Tagged: Clean Energy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:08 pm on June 1, 2023 Permalink | Reply
    Tags: "FOSW": Floating offshore wind, "How Fiber-Optic Sensing and New Materials Could Reduce the Cost of Floating Offshore Wind", , Clean Energy, , , , , Researchers are giving floating offshore wind turbines abilities to self-monitor and self-heal.,   

    From The DOE’s Lawrence Berkeley National Laboratory: “How Fiber-Optic Sensing and New Materials Could Reduce the Cost of Floating Offshore Wind” 

    From The DOE’s Lawrence Berkeley National Laboratory

    6.1.23
    Julie Bobyock
    Christina Procopiou

    1
    Shake table tests are used to mimic ocean waves and test turbine stability. They also test the ability of fiber optic sensing to measure the response of the turbines. Courtesy of Yuxin Wu.

    Researchers are giving floating offshore wind turbines abilities to self-monitor and self-heal.

    In shallow waters, offshore wind turbines are fixed to the ocean floor. However, in deep water areas where winds are typically stronger and have the capacity to reap more than double the energy, floating offshore wind turbines must be moored to the seabed where the ocean is too deep for fixed structures. Floating offshore wind (FOSW) is one of the most promising clean energy technologies with a potential market worth nearly $16 billion – but science and technology solutions are needed to help reduce the cost of developing, deploying, and maintaining these complex systems.

    Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) are developing sensing technologies consisting of fiber-optic cables, which could be installed on FOSW structures that have been planned off the California coast. This would allow structures to self-monitor damaging conditions that could lead to costly repairs and would also help gauge how FOSW impacts marine mammals by detecting their activity.

    In collaboration with experts in materials science, engineering, geophysics, and FOSW developers from around the world, Berkeley Lab scientist Yuxin Wu is now working to develop solutions to reduce the cost of FOSW development and deployment, while minimizing potential environmental impacts.

    In collaboration with experts in materials science, engineering, geophysics, and FOSW developers from around the world, Berkeley Lab scientist Yuxin Wu is now working to develop solutions to reduce the cost of FOSW development and deployment, while minimizing potential environmental impacts.
    ________________________________________________________________________________________
    Q. What is the biggest obstacle to expanding floating offshore wind technologies?

    Wu: So far, there have been few FOSW deployments because the technology is in the early stages of development. Currently, no such systems have been deployed anywhere near 1000 meters in depth. We want to leverage scientific innovation by co-designing structural materials that are better able to withstand harsh marine environments and extreme weather events. And we want to add distributed fiber optic sensing to FOSW systems to enable systems to self monitor in real time for potential problems, a capability that could prolong a system’s lifespan and lower operating and maintenance costs.

    Q. How does your team apply fiber-optic sensing to these innovations?

    Wu: A fiber cable has a glass core that allows you to send an optical signal at the speed of light; when there is any vibration, strain, or change in temperature of the material that is being monitored, that information will be carried in the light signal that is scattered back. When attached to or embedded within the wind turbine structure, this gives it a “nervous system” which allows it to “hear” and “feel.” The fiber is able to monitor surrounding acoustic signals, such as whale calls, which can help scientists assess potential impacts to large marine mammals from FOSW operations.

    We’ve been testing the deployment of this sensing technology to structural components – such as towers and turbines – to monitor physical and mechanical conditions experienced by the structure itself, like temperature or strain. Our research so far has focused on testing fiber optics on the tower and gearbox, some of the most expensive components where there is benefit to identifying damage before it leads to problems.

    1
    Credit: https://environmentamerica.org

    Q. How important is materials science to reducing the cost of floating offshore wind systems?

    Wu: By revealing what is happening within a FOSW system in real time, fiber-optic sensing gives us the knowledge needed to develop more resilient, cost-effective materials at the system level. Designing FOSW systems at lower cost and to withstand harsh marine environments requires cutting-edge materials science combined with computing science to produce better materials and to effectively simulate how the materials perform. Materials can be developed to give the structures self-healing capabilities; for example, seawater intruding into a crack in concrete triggers reactions to seal the crack without interventions.

    We are partnering with experts in materials science and simulations from the molecular to structural scale to bring about innovations that have great potential for future deep-water floating systems because of their large cost-saving potential, local producibility, better performance, and environmental sustainability. DOE user facilities at Berkeley Lab, such as the Molecular Foundry, Advanced Light Source, and National Energy Research Scientific Computing Center, play key roles in facilitating innovations in our research.

    Q. These systems are far offshore, making them challenging to access for maintenance. How can technology help track and predict their performance when people aren’t nearby to monitor operations?

    Wu: Digital twins are representations of structures made using advanced computer modeling, often jointly with real-time monitoring data, that scientists can use to control, simulate, and monitor how the FOSW system would respond to different weather or marine conditions. For example, we can simulate conditions of a hurricane and see exactly how the system would function under this extreme weather – right from our desktop computers. With real-time data feeding into the digital twins, system response to actual “on-the-water” field conditions can be monitored to support decision-making, for example when to send a crew to conduct system inspection. This could significantly reduce costs by avoiding unnecessary trips, and by allowing proactive maintenance of the system before larger, expensive failures.

    Last summer, our team used shake table testing of an actual turbine at the Pacific Earthquake Engineering Research Center at UC Berkeley’s Richmond Field Station, to test the ability of the fiber optic sensing to monitor how the turbines would respond to wave movements far offshore. The shake test helps evaluate and optimize deployment of sensors which eventually will be sitting on structures in the middle of the ocean and autonomously communicating data to land via fiber cables.

    3
    Turbine testing at the Richmond Field Station. (Credit: Courtesy of Yuxin Wu)

    Q. How important is collaboration to reducing the cost of floating offshore wind?

    Wu: DOE’s floating offshore wind earthshot has an ambitious goal of 70% cost reduction by 2035. This requires a system-level approach that optimizes all steps through the entire lifecycle of FOSW from material design, structural construction, deployment, operation, and maintenance. Partnering with institutions and industries with different expertise allows us to efficiently develop these new and complex technologies that can help shift the nation’s energy economy to one built on clean, renewable sources.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
    • elevatorsh73078 7:58 am on June 2, 2023 Permalink | Reply

      “From The DOE’s Lawrence Berkeley National Laboratory” is an intriguing and credible source of information. This comment emphasizes the significance of this source, which represents the prestigious Lawrence Berkeley National Laboratory, a renowned institution known for its scientific research and contributions. By referencing this source, readers can expect reliable and cutting-edge insights across a range of topics in fields such as energy, environmental sciences, materials research, and more. With a focus on advancing scientific knowledge and addressing real-world challenges, Lawrence Berkeley National Laboratory’s work holds significant value for both the scientific community and the general public. So, delve into the resources provided by this esteemed laboratory and explore the wealth of knowledge and innovation they offer.

      Like

  • richardmitnick 1:07 pm on May 29, 2023 Permalink | Reply
    Tags: "Engineers at The University of Massachusetts-Amherst Harvest Abundant Clean Energy from Thin Air 24/7, , “Generic Air-gen effect”: nearly any material can be engineered with nanopores to harvest cost effective scalable interruption-free electricity. The secret? Nanopores., “Mean free path”: the distance a single molecule of a substance travels before it bumps into another single molecule of the same substance., Clean Energy, , , Nanopores smaller than 100 nm, , Since humidity is ever-present the harvester would run 24/7 rain or shine at night whether or not the wind blows., , What scientists have done is to create a human-built small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”   

    From The University of Massachusetts-Amherst : “Engineers Harvest Abundant Clean Energy from Thin Air 24/7 

    U Mass Amherst

    From The University of Massachusetts-Amherst

    5.23.23
    Daegan Miller
    drmiller@umass.edu

    1
    Researchers describe the “Generic Air-gen effect”: nearly any material can be engineered with nanopores to harvest, cost effective, scalable, interruption-free electricity. The secret to making electricity from thin air? Nanopores. Credit: Derek Lovley/Ella Maru Studio.

    A team of engineers at the University of Massachusetts-Amherst has recently shown that nearly any material can be turned into a device that continuously harvests electricity from humidity in the air. The secret lies in being able to pepper the material with nanopores less than 100 nanometers in diameter. The research appeared in the journal Advanced Materials [below].

    “This is very exciting,” says Xiaomeng Liu, a graduate student in electrical and computer engineering in The University of Massachusetts-Amherst’s College of Engineering and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

    “The air contains an enormous amount of electricity,” says Jun Yao, assistant professor of electrical and computer engineering in the College of Engineering at The University of Massachusetts-Amherst, and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt—but we don’t know how to reliably capture electricity from lightning. What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

    The heart of the man-made cloud depends on what Yao and his colleagues call the “Generic Air-gen effect,” and it builds on work that Yao and co-author Derek Lovley, Distinguished Professor of Microbiology at The University of Massachusetts-Amherst, had previously completed in 2020 [link below] showing that electricity could be continuously harvested from the air using a specialized material made of protein nanowires grown from the bacterium Geobacter sulfurreducens.

    “What we realized after making the Geobacter discovery,” says Yao, “is that the ability to generate electricity from the air—what we then called the ‘Air-gen effect’—turns out to be generic: literally any kind of material can harvest electricity from air, as long as it has a certain property.”

    That property? “It needs to have holes smaller than 100 nanometers (nm), or less than a thousandth of the width of a human hair.”

    2
    Jun Yao, assistant professor of electrical and computer engineering.

    This is because of a parameter known as the “mean free path,” the distance a single molecule of a substance, in this case water in the air, travels before it bumps into another single molecule of the same substance. When water molecules are suspended in the air, their mean free path is about 100 nm.

    Yao and his colleagues realized that they could design an electricity harvester based around this number. This harvester would be made from a thin layer of material filled with nanopores smaller than 100 nm that would let water molecules pass from the upper to the lower part of the material. But because each pore is so small, the water molecules would easily bump into the pore’s edge as they pass through the thin layer. This means that the upper part of the layer would be bombarded with many more charge-carrying water molecules than the lower part, creating a charge imbalance, like that in a cloud, as the upper part increased its charge relative to the lower part. This would effectually create a battery—one that runs as long as there is any humidity in the air.

    “The idea is simple,” says Yao, “but it’s never been discovered before, and it opens all kinds of possibilities.” The harvester could be designed from literally all kinds of material, offering broad choices for cost-effective and environment-adaptable fabrications. “You could image harvesters made of one kind of material for rainforest environments, and another for more arid regions.”

    And since humidity is ever-present, the harvester would run 24/7, rain or shine, at night and whether or not the wind blows, which solves one of the major problems of technologies like wind or solar, which only work under certain conditions.

    Finally, because air humidity diffuses in three-dimensional space and the thickness of the Air-gen device is only a fraction of the width of a human hair, many thousands of them can be stacked on top of each other, efficiently scaling up the amount of energy without increasing the footprint of the device. Such an Air-gen device would be capable of delivering kilowatt-level power for general electrical utility usage.

    “Imagine a future world in which clean electricity is available anywhere you go,” says Yao. “The generic Air-gen effect means that this future world can become a reality.”

    This research was supported by the National Science Foundation, Sony Group, Link Foundation, and the Institute for Applied Life Sciences (IALS) at The University of Massachusetts-Amherst, which combines deep and interdisciplinary expertise from 29 departments on the UMass Amherst campus to translate fundamental research into innovations that benefit human health and well-being.

    Related:
    New Green Technology from UMass Amherst Generates Electricity ‘Out of Thin Air’ 2020

    Advanced Materials
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Mass Amherst campus

    The University of Massachusetts-Amherst, the Commonwealth’s flagship campus, is a nationally ranked public research university offering a full range of undergraduate, graduate and professional degrees.

    As the flagship campus of America’s education state University of Massachusetts-Amherst is the leader of the public higher education system of the Commonwealth, making a profound, transformative impact to the common good. Founded in 1863, we are the largest public research university in New England, distinguished by the excellence and breadth of our academic, research and community outreach programs. We rank 29th among the nation’s top public universities, moving up 11 spots in the past two years in the U.S. News & World Report’s annual college guide.

    The University of Massachusetts-Amherst is a public land-grant research university in Amherst, Massachusetts. Founded in 1863 as an agricultural college, it is the flagship and the largest campus in the University of Massachusetts system, as well as the first established. It is also a member of the Five College Consortium, along with four other colleges in the Pioneer Valley: Amherst College , Smith College, Mount Holyoke College, and Hampshire College.

    The University of Massachusetts-Amherst has an annual enrollment of more than 30,000 students, along with approximately 1,300 faculty members. It is the third largest university in Massachusetts, behind Boston University and Harvard University. The university offers academic degrees in 109 undergraduate, 77 master’s and 48 doctoral programs. Programs are coordinated in nine schools and colleges. The University of Massachusetts Amherst is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, the university spent $211 million on research and development in 2018.

    The university’s 21 varsity athletic teams compete in NCAA Division I and are collectively known as the Minutemen and Minutewomen. The university is a member of the Atlantic 10 Conference, while playing ice hockey in Hockey East and football as an FBS Independent.

    Past and present students and faculty include 4 Nobel Prize laureates, a National Humanities Medal winner, numerous Fulbright, Goldwater, Churchill, Truman, and Gates Scholars, Olympic Gold Medalists, a United States Poet Laureate, as well as several Pulitzer Prize recipients and Grammy, Emmy, and Academy Award winners.
    The university was founded in 1863 under the provisions of the Federal Morrill Land-Grant Colleges Act to provide instruction to Massachusetts citizens in “agricultural, mechanical, and military arts.” Accordingly, the university was initially named the Massachusetts Agricultural College, popularly referred to as “Mass Aggie” or “M.A.C.” In 1867, the college had yet to admit any students, been through two Presidents, and had still not completed any college buildings. In that year, William S. Clark was appointed President of the college and Professor of Botany. He quickly appointed a faculty, completed the construction plan, and, in the fall of 1867, admitted the first class of approximately 50 students. Clark became the first president to serve long term after the schools opening and is often regarded the primary founding father of the college. Of the school’s founding figures, there are a traditional “founding four”- Clark, Levi Stockbridge, Charles Goessmann, and Henry Goodell, described as “the botanist, the farmer, the chemist, [and] the man of letters.”

    The original buildings consisted of Old South College (a dormitory located on the site of the present South College), North College (a second dormitory once located just south of today’s Machmer Hall), the Chemistry Laboratory, also known as College Hall (once located on the present site of Machmer Hall), the Boarding House (a small dining hall located just north of the present Campus Parking Garage), the Botanic Museum (located on the north side of the intersection of Stockbridge Road and Chancellor’s Hill Drive) and the Durfee Plant House (located on the site of the new Durfee Conservatory).

    Although enrollment was slow during the 1870s, the fledgling college built momentum under the leadership of President Henry Hill Goodell. In the 1880s, Goodell implemented an expansion plan, adding the College Drill Hall in 1883 (the first gymnasium), the Old Chapel Library in 1885 (one of the oldest extant buildings on campus and an important symbol of the University), and the East and West Experiment Stations in 1886 and 1890. The Campus Pond, now the central focus of the University Campus, was created in 1893 by damming a small brook. The early 20th century saw great expansion in terms of enrollment and the scope of the curriculum. The first female student was admitted in 1875 on a part-time basis and the first full-time female student was admitted in 1892. In 1903, Draper Hall was constructed for the dual purpose of a dining hall and female housing. The first female students graduated with the class of 1905. The first dedicated female dormitory, the Abigail Adams House (on the site of today’s Lederle Tower) was built in 1920.

    By the start of the 20th century, the college was thriving and quickly expanded its curriculum to include the liberal arts. The Education curriculum was established in 1907. In recognition of the higher enrollment and broader curriculum, the college was renamed Massachusetts State College in 1931.

    Following World War II, the G.I. Bill, facilitating financial aid for veterans, led to an explosion of applicants. The college population soared and Presidents Hugh Potter Baker and Ralph Van Meter labored to push through major construction projects in the 1940s and 1950s, particularly with regard to dormitories (now Northeast and Central Residential Areas). Accordingly, the name of the college was changed in 1947 to the University of Massachusetts.

    By the 1970s, the University continued to grow and gave rise to a shuttle bus service on campus as well as many other architectural additions; this included the Murray D. Lincoln Campus Center complete with a hotel, office space, fine dining restaurant, campus store, and passageway to the parking garage, the W. E. B. Du Bois Library, and the Fine Arts Center.

    Over the course of the next two decades, the John W. Lederle Graduate Research Center and the Conte National Polymer Research Center were built and UMass Amherst emerged as a major research facility. The Robsham Memorial Center for Visitors welcomed thousands of guests to campus after its dedication in 1989. For athletic and other large events, the Mullins Center was opened in 1993, hosting capacity crowds as the Minutemen basketball team ranked at number one for many weeks in the mid-1990s, and reached the Final Four in 1996.

    UMass Amherst entered the 21st century with 19,061 students enrolled. In 2003, for the first time, the Massachusetts State Legislature legally designated University of Massachusetts-Amherst as a Research University and the “flagship campus of the UMass system. The university was named a top producer of Fulbright Award winners in the 2008–2009 academic year. Additionally, in 2010, it was named one of the “Top Colleges and Universities Contributing to Teach For America’s 2010 Teaching Corps.”

    Five College Consortium

    University of Massachusetts-Amherst is part of the Five Colleges Consortium, which allows its students to attend classes, borrow books, work with professors, etc., at four other Pioneer Valley institutions: Amherst College , Smith College, Mount Holyoke College, and Hampshire College.

    All five colleges are located within 10 miles of Amherst center, and are accessible by public bus. The five share an astronomy department and some other undergraduate and graduate departments.

    University of Massachusetts-Amherst holds the license for WFCR, the National Public Radio affiliate for Western Massachusetts. In 2014, the station moved its main operations to the Fuller Building on Main Street in Springfield, but retained some offices in Hampshire House on the University of Massachusetts-Amherst campus.

    Research

    University of Massachusetts-Amherst research activities totaled more than $200 million in fiscal year 2014. In 2016 the faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Researchers at the university made several high-profile achievements in recent years. In a bi-national collaboration, National Institute of Astrophysics, Optics and Electronics and the University of Massachusetts-Amherst came together and built Large Millimeter Telescope. It was inaugurated in Mexico in 2006 (on top of Sierra Negra).

    A team of scientists at UMass led by Vincent Rotello has developed a molecular nose that can detect and identify various proteins. The research appeared in the May 2007 issue of Nature Nanotechnology, and the team is currently focusing on sensors, which will detect malformed proteins made by cancer cells.

    Also, UMass Amherst scientists Richard Farris, Todd Emrick and Bryan Coughlin led a research team that developed a synthetic polymer that does not burn. This polymer is a building block of plastic, and the new flame-retardant plastic will not need to have flame-retarding chemicals added to their composition. These chemicals have recently been found in many different areas from homes and offices to fish, and there are environmental and health concerns regarding the additives. The newly developed polymers would not require addition of the potentially hazardous chemicals.

    List of research centers at the University of Massachusetts Amherst
    College of Natural Sciences

    Apiary Laboratory (entomology, microbiology)
    Genomic Resource Laboratory (molecular biology)
    Massachusetts Center for Renewable Energy Science and Technology
    Amherst Center for Fundamental Interactions (http://www.physics.umass.edu/acfi/)
    Center for Applied Mathematics and Mathematical Computation
    Center for Geometry, Analysis, Numerics, and Graphics (www.gang.umass.edu)
    Pediatric Physical Activity Laboratory (PPAL)

    College of Engineering (CoE)
    Electrical and Computer Engineering (ECE) labs

    Antennas and Propagation Laboratory
    Architecture and Real-Time Systems Laboratory
    Center for Advanced Sensor and Communication Antennas (CASCA)
    Complex Systems Modeling and Control Laboratory
    Emerging Nanoelectronics Laboratory
    Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA)
    Feedback Control Systems Lab
    High-Dimensional Signal Processing Lab
    Information Systems Laboratory
    Integrated Nanobiotechnology Lab
    Laboratory for Millimeter Wavelength Devices and Applications
    Microwave Remote Sensing Laboratory (MIRSL)
    Multimedia Networks Laboratory
    Multimedia Networks and Internet Laboratory
    Nanodevices and Integrated Systems Laboratory
    Nanoelectronics Theory and Simulation Laboratory
    Nanoscale Computing Fabrics & Cognitive Architectures Lab
    Network Systems Laboratory
    Photonics Laboratory
    Reconfigurable Computing Laboratory
    Sustainable Computing Lab
    VLSI CAD Laboratory
    VLSI Circuits and Systems Laboratory
    Wireless Systems Laboratory
    Yield and Reliability of VLSI Circuits

    Mechanical and Industrial Engineering (MIE) Labs

    Arbella Insurance Human Performance Laboratory (Engineering Laboratory Building)
    Center for Energy Efficiency and Renewable Energy
    Multi-Phase Flow Simulation Laboratory
    Soil Mechanics Laboratories (located at Marston Hall and ELAB-II)
    Wind Energy Center (formerly the Renewable Energy Research Laboratory)

    College of Information & Computer Sciences (CICS)

    Autonomous Learning Laboratory
    Center for Intelligent Information Retrieval
    Center for e-Design
    Knowledge Discovery Laboratory
    Laboratory For Perceptual Robotics
    Resource-Bounded Reasoning Laboratory

    Other

    Center for Economic Development
    Center for Education Policy
    Labor Relations and Research Center
    National Center for Digital Governance
    Political Economy Research Institute
    Scientific Reasoning Research Institute
    The Environmental Institute
    Virtual Center for Supernetworks

     
  • richardmitnick 10:09 am on May 29, 2023 Permalink | Reply
    Tags: "The Quest to Use Quantum Mechanics to Pull Energy out of Nothing", A simple sequence of events could in fact induce the quantum vacuum to go negative—giving up energy it didn’t appear to have., , “Quantum vacuum”: a peculiar type of nothing that comes dangerously close to resembling a something., Clean Energy, Even a vacuum must always crackle with fluctuations in the quantum fields that fill it., For their latest magic trick physicists have done the quantum equivalent of conjuring energy out of thin air., In the past year researchers have teleported energy across microscopic distances in two separate quantum devices., , , , ,   

    From “WIRED” : “The Quest to Use Quantum Mechanics to Pull Energy out of Nothing” 

    From “WIRED”

    5.28.23
    Charlie Wood

    1
    The new quantum protocol effectively borrows energy from a distant location and thus violates no sacred physical principles. Illustration: Kristina Armitage/Quanta Magazine.

    For their latest magic trick, physicists have done the quantum equivalent of conjuring energy out of thin air. It’s a feat that seems to fly in the face of physical law and common sense.

    “You can’t extract energy directly from the vacuum because there’s nothing there to give,” said William Unruh, a theoretical physicist at the University of British Columbia, describing the standard way of thinking.

    But 15 years ago, Masahiro Hotta, a theoretical physicist at Tohoku University in Japan, proposed that perhaps the vacuum could, in fact, be coaxed into giving something up.

    At first, many researchers ignored this work, suspicious that pulling energy from the vacuum was implausible, at best. Those who took a closer look, however, realized that Hotta was suggesting a subtly different quantum stunt. The energy wasn’t free; it had to be unlocked using knowledge purchased with energy in a far-off location. From this perspective, Hotta’s procedure looked less like creation and more like teleportation of energy from one place to another—a strange but less offensive idea.

    “That was a real surprise,” said Unruh, who has collaborated with Hotta but has not been involved in energy teleportation research. “It’s a really neat result that he discovered.”

    Now, in the past year, researchers have teleported energy across microscopic distances in two separate quantum devices, vindicating Hotta’s theory. The research leaves little room for doubt that energy teleportation is a genuine quantum phenomenon.

    “This really does test it,” said Seth Lloyd, a quantum physicist at the Massachusetts Institute of Technology who was not involved in the research. “You are actually teleporting. You are extracting energy.”

    Quantum Credit

    The first skeptic of quantum energy teleportation was Hotta himself. In 2008, he was searching for a way of measuring the strength of a peculiar quantum mechanical link known as entanglement, where two or more objects share a unified quantum state that makes them behave in related ways even when separated by vast distances. A defining feature of entanglement is that you must create it in one fell swoop. You can’t engineer the related behavior by messing around with one object and the other independently, even if you call up a friend at the other location and tell them what you did.

    While studying black holes, Hotta came to suspect that an exotic occurrence in quantum theory—negative energy—could be the key to measuring entanglement. Black holes shrink by emitting radiation entangled with their interiors, a process that can also be viewed as the black hole swallowing dollops of negative energy. Hotta noted that negative energy and entanglement appeared to be intimately related. To strengthen his case, he set out to prove that negative energy—like entanglement—could not be created through independent actions at distinct locations.

    Hotta found, to his surprise, that a simple sequence of events could, in fact, induce the quantum vacuum to go negative—giving up energy it didn’t appear to have. “First I thought I was wrong,” he said, “so I calculated again, and I checked my logic. But I could not find any flaw.”

    The trouble arises from the bizarre nature of the “quantum vacuum”, a peculiar type of nothing that comes dangerously close to resembling a something. The uncertainty principle forbids any quantum system from settling down into a perfectly quiet state of exactly zero energy. As a result, even a vacuum must always crackle with fluctuations in the quantum fields that fill it. These never-ending fluctuations imbue every field with some minimum amount of energy, known as the zero-point energy. Physicists say that a system with this minimal energy is in the ground state. A system in its ground state is a bit like a car parked on the streets of Denver. Even though it’s well above sea level, it can’t go any lower.

    And yet, Hotta seemed to have found an underground garage. To unlock the gate, he realized, he had only to exploit an intrinsic entanglement in the crackling of the quantum field.

    The incessant vacuum fluctuations cannot be used to power a perpetual motion machine, say, because the fluctuations at a given location are completely random. If you imagine hooking up a fanciful quantum battery to the vacuum, half the fluctuations would charge the device while the other half would drain it.

    But quantum fields are entangled—the fluctuations in one spot tend to match fluctuations in another spot. In 2008, Hotta published a paper [Physical Review D (below)] outlining how two physicists, Alice and Bob, might exploit these correlations to pull energy out of the ground state surrounding Bob. The scheme goes something like this:

    Bob finds himself in need of energy—he wants to charge that fanciful quantum battery—but all he has access to is empty space. Fortunately, his friend Alice has a fully equipped physics lab in a far-off location. Alice measures the field in her lab, injecting energy into it there and learning about its fluctuations. This experiment bumps the overall field out of the ground state, but as far as Bob can tell, his vacuum remains in the minimum-energy state, randomly fluctuating.

    But then Alice texts Bob her findings about the vacuum around her location, essentially telling Bob when to plug in his battery. After Bob reads her message, he can use the newfound knowledge to prepare an experiment that extracts energy from the vacuum—up to the amount injected by Alice.

    “That information allows Bob, if you want, to time the fluctuations,” said Eduardo Martín-Martínez, a theoretical physicist at the University of Waterloo and the Perimeter Institute who worked on one of the new experiments. (He added that the notion of timing is more metaphorical than literal, due to the abstract nature of quantum fields.)

    Bob can’t extract more energy than Alice put in, so energy is conserved. And he lacks the necessary knowledge to extract the energy until Alice’s text arrives, so no effect travels faster than light. The protocol doesn’t violate any sacred physical principles.

    Nevertheless, Hotta’s publication was met with crickets. Machines that exploit the zero-point energy of the vacuum are a mainstay of science fiction, and his procedure rankled physicists tired of fielding crackpot proposals for such devices. But Hotta felt certain he was onto something, and he continued to develop his idea and promote it in talks. He received further encouragement from Unruh, who had gained prominence for discovering another odd vacuum behavior.

    “This kind of stuff is almost second nature to me,” Unruh said, “that you can do strange things with quantum mechanics.”

    Hotta also sought a way to test it. He connected with Go Yusa, an experimentalist specializing in condensed matter at Tohoku University. They proposed an experiment in a semiconductor system with an entangled ground state analogous to that of the electromagnetic field.

    But their research has been repeatedly delayed by a different kind of fluctuation. Soon after their initial experiment was funded, the March 2011 Tohoku earthquake and tsunami devastated the eastern coast of Japan—including Tohoku University. In recent years, further tremors damaged their delicate lab equipment twice. Today they are once more starting essentially from scratch.

    Making the Jump

    In time, Hotta’s ideas also took root in a less earthquake-prone part of the globe. At Unruh’s suggestion, Hotta gave a lecture at a 2013 conference in Banff, Canada. The talk captured the imagination of Martín-Martínez. “His mind works differently from everybody else,” Martín-Martínez said. “He’s a person that has a lot of out-of-the-box ideas that are extremely creative.”

    2
    An experimental test of the teleportation protocol was run on one of IBM’s quantum computers, seen here at the Consumer Electronics Show in Las Vegas in 2020.Photograph: IBM/Quanta Magazine.

    Martín-Martínez, who half-seriously styles himself as a “space-time engineer,” has long felt drawn to physics at the edge of science fiction. He dreams of finding physically plausible ways of creating wormholes, warp drives, and time machines. Each of these exotic phenomena amounts to a bizarre shape of space-time that is permitted by the extremely accommodating equations of general relativity. But they are also forbidden by so-called energy conditions, a handful of restrictions that the renowned physicists Roger Penrose and Stephen Hawking slapped on top of general relativity to stop the theory from showing its wild side.

    Chief among the Hawking-Penrose commandments is that negative energy density is forbidden. But while listening to Hotta’s presentation, Martín-Martínez realized that dipping below the ground state smelled a bit like making energy negative. The concept was catnip to a fan of Star Trek technologies, and he dove into Hotta’s work.

    He soon realized that energy teleportation could help solve a problem faced by some of his colleagues in quantum information, including Raymond Laflamme, a physicist at Waterloo, and Nayeli Rodríguez-Briones, Laflamme’s student at the time. The pair had a more down-to-earth goal: to take qubits, the building blocks of quantum computers, and make them as cold as possible. Cold qubits are reliable qubits, but the group had run into a theoretical limit beyond which it seemed impossible to pull out any more heat—much as Bob confronted a vacuum from which energy extraction seemed impossible.

    In his first pitch to Laflamme’s group, Martín-Martínez faced a lot of skeptical questions. But as he addressed their doubts, they became more receptive. They started studying quantum energy teleportation, and in 2017 they proposed a method for spiriting energy away from qubits to leave them colder than any other known procedure could make them. Even so, “it was all theory,” Martín-Martínez said. “There was no experiment.”

    Martín-Martínez and Rodríguez-Briones, together with Laflamme and an experimentalist, Hemant Katiyar, set out to change that.

    They turned to a technology known as nuclear magnetic resonance, which uses mighty magnetic fields and radio pulses to manipulate the quantum states of atoms in a large molecule. The group spent a few years planning the experiment, and then over a couple of months in the midst of the pandemic, Katiyar arranged to teleport energy between two carbon atoms playing the roles of Alice and Bob.

    First, a finely tuned series of radio pulses put the carbon atoms into a particular minimum-energy ground state featuring entanglement between the two atoms. The zero-point energy for the system was defined by the initial combined energy of Alice, Bob, and the entanglement between them.

    Next, they fired a single radio pulse at Alice and a third atom, simultaneously making a measurement at Alice’s position and transferring the information to an atomic “text message.”

    Finally, another pulse aimed at both Bob and the intermediary atom simultaneously transmitted the message to Bob and made a measurement there, completing the energy chicanery.

    They repeated the process many times, making many measurements at each step in a way that allowed them to reconstruct the quantum properties of the three atoms throughout the procedure. In the end, they calculated that the energy of the Bob carbon atom had decreased on average, and thus that energy had been extracted and released into the environment. This happened despite the fact that the Bob atom always started out in its ground state. From start to finish, the protocol took no more than 37 milliseconds. But for energy to have traveled from one side of the molecule to the other, it normally would have taken more than 20 times longer—approaching a full second. The energy spent by Alice allowed Bob to unlock otherwise inaccessible energy.

    “It was very neat to see that with current technology it’s possible to observe the activation of energy,” said Rodríguez-Briones, who is now at the University of California-Berkeley.

    They described the first demonstration of quantum energy teleportation in a paper that they posted in March 2022 for publication in Physical Review Letters.

    The second demonstration would follow 10 months later.

    A few days before Christmas, Kazuki Ikeda, a quantum computation researcher at Stony Brook University, was watching a YouTube video that mentioned wireless energy transfer. He wondered if something similar could be done quantum mechanically. He then remembered Hotta’s work—Hotta had been one of his professors when he was an undergraduate at Tohoku University—and realized he could run a quantum energy teleportation protocol on IBM’s quantum computing platform.

    Over the next few days, he wrote and remotely executed just such a program. The experiments verified that the Bob qubit dropped below its ground-state energy. By January 7, he had posted his results for Applied Physics [below].

    Nearly 15 years after Hotta first described energy teleportation, two simple demonstrations less than a year apart had proved it was possible.

    “The experimental papers are nicely done,” Lloyd said. “I was kind of surprised that nobody did it sooner.”

    Sci-Fi Dreams

    And yet, Hotta is not yet completely satisfied.

    He praises the experiments as an important first step. But he views them as quantum simulations, in the sense that the entangled behavior is programmed into the ground state—either through radio pulses or through quantum operations in IBM’s devices. His ambition is to harvest zero-point energy from a system whose ground state naturally features entanglement in the same way that the fundamental quantum fields that permeate the universe do.

    To that end, he and Yusa are forging ahead with their original experiment. In the coming years, they hope to demonstrate quantum energy teleportation in a silicon surface featuring edge currents with an intrinsically entangled ground state—a system with behavior closer to that of the electromagnetic field.

    In the meantime, each physicist has their own vision of what energy teleportation might be good for. Rodríguez-Briones suspects that in addition to helping stabilize quantum computers, it will continue to play an important role in the study of heat, energy, and entanglement in quantum systems. In late January, Ikeda posted another paper that detailed how to build energy teleportation into the nascent quantum internet.

    Martín-Martínez continues to chase his sci-fi dreams. He has teamed up with Erik Schnetter, an expert in general relativity simulations at the Perimeter Institute, to calculate exactly how space-time would react to particular arrangements of negative energy.

    Some researchers find his quest intriguing. “That’s a laudable goal,” Lloyd said with a chuckle. “In some sense it would be scientifically irresponsible not to follow up on this. Negative energy density has very important consequences.”

    Others caution that the road from negative energies to exotic shapes of space-time is winding and uncertain. “Our intuition for quantum correlations is still being developed,” Unruh said. “One constantly gets surprised by what is actually the case once one is able to do the calculation.”

    Hotta, for his part, doesn’t spend too much time thinking about sculpting space-time. For now, he feels pleased that his quantum correlation calculation from 2008 has established a bona fide physical phenomenon.

    “This is real physics,” he said, “not science fiction.”

    Physical Review D 2008
    Physical Review Letters
    Applied Physics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 11:56 am on May 22, 2023 Permalink | Reply
    Tags: "Rutgers Agrivoltaics Program Partners with NJBPU in Dual-Use Solar Energy Pilot Program", , , , Clean Energy,   

    From Rutgers University: “Rutgers Agrivoltaics Program Partners with NJBPU in Dual-Use Solar Energy Pilot Program” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    5.22.23

    1
    Photo credit: agrarheute.com

    The New Jersey Board of Public Utilities (NJBPU) and the Rutgers Agrivoltaics Program (RAP) have entered an agreement to develop and implement a Dual-Use Solar Energy Pilot Program.

    The pilot program, which was announced on May 1 and will last for three years, is designed to demonstrate and study the compatibility of agricultural or horticultural production with solar photovoltaic infrastructure on the same land (called agrivoltaics or dual-use solar).

    1

    RAP is investigating the scientific merit of this emerging technology to be installed at the Rutgers Animal Farm in New Brunswick, Rutgers Agricultural Research and Extension Center in Bridgeton, and the Clifford E. & Melda C. Snyder Research and Extension Farm in Pittstown.

    The team will provide public research and technical assistance through the Rutgers EcoComplex “Clean Energy Innovation Center,” Rutgers School of Environmental and Biological Sciences, Rutgers Cooperative Extension and other applicable schools and units within the university.

    New Jersey’s Dual-Use Solar Energy Pilot Program will allow for the installation and operation of up to 200 Megawatts of direct current (MWdc) of solar electric capacity over three years, extendable by NJBPU to up to 300 MWdc over five years. Individual solar projects would be limited to 10 MWdc. The pilot program and the results from its associated research requirements will inform a permanent program that includes standards for construction and operation of dual-use solar energy projects.

    The pilot program will provide incentives to solar electric generation facilities, located on unpreserved farmland, which plan to maintain the land’s active agricultural or horticultural use.

    Agrivoltaics can provide farmers with an additional stream of revenue, assisting with farm financial viability by enabling continued agricultural or horticultural production of land while also increasing the statewide production of clean energy.

    RAP, a multidisciplinary team of 15 Rutgers personnel, faculty and Rutgers Cooperative Extension agents, is investigating this emerging agrivoltaics technology, which has the potential to keep farmland productive and produce clean energy.

    Margaret Brennan-Tonetta, senior associate director of Rutgers New Jersey Agricultural Experiment Station (NJAES) and director of the Office of Resource and Economic Development, said, “Rutgers New Jersey Agricultural Experiment Station has made a large commitment to investigate the opportunities for dual-use Solar by installing agrivoltaic R&D systems at three of our research farms. By working closely with NJBPU and the New Jersey Department of Agriculture, I am confident that we can utilize this new technology to not only generate clean energy, but also improve farm viability and sustainability.”

    2
    Photo credit: jackssolargarden.com

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers-The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities and the Universities Research Association. Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center. This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health. One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 8:26 am on May 3, 2023 Permalink | Reply
    Tags: "Opinion >Two trillion tonnes of greenhouse gases - 25 billion nukes of heat - are we pushing Earth out of the Goldilocks zone?", All of human civilization has emerged in the unusually mild 10000 years after the last ice age., , , Clean Energy, Climate change: more energy comes in than goes out., , , Greenhouse gases are potent. You only need small concentrations to get a big effect., Heating the world 1.2℃ means we’ve trapped an extraordinary amount of extra energy in the Earth system., Hotter oceans are a major contributor to coral bleaching and sea level rise., The energy dense fuels which made industrial civilization possible come with an enormous sting in the tail. Burn now and pay later. Now the bill has become apparent., The period between 1971 and the present accounts for about 60% of all emissions., , To date almost every joule of extra energy – about 90% – has gone into our oceans., We are at very real risk of pushing ourselves outside of the comfortable climatic conditions which allowed humans to expand., We’ve boosted the amount of carbon dioxide in the atmosphere by about 50%; added considerable methane and nitrous oxide pushing our life-sustaining greenhouse effect out of balance.   

    From The University of New South Wales (AU) : “Opinion >Two trillion tonnes of greenhouse gases – 25 billion nukes of heat – are we pushing Earth out of the Goldilocks zone?” 

    UNSW bloc

    From The University of New South Wales (AU)

    5.3.23
    Andrew King
    Steven Sherwood

    Life relies on a fine balance between energy in and energy out. But heating the world 1.2℃ means we’ve trapped an extraordinary amount of extra energy in the Earth system.

    1
    Photo: Shutterstock.

    Since the 18th century, humans have been taking fossil fuels out of their safe storage deep underground and burning them to generate electricity or power machinery.

    We’ve now converted coal, oil and gas into more than two trillion tonnes of heat-trapping carbon dioxide and other greenhouse gases and added them to the atmosphere.

    The current result? The average temperature at the planet’s surface is about 1.2℃ hotter than in the pre-industrial era. That’s because adding new carbon to the world’s natural carbon cycle has caused an imbalance in the amount of energy entering and leaving the Earth system.

    To warm the entire planet takes an extraordinary amount of extra energy. Recent research shows we’ve added the energy of 25 billion nuclear bombs to the Earth system in just the last 50 years.

    Billions of nuclear bombs to produce 1.2℃ of heating – so what? It seems small, considering how much temperature varies on a daily basis. (The world’s average surface temperature in the 20th century was 13.9℃.)

    But almost all of this energy to date has been taken up by the oceans. It’s no wonder we’re seeing rapid warming [ESSD (below)] in our oceans.

    The Goldilocks zone

    Mercury is the closest planet to the Sun. It gets hot, at an average temperature of 167℃. But it has no atmosphere. That’s why the second planet, Venus, is the hottest in the solar system, at an average of 464℃. That’s due to an atmosphere much thicker than Earth’s, dense in carbon dioxide. Venus might once have had liquid oceans. But then a runaway greenhouse effect took place, trapping truly enormous quantities of heat.

    One reason we’re alive is that our planet orbits in the Goldilocks zone, just the right distance from the Sun to be not too hot and not too cold. Little of the Earth’s internal heat gets through to the cold crust where we live. That makes us dependent on another source of heat – the Sun.

    When the Sun’s light and heat hits Earth, some is absorbed at the surface and some is reflected back out into space. We see some of the energy emitted by the Sun because the Sun is hot and hotter objects emit radiation in the visible part of the electromagnetic spectrum.

    Because Earth is much cooler than the Sun, the radiation it emits is invisible, at long infrared wavelengths. Much of this energy goes out into space – but not all. Some gases in our atmosphere are very effective at absorbing energy at the wavelengths Earth emits at. These greenhouse gases occur naturally in Earth’s atmosphere, and keep the planet warm enough to be habitable. That’s another Goldilocks zone.

    3
    Incoming radiation from the sun is reflected or absorbed by Earth. There is a net imbalance where more energy is absorbed than emitted by the planet and this causes warming. Credit: NASA, CC BY.

    And then there’s a third Goldilocks zone: recent history. All of human civilization has emerged in the unusually mild 10000 years after the last ice age, when the climate has been not too hot and not too cold across much of the world.

    But now, we are at very real risk of pushing ourselves outside of the comfortable climatic conditions which allowed humans to expand, farm, build cities and create.

    The energy dense fuels which made industrial civilization possible come with an enormous sting in the tail. Burn now, pay later. Now the bill has become apparent.

    How do we know this is real? Satellites measure the rate at which Earth’s surface radiates heat. At any one moment, thousands of Argo robotic floats dot our oceans. They spend almost all of their lives underwater, measuring heat, and surface to transmit data. And we can measure sea level with tide levels and satellites. We can cross-check the measurements between all three approaches.

    Climate change: more energy comes in than goes out

    Greenhouse gases are potent. You only need small concentrations to get a big effect.

    We’ve already boosted the amount of carbon dioxide in the atmosphere by about 50%, and added considerable volumes of methane and nitrous oxide as well. This is pushing our life-sustaining greenhouse effect out of balance.

    A recent study [above] suggests the energy imbalance is equivalent to trapping roughly 380 zettajoules of extra heat from 1971–2020. (The period between 1971 and the present accounts for about 60% of all emissions).

    One zettajoule is 1,000,000,000,000,000,000,000 joules – a very big number!

    Little Boy, the nuclear bomb which destroyed Hiroshima, produced energy estimated at 15,000,000,000,000 joules. This means the effect of humanity’s greenhouse gas emissions in that 50-year period to 2020 is about 25 billion times the energy emitted by the Hiroshima nuclear bomb.

    If we’ve trapped so much extra heat, where is it?

    To date, almost every joule of extra energy – about 90% – has gone into our oceans, particularly the top kilometre of water. Water is an excellent heat sink. It takes a lot of energy to heat it, but heat it we have. Hotter oceans are a major contributor to coral bleaching and sea level rise.

    4
    Where’s the heat? In our oceans. This sea surface temperature map shows the temperature anomalies above or below the long term average at 30th April 2023. NOAA, CC BY.

    It takes a long time to get this much heat into the oceans, and once it is there it doesn’t disappear. Reversing global warming entirely may not be feasible. Just to stop temperatures going any higher means correcting the imbalance and bringing CO2 levels down towards the pre-industrial level of 280ppm.

    If we can reach net-zero greenhouse gas emissions, we will most likely stop further global warming and carbon dioxide concentrations will slowly start to drop.

    Realistically, this means rapid, large-scale reduction of emissions and deployment of carbon capture to compensate for the emissions we can’t eliminate.

    To go further and cool the planet back down towards a pre-industrial climate would require net-negative emissions, meaning we would have to draw even more carbon back out of the atmosphere than any lingering emissions.

    Unfortunately, we aren’t there yet. Human-caused greenhouse gas emissions are at near-record highs. But clean energy production is accelerating. This year might be the first time emissions from power begin to fall.

    We’re in a race, and the stakes are as high as they could possibly be – ensuring a liveable climate for our children and for nature.

    ESSD
    2
    Schematic overview on the central role of the Earth heat inventory and its linkage to anthropocentric emissions.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    U NSW Campus

    The University of New South Wales is an Australian public university with its largest campus in the Sydney suburb of Kensington.

    Established in 1949, UNSW is a research university, ranked 44th in the world in the 2021 QS World University Rankings and 67th in the world in the 2021 Times Higher Education World University Rankings. UNSW is one of the founding members of the Group of Eight, a coalition of Australian research-intensive universities, and of Universitas 21, a global network of research universities. It has international exchange and research partnerships with over 200 universities around the world.

    According to the 2021 QS World University Rankings by Subject, UNSW is ranked top 20 in the world for Law, Accounting and Finance, and 1st in Australia for Mathematics, Engineering and Technology. UNSW also leads Australia in Medicine, where the median ATAR (Australian university entrance examination results) of its Medical School students is higher than any other Australian medical school. UNSW enrolls the highest number of Australia’s top 500 high school students academically, and produces more millionaire graduates than any other Australian university.

    The university comprises seven faculties, through which it offers bachelor’s, master’s and doctoral degrees. The main campus is in the Sydney suburb of Kensington, 7 kilometres (4.3 mi) from the Sydney CBD. The creative arts faculty, UNSW Art & Design, is located in Paddington, and subcampuses are located in the Sydney CBD as well as several other suburbs, including Randwick and Coogee. Research stations are located throughout the state of New South Wales.

    The university’s second largest campus, known as UNSW Canberra at ADFA (formerly known as UNSW at ADFA), is situated in Canberra, in the Australian Capital Territory (ACT). ADFA is the military academy of the Australian Defense Force, and UNSW Canberra is the only national academic institution with a defense focus.

    Research centres

    The university has a number of purpose-built research facilities, including:

    UNSW Lowy Cancer Research Centre is Australia’s first facility bringing together researchers in childhood and adult cancers, as well as one of the country’s largest cancer-research facilities, housing up to 400 researchers.
    The Mark Wainwright Analytical Centre is a centre for the faculties of science, medicine, and engineering. It is used to study the structure and composition of biological, chemical, and physical materials.
    UNSW Canberra Cyber is a cyber-security research and teaching centre.
    The Sino-Australian Research Centre for Coastal Management (SARCCM) has a multidisciplinary focus, and works collaboratively with the Ocean University of China [中國海洋大學](CN) in coastal management research.

     
  • richardmitnick 7:32 am on April 28, 2023 Permalink | Reply
    Tags: "Unlocking the power of photosynthesis for clean energy production", , A carbon-free alternative to fossil fuels, , Artificial photosynthesis is a process of converting an abundant feedstock and sunlight into a chemical fuel., , , , , , Clean Energy, Clean-burning hydrogen fuel, , Developing an efficient system that employs artificial photosynthesis and utilizes semiconductor nanocrystals for light absorbers and catalysts., During natural photosynthesis plants absorb sunlight which they use to power chemical reactions to convert carbon dioxide and water into glucose and oxygen., Hydrogen fuel also has a high energy density which means it contains a lot of energy per unit of weight., Hydrogen is the most abundant element in the universe and can be produced from a variety of sources including water and natural gas and biomass., Hydrogen technology, Leveraging bacteria and nanomaterials to mimic photosynthesis and produce clean-burning hydrogen fuel, , , Researchers at the University of Rochester are embarking on a project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst., Scientists need a source of electrons that is almost free or the system becomes too expensive., , There is virtually no pure hydrogen on Earth. It is almost always bound to other elements such as carbon or oxygen and in compounds like hydrocarbons and water., Using bacteria as an electron source for a nanocrystal catalyst, When bacteria grow under anaerobic conditions-conditions without oxygen-they respire cellular substances as fuel releasing electrons in the process., When hydrogen is burned the only byproduct is water vapor.   

    From The University of Rochester: “Unlocking the power of photosynthesis for clean energy production” 

    From The University of Rochester

    4.27.23
    Lindsey Valich
    lvalich@ur.rochester.edu

    1
    From left, Rochester scientists Anne S. Meyer, Todd Krauss, Kara Bren, and Andrew White are teaming up on a groundbreaking project to develop a system that uses bacteria and nanomaterials to mimic photosynthesis and produce environmentally friendly, clean-burning hydrogen fuel. (University of Rochester photos / J. Adam Fenster)

    A new grant will allow Rochester researchers to leverage bacteria and nanomaterials to mimic photosynthesis and produce clean-burning hydrogen fuel.

    As the world faces an increasing demand for clean and sustainable energy sources, scientists are turning to the power of photosynthesis for inspiration. With the goal of developing new, environmentally friendly techniques to produce clean-burning hydrogen fuel, a team of researchers at the University of Rochester is embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst.

    By leveraging the unique properties of both microorganisms and nanomaterials, the project has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.

    The Rochester team, led by Kara Bren, the Richard S. Eisenberg Professor in Chemistry, along with Todd Krauss, a professor of chemistry; Anne S. Meyer, an associate professor of biology; and Andrew White, an associate professor of chemical engineering, received a nearly $2 million, three-year grant from the US Department of Energy (DOE) to create their “living bio-nano system” to produce solar hydrogen.

    “Hydrogen is definitely a fuel of high interest for the DOE right now,” Bren says. “If we can figure out a way to efficiently extract hydrogen from water, this could lead to an incredible amount of growth in clean energy.”

    Why is hydrogen a promising fuel source?

    Hydrogen is “an ideal fuel,” Bren says, “because it’s environmentally-friendly and a carbon-free alternative to fossil fuels.”

    Hydrogen is the most abundant element in the universe and can be produced from a variety of sources, including water, natural gas, and biomass.

    Unlike fossil fuels, which produce greenhouse gases and other pollutants, when hydrogen is burned, the only byproduct is water vapor. Hydrogen fuel also has a high energy density, which means it contains a lot of energy per unit of weight. It can be used in a variety of applications, including fuel cells, and can be made on both small and large scales, making it feasible for everything from home use to industrial manufacturing.

    Why is hydrogen fuel difficult to produce?

    Despite hydrogen’s abundance, there is virtually no pure hydrogen on Earth; it is almost always bound to other elements, such as carbon or oxygen, in compounds like hydrocarbons and water. To use hydrogen as a fuel source, it must be extracted from these compounds.

    Scientists have historically extracted hydrogen either from fossil fuels, or, more recently, from water. To achieve the latter, there is a major push to employ artificial photosynthesis.

    During natural photosynthesis, plants absorb sunlight, which they use to power chemical reactions to convert carbon dioxide and water into glucose and oxygen. In essence, light energy is converted into chemical energy that fuels the organism.

    Similarly, artificial photosynthesis is a process of converting an abundant feedstock and sunlight into a chemical fuel, such as producing hydrogen gas from water. Systems that mimic photosynthesis require three components: a light absorber, a catalyst to make the fuel, and a source of electrons. These systems are typically submerged in water, and a light source provides energy to the light absorber. The energy allows the catalyst to combine the provided electrons together with protons from the surrounding water to produce hydrogen gas.

    Most of the current systems, however, rely on fossil fuels during the production process or don’t have an efficient way to transfer electrons.

    “The way hydrogen fuel is produced now effectively makes it a fossil fuel,” Bren says. “We want to get hydrogen from water in a light-driven reaction so we have a truly clean fuel—and do so in a way that we don’t use fossil fuels in the process.”

    What makes the Rochester system unique?

    Krauss’s group and Bren’s group have been working for about a decade to develop an efficient system that employs artificial photosynthesis and utilizes semiconductor nanocrystals for light absorbers and catalysts. Semiconductor nanocrystals are tiny crystals made of semiconducting materials. Due to their small size—they are composed of only a few hundred to a few thousand atoms—they have unique properties, which can be easily tuned. Krauss’s lab has made major advances in developing efficient quantum dots, one type of semiconductor nanocrystal.

    “Our role in the project is centered on making the nanoparticles that absorb light, and then conducting measurements of the rates of charge transfer in the system,” Krauss says. “This will help us figure out how to eventually scale the system and also make it more efficient.”

    Another challenge the researchers faced was figuring out a source of electrons and efficiently transferring the electrons from the electron donor to the nanocrystal. Other systems have used ascorbic acid, commonly known as vitamin C, to deliver electrons back to the system. While vitamin C might seem inexpensive, “you need a source of electrons that is almost free or the system becomes too expensive,” Krauss says.

    In a paper published in PNAS [below], Krauss and Bren demonstrate an unlikely electron donor: bacteria. They found that Shewanella oneidensis, bacteria first gathered from Lake Oneida in upstate New York, offers an effectively free, yet efficient, way to provide electrons to their system.

    While other labs have combined nanostructures and bacteria, “all of those efforts are taking electrons from the nanocrystals and putting them into the bacteria, then using the bacterial machinery to prepare fuels,” Bren says. “As far as we know, ours is the first case to go the opposite way and use the bacteria as an electron source to a nanocrystal catalyst.”

    What makes bacteria an efficient electron donor?

    When bacteria grow under anaerobic conditions—conditions without oxygen—they respire cellular substances as fuel, releasing electrons in the process. Shewanella oneidensis can take electrons generated by its own internal metabolism and donate them to the external catalyst.

    “This technique is really promising because it can produce hydrogen energy efficiently while relying only upon sustainable sources for electrons and energy,” says Meyer, whose lab has previously worked with Shewanella oneidensis to produce materials with unique properties. In this project, her lab is designing and creating new strains of Shewanella that will have enhanced abilities to transfer electrons. They will apply their pioneering 3D printing techniques to print living material that can incorporate quantum dots.

    “By combining our engineered Shewanella bacteria together with the photocatalyst developed by the Bren and Krauss labs, we will be able to create physically robust, long-lived materials that will make the hydrogen production reaction faster and more efficient,” Meyer says.

    Because the system is so complex, White’s lab will use machine learning and artificial intelligence techniques to determine which factors and variables could be changed to optimize the system; for instance, predicting which 3D-printed geometries will be the most likely to produce hydrogen more efficiently.

    Pursuing both basic and applied science

    While the ultimate goal is to develop a better system for producing hydrogen fuel, Bren is also committed to understanding the basic science behind the project.

    “For example,” she says, “how can we most effectively get the electrons from the bacteria to the quantum dots? How do nanomaterials and microorganisms work together?”

    Bren envisions that, in the future, individual homes could potentially have vats and underground tanks to harness the power of the sun and produce and store small batches of hydrogen, allowing people to power their homes and cars with inexpensive, clean-burning fuel. Bren notes there are currently trains, buses, and cars powered by hydrogen fuel cells but almost all the hydrogen that is available to power these systems comes from fossil fuels.

    “The technology’s out there,” she says, “but until the hydrogen’s coming from water in a light-driven reaction—without using fossil fuels—it isn’t really helping the environment.”

    PNAS

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Rochester campus

    The University of Rochester is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees.

    The University of Rochester enrolls approximately 6,800 undergraduates and 5,000 graduate students. Its 158 buildings house over 200 academic majors. According to the National Science Foundation , The University of Rochester spent $370 million on research and development in 2018, ranking it 68th in the nation. The University of Rochester is the 7th largest employer in the Finger lakes region of New York.

    The College of Arts, Sciences, and Engineering is home to departments and divisions of note. The Institute of Optics was founded in 1929 through a grant from Eastman Kodak and Bausch and Lomb as the first educational program in the US devoted exclusively to Optics and awards approximately half of all Optics degrees nationwide and is widely regarded as the premier Optics program in the nation and among the best in the world.

    The Departments of Political Science and Economics have made a significant and consistent impact on positivist social science since the 1960s and historically rank in the top 5 in their fields. The Department of Chemistry is noted for its contributions to synthetic Organic Chemistry, including the first lab-based synthesis of morphine. The Rossell Hope Robbins Library serves as The University of Rochester’s resource for Old and Middle English texts and expertise. The university is also home to Rochester’s Laboratory for Laser Energetics, a Department of Energy supported national laboratory.

    The University of Rochester Laboratory for Laser Energetics.

    The University of Rochester’s Eastman School of Music ranks first among undergraduate music schools in the U.S. The Sibley Music Library at Eastman is the largest academic music library in North America and holds the third largest collection in the United States.

    In its history The University of Rochester alumni and faculty have earned 13 Nobel Prizes; 13 Pulitzer Prizes; 45 Grammy Awards; 20 Guggenheim Awards; 5 National Academy of Sciences; 4 National Academy of Engineering; 3 Rhodes Scholarships; 3 National Academy of Inventors; and 1 National Academy of Inventors Hall of Fame.

    History

    Early history

    The University of Rochester traces its origins to The First Baptist Church of Hamilton (New York) which was founded in 1796. The church established the Baptist Education Society of the State of New York later renamed the Hamilton Literary and Theological Institution in 1817. This institution gave birth to both Colgate University and the University of Rochester. Its function was to train clergy in the Baptist tradition. When it aspired to grant higher degrees it created a collegiate division separate from the theological division.

    The collegiate division was granted a charter by the State of New York in 1846 after which its name was changed to Madison University. John Wilder and the Baptist Education Society urged that the new university be moved to Rochester, New York. However, legal action prevented the move. In response, dissenting faculty, students, and trustees defected and departed for Rochester, where they sought a new charter for a new university.

    Madison University was eventually renamed as Colgate University.

    Founding

    Asahel C. Kendrick- professor of Greek- was among the faculty that departed Madison University for The University of Rochester. Kendrick served as acting president while a national search was conducted. He reprised this role until 1853 when Martin Brewer Anderson of the Newton Theological Seminary in Massachusetts was selected to fill the inaugural posting.

    The University of Rochester’s new charter was awarded by the Regents of the State of New York on January 31, 1850. The charter stipulated that The University of Rochester have $100,000 in endowment within five years upon which the charter would be reaffirmed. An initial gift of $10,000 was pledged by John Wilder which helped catalyze significant gifts from individuals and institutions.

    Classes began that November with approximately 60 students enrolled including 28 transfers from Madison. From 1850 to 1862 the university was housed in the old United States Hotel in downtown Rochester on Buffalo Street near Elizabeth Street- today West Main Street near the I-490 overpass. On a February 1851 visit Ralph Waldo Emerson said of the university:

    “They had bought a hotel, once a railroad terminus depot, for $8,500, turned the dining room into a chapel by putting up a pulpit on one side, made the barroom into a Pythologian Society’s Hall, & the chambers into Recitation rooms, Libraries, & professors’ apartments, all for $700 a year. They had brought an omnibus load of professors down from Madison bag and baggage… called in a painter and sent him up the ladder to paint the title “University of Rochester” on the wall, and they had runners on the road to catch students. And they are confident of graduating a class of ten by the time green peas are ripe.”

    For the next 10 years The University of Rochester expanded its scope and secured its future through an expanding endowment; student body; and faculty. In parallel a gift of 8 acres of farmland from local businessman and Congressman Azariah Boody secured the first campus of The University of Rochester upon which Anderson Hall was constructed and dedicated in 1862. Over the next sixty years this Prince Street Campus grew by a further 17 acres and was developed to include fraternity houses; dormitories; and academic buildings including Anderson Hall; Sibley Library; Eastman and Carnegie Laboratories the Memorial Art Gallery and Cutler Union.

    Twentieth century

    Coeducation

    The first female students were admitted in 1900- the result of an effort led by Susan B. Anthony and Helen Barrett Montgomery. During the 1890s a number of women took classes and labs at The University of Rochester as “visitors” but were not officially enrolled nor were their records included in the college register. President David Jayne Hill allowed the first woman- Helen E. Wilkinson- to enroll as a normal student although she was not allowed to matriculate or to pursue a degree. Thirty-three women enrolled among the first class in 1900 and Ella S. Wilcoxen was the first to receive a degree in 1901. The first female member of the faculty was Elizabeth Denio who retired as Professor Emeritus in 1917. Male students moved to River Campus upon its completion in 1930 while the female students remained on the Prince Street campus until 1955.

    Expansion

    Major growth occurred under the leadership of Benjamin Rush Rhees over his 1900-1935 tenure. During this period George Eastman became a major donor giving more than $50 million to the university during his life. Under the patronage of Eastman the Eastman School of Music was created in 1921. In 1925 at the behest of the General Education Board and with significant support for John D. Rockefeller George Eastman and Henry A. Strong’s family medical and dental schools were created. The university award its first Ph.D that same year.

    During World War II The University of Rochester was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission. In 1942, The University of Rochester was invited to join the Association of American Universities as an affiliate member and it was made a full member by 1944. Between 1946 and 1947 in infamous uranium experiments researchers at the university injected uranium-234 and uranium-235 into six people to study how much uranium their kidneys could tolerate before becoming damaged.

    In 1955 the separate colleges for men and women were merged into The College on the River Campus. In 1958 three new schools were created in engineering, business administration and education. The Graduate School of Management was named after William E. Simon- former Secretary of the Treasury in 1986. He committed significant funds to the school because of his belief in the school’s free market philosophy and grounding in economic analysis.

    Financial decline and name change controversy

    Following the princely gifts given throughout his life George Eastman left the entirety of his estate to The University of Rochester after his death by suicide. The total of these gifts surpassed $100 million before inflation and as such The University of Rochester enjoyed a privileged position amongst the most well endowed universities. During the expansion years between 1936 and 1976 The University of Rochester’s financial position ranked third, near Harvard University’s endowment and the University of Texas System’s Permanent University Fund . Due to a decline in the value of large investments and a lack of portfolio diversity The University of Rochester ‘s place dropped to the top 25 by the end of the 1980s. At the same time the preeminence of the city of Rochester’s major employers began to decline.

    In response The University of Rochester commissioned a study to determine if the name of the institution should be changed to “Eastman University” or “Eastman Rochester University”. The study concluded a name change could be beneficial because the use of a place name in the title led respondents to incorrectly believe it was a public university, and because the name “Rochester” connoted a “cold and distant outpost.” Reports of the latter conclusion led to controversy and criticism in the Rochester community. Ultimately, the name “The University of Rochester” was retained.

    Renaissance Plan
    In 1995 The University of Rochester president Thomas H. Jackson announced the launch of a “Renaissance Plan” for The University of Rochester that reduced enrollment from 4,500 to 3,600 creating a more selective admissions process. The plan also revised the undergraduate curriculum significantly creating the current system with only one required course and only a few distribution requirements known as clusters. Part of this plan called for the end of graduate doctoral studies in Chemical Engineering; comparative literature; linguistics; and Mathematics, the last of which was met by national outcry. The plan was largely scrapped and Mathematics exists as a graduate course of study to this day.

    Twenty-first century

    Meliora Challenge

    Shortly after taking office university president Joel Seligman commenced the private phase of the “Meliora Challenge”- a $1.2 billion capital campaign- in 2005. The campaign reached its goal in 2015- a year before the campaign was slated to conclude. In 2016, The University of Rochester announced the Meliora Challenge had exceeded its goal and surpassed $1.36 billion. These funds were allocated to support over 100 new endowed faculty positions and nearly 400 new scholarships.

    The Mangelsdorf Years

    On December 17, 2018 The University of Rochester announced that Sarah C. Mangelsdorf would succeed Richard Feldman as President of the University. Her term started in July 2019 with a formal inauguration following in October during Meliora Weekend. Mangelsdorf is the first woman to serve as President of the University and the first person with a degree in psychology to be appointed to Rochester’s highest office.

    In 2019 students from China mobilized by the Chinese Students and Scholars Association (CSSA) defaced murals in the University’s access tunnels which had expressed support for the 2019 Hong Kong Protests, condemned the oppression of the Uighurs, and advocated for Taiwanese independence. The act was widely seen as a continuation of overseas censorship of Chinese issues. In response a large group of students recreated the original murals. There have also been calls for Chinese government run CSSA to be banned from campus.

    Research

    The University of Rochester is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very High Research Activity”.

    The University of Rochester had a research expenditure of $370 million in 2018.

    In 2008 The University of Rochester ranked 44th nationally in research spending but this ranking has declined gradually to 68 in 2018.

    Some of the major research centers include the Laboratory for Laser Energetics, a laser-based nuclear fusion facility, and the extensive research facilities at the University of Rochester Medical Center.

    Recently The University of Rochester has also engaged in a series of new initiatives to expand its programs in Biomedical Engineering and Optics including the construction of the new $37 million Robert B. Goergen Hall for Biomedical Engineering and Optics on the River Campus.

    Other new research initiatives include a cancer stem cell program and a Clinical and Translational Sciences Institute. The University of Rochester also has the ninth highest technology revenue among U.S. higher education institutions with $46 million being paid for commercial rights to university technology and research in 2009. Notable patents include Zoloft and Gardasil. WeBWorK, a web-based system for checking homework and providing immediate feedback for students was developed by The University of Rochester professors Gage and Pizer. The system is now in use at over 800 universities and colleges as well as several secondary and primary schools. The University of Rochester scientists work in diverse areas. For example, physicists developed a technique for etching metal surfaces such as platinum; titanium; and brass with powerful lasers enabling self-cleaning surfaces that repel water droplets and will not rust if tilted at a 4 degree angle; and medical researchers are exploring how brains rid themselves of toxic waste during sleep.

     
  • richardmitnick 9:06 pm on April 26, 2023 Permalink | Reply
    Tags: , "Off-menu materials science", , , , Clean Energy, , , , , , ,   

    From The School of Engineering At The Massachusetts Institute of Technology: “Off-menu materials science” 

    From The School of Engineering

    At

    The Massachusetts Institute of Technology

    4.26.23
    Daniel de Wolff | MIT Industrial Liaison Program

    1
    Robert Macfarlane’s work has implications for climate and sustainability, energy, health and medicine, manufacturing technologies, sensing and computing, simulation and data science, transportation, and infrastructure. Photo: David Sella/MIT Corporate Relations

    A formerly self-described dyed-in-the-wool chemist who has gradually transitioned to research that sits at the interface of science and engineering, Associate Professor Robert Macfarlane and his Macfarlane Lab at MIT explore the chemical sciences that impact materials development and real-world applications. Considering his chosen line of research, he says, “I want to understand things from the level of a chemist, using the intuition of bonding and chemical interactions I gained from my chemistry education, and translate that molecular-level understanding into control over material structure across all length scales from micro- to macroscopic.” His work has implications for areas of impact including climate and sustainability, energy, health and medicine, manufacturing technologies, sensing and computing, simulation and data science, transportation, and infrastructure.

    According to Macfarlane, one of the great limitations of industrial and applied research is a shortsighted view that equates “material design” with “material selection.” In other words, there is already a well-defined catalog of materials to consider when designing devices or architectures. Macfarlane’s hypothesis: Current devices and applications are stymied by the materials available. So, while many of his colleagues are focused on designing specific applications using just the materials that currently exist, Macfarlane and his lab prioritize making the materials that enable future development of those applications. He’s expanding the catalogue of materials from which both academics and industry can choose, building a new tool set to build better versions of the next solar cells, batteries, drug delivery vehicles, etc.

    “One of the driving principles of our work,” he says, “is designing smart materials that can spontaneously organize into more complex, higher-order structures upon introduction of a pre-programmed stimulus.” Broadly speaking, he applies these principles to developing novel ways to assemble nanoparticles that are scalable and compositionally versatile. His materials may look like, behave like, and can be processed like plastics, but they are partially (or in some cases predominantly) composed of metals, ceramics, or semiconductors.


    Robert J. Macfarlane – Understanding the Material Applications of Chemistry.

    His work with one of these new building blocks, self-assembling nanocomposite tectons (NCTs), put the Macfarlane lab on the map. He points out that while nanoparticle self-assembly is a decades-old concept, the field has persistently struggled to develop scalable, cost-effective methods to implement the innovation. At best, most researchers in the field making scalable materials this way can develop 2D films (i.e., a material that coats a full square centimeter area, but is only a few micrometers thick). Nobody had succeeded in building large structures that were macroscopic in all three dimensions until Macfarlane and his lab stepped in. Their innovation uses more scalable, cost-effective components like synthetic polymers as nanoparticle coatings to drive the particle assembly process. The resulting materials derive their properties from the original nanoparticle, but “sprinkling on these decorative objects,” as Macfarlane explains it, allows the particles to spontaneously organize themselves. The key advances enabled by the polymer coatings they use include greater scalability, but also greater composition versatility and better processability — meaning they can not only make the materials, but also shape them into physical forms that are critical for industrial use.

    Rather than reinventing the wheel for every potential device application or material, Macfarlane tunes his NCTs, imbuing them with particular properties — optical, electrical, or mechanical — enabling faster turnaround between envisioning or designing a new structure and beginning the process of fabricating it. As for potential applications, Macfarlane says, “The modular nature of NCTs provides multiple design handles to alter the composition, size, and thermodynamics of assembly to introduce new geometric arrangements and properties of the resulting material. As a result, these structures have potential application in the areas of plasmonics and photonics, heterogeneous catalysis, and energy storage.”

    More recently, the Macfarlane group has begun exploring cross-linkable nanoparticles. Otherwise referred to as “the XNP concept,” it has gained significant traction with industry. These XNPs similarly consist of nanoparticles coated with polymers, but with a key addition — the polymers can be chemically cross-linked after they are molded into the appropriate physical form. This cross-linking switches the XNP building blocks from being soft and malleable (i.e., a toothpaste or “Silly Putty”-like consistency) to being rigid, like a traditional plastic. While such materials are commonplace in polymer development, the Macfarlane lab’s XNPs are able to make such materials while still remaining as much as 85 percent-by-weight (wt%) nanoparticle content. For comparison, similar materials typically have about 1-10 wt% nanoparticle.

    This new XNP-enabled composition space enables combinations of properties that are otherwise nearly impossible to access. The work borrows similar ideas from NCTs in that XNPs are also nanoparticles coated in polymers, but applies to a wider range of materials and pushes the bar for scalability even higher as the specific polymers used are even easier to synthesize. Applications for this material might include protective coating for a battery or a micro electronic device that enables rapid heat dissipation to prevent device burnout. Other potential future applications include low dielectric materials required for 5G and 6G communications, scratch-resistant anti-reflection coatings for lenses and mirrors, or porous materials for gas separation and storage.

    “There are a host of different things that we are thinking about in the optical, mechanical, chemical, and thermal spaces,” says Macfarlane. “The XNP concept has become an enabling technology for all sorts of different applications. And we’ve been talking with multiple industry partners, each of which has their own specific niche. One of the advantages is that the XNP approach enables a plug-and-play concept where we can change out the polymer, change out the particle, or change out the physical form of the object being made, but the XNP concept remains the same.”

    Speaking of industry collaboration, Macfarlane notes a recent collaboration with a large adhesives company. “We were able to take some very simple constructs that we had been working with, and by sprinkling in a tiny amount of them to these adhesives, we kept the stickiness of the tape intact and increased the cohesive strength by factor of three. This is a very immediate, obvious real-world impact from something that we might not have even thought of if we hadn’t been talking with industry.”

    Going forward, Macfarlane says he and his lab intend to develop new materials with an eye toward scalability, sustainability, and versatility — using the templates that they have already developed and expanding them into the most impactful areas of application. “At the Macfarlane Lab, we don’t build one-off materials or one-off devices,” he says. “We build platforms that allow a multitude of people to make a variety of applications, devices, and technologies. Industry doesn’t always consider the limitations of the current materials-design catalogue. In my lab at MIT, we’re working to provide off-menu options to solve your real-world challenges.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT School of Engineering is one of the five schools of the Massachusetts Institute of Technology, located in Cambridge, Massachusetts. The School of Engineering has eight academic departments and two interdisciplinary institutes. The School grants SB, MEng, SM, engineer’s degrees, and PhD or ScD degrees. The school is the largest at MIT as measured by undergraduate and graduate enrollments and faculty members.

    Departments and initiatives:

    Departments:

    Aeronautics and Astronautics (Course 16)
    Biological Engineering (Course 20)
    Chemical Engineering (Course 10)
    Civil and Environmental Engineering (Course 1)
    Electrical Engineering and Computer Science (Course 6, joint department with MIT Schwarzman College of Computing)
    Materials Science and Engineering (Course 3)
    Mechanical Engineering (Course 2)
    Nuclear Science and Engineering (Course 22)

    Institutes:

    Institute for Medical Engineering and Science
    Health Sciences and Technology program (joint MIT-Harvard, “HST” in the course catalog)

    (Departments and degree programs are commonly referred to by course catalog numbers on campus.)

    Laboratories and research centers

    Abdul Latif Jameel Water and Food Systems Lab
    Center for Advanced Nuclear Energy Systems
    Center for Computational Engineering
    Center for Materials Science and Engineering
    Center for Ocean Engineering
    Center for Transportation and Logistics
    Industrial Performance Center
    Institute for Soldier Nanotechnologies
    Koch Institute for Integrative Cancer Research
    Laboratory for Information and Decision Systems
    Laboratory for Manufacturing and Productivity
    Materials Processing Center
    Microsystems Technology Laboratories
    MIT Lincoln Laboratory Beaver Works Center
    Novartis-MIT Center for Continuous Manufacturing
    Ocean Engineering Design Laboratory
    Research Laboratory of Electronics
    SMART Center
    Sociotechnical Systems Research Center
    Tata Center for Technology and Design

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    4

    The Computer Science and Artificial Intelligence Laboratory (CSAIL)

    The Kavli Institute For Astrophysics and Space Research

    MIT’s Institute for Medical Engineering and Science is a research institute at the Massachusetts Institute of Technology

    The MIT Laboratory for Nuclear Science

    The MIT Media Lab

    The MIT Sloan School of Management

    Spectrum

    MIT.nano

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 2:48 pm on April 26, 2023 Permalink | Reply
    Tags: "From research to patent to impact - Taking our hydrogen production tech to market", "SOE": solid oxide electrolysis, , Clean Energy, , , Green hydrogen, Not only can the new technology reduce the electricity requirement but also it has the potential to reduce manufacturing costs., Partnering with Australian industry and investors to commercialize technology with the potential to revolutionize how we produce hydrogen., This technology can replace almost one third of the electricity required for hydrogen production with low-cost or waste thermal heat from industrial processes.   

    From “CSIROscope” (AU) At CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization : “From research to patent to impact – Taking our hydrogen production tech to market” 

    CSIRO bloc

    From “CSIROscope” (AU)

    At

    CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization

    4.26.23
    Lucy Crook

    We are partnering with Australian industry and investors to commercialize technology with the potential to revolutionize how we produce hydrogen.

    As a post doctorate, Dr Gurpreet Kaur had big ambitions. Working with her team, she wanted to drive innovation in Australia’s hydrogen production technology. The goal? To reduce the high amount of energy needed in hydrogen production.

    Producing green hydrogen poses a significant challenge due to the high amount of electricity required in electrolysis. The team decided to explore using solid oxide electrolysis (“SOE”) technology as a solution.

    “We developed and evaluated materials for this technology, looking for efficient ways to generate hydrogen and syngas,” Gurpreet recalled.

    “We found that some of the materials were really unique and efficient. So even when we hit roadblocks in this project, we were confident we could leverage the advantages of some of those unconventional materials and wind up with a successful outcome. One with many industry applications.”

    Not only can the new technology reduce the electricity requirement but also it has the potential to reduce manufacturing costs. Now, we’re now partnering with Australian industry and investors to commercialize the technology.

    2
    Gurpreet Kaur has been focusing on improving hydrogen production technologies.

    From research to patent to impact

    Gurpreet Kaur and her team, the innovators behind this breakthrough, have accelerated through an intensive research discovery-to-commercialization journey. They’re focusing on building a team to help take the technology to market.

    The team explored using tubular SOE technology to produce hydrogen from steam, or syngas (synthesis gas) from steam/CO2 feedstock. They experienced both success and failure along the way.

    “With the major shift towards new clean technologies for sustainable energy and fuel production in recent years, we knew we had to find a competitive edge. We focused on achieving a lower cost of fuel by developing efficient materials and processes,” Gurpreet said.

    This technology can replace almost one third of the electricity required for hydrogen production with low-cost or waste thermal heat from industrial processes. It has potential to decarbonize industries globally.

    Our wealth of intellectual property (IP) is adopted to create new products, services, jobs and industries, resulting in competitive advantage for partners, strong returns for investors and economic prosperity for Australia.

    “When we knew we were onto something, we started working with our IP managers to begin the IP protection journey. It was an exciting breakthrough moment to learn our research was unique and could have significant impact.”
    ===
    The path to an industry-endorsed spinout

    The project’s success has attracted plenty of industry attention and collaboration along the way. This includes $2.5 million in funding from the Australian Renewable Energy Agency to further develop and scale-up the technology in collaboration with international partners RayGen, Johnson Matthey, Ben-Gurion University, Northwestern University and ADME Fuels.

    The project was also awarded $1.7 million by Science and Industry Endowment Fund (SIEF). In addition, BlueScope Steel and RFC Ambrian will offer support as industrial and commercial partners, with a total project cost of $3.2 million. The SIEF funding will be complemented by contributions from industry partners. It will support the demonstration and start-up of an experimental program and parallel activities for scaling and growth.

    The team is pleased to have surpassed technical objectives six months into the program.

    Andrew Jones, project commercialization lead said higher efficiency at lower electrical input increases the market appeal of the technology. In addition, low-cost materials, simplicity of manufacture and flexibility in configuration add to its appeal.

    “Hydrogen and syngas (H2/CO) are the feedstock for the production of many value-added chemicals and fuels. So, this technology has a wide range of applications across industries. This includes in steel, ammonia, petrochemical, methanol and heavy transport,” Andrew said.

    “Government and international policies are continuously emerging to support a green hydrogen industry, and global targets of low-cost hydrogen are in place for industries to achieve decarbonization goals.”

    “The technology is good news for industry because it helps them meet these targets. It also dramatically lowers manufacturing costs and cuts out the technical challenges of storing and transporting hydrogen at scale by using hydrogen directly in processes like ammonia and methanol synthesis and steel making.”

    We are now commercializing the technology through a new spin-out company and connecting with strategic and industrial investors.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    CSIRO campus

    CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization , is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    CSIRO works with leading organizations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

    Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organization as CSIRO.

    Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

    Research and focus areas

    Research Business Units

    As at 2019, CSIRO’s research areas are identified as “Impact science” and organized into the following Business Units:

    Agriculture and Food
    Health and Biosecurity
    Data 61
    Energy
    Land and Water
    Manufacturing
    Mineral Resources
    Oceans and Atmosphere

    National Facilities

    CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

    Australian Animal Health Laboratory (AAHL)
    Australia Telescope National Facility – radio telescopes in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

    STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) Parkes Observatory [Murriyang, the traditional Indigenous name], located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: The National Aeronautics and Space Agency

    CSIRO Canberra campus

    ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU)CSIRO R/V Investigator.

    UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

    CSIRO Pawsey Supercomputing Centre AU)

    Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia

    Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia

    Pausey Supercomputer CSIRO Zeus SGI Linux cluster

    Others not shown

    SKA

    SKA- Square Kilometer Array

    Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

    Haystack Observatory EDGES telescope in a radio quiet zone at the Inyarrimanha Ilgari Bundara Murchison Radio-astronomy Observatory (MRO), on the traditional lands of the Wajarri peoples.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: