we had the will to do it.

    If you really make a commitment to developing this electrical infrastructure, you’re going to have to employ lots of people. So this would be good for the economy. My vision would be one in which we invest in community colleges that train people for those jobs. These are going to be good-paying jobs that can’t be exported.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Harvard University campus

    Harvard is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

  • richardmitnick 11:09 am on October 1, 2016 Permalink | Reply
    Tags: , Clean Energy, MeyGen, , Tidal arrays   

    From Smithsonian: “Inside the World’s First Large-Scale Effort to Harness Tidal Energy” 


    September 29, 2016
    Maya Wei-Haas


    Next month, the UK-based company MeyGen will install four underwater turbines off the coast of Scotland

    Tidal arrays are like the younger sibling of windmills—a bit smaller and slower spinning than their wind-loving brethren. But unlike windmills, they operate under many feet of water, spinning in the predictable movement of the ocean’s tides.

    Over the course of the last decade, a handful of companies have taken individual tidal turbines for a successful spin. But the next wave of tidal energy is about to break. Recently, the UK-based tidal energy company MeyGen unveiled its plans for the world’s first multi-turbine tidal energy field.

    The company is starting with a test of four turbines that will soon be deployed in the churning waters of the Inner Sound in Pentland Firth, Scotland. If the test goes swimmingly, they plan to deploy well over a hundred more over the next decade that would generate up to 398 megawatts of electricity—powering roughly 175,000 homes in Scotland.

    One of the four turbines comes from Atlantis, a tidal power technology company headquartered in Edinburgh, Scotland, and the three others were developed by Glasgow-based Andritz Hydro Hammerfest. The devices stand some 85 feet tall, about the height of a five story house, and sport three blades that spin with a diameter spanning nearly 60 feet. While smaller than windmills, the turbines are still quite heavy, each weighing in at 65 tons—roughly the same as six African bush elephants.

    The array will likely hit the water this October, says Cameron Smith, project development director of Atlantis Resources. The turbines have already been shipped to the site and undergone testing on shore. “All we need now is an appropriate tidal window and weather window and we’ll be installing,” he says. Engineers assemble the turbine bases on land, and then, with a crane, lift them from a barge and lower them to the sea floor. Once submerged, each will have at least 26 feet of clearance at the lowest tides.

    The turbine stands some 85 feet tall (MeyGen)

    Tidal turbines have many advantages over other renewables, explains Andreas Uihlein, scientific project officer at the European Commission. First, the turbines are submerged underwater, completely out of sight.

    Though some people revel in the beauty of solar or windmill farms, many consider them eyesores. The Block Island offshore windmill farm, the first of its kind in the United States, met largely broad appeal when it was installed this summer, because of its small size and promise to replace the island’s diesel generators. But the distaste for wind farms was abundantly clear with the uproar surrounding the 130-turbine Cape Wind project off of Martha’s Vineyard. So the positioning of the giant turbines well below the cresting waves is considered a plus.

    The tidal turbines also generate a predictable supply of power. Unlike wind or solar that rely on the whims of the weather, researchers can actually calculate the tidal pull and the amount of energy these systems will generate. Though the power isn’t a constant supply, ebbing and flowing through the day, its predictability lessens the need to store large energy reserves.

    The systems will also help with local employment. “There’s the potential to generate 5,300 full-time equivalent jobs over the next three or four years,” says Smith. “I’m hugely proud that 43 percent of this first phase was manufactured using local supply chain.” Many of these new jobs require the same skills as the oil and gas industry, which means that this fledgling industry provides a new home for talented labor.

    Pentland Firth’s Inner Sound and the individually deployed turbines have undergone extensive monitoring, showing few environmental impacts. Noise levels for turbines already churning away are well below a level that would cause damage, according to MeyGen’s environmental impact analysis. The biggest concern would be collisions with the marine mammals—particularly the harbor seal, whose populations have plummeted in recent years. But no collisions have yet been observed for the single turbine installations, according to a recent report from Annex IV, the body established by the International Energy Association Ocean Energy Systems to examine the environmental impacts of marine renewable energy.

    It seems almost too good to be true.

    That is because, of course, the story doesn’t end there. “There’s always trade offs in energy generation. You could take every one of those statements and put an asterisk next to it,” says Brian Polagye, co-director of the Northwest National Marine Renewable Energy Center, a collaboration between the University of Washington, Oregon State University and the University of Alaska Fairbanks with the goal of advancing the commercialization of marine energy technology.

    Though initial tests showed no environmental impact, even minor influences will become magnified as the company increases the number of turbines in the field. And, as the Annex IV report notes, most of the research has been focused on measuring the amount of noise the turbines generate, but few have identified how this level of noise could actually affect the behavior of marine animals. Though the noise levels are low, the sound could still interfere with animal communication, navigation or detection of prey.

    There is also much still unknown about the durability of the turbines. Their placement underwater keeps them out of sight, but the corrosive marine environment could slowly eat away at the devices. They also suffer constant mechanical stress, buffeted about in the currents.

    Though many companies have deployed individual units, none have been in the ocean for very long. Marine Current Turbines installed the first tidal turbine in Northern Ireland’s Strangford Lough in 2008. Now in its eighth year, this 1.2 MW spinner, composed of two separate turbines attached to a center platform, has been feeding the grid since its installation.

    “The big challenge for almost every company is going to be, how are you going to do this at a cost that competes with other sources of energy?” says Polagye.

    As a new industry, tidal energy has had its fair share of setbacks, with several companies, including the Ireland-based Wavebob Ltd., folding after failing to secure funding. But with improved designs, MeyGen and others are spinning their way back up to the top. Their long-term success relies in part on the government support for development and installation, explains Polagye.

    The United Kingdom government works on what’s known as “market-pull mechanisms,” explains Polagye. In this system, the government pays the difference between the cost of the renewable energy and that of standard electricity. This system pulls the new companies into the market, allowing them to compete with the big dogs of energy. The United States government, however, uses push mechanisms, supplying grants for development but little help competing with other energy sources. In order for these systems to have a future in the U.S. market, says Polagye, the government needs to develop similar pull mechanisms for energy.

    Though tidal currents aren’t strong enough along every coast to host one of these spinners, there are still many spots around the world with potential. In order for a site to be worthwhile, they must have some type of geographic restriction, like straits and fjords. This narrowing of the flowpath increases the speed of the water movement in the retreating or advancing tides, and therefore increases the energy recovered from the site.

    “If you look at a map of the world and show all the [potential turbine] sites to scale, they’d look really tiny—you probably would have trouble seeing them,” says Polagye. “But if you were to aggregate them all together, you’d probably end up with a few hundred gigawatts of energy.” And though the world will likely never run completely on tidal energy, a few hundred gigawatts is nothing to shake your iPhone at. To put that amount in perspective, since 400 MW is expected to power 175,000 homes, one gigawatt could power roughly 500,000 homes.

    A 2015 report from the European Commission’s Joint Research Center suggests that by 2018, there will be about 40 MW of tidal and 26 MW of wave energy undergoing installation. While tidal energy takes advantage of the tides, wave energy harnesses the energy from churning waves. Still in its early days of development, researchers are exploring different ways to do this—from long floating structures that “ride” the waves to massive bobbing buoys. Though wave energy lags behind tidal, according to the report, it has a global potential 30 times that of tidal energy, due to the large number of potential sites for deployment around the globe.

    Where the field of tidal turbines will go in the next couple decades is a bit of a mystery.

    “A lot of that depends on MeyGen,” says Polagye. “The turbine has to operate well and it has to not kill seals. If they do that, they’re definitely on a good trajectory.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Smithsonian magazine and Smithsonian.com place a Smithsonian lens on the world, looking at the topics and subject matters researched, studied and exhibited by the Smithsonian Institution — science, history, art, popular culture and innovation — and chronicling them every day for our diverse readership.

  • richardmitnick 7:42 am on September 8, 2016 Permalink | Reply
    Tags: Clean Energy, Offshore wind research,   

    From UMASS Amherst: “UMass Amherst Researchers to Study Offshore Wind Industry” 

    U Mass Amherst

    University of Massachusetts

    September 7, 2016
    No writer credit

    UMass Amherst researchers are developing a multi-disciplinary framework for offshore wind research, focusing on increasing innovation within projects and reducing costs by examining risks, finances and regulations associated with the industry.

    The Massachusetts Research Partnership in Offshore Wind, funded with $300,000 from the Massachusetts Clean Energy Center’s Renewable Energy Trust, includes six Massachusetts academic and research institutions – UMass Amherst, Northeastern University, Tufts University, UMass Dartmouth, UMass Lowell and Woods Hole Oceanographic Institution.

    The funding was announced by the Baker-Polito administration as part of $700,000 for nine academic and research institutions across Massachusetts to advance studies relating to offshore wind development.

    For the 18-month project, James F. Manwell, director of the Wind Energy Center in the UMass Amherst College of Engineering, will serve as team leader. Other faculty members are professors Matthew A. Lackner, Sanjay R. Arwade, Don J. DeGroot, Jon G. McGowan and Erin D. Baker. Collectively, this team has extensive experience in a wide range of offshore wind energy research areas and a long history of engagement in wind energy technology, policy, education and development.

    The research team will concentrate on three areas. These include design standards. Having suitable design standards is crucial the development of the offshore wind energy industry. Design standards help to ensure that turbines and their support structures are adequate to the environmental and operating conditions they will experience but also are not inordinately expensive. They provide the framework for the designers and they also offer confidence to the lending institutions and the insurers.

    In addition, the researchers will focus on wind turbine system modeling. Wind turbine technology continues to evolve, with larger rotors, taller towers and deeper‐water installations. It is critical to have accurate and efficient models of the wind turbine system behavior, especially when they are located offshore and subjected to wind, waves and currents, including hurricanes and other extreme events. UMass Amherst has significant expertise in the modeling, simulation, analysis and validation of offshore wind turbine system behavior and has collaborated with experts in Europe, industry and national labs in this area.

    There will also be work on geotechnical issues. The geotechnical engineering site characterization phase of an offshore wind project provides information on seabed stratigraphic soil units and soil engineering properties for design of turbine support structures. It generally requires the use of specialized vessels/drilling platforms and, coupled with the large size of project areas, makes it a significant part of a project’s initial capital investment. This is especially the case in regions with complex geologic histories that created significant spatial variations in soil units and properties, such as the glaciated New England coastal area.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Mass Amherst campus

    UMass Amherst, the Commonwealth’s flagship campus, is a nationally ranked public research university offering a full range of undergraduate, graduate and professional degrees.

    As the flagship campus of America’s education state, the University of Massachusetts Amherst is the leader of the public higher education system of the Commonwealth, making a profound, transformative impact to the common good. Founded in 1863, we are the largest public research university in New England, distinguished by the excellence and breadth of our academic, research and community outreach programs. We rank 29th among the nation’s top public universities, moving up 11 spots in the past two years in the U.S. News & World Report’s annual college guide.

  • richardmitnick 7:35 am on September 8, 2016 Permalink | Reply
    Tags: , Clean Energy, , Energy pick n’ mix: are hybrid systems the next big thing   

    From CSIRO: “Energy pick n’ mix: are hybrid systems the next big thing?” 

    CSIRO bloc

    Commonwealth Scientific and Industrial Research Organisation

    8th September 2016
    Claire Ginn

    Solar and wind power side by side. No image credit.

    What’s powering your home? Are you connected to the electricity grid? Do you have solar panels? A fuel cell? Perhaps a backyard wind turbine? It’s totally feasible to check all of these boxes: this is what’s called a ‘hybrid energy system’.

    Hybrid energy systems combine two or more forms of energy generation, storage or end-use technologies, and they can deliver a boatload of benefits compared with single source systems.

    Variety is the spice of life, so why limit ourselves to just one energy source or storage option? In these cases, hybrid energy systems are an ideal solution since they can offer substantial improvements in performance and cost reduction, and can be tailored to varying end user requirements.

    Configurations could include renewable or non-renewable energy sources, electrical and chemical energy storage and fuel cells, often connected via a smart grid.

    They have the potential to dramatically reduce cost and emissions from energy generation and distribution for households, but can be held back by the limitations of individual power generation or storage technologies – this may include cost, inconsistent supply (like interrupted solar on a cloudy day), etc.

    This means there is substantial demand for hybrid energy solutions to lower cost and improve efficiency, while still meeting performance requirements.

    So to meet this demand, we’ve established a Centre for Hybrid Energy Systems at our Clayton site in Victoria. It’s a state-of-the-art facility showcasing our substantial expertise and capability in integrating energy storage, renewable energy, hydrogen and fuel cell technologies, fuel processing, systems design and construction.

    According to our research Fellow Dr Sukhvinder Badwal, there’s now an increased availability of renewable and modular power generation and storage technologies such as batteries, fuel cells, and household solar.

    “These technologies are becoming cost competitive, but the key to greater use is to combine them in connected hybrid systems,” Dr Badwal said.

    “By doing this, we can offer substantial improvements in performance and cost.”

    We’re keen to put our heads together with industry partners, and the collaborative space will be used to share the benefits of emerging hybrid energy systems with industry and government to maximise the value of local energy sources.

    The Centre is underpinned by our research across low-emission energy technologies that create value for industry and households and provide the knowledge which will help guide Australia towards a smart, secure energy future.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

  • richardmitnick 8:30 am on September 7, 2016 Permalink | Reply
    Tags: , Clean Energy, , ,   

    From MIT: “Sponge creates steam using ambient sunlight” 

    MIT News
    MIT News
    MIT Widget

    August 22, 2016
    Jennifer Chu | MIT News Office

    MIT graduate student George Ni holds a bubble-wrapped, sponge-like device that soaks up natural sunlight and heats water to boiling temperatures, generating steam through its pores.
    Photo: Jeremy Cho

    Bubble wrap, combined with a selective absorber, keeps heat from escaping the surface of the sponge. Photo: George Ni

    How do you boil water? Eschewing the traditional kettle and flame, MIT engineers have invented a bubble-wrapped, sponge-like device that soaks up natural sunlight and heats water to boiling temperatures, generating steam through its pores.

    The design, which the researchers call a “solar vapor generator,” requires no expensive mirrors or lenses to concentrate the sunlight, but instead relies on a combination of relatively low-tech materials to capture ambient sunlight and concentrate it as heat. The heat is then directed toward the pores of the sponge, which draw water up and release it as steam.

    From their experiments — including one in which they simply placed the solar sponge on the roof of MIT’s Building 3 — the researchers found the structure heated water to its boiling temperature of 100 degrees Celsius, even on relatively cool, overcast days. The sponge also converted 20 percent of the incoming sunlight to steam.

    The low-tech design may provide inexpensive alternatives for applications ranging from desalination and residential water heating, to wastewater treatment and medical tool sterilization.

    The team has published its results today in the journal Nature Energy. The research was led by George Ni, an MIT graduate student; and Gang Chen, the Carl Richard Soderberg Professor in Power Engineering and the head of the Department of Mechanical Engineering; in collaboration with TieJun Zhang and his group members Hongxia Li and Weilin Yang from the Department of Mechanical and Materials Engineering at the Masdar Institute of Science and Technology, in the United Arab Emirates.

    Building up the sun

    The researchers’ current design builds on a solar-absorbing structure they developed in 2014 — a similar floating, sponge-like material made of graphite and carbon foam, that was able to boil water to 100 C and convert 85 percent of the incoming sunlight to steam.

    To generate steam at such efficient levels, the researchers had to expose the structure to simulated sunlight that was 10 times the intensity of sunlight in normal, ambient conditions.

    “It was relatively low optical concentration,” Chen says. “But I kept asking myself, ‘Can we basically boil water on a rooftop, in normal conditions, without optically concentrating the sunlight? That was the basic premise.”

    In ambient sunlight, the researchers found that, while the black graphite structure absorbed sunlight well, it also tended to radiate heat back out into the environment. To minimize the amount of heat lost, the team looked for materials that would better trap solar energy.

    A bubbly solution

    In their new design, the researchers settled on a spectrally-selective absorber — a thin, blue, metallic-like film that is commonly used in solar water heaters and possesses unique absorptive properties. The material absorbs radiation in the visible range of the electromagnetic spectrum, but it does not radiate in the infrared range, meaning that it both absorbs sunlight and traps heat, minimizing heat loss.

    The researchers obtained a thin sheet of copper, chosen for its heat-conducting abilities and coated with the spectrally-selective absorber. They then mounted the structure on a thermally-insulating piece of floating foam. However, they found that even though the structure did not radiate much heat back out to the environment, heat was still escaping through convection, in which moving air molecules such as wind would naturally cool the surface.

    A solution to this problem came from an unlikely source: Chen’s 16-year-old daughter, who at the time was working on a science fair project in which she constructed a makeshift greenhouse from simple materials, including bubble wrap.

    “She was able to heat it to 160 degrees Fahrenheit, in winter!” Chen says. “It was very effective.”

    Chen proposed the packing material to Ni, as a cost-effective way to prevent heat loss by convection. This approach would let sunlight in through the material’s transparent wrapping, while trapping air in its insulating bubbles.

    “I was very skeptical of the idea at first,” Ni recalls. “I thought it was not a high-performance material. But we tried the clearer bubble wrap with bigger bubbles for more air trapping effect, and it turns out, it works. Now because of this bubble wrap, we don’t need mirrors to concentrate the sun.”

    The bubble wrap, combined with the selective absorber, kept heat from escaping the surface of the sponge. Once the heat was trapped, the copper layer conducted the heat toward a single hole, or channel, that the researchers had drilled through the structure. When they placed the sponge in water, they found that water crept up the channel, where it was heated to 100 C, then turned to steam.

    Tao Deng, professor of material sciences and engineering at Shanghai Jiao Tong University, says the group’s use of low-cost materials will make the device more affordable for a wide range of applications.

    “This device offers a totally new design paradigm for solar steam generation,” says Deng, who was not involved in the study. “It eliminates the need of the expensive optical concentrator, which is a key advantage in bringing down the cost of the solar steam generation system. Certainly the clever use of bubble wrap and commercially available selective absorber also helps suppress the convection and radiation heat loss, both of which not only improve the solar harvesting efficiency but also further lower the system cost. “

    Chen and Ni say that solar absorbers based on this general design could be used as large sheets to desalinate small bodies of water, or to treat wastewater. Ni says other solar-based technologies that rely on optical-concentrating technologies typically are designed to last 10 to 20 years, though they require expensive parts and maintenance. This new, low-tech design, he says, could operate for one to two years before needing to be replaced.

    “Even so, the cost is pretty competitive,” Ni says. “It’s kind of a different approach, where before, people were doing high-tech and long-term [solar absorbers]. We’re doing low-tech and short-term.”

    “What fascinates us is the innovative idea behind this inexpensive device, where we have creatively designed this device based on basic understanding of capillarity and solar thermal radiation,” says Zhang. “Meanwhile, we are excited to continue probing the complicated physics of solar vapor generation and to discover new knowledge for the scientific community.”

    This research was funded, in part, by a cooperative agreement between the Masdar Institute of Science and Technology and MIT; and by the Solid-State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center funded by U.S. Department of Energy.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

  • richardmitnick 5:48 am on August 13, 2016 Permalink | Reply
    Tags: , Clean Energy, , Scotland just generated more power than it needs from wind turbines alone, Wind power   

    From Science Alert: “Scotland just generated more power than it needs from wind turbines alone” 


    Science Alert

    12 AUG 2016

    Master Wen/Unsplash


    Last Sunday, Scotland achieved something great – for the first time on record, wind power alone generated 106 percent of Scotland’s electricity needs in a single day.

    Environmental group WWF Scotland has just confirmed that on 7 August 2016, wind turbines in Scotland pumped 39,545 megawatt-hours (MWh) of electricity into the National Grid, while the nation’s homes, businesses, and industry needed just 37,202 MWh.

    “While it’s not impossible that this has happened in the past, it’s certainly the first time since we began monitoring the data in 2015 that we’ve had all the relevant information to be able to confirm it,” WWF Scotland director Lang Banks told the Associated Press.

    “However, on the path to a fully renewable future, this certainly marks a significant milestone.”

    Before we get into the details, there are a couple of caveats that we should get out there first.

    To say this was a particularly windy day is an understatement. It was chaos. Wind speeds reached an incredible 185 km/h (115mph) in some parts of the country, forcing bridges to close, trains to be delayed, and ferries cancelled.

    Power was cut in parts of Dundee, Scotland’s fourth biggest city, and a 17,000 tonne oil rig was ripped from its tug and floated to shore.

    It was also a Sunday, which means businesses and industry facilities would have required a whole lot less energy than they would on a weekday, so just bear that in mind.

    But the fact that the country was able to achieve this feat at all goes to show that renewables are more viable than ever as a replacement for fossil fuel.

    Despite having the largest oil reserves in the European Union – accounting for nearly 60 percent of total EU reserves – Scotland has been going all in on renewables over the past few years.

    Back in April, it announced that it had generated 57.7 percent of its electricity consumption from renewable sources in 2015, which put it squarely at the halfway mark of powering itself on 100 percent renewable electricity by 2030.

    It’s also planning on building the world’s largest floating wind farm off the coast of Peterhead – a town at the easternmost point on mainland Scotland. If they get this thing off the ground (so to speak), it could be supplying power to nearly 20,000 homes by the end of 2017.

    “Scotland’s abundant energy resources play a vital role in delivering security of electricity supply across the UK. The Scottish Government is committed to supporting onshore wind, which is one of our most cost-effective low-carbon energy technologies,” a government spokesperson told the AP.

    With the cost of wind energy now on par with natural gas, Germany achieving 95 percent of its daily energy needs via renewables recently, and Portugal clocking four straight days powered entirely by renewable energy, the future of energy is here.

    I, for one, welcome our new turbine overlords.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 10:07 am on August 4, 2016 Permalink | Reply
    Tags: , Clean Energy, ,   

    From U Wisconsin: “Tiny high-performance solar cells turn power generation sideways” 

    U Wisconsin

    University of Wisconsin

    August 3, 2016
    Sam Million-Weaver

    Hongrui Jiang inspects the alignment of a light source to illuminate new-generation lateral solar cells. The solar cells developed by Jiang’s group harvest almost three times more electricity from incoming light as compared to existing technologies. Photo: Stephanie Precourt

    University of Wisconsin—Madison engineers have created high-performance, micro-scale solar cells that outshine comparable devices in key performance measures. The miniature solar panels could power myriad personal devices — wearable medical sensors, smartwatches, even autofocusing contact lenses.

    Large, rooftop photovoltaic arrays generate electricity from charges moving vertically. The new, small cells, described today (Aug. 3, 2016) in the journal Advanced Materials Technologies, capture current from charges moving side-to-side, or laterally. And they generate significantly more energy than other sideways solar systems.

    New-generation lateral solar cells promise to be the next big thing for compact devices because arranging electrodes horizontally allows engineers to sidestep a traditional solar cell fabrication process: the arduous task of perfectly aligning multiple layers of the cell’s material atop one another.

    “From a fabrication point of view, it is always going to be easier to make side-by-side structures,” says Hongrui Jiang, a UW–Madison professor of electrical and computer engineering and corresponding author on the paper. “Top-down structures need to be made in multiple steps and then aligned, which is very challenging at small scales.”

    Lateral solar cells also offer engineers greater flexibility in materials selection.

    Top-down photovoltaic cells are made up of two electrodes surrounding a semiconducting material like slices of bread around the meat in a sandwich. When light hits the top slice, charge travels through the filling to the bottom layer and creates electric current.

    In the top-down arrangement, one layer needs to do two jobs: It must let in light and transmit charge. Therefore, the material for one electrode in a typical solar cell must be not only highly transparent, but also electrically conductive. And very few substances perform both tasks well.

    Instead of building its solar cell sandwich one layer at a time, Jiang’s group created a densely packed, side-by-side array of miniature electrodes on top of transparent glass. The resulting structure — akin to an entire loaf of bread’s worth of solar-cell sandwiches standing up sideways on a clear plate — separates light-harvesting and charge-conducting functions between the two components.

    Generally, synthesizing such sideways sandwiches is no simple matter. Other approaches that rely on complicated internal nanowires or expensive materials called perovskites fall short on multiple measures of solar cell quality.

    “We easily beat all of the other lateral structures,” says Jiang.

    Existing top-of the-line lateral new-generation solar cells convert merely 1.8 percent of incoming light into useful electricity. Jiang’s group nearly tripled that measure, achieving up to 5.2 percent efficiency.

    “In other structures, a lot of volume goes wasted because there are no electrodes or the electrodes are mismatched,” says Jiang. “The technology we developed allows us to make very compact lateral structures that take advantage of the full volume.”

    Packing so many electrodes into such a small volume boosted the devices’ “fill factors,” a metric related to the maximum attainable power, voltage and current. The structures realized fill factors up to 0.6 — more than twice the demonstrated maximum for other lateral new-generation solar cells.

    Jiang and colleagues are working to make their solar cells even smaller and more efficient by exploring materials that further optimize transparency and conductivity. Ultimately they plan to develop a small-scale, flexible solar cell that could provide power to an electrically tunable contact lens.

    Other authors on the paper included Xi Zhang, Yinggang Huang, Hao Bian, Hewei Liu, and Xuezhen Huang. The National Institutes of Health provided funding for the research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    In achievement and prestige, the University of Wisconsin–Madison has long been recognized as one of America’s great universities. A public, land-grant institution, UW–Madison offers a complete spectrum of liberal arts studies, professional programs and student activities. Spanning 936 acres along the southern shore of Lake Mendota, the campus is located in the city of Madison.

  • richardmitnick 7:34 am on June 22, 2016 Permalink | Reply
    Tags: , Clean Energy, ,   

    From CSIRO: “Watt-ever floats your boat: solar on water” 

    CSIRO bloc

    Commonwealth Scientific and Industrial Research Organisation

    22nd June 2016
    Natalie Kikken

    Is it a pool? Is it a raft? No, it’s float-ovoltaics! Credit: Photo courtesy of Lightsource

    Close your eyes and ponder what a commercial solar photovoltaic (PV) farm looks like. Do you envisage arid desert plains glistening with thousands of solar PV panels under abundant sunshine?

    You’re probably not alone thinking such sunny thoughts. But believe it or not, the ideal temperature conditions and landscape for solar PV panels to work most efficiently doesn’t always have to be hot and sunny weather. The amount of energy produced is often influenced by the material of the panels themselves, and recent research has unveiled that sometimes thousands of solar panels floating on water is the best way to increase energy output.

    Floating a bright idea

    We all know PV panels look great on rooftops, but where else can they be installed to maximise the amount of energy being produced and to utilise space? All PV panels become slightly less efficient as their temperature rises, so cooling them can lead to better energy production, especially in warm climates. This is where the idea of building solar PV farms on or near water starts to look more attractive.

    Solar ideas coming up from Down Under

    As is often the case, an Australian company led the way, with one of our former scientists, Phil Connor, designing the first ever floating solar PV system around a decade ago for the Australian company Sunengy Pty Ltd. We tested the first prototype of that system, which is now on the way to becoming commercialised in India.

    Australian company Sunengy’s world-first large floating solar photovoltaic array, and the first installed on a hydro-electric dam. No image credit.

    Thinking outside the solar box

    Scientists across the globe are investigating how to most efficiently build solar PV systems on water to ensure you can power-up using the sun, and enable some industries to generate enough power for their operational requirements. These floating solar farms utilise space that would otherwise go wasted and can also help reduce evaporation. Placing the collectors in a hydro dam, as Sunengy has done, gives free access to the large transmission line, allowing considerably better economy from the PV installation.

    Australia first large floating solar plant was built in Jamestown, South Australia in April 2015, generating up to 45 percent more energy per panel than a rooftop solar system. The city of Lismore announced a call for tenders this year to build the first ever community funded floating solar farm.

    Europe’s largest floating solar power farm was unveiled in London, UK. Built by Thames Water, the farm consists of 23,000 solar panels and will produce enough power to operate the utility’s local water treatment plants including enough clean drinking water for nearly 10,000 people. More construction for bigger and better floating solar farms are already underway.

    Catching the solar floating wave

    So what does this mean for Australia’s energy future, and our landscape? Will we be seeing a sea of solar farms pop up along our Aussie waterways, dams and coastlines?

    One of our solar research gurus, Dr Greg Wilson, thinks floating solar farms could be the way of the future for semi-arid regions of Australia, in particular farmland and waterways for irrigation.

    “Floating solar PV panels reduce evaporation so there is significant potential to create better and more efficient energy systems when used near open irrigation systems or for water treatment plants or large drinking water catchment areas,” said Dr Wilson.

    “Water quality is maintained by circulation of the main body of water so the energy required for this can be offset by the energy produced by the solar panels. It can be far more energy efficient and cost effective to have reduced evaporation than purely generating electrical energy,” he adds.

    Sunengy’s vision is to incorporate hundreds of megawatts of floating solar on the surface of each of our hydroelectric dams to create the lowest cost addition to our renewable energy supplies.

    Looking at the Australian and international examples of floating solar farms that have emerged over the last 12 months, it’s certainly an area for growth.

    We aren’t walking on water just yet but we are leaders in the solar energy space with two active solar research fields including photovoltaic and concentrating solar thermal power. We also recently challenged the status quo for energy innovation by holding our first ever Solar Hackathon.

    These heliostats might not be floating on water, but they can spell our name!

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

  • richardmitnick 9:46 am on June 17, 2016 Permalink | Reply
    Tags: , Clean Energy, ,   

    From Science Alert: “This is the end of the fossil fuel age as we know it, says report” 


    Science Alert

    16 JUN 2016

    Richie Chan/Shutterstock.com

    You can’t fight the future.

    Fossil fuels are holding on, but end of their reign is nigh, says a new report from Bloomberg New Energy Finance, which predicts that wind and solar will be cheaper than coal and gas generators by 2027, and electric vehicles could make up 25 percent of the global car fleet by 2040.

    The peak year for coal, gas, and oil looks to be 2025, and then it’s all downhill from there. For big oil guys, at least. “You can’t fight the future,” says lead researcher, Seb Henbest. “The economics are increasingly locked in.”

    Released on Monday, Bloomberg’s New Energy Outlook report has found that US$11.4 trillion will be invested in new energy sources over the next 25 years, and two thirds of that will go towards renewables, particularly wind and solar.

    Any new coal plants will mostly be cropping up in India and other emerging markets in Asia.

    The report explains:

    “Cheaper coal and cheaper gas will not derail the transformation and decarbonisation of the world’s power systems. By 2040, zero-emission energy sources will make up 60 percent of installed capacity.

    Wind and solar will account for 64 percent of the 8.6TW [1 Terawatt = 1,000 Gigawatts] of new power generating capacity added worldwide over the next 25 years, and for almost 60 percent of the $11.4 trillion invested.”

    The report predicts that coal, gas, and oil will peak by 2025, and will hit its final decline even sooner than that, concluding that, “coal and gas will begin their terminal decline in less than a decade”.

    By 2027, the real tipping point will occur, when fossil fuels will be well and truly on the decline and renewables have been established long enough that they’ll likely be generating energy more cheaply than existing coal, gas, and oil refineries. And there’s nothing quite like a cheaper price to accelerate an industry even further.

    Let’s just take a moment and think about that for a second. For the first time since humanity fell in love with producing crazy amounts of energy to give us such luxuries as cars, electricity, industrial-level food production, and overseas vacations, we’ve figured out how to do it without stomping all over the environment in the process.

    We’re not there yet, but the writing is well and truly on the wall, and that’s a pretty phenomenal achievement by researchers all over the world who have been working their butts off to make renewable technologies viable on a massive scale – even more viable than fossil fuels.

    But here’s the bad news. For as promising as the rise of renewables and the fall of fossil fuels is, Bloomberg’s report says their projections won’t be enough to limit the global warming increase of 2 degrees Celsius (3.6 degrees Fahrenheit) that was targeted by the 2015 Paris Climate Conference.

    “Some US$7.8 trillion will be invested globally in renewables between 2016 and 2040, two-thirds of the investment in all power generating capacity, but it would require trillions more to bring world emissions onto a track compatible with the United Nations 2 degrees Celsius climate target,” says Henbest.

    According to Andrew Freedman at Mashable, to meet what everyone agreed needed to happen at the Paris Conference, an additional US$5.3 trillion in new clean energy investment would need to be invested worldwide in the next 25 years.

    Below are some more insights from the report:

    Coal and gas prices will stay low.
    Wind and solar costs fall sharply.
    An electric car boom is expected, and will likely represent 35 percent of worldwide new light-duty vehicle sales in 2040 – which is 90 times the 2015 figure – and 25 percent of the global car fleet overall.
    Small-scale battery storage will become a US$250 billion market to enable more residential and commercial solar systems.
    India, not China, will be the key to the future global emissions trend, with its electricity demand forecast to grow 3.8 times between 2016 and 2040.
    Renewables will dominate in Europe, and overtake gas in the US.

    You can access the report online here.

    To be clear, these are just very educated predictions based on government and industry spending, so none of this is set in stone. But experts have been predicting the end of the fossil fuel era for years now, and we’re probably going to see it within our lifetime. What an awesome thing to look forward to.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: