Tagged: Civil Engineering Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:34 am on August 15, 2022 Permalink | Reply
    Tags: "Heat islands": densley packed urban areas, "Preventing heat islands is a priority for the future of our cities", "The albedo effect": the capacity for lighter colors to reflect heat, , Civil Engineering, , , , Mitigation strategies such as planting trees and other vegetation to create more green spaces can lower the ground-surface temperature by around 5°C in both neighborhoods.,   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Preventing heat islands is a priority for the future of our cities” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    8.15.22
    Sarah Perrin

    1
    Summer series – Master’s project (7). Two EPFL Master’s students carried out meticulous research on heat islands, or densely packed urban areas with features that can aggravate high temperatures during heat waves, posing a serious threat to vulnerable residents.

    The summer of 2022 was unprecedented: the series of heat waves between June and August provided a glimpse of how climate change will make cities increasingly arduous places to live in the summer months. That’s especially true in the most densely populated areas, where tightly packed buildings and ubiquitous concrete and asphalt surfaces can drive up temperatures and rapidly turn city blocks into furnaces. In addition, the darker colors used for urban structures tend to attract and absorb heat. These dense urban areas are known as heat islands, and they’re what two students at EPFL Faculty of Architecture, Civil and Environmental Engineering (ENAC) – Clara Gualtieri and YueWanZhao Yuan – chose to study for their Master’s project in environmental engineering. They conducted important research on heat islands and what can be done to mitigate the effects.

    Heat islands will become an increasingly serious problem as the planet gets warmer. Most of the world’s population now lives in cities, and climate change means they’ll be faced with more and more of the direct consequences of extreme temperatures. These temperatures don’t just diminish people’s health and well-being: they can also be potentially fatal for certain at-risk categories, such as the elderly, chronically ill and homeless. And the methods most people use to cool off – like air conditioning and large fans – require a lot of power and generate even more greenhouse gas emissions, thus fueling the vicious circle of climate change.

    2
    Between the city and the countryside, the temperature differences are on average 4 to 5 degrees.©2022 EPFL/A.Herzog.

    To conduct their research on heat islands, Gualtieri and Yuan analyzed surface temperatures in two Geneva neighborhoods (Les Vernets and Pointe-Nord), based on data collected on the ground, building facades and rooftops. These two neighborhoods are undergoing a large-scale transformation and have various urban development projects in the works as part of the PAV (Praille-Acacias-Vernets) program. The two students developed a set of intricate 3D computer models for each neighborhood that describe the neighborhood’s current temperature profile, the most likely temperature profile in 2050 if no changes are made, the temperature profile under the IPCC’s worst-case scenario (RCP 8.5, where greenhouse gas emissions continue at the same pace, leading to the maximum level of global warming), and the temperature profile if the urban landscape is adapted in order to reduce local temperatures.

    A 10°C increase

    The highest ground-surface temperature that the students found in the two neighborhoods was around 35°C, but their models predicted that this temperature could rise by an average of 10°C, and in some cases by even 15°C in July and August based on their different scenarios.

    The models also showed that mitigation strategies such as planting trees and other vegetation to create more green spaces can lower the ground-surface temperature by around 5°C in both neighborhoods. They discovered that plants in particular can be effective, since the shade they produce has more of an impact than grass simply planted in the ground. Gualtieri and Yuan also note two further measures worth studying: the albedo effect – the capacity for lighter colors to reflect heat – and resurfacing rivers or other bodies of water to significantly cool the ambient air are.

    The students’ findings are the result of a painstaking process whereby they very precisely mapped each neighborhood in order to generate the most complete 3D models possible. Their models incorporate a huge amount of information, including the local morphology and topography, the surface of all built structures (e.g., rooftops, building façades and roads, and smaller structures like ledges and guardrails) – including the structures’ size, slope and thermal properties – street furniture, the different materials used, green areas, shaded areas and more. “Our simulations ended up incorporating more than 100,000 surfaces,” says Gualtieri.

    3
    One of the simulations of two districts of Geneva (Les Vernets and Pointe-Nord). ©2022 EPFL/LESO.

    “A major problem”

    Gualtieri and Yuan obtained their data from existing data sets including the Swiss Federal Register of Buildings and Dwellings and weather databases. The students then ran different applications, namely Rhino, a piece of 3D-modeling software, and CitySim, a simulation program developed at EPFL specifically for urban planners. CitySim lets urban planners estimate the thermal and physical proprieties of buildings and their power requirements, which is valuable information for designing strategies to minimize the use of fossil fuels.

    “Gualtieri and Yuan’s research shows that heat islands will become a major problem by 2050 if we don’t start cutting back on fossil-fuel emissions,” says Kavan Javanroodi, a postdoc at EPFL’s Solar Energy and Building Physics Laboratory (LESO-PB). “Urban planners need to start addressing this issue early on in their projects. This research also highlights what certain strategies can achieve in terms of heat reduction, thus giving Geneva’s urban planners a starting point for combating temperature peaks and extreme microclimate conditions in the city’s developing neighborhoods.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 9:58 am on August 12, 2022 Permalink | Reply
    Tags: "A new method boosts wind farms’ energy output without new equipment", , “Greedy”: Wind turbines are controlled to maximize only their own power production as if they were isolated units with no detrimental impact on neighboring turbines., By using a centralized control system the collection of turbines was operated at power output levels that were as much as 32 percent higher under some conditions., Civil Engineering, , Engineers at MIT and elsewhere have developed an algorithm to maximize the power generated by wind farm turbines., , From a flow-physics standpoint putting wind turbines close together in wind farms is often the worst thing you could do., , The energy output of such wind farm installations can be increased by modeling the wind flow of the entire collection of turbines and optimizing the control of individual units accordingly., The ideal approach to maximize total energy production would be to put them as far apart as possible but that would increase the associated costs., , The vast majority of virtually all wind turbines are part of larger wind farm installations involving dozens or even hundreds of turbines the wakes of which can affect each other., Wind turbines are often strongly affected by the turbulent wakes produced by others that are upwind from them — a factor that individual turbine-control systems do not currently take into account.   

    From The Massachusetts Institute of Technology: “A new method boosts wind farms’ energy output without new equipment” 

    From The Massachusetts Institute of Technology

    8.11.22
    David L. Chandler

    1
    Illustration shows the concept of collective wind farm flow control. Existing utility-scale wind turbines are operated to maximize only their own individual power production, generating turbulent wakes (shown in purple) which reduce the power production of downwind turbines. The new collective wind farm control system deflects wind turbine wakes to reduce this effect (shown in orange). This system increased power production in a three-turbine array in India by 32 percent. Image: Victor Leshyk.

    Virtually all wind turbines, which produce more than 5 percent of the world’s electricity, are controlled as if they were individual, free-standing units. In fact, the vast majority are part of larger wind farm installations involving dozens or even hundreds of turbines, whose wakes can affect each other.

    Now, engineers at MIT and elsewhere have found that, with no need for any new investment in equipment, the energy output of such wind farm installations can be increased by modeling the wind flow of the entire collection of turbines and optimizing the control of individual units accordingly.

    The increase in energy output from a given installation may seem modest — it’s about 1.2 percent overall, and 3 percent for optimal wind speeds. But the algorithm can be deployed at any wind farm, and the number of wind farms is rapidly growing to meet accelerated climate goals. If that 1.2 percent energy increase were applied to all the world’s existing wind farms, it would be the equivalent of adding more than 3,600 new wind turbines, or enough to power about 3 million homes, and a total gain to power producers of almost a billion dollars per year, the researchers say. And all of this for essentially no cost.

    The research is published today in the journal Nature Energy [below], in a study led by MIT Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering Michael F. Howland.

    “Essentially all existing utility-scale turbines are controlled ‘greedily’ and independently,” says Howland. The term “greedily,” he explains, refers to the fact that they are controlled to maximize only their own power production as if they were isolated units with no detrimental impact on neighboring turbines.

    But in the real world, turbines are deliberately spaced close together in wind farms to achieve economic benefits related to land use (on- or offshore) and to infrastructure such as access roads and transmission lines. This proximity means that turbines are often strongly affected by the turbulent wakes produced by others that are upwind from them — a factor that individual turbine-control systems do not currently take into account.

    “From a flow-physics standpoint putting wind turbines close together in wind farms is often the worst thing you could do,” Howland says. “The ideal approach to maximize total energy production would be to put them as far apart as possible,” but that would increase the associated costs.

    That’s where the work of Howland and his collaborators comes in. They developed a new flow model which predicts the power production of each turbine in the farm depending on the incident winds in the atmosphere and the control strategy of each turbine. While based on flow-physics, the model learns from operational wind farm data to reduce predictive error and uncertainty. Without changing anything about the physical turbine locations and hardware systems of existing wind farms, they have used the physics-based, data-assisted modeling of the flow within the wind farm and the resulting power production of each turbine, given different wind conditions, to find the optimal orientation for each turbine at a given moment. This allows them to maximize the output from the whole farm, not just the individual turbines.

    Today, each turbine constantly senses the incoming wind direction and speed and uses its internal control software to adjust its yaw (vertical axis) angle position to align as closely as possible to the wind. But in the new system, for example, the team has found that by turning one turbine just slightly away from its own maximum output position — perhaps 20 degrees away from its individual peak output angle — the resulting increase in power output from one or more downwind units will more than make up for the slight reduction in output from the first unit. By using a centralized control system that takes all of these interactions into account, the collection of turbines was operated at power output levels that were as much as 32 percent higher under some conditions.

    In a months-long experiment in a real utility-scale wind farm in India, the predictive model was first validated by testing a wide range of yaw orientation strategies, most of which were intentionally sub-optimal. By testing many control strategies, including sub-optimal ones, in both the real farm and the model, the researchers could identify the true optimal strategy. Importantly, the model was able to predict the farm power production and the optimal control strategy for most wind conditions tested, giving confidence that the predictions of the model would track the true optimal operational strategy for the farm. This enables the use of the model to design the optimal control strategies for new wind conditions and new wind farms without needing to perform fresh calculations from scratch.

    Then, a second months-long experiment at the same farm, which implemented only the optimal control predictions from the model, proved that the algorithm’s real-world effects could match the overall energy improvements seen in simulations. Averaged over the entire test period, the system achieved a 1.2 percent increase in energy output at all wind speeds, and a 3 percent increase at speeds between 6 and 8 meters per second (about 13 to 18 miles per hour).

    While the test was run at one wind farm, the researchers say the model and cooperative control strategy can be implemented at any existing or future wind farm. Howland estimates that, translated to the world’s existing fleet of wind turbines, a 1.2 percent overall energy improvement would produce more than 31 terawatt-hours of additional electricity per year, approximately equivalent to installing an extra 3,600 wind turbines at no cost. This would translate into some $950 million in extra revenue for the wind farm operators per year, he says.

    The amount of energy to be gained will vary widely from one wind farm to another, depending on an array of factors including the spacing of the units, the geometry of their arrangement, and the variations in wind patterns at that location over the course of a year. But in all cases, the model developed by this team can provide a clear prediction of exactly what the potential gains are for a given site, Howland says. “The optimal control strategy and the potential gain in energy will be different at every wind farm, which motivated us to develop a predictive wind farm model which can be used widely, for optimization across the wind energy fleet,” he adds.

    But the new system can potentially be adopted quickly and easily, he says. “We don’t require any additional hardware installation. We’re really just making a software change, and there’s a significant potential energy increase associated with it.” Even a 1 percent improvement, he points out, means that in a typical wind farm of about 100 units, operators could get the same output with one fewer turbine, thus saving the costs, usually millions of dollars, associated with purchasing, building, and installing that unit.

    Further, he notes, by reducing wake losses the algorithm could make it possible to place turbines more closely together within future wind farms, therefore increasing the power density of wind energy, saving on land (or sea) footprints. This power density increase and footprint reduction could help to achieve pressing greenhouse gas emission reduction goals, which call for a substantial expansion of wind energy deployment, both on and offshore.

    What’s more, he says, the biggest new area of wind farm development is offshore, and “the impact of wake losses is often much higher in offshore wind farms.” That means the impact of this new approach to controlling those wind farms could be significantly greater.

    The Howland Lab and the international team is continuing to refine the models further and working to improve the operational instructions they derive from the model, moving toward autonomous, cooperative control and striving for the greatest possible power output from a given set of conditions, Howland says.

    “This paper describes a significant step forward for wind power,” says Charles Meneveau, a professor of mechanical engineering at Johns Hopkins University, who was not involved in this work. “It includes new ideas and methodologies to effectively control wind turbines collectively under the highly variable wind energy resource. It shows that smartly implemented yaw control strategies using state-of-the-art physics-based wake models, supplemented with data-driven approaches, can increase power output in wind farms.” The fact that this was demonstrated in an operating wind farm, he says, “is of particular importance to facilitate subsequent implementation and scale-up of the proposed approach.”

    The research team includes Jesús Bas Quesada, Juan José Pena Martinez, and Felipe Palou Larrañaga of Siemens Gamesa Renewable Energy Innovation and Technology in Navarra, Spain; Neeraj Yadav and Jasvipul Chawla at ReNew Power Private Limited in Haryana, India; Varun Sivaram formerly at ReNew Power Private Limited in Haryana, India and presently at the Office of the U.S. Special Presidential Envoy for Climate, United States Department of State; and John Dabiri at California Institute of Technology. The work was supported by the MIT Energy Initiative and Siemens Gamesa Renewable Energy.

    Science paper:
    Nature Energy

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 10:28 am on July 22, 2022 Permalink | Reply
    Tags: "University of Saskatchewan (CA) researcher:: Discovery of ‘young’ deep groundwater tells surprising tale", A newly funded project in the Colorado Plateau led by McIntosh is also examining the relationship between subsurface hydrology and life in more detail., , Civil Engineering, , , Geological Engineering, , The Paradox Basin located in southeastern Utah and southwestern Colorado, The study findings are related to the rapid geologic changes over the past three million to 10 million years in the Colorado Plateau., The team plans to extend this work to other regions including the Canadian Prairies., The University of Saskatchewan (CA), This study is among the first to employ a relatively new krypton-81 technique to date deep groundwater., Unexpectedly young groundwater at a depth where conventionally much older aquifers are located.   

    From The University of Saskatchewan (CA): “University of Saskatchewan (CA) researcher:: Discovery of ‘young’ deep groundwater tells surprising tale” 

    From The University of Saskatchewan (CA)

    Jul 19, 2022

    The findings of a recently published study of ancient ground waters have important implications for such practices as carbon sequestration and deep underground storage of waste from nuclear power and oil and gas production, says University of Saskatchewan researcher Dr. Grant Ferguson (PhD).

    1
    The University of Saskatchewan researcher Dr. Grant Ferguson (PhD) and co-author Dr. Jennifer McIntosh (PhD). (Photos: Submitted)

    Groundwater at depths of several hundred metres or more can be hundreds of millions of years old and are often thought of stagnant and isolated from the atmosphere and the water cycle—a reason these subsurface areas are targeted as potential sites for subsurface waste disposal, said Ferguson.

    “But things are more dynamic down there than we thought,” said Ferguson, professor of civil, geological and environmental engineering at The University of Saskatchewan College of Engineering and co-author of the paper in the journal Geophysical Research Letters [below].

    The paper describes the surprising findings in the Paradox Basin located in southeastern Utah and southwestern Colorado, where the research team found unexpectedly young groundwater at a depth where conventionally much older aquifers are located.

    “That’s what was so exciting about this study,” said co-author Dr. Jennifer McIntosh (PhD), Distinguished Scholar at the University of Arizona in the Department of Hydrology and Atmospheric Sciences and adjunct professor at The University of Saskatchewan.

    “We expected to find that groundwater would get progressively older as you go deeper,” said McIntosh . “Instead, we found million-year-old groundwater, which is relatively young, about three kilometres beneath the surface in sediments that are hundreds of millions of years old.”

    McIntosh headed the team on which Ferguson was the lead in physical hydrology. Dr. Jihyun Kim (PhD), now a postgraduate student at the University of Calgary and a former University of Arizona PhD candidate whom McIntosh and Ferguson co-supervised, was first author.

    This study is among the first to employ a relatively new krypton-81 technique to date deep groundwater. Unlike carbon-14, which scientists use to determine the age of materials up to 40,000 years old, the longer decay period of radioactive krypton 81 can be used to calculate the age of water up to 1.2-million-years-old.

    The study findings are related to the rapid geologic changes over the past three million to 10 million years in the Colorado Plateau, where the dramatic incision (downcutting, or erosion under the riverbed) of the large Colorado River, which formed the Grand Canyon, began flushing out ancient groundwaters.

    Before the incision of the Colorado River, the Colorado Plateau was relatively flat and seawater from the Paleozoic era (500 million to 250 million years ago) was trapped within the sediments for hundreds of millions of years, Ferguson said.

    “Essentially, what the incision did was to create drains that let water from the surface to penetrate and flush the ancient highly saline waters in aquifers both above and below the salt deposits at the centre of the deep groundwater system.”

    This research shows landscape evolution can effect a dramatic change in the subsurface environment in a few million years—a short period in geological time, McIntosh said. The study is useful because the same techniques can be applied to characterize sites elsewhere to learn how they are connected to the atmosphere and the surface, she said.

    A newly funded project in the Colorado Plateau led by McIntosh is also examining the relationship between subsurface hydrology and life in more detail, testing the hypothesis that deep circulation of water from the surface could have re-inoculated microbial life into sediments that were deeply buried and sterilized by high temperatures in the geologic past.

    The team plans to extend this work to other regions including the Canadian Prairies, where Ferguson said geological events, such as rise of the Rocky Mountains 80 million to 50 million years ago, and glaciation that covered much of North America starting about 2.8 million years ago would have had created massive hydrological changes.

    “Especially from a Saskatchewan perspective, we are thinking about the different ways we use the subsurface, whether that’s in storing fluids from oil and gas, or carbon sequestration, we will have these legacies going forward,” he said. “I don’t think we have really scrutinized these systems in ways that we could or should.”

    Science paper:
    Geophysical Research Letters

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Saskatchewan is a Canadian public research university, founded on March 19, 1907, and located on the east side of the South Saskatchewan River in Saskatoon, Saskatchewan, Canada. An “Act to establish and incorporate a University for the Province of Saskatchewan” was passed by the provincial legislature in 1907. It established the provincial university on March 19, 1907 “for the purpose of providing facilities for higher education in all its branches and enabling all persons without regard to race, creed or religion to take the fullest advantage”. The University of Saskatchewan is the largest education institution in the Canadian province of Saskatchewan. The University of Saskatchewan is one of Canada’s top research universities (based on the number of Canada Research Chairs) and is a member of the U15 Group of Canadian Research Universities (the 15 most research-intensive universities in Canada).

    The university began as an agricultural college in 1907 and established the first Canadian university-based department of extension in 1910. There were 120 hectares (300 acres) set aside for university buildings and 400 ha (1,000 acres) for the U of S farm, and agricultural fields. In total 10.32 km^2 (3.98 sq mi) was annexed for the university. The main university campus is situated upon 981 ha (2,425 acres), with another 200 ha (500 acres) allocated for Innovation Place Research Park. The University of Saskatchewan agriculture college still has access to neighboring urban research lands. The University of Saskatchewan’s Vaccine and Infectious Disease Organization (VIDO) facility, (2003) develops DNA-enhanced immunization vaccines for both humans and animals. The university is also home to the Canadian Light Source synchrotron, which is considered one of the largest and most innovative investments in Canadian science.

    Since its origins as an agricultural college, research has played an important role at the university. Discoveries made at the U of S include sulphate-resistant cement and the cobalt-60 cancer therapy unit. The university offers over 200 academic programs.

    Rankings

    The University of Saskatchewan has placed in post-secondary school rankings. In the 2021 Academic Ranking of World Universities rankings, the university ranked 301–400 in the world and 13–18 in Canada. The 2023 QS World University Rankings ranked the university 458th in the world and 17th in Canada. The 2022 Times Higher Education World University Rankings placed the university 501–600 in the world, and 18–19 in Canada. In U.S. News & World Report 2022 global university rankings, the university placed 510th, and 20th in Canada. In Maclean’s 2022 rankings, Saskatchewan placed 15th in their Medical-Doctoral university category, and 21st in their reputation ranking for Canadian universities.

    Research

    In 1948, the university built the first betatron facility in Canada. Three years later, the world’s first non-commercial cobalt-60 therapy unit was constructed. The success of these facilities led to the construction of a linear accelerator as part of the Saskatchewan Accelerator Laboratory in 1964 and placed university scientists at the forefront of nuclear physics in Canada. The Plasma Physics Laboratory operates a tokamak on campus. The university used the SCR-270 radar in 1949 to image the Aurora for the first time.

    Experience gained from years of research and collaboration with global researchers led to the University of Saskatchewan being selected as the site of Canada’s national facility for synchrotron light research, the Canadian Light Source [above]. This facility opened October 22, 2004 and is the size of a football field.

    The university also is home to the Vaccine and Infectious Disease Organization. Innovation Place Research Park is an industrial science and technology park that hosts private industry working with the university.

    Partner universities

    Beijing Institute of Technology, Beijing, China
    Xi’an Jiao Tong University, Xi’an, China
    University of Greifswald, Greifswald, Germany
    Darmstadt University of Technology, Darmstadt, Germany
    Vellore Institute of Technology, India
    University of Oslo, Norway
    University of Canterbury, New Zealand
    University of Oxford, Oxford, England
    Stockholm University, Stockholm, Sweden

     
  • richardmitnick 10:36 am on March 28, 2022 Permalink | Reply
    Tags: "A data-driven approach to cooling", Civil Engineering, , , , UBEMs: urban building energy models   

    From Stanford University Engineering: “A data-driven approach to cooling” 

    From Stanford University Engineering

    at

    Stanford University Name

    Stanford University

    March 22, 2022
    Fernanda Ferreira

    A civil engineer is finding ways to model informal settlements in tropical regions, and using these models to help find universal solutions for extreme heat.

    1
    Too warm? | iStock/ekkawit998.

    Think about the temperature of the room you’re sitting in. Is it too hot? Too cold? Or is it Goldilocks style: just right?

    This perception of a room’s temperature and whether it’s “just right” is called thermal comfort. “Everybody can understand thermal comfort,” says Rishee Jain, an assistant professor of civil and environmental engineering at Stanford. “Being uncomfortable on a very hot and humid day is something pretty much everybody in the world can empathize with.”

    More than discomfort, excessive heat has very real health consequences: When the body can no longer manage high levels of heat and humidity, it begins to overheat, leaving people vulnerable to heat-related illnesses like heat stroke, which can be fatal. The process, known as heat stress, already impacts hundreds of millions of people globally, particularly those living in the global south and tropical regions.

    Rising temperatures mean rising rates of heat stress, with some researchers estimating that 1.2 billion people will be impacted by extreme heat and humidity by 2100. This means more incidents of heat-related illnesses, but also further degradation of the environment, including more droughts and wildfires, lower air quality and decreased agricultural production. Urban areas, where grass and forest have been replaced by pavements and buildings that absorb heat, are particularly vulnerable to rising temperatures. As the world warms and more people move to urban areas – an estimated 7 out of 10 people will live in cities by 2050 – how to keep the world cool is a major issue.

    From his lab at Stanford, Jain is working with collaborators across three continents to find universal solutions for this issue that can be adopted as a global policy, with a special focus on informal settlements in urban areas. The biggest challenge, he says, is finding solutions for extreme heat that don’t mortgage the future. Air conditioning, for example, is great at cooling buildings, but it accelerates climate change. So he and his lab are instead creating more reliable models of urban buildings that they are using to find feasible retrofits that can help cool homes and protect people without contributing to climate change.

    The importance of being contextualized

    When engineers first began modeling buildings, they would model them as if they were sitting in a field. But this, Jain points out, doesn’t represent how we actually build, especially in cities. “If you model the building in the middle of a field, you’d be missing a lot of things,” says Jain, such as the way closely packed buildings create their own microclimates.

    All of these missing elements influence a building’s temperature: Shade provided by a neighboring skyscraper cools it, while sunlight reflected on it by the glass office building across the street raises the temperature. Maintaining a building at a temperature that provides comfort is energy expensive, eating up between 30 and 40 percent of a building’s total energy usage.

    To really understand how buildings in cities use energy and to find energy-efficient solutions for thermal comfort, it’s vital to not model them in a vacuum, but rather in their urban context. To do this, engineers developed urban building energy models (UBEMs) that represent entire cities. Jain’s research uses these UBEMs to help cities understand their energy usage and develop plans to achieve their decarbonization goals, including determining which buildings should be targeted for retrofits and energy-efficiency policies.

    So far, UBEMs have primarily been used to model cities in North America and Europe. Urbanization, however, is a global trend, and much of it is happening in the global south. As people move from rural areas to cities in search of opportunities, many end up living in informal settlements, where they are more vulnerable to heat stress. So in 2016 Jain began talking about the challenges of applying UBEMs to informal settlements in the global south with Ronita Bardhan, an urban engineer now at The University of Cambridge (UK).

    One of the main challenges is that these models are data hungry; to build a reliable model you need to know what the building looks like, what materials it’s built from, how it heats and cools throughout the day, as well as hundreds of other inputs. But data is scarce, particularly in the global south. “If it’s a challenge in San Francisco,” says Jain, “how are we going to do it in Mumbai and other parts of the world?”

    The solution was on-the-ground work with sensors in Dharavi, the largest informal settlement in Asia, located in Mumbai, India. Working with the nonprofits Dost Education and CORP India, Jain and Bardhan held workshops with members of the community to explain the reasons for the research and the impacts it could have. “And then we solicited volunteers who were willing to allow us to install these sensors in their space and collect some data,” Jain says.

    For two weeks during the summer month of August in 2016, these sensors collected around-the-clock information on heat and humidity inside homes in Dharavi. The fieldwork also revealed that the way people in Dharavi use and occupy their homes was dramatically different from previous UBEMs. Homes are multi-generational and multi-use. “The space is always occupied,” says Jain. “So this notion that in the hottest part of the day no one’s home was quickly broken.” In reality, young children and the elderly are often home during these hours.

    With the data collected, Jain and Bardhan created UBEMs of an archetypal home in a Dharavi neighborhood. They also simulated how proposed redevelopments would impact thermal comfort in these dwellings. Dharavi is slated for future redevelopment, which would demolish the current low-rise buildings and replace them with high-rise social housing. Though there are a number of advantages to high-rise housing, Jain and Bardhan found that thermal comfort was not one of them. The work, Jain says, could help guide building design for more sustainable redevelopment.

    From Dharavi to the world

    For Jain, the paths his research has taken have been influenced by conversations with other researchers. It was through talks with Bardhan that the work to develop UBEMs in Dharavi came about. It was having coffee with Narasimha Rao, now an associate professor at Yale University’s School of Environment, during a conference in 2018 that Jain realized the work done in Dharavi could be extrapolated to other informal settlements and even drive global policy.

    Dharavi, which is home to about 1 million people, is not an outlier. Globally, 1 in 8 people live in informal settlements; in the last few years, the number of people living in these settlements has steadily increased. Jain, working with Alex Nutkiewicz, PhD ’21, who was a graduate student in his lab, chose 17 cities in Brazil, India, Indonesia, Kenya and South Africa and got to work.

    Together with Alessio Mastrucci of the International Institute for Applied Systems Analysis (IIASA) they built upward of 150,000 unique models of homes in informal settlements, developing a dataset that they could then use to probe different design solutions for extreme heat. “What would happen is we chose a concrete roof versus corrugated metal,” says Nutkiewicz, giving one example. “How would that impact the future energy and thermal performance of these buildings?”

    As was done in Dharavi, Jain and Nutkiewicz explored how future redevelopment in the informal settlements would impact thermal comfort and heat stress, but they also looked at the impact of tangible retrofits that could be put in place more easily. For example, what happens if windows are kept open or overhangs are added above windows? With the models they built, the researchers wanted to “figure out if there were any cross-city solutions that could be deployed in many cities around the world,” says Nutkiewicz.

    Of all the retrofits they explored, one rose to the top: cool roofs. Painting the roofs of buildings with a white, highly reflective paint, so that roofs bounce off sunlight instead of absorbing it, could reduce heat stress incidents by 91 percent, according to their simulations. “We knew cool roofs could have an impact,” says Jain, “but we didn’t think it would be so effective at mitigating that high end of the spectrum.”

    Unlike large-scale redevelopment, cool roofs and other retrofits are solutions that can be adopted now. “This indicated that you don’t hold out for a better solution and let people suffer today,” says Jain. Another benefit of cool roofs is that they are an adaptable solution, with the potential to mitigate heat stress in informal settlements across the globe. This universal nature makes cool roofs more likely, Jain explains, to be adopted as a policy by a nongovernmental organization and rolled out.

    The promise of an adaptable solution for extreme heat that could then drive global policy is, for Jain, one of the motivations of his focus on informal settlements. Policy is not untrod territory for Jain. He has been interested in it since his PhD studies, where he was part of an integrated graduate program between engineering and urban planning; “planners are much more used to engaging with policymakers,” he explains.

    “For me, policy provides some grounding and constraints to what is actually doable,” says Jain. And he’s not alone; policy is also a huge interest of his students. “Many of them realized that simply building a good technical analysis wasn’t going to get the job done,” says Jain. “I can really say that this generation of engineers understands the impact policy could have.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford Engineering has been at the forefront of innovation for nearly a century, creating pivotal technologies that have transformed the worlds of information technology, communications, health care, energy, business and beyond.

    The school’s faculty, students and alumni have established thousands of companies and laid the technological and business foundations for Silicon Valley. Today, the school educates leaders who will make an impact on global problems and seeks to define what the future of engineering will look like.
    Mission

    Our mission is to seek solutions to important global problems and educate leaders who will make the world a better place by using the power of engineering principles, techniques and systems. We believe it is essential to educate engineers who possess not only deep technical excellence, but the creativity, cultural awareness and entrepreneurial skills that come from exposure to the liberal arts, business, medicine and other disciplines that are an integral part of the Stanford experience.

    Our key goals are to:

    Conduct curiosity-driven and problem-driven research that generates new knowledge and produces discoveries that provide the foundations for future engineered systems
    Deliver world-class, research-based education to students and broad-based training to leaders in academia, industry and society
    Drive technology transfer to Silicon Valley and beyond with deeply and broadly educated people and transformative ideas that will improve our society and our world.

    The Future of Engineering

    The engineering school of the future will look very different from what it looks like today. So, in 2015, we brought together a wide range of stakeholders, including mid-career faculty, students and staff, to address two fundamental questions: In what areas can the School of Engineering make significant world‐changing impact, and how should the school be configured to address the major opportunities and challenges of the future?

    One key output of the process is a set of 10 broad, aspirational questions on areas where the School of Engineering would like to have an impact in 20 years. The committee also returned with a series of recommendations that outlined actions across three key areas — research, education and culture — where the school can deploy resources and create the conditions for Stanford Engineering to have significant impact on those challenges.

    Stanford University

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 11:32 am on March 15, 2022 Permalink | Reply
    Tags: "Building for Science and Society", Civil Engineering, , Elaine McCluskey-project manager extraordinaire-retires., , , ,   

    From Symmetry: “Building for Science and Society” Elaine McCluskey, project manager extraordinaire, retires. 

    Symmetry Mag

    From Symmetry

    03/15/22
    Nikita Amir

    The career of Elaine McCluskey, who most recently served as project manager constructing the future facility for the Deep Underground Neutrino Experiment, has had a lasting impact.

    1
    Elaine McCluskey, project manager extraordinaire, retires.
    “Elaine has put her heart and soul into moving this project forward, overcoming countless challenges,” said Chris Mossey, project director of LBNF/DUNE-US. “LBNF/DUNE simply would not be where it is today without Elaine’s extraordinary dedication and leadership.” Photo: Sanford Underground Research Facility.

    As a child, Elaine McCluskey liked to make things. Growing up in the 1950s and ’60s, this translated into hobbies considered appropriate for girls: making crafts, sewing clothes and cooking.

    “I even made my own prom dress pattern,” she says.

    At school, her interest translated into a passion for math and science. As she neared graduation, her father, an electrical engineer, encouraged her to enroll in a joint undergraduate degree in physics and civil engineering.

    She spent three years at Carleton College in Minnesota before transferring to Washington University in St. Louis.

    “I was very much encouraged by my parents to never feel like I couldn’t go do something,” she says. “It was very, very important that I felt empowered to go and do whatever I want, wherever I wanted to do it.”

    That encouragement helped her weather the challenges of finding her way in a male-dominated field. The career she built touched the lives of many, ranging from students and educators to medical professionals and patients to physicists and engineers.

    From small cohort to smaller cohort

    At Carleton, McCluskey studied physics in a class about a third of which was made up of women. This was unusual; when she graduated in 1976, women were awarded just 11% of bachelor’s degrees in physics in the United States, according to the American Institute of Physics.

    The ratio was different when she studied civil engineering in St. Louis. In 1978, the year she earned her second degree, women earned just 8.9% of bachelor’s degrees in engineering in the United States, according to the National Science Foundation.

    There were barely any other women in civil engineering, McCluskey says. At the meetings for the American Society for Civil Engineers, there were only five women in her cohort. They were unable to wear the name tags the society provided, as the tags were designed to be slipped into a suit jacket pocket.

    “‘I don’t have a suit jacket, and I don’t have a pocket to put that in, what can we do about that?’” she asked the organizers. After she brought it up, they switched to pin-on name tags instead. “I felt that was quite a victory for myself,” she says.

    Later in her career, McCluskey became an engineering consultant. She says that the number of women around her dropped even further; she was often the only one in the room. McCluskey made do with the support she could find.

    “I’ve often had men who are my confidants or my professional role models, just because there aren’t women there to do that. And so oftentimes, I would rely on just personal friends to talk through things.”

    Building for society

    It was in college that McCluskey figured out exactly what she wanted to do.

    She remembers watching through her dorm window as workers poured the foundation for a new building. She says that at the time, she wondered: How do they know it’s going to stand up? Who decided that that amount of concrete in that shape is the right thing to do?

    McCluskey says she was taken by “the whole business of eventually creating this beautiful building.”

    For McCluskey, civil engineering is all about helping people. It’s about building structures and systems so that a society can function. “Civil engineering is very much in the fabric of what a society needs in order to be in a good place.”

    Over her career, she has built schools, hospitals, and even a reinforced support for the statue of the goddess Ceres atop the Chicago Board of Trade.

    “To me, designing a school and a hospital, those are fundamental things that everybody needs,” McCluskey says. “And if I can make a school that’s going to last a long time and be really useful for our community, then I feel a lot of reward driving by that school, knowing that I’ve done something that can help a lot of people.”

    As she gained experience, McCluskey became interested in taking on new challenges as well. That’s when she heard about a job at the DOE’s Fermi National Accelerator Laboratory. After initially working part-time, she was hired full-time by the Facilities Engineering Services Section in 1995.

    Civil engineering requirements for different projects are often pretty similar. Not at Fermilab, though. “The scientists want to do an experiment and maybe change the matrix and change our thinking about the world,” she says. “It’s the passion that comes with the work that really drives us to want to continue to do what is sometimes very hard or something that’s not been done before.”

    One of her first projects was one of her most challenging: the remodeling of the laboratory’s main building, Wilson Hall [above]. Inspired by a cathedral, it consists of two concrete sides that slope gently together as they reach more than 200 feet in the air. The hall is visible from most of the lab’s flat 6,800-acre site.

    The problem was that the iconic building had begun dropping small pieces of concrete. McCluskey and her team set to work rebuilding parts of the hall floor by floor, replacing windows, skylights, water piping and the entire front entrance. To make things more complex, the project needed to be completed while the building remained occupied, so much of the work happened at night.

    McCluskey says that for years afterward, she took pride in checking every time she walked by to make sure everything was in perfect condition.

    McCluskey made sure that everyone on a project could take that same pride in their work, says fellow project manager Jolie Macier, who started working with McCluskey in those early days. The key was giving her team the guidance they needed to work independently.

    But she also found ways to help team members work well together, Macier says. During Women’s History Month a few years ago, McCluskey brought in a puzzle celebrating women in science and engineering. “It provided this meeting point over the course of a couple of days for people to stop and talk with each other,” Macier says. “It obviously wasn’t only about the puzzle. It was more about this moment and creating this interaction.”

    During the winter, McCluskey would bring amaryllis to the office. She would nurture them at home before sharing them in the winter, the only time of year when their flowers bloom.

    “Everything isn’t just about working on the to-do list, but really looking at ways that help people feel like they’re part of something,” Macier says.

    For the last 12 years, McCluskey has worked as project manager on one final, adventurous build for Fermilab: the beamline and cavernous homes for the huge particle detectors of the international Deep Underground Neutrino Experiment, the lab’s flagship LBNF/DUNE project.

    More than 1,400 scientists and engineers from over 35 countries are collaborating on DUNE. The experiment needs a facility that produces a neutrino beam and sends it straight through the earth to the DUNE detectors, first at the Fermilab site, and then 800 miles away to a former-mine-turned-underground-laboratory in Lead, South Dakota. There, shielded underground to better study subatomic particles, scientists aim to discover what role neutrinos play in the universe.

    “Elaine is the rock that held the LBNF/DUNE project together for a decade and advanced it to where we are today,” says Fermilab Director Nigel Lockyer. “Her even-keel approach to problem solving was masterful and highly appreciated in a difficult project.”

    Chris Mossey, project director of LBNF/DUNE-US, agrees. “Elaine has put her heart and soul into moving this project forward, overcoming countless challenges. LBNF/DUNE simply would not be where it is today without Elaine’s extraordinary dedication and leadership.”

    About 800,000 tons of rock need to be moved to create the underground space for the DUNE detectors at the Sanford Underground Research Facility. Excavation is underway. When complete, the new Long-Baseline Neutrino Facility at SURF will have a total floor space of about the area of two soccer fields. The facilities will include large cryostats, underground nitrogen refrigeration and argon recirculation systems.

    That work will need to be completed without McCluskey, though; in February, she announced her retirement.

    But she isn’t turning her back on her passions. She still serves as a volunteer in the Frank Lloyd Wright Trust, an architectural nonprofit in Chicago. And in June, McCluskey plans to meet up with fellow Carleton physics alumni for a reunion they hold every five years.

    “It’s always a special time for the physics majors to get together,” she says, “and those women from that physics year are always there.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 3:15 pm on February 18, 2022 Permalink | Reply
    Tags: "Their assignment? Design a more equitable future", , Civil Engineering, Harvard design students reimagine the US Interstate Highway System, ,   

    From The Harvard Gazette (US): “Their assignment? Design a more equitable future” 

    From The Harvard Gazette (US)

    At

    Harvard University (US)

    Harvard design students reimagine the US Interstate Highway System

    1
    Students in Daniel D’Oca’s fall studio examined injustices created by U.S. interstate highway system.
    Credit: Rose Lincoln/Harvard Staff Photographer.

    February 17, 2022
    Christina Pazzanese

    The assignment wasn’t simple, but it was relevant: Find ways to help communities around the country address racial injustice created by the nation’s biggest infrastructure project — the U.S. Interstate Highway System.

    “No other policy shaped the built environment in the U.S. more than the Interstate Highway System. I’m in awe of it in many ways. But its influence wasn’t all, or even mostly, good,” said Daniel D’Oca, an urban planner and associate professor in practice of urban design at Harvard Graduate School of Design, who led a fall studio for students to reimagine how public land might be used if the highways were removed or relocated. The exercise was inspired by President Biden’s pledge to set aside funds from the Infrastructure and Investment Jobs Act to redress the harm done to communities of color by federal public works projects.

    Launched during the Eisenhower administration, the U.S. Interstate Highway initiative added close to 50,000 miles of new roads in about two decades, speeding travel and the transport of goods, boosting auto sales, and ushering in the era of suburbia. But it came at great cost to the environment, to public health, and to Black, Latino, Indigenous, and low-income neighborhoods that were targeted for clearance or split by highway planners.

    Residents lost homes and businesses, churches, and parks to freeway bulldozers. Neighborhoods were divided or sheared off from the surrounding community by multilane highways, decks, and ramps, further depressing property values. The roads meant more people spent more time in cars, releasing more pollutants into the environment and worsening asthma and other negative health effects, particularly for those who remained in more congested urban neighborhoods.

    Working with liaisons in a dozen U.S. cities, students reimagined how sections of the interstate system that had been a source of harm could become a community benefit. Students engaged with neighborhood, community, and civic groups, along with city and state officials, to anchor the designs in local priorities and better grasp the complexities of public works funding.

    In addition the class visited several cities, including Boston, MA and Portland, ME, to examine projects underway and learn how local officials had resolved various challenges. Students toured a local success in Jamaica Plain with community advocates — the restoration of part of famed landscape architect Frederick Law Olmsted’s Emerald Necklace of parks and greenways and reconfiguration of the crossroads at Forest Hills that followed the state’s removal of the Monsignor William J. Casey overpass in 2015.

    In December 2021, students presented their designs to a 14-member panel of academic critics.

    One involved Interstate 10, which ripped through the heart of New Orleans’ historic Tremé district when it was constructed in the late 1950s. Singled out by Biden, it’s perhaps the best-known example of the discriminatory effects of many public works projects. The highway deck was erected over Claiborne Avenue, Tremé’s main thoroughfare and a once-thriving Black neighborhood and commercial center with a rich musical and cultural legacy that was mere feet from homes and businesses. The deck was built with little regard for the damage it would do to the community and its residents.

    2
    3
    (2) Photo from 1968 shows Claiborne Avenue before expressway was built over it, ripping up oak trees and tearing apart the thoroughfare sometimes called the “Main Street of Black New Orleans.” Courtesy of the New Orleans Public Library/Photograph by Joseph C. Davi; Gerald Herbert/AP file Photo.

    “So much of our project was thinking about how the highway can mediate the different memories associated with it, the trauma associated with the highway, and also trying to use that infrastructure as healing,” said Darien Carr ’17, M.Arch I ’23, and Marina DeFrates, ’17, M.Arch I ’23.

    For years, debate roiled over what to do about the rusted-out highway deck, pitting residents against political and business interests and resulting in little except hard feelings. But its poor condition, the danger it poses to drivers who have nowhere to pull over safely during a breakdown or traffic stop, and the prevalence of drive-by shootings, along with the draconian eminent domain takings that repairing the deck would require, turned public sentiment in favor of removal.

    Much of the students’ research and work with liaison Amy Stelly of the Claiborne Avenue Alliance involved understanding the area’s complicated history and culture so their proposal, which they called “Thirdline” as a playful nod to New Orleans’ famous parade tradition known as the “Second Line” was grounded in the community’s priorities.

    “Culture, regardless of whether you’re in New Orleans or New York, has to be fundamental to the idea. It has to be a big consideration. Otherwise, it’s not going to be accepted,” said Stelly.

    Despite near-consensus that the interstate deck no longer served the city well, Carr and Frates could see that with politically connected development interests sited along the deck and many buskers and Carnival krewes assembling under it because it follows the Mardi Gras parade route, simply proposing a removal was not necessarily the best approach.

    Instead, they offered several proposals, ranging from completely removing the deck to keeping fragments as historic markers or repurposing them, and then recycling demolished materials into community amenities like multi-use paths with permeable paving.

    “I think for Marina and I, it was important that we were engaging and that this didn’t become a project that was just an architecture project about the aesthetic and design, but was rooted in these very real concerns of memory, but also feasibility and the real-life context,” said Carr.

    Seeing the challenges that climate change presents to urban planners, Sai Joshi MAUD ’22, was intrigued by Interstate 35 in Duluth, Minnesota. With its proximity to Lake Superior and low population density, Duluth has attracted media attention in recent years for what some believe is its potential as a refuge from rising temperatures brought about by climate change.

    The highway cuts through the downtown, adding heavy emissions and traffic to Duluth’s most populous area, and residents say it forms a physical and psychological barrier that makes it more difficult to navigate around the city and limits access to the lake, Joshi said.

    While there was general support for removing the highway deck, several obstacles soon emerged. Local transportation officials worried that redirecting vehicles through the city would create traffic volume; the land where the deck once stood would require significant rezoning before it could be redeveloped; and most troubling, frequent stormwater surges from Lake Superior sometimes caused flooding.

    Joshi had to pivot from highway removal and redesign to a reconsideration of the city grid and its relationship to the lake — in effect climate-resiliency planning.

    “All of this land … is suddenly going to be filled with water. What is that going to look like? How do I make these connections? That is still a challenge,” she said.

    It’s something Joshi wants to continue exploring in the future. “I think so many cities and coastal cities across the world are going to face this challenge. Living with water is going to be one of the many things that are going to be landscape solutions for mitigation or adaptation.”

    3
    The class reimagined highways in 10 cities. Courtesy of Daniel D’Oca.

    When New York state highway 33 was built between 1957 and 1971, it divided downtown Buffalo in two, separating the city’s largely Black population on the east side from its predominantly white residents on the more affluent west side. The project forced 600 Black families out of their homes and paved over a historically significant green space designed by Olmsted and his partner, Calvert Vaux, in the late 1800s.

    The highway project not only seized property by eminent domain, greatly reducing what displaced owners were paid in exchange, it eliminated much-needed housing for thousands of Black residents who had few places to go because of redlining, limited economic resources, and job mobility.

    Though New York state allocated $6 million for an initial study and site design in 2016 to consider redirecting the highway, which is in a below-grade, open-air trench, or putting a cap over it, Xiaoji Zhou, MLA II/MDes ’22, said it’s not clear how much work has been completed.

    But Zhou said it became very clear in talking to different constituencies that no consensus had yet developed on what should be done with the 14 acres of former green space. The most organized and vocal advocates were pushing to restore Olmsted’s tree-lined lawn, but the cost and geography limitations, regulatory requirements, and civic obligation to serve a diverse array of modern uses makes a true Olmsted restoration unlikely.

    Locals involved for decades told Zhou how difficult it has been to reach out to the broader community to build support for various ideas.

    “Even though they’re making progress, a lot of people — like those born after the expressway had been completed — had no vision for what a parkway could be, so it was hard for them to envision why we need to put it back,” she said.

    To overcome this common planning hurdle, Zhou designed and built a community engagement tool where, like a game board, stakeholders can assemble and reassemble color-coded blocks that represent different elements of a potential project. The city of Buffalo plans to use Zhou’s tool for its continuing work on the highway project.

    he project also brought forward issues Zhou hadn’t anticipated. Some members of the community, including the Black American Chamber of Commerce, were in favor of restoring the Olmsted parkway in hopes that it would raise property values and benefit homeowners who have had to live for decades with a highway 200 feet from their front doors. Given the park’s important legacy, restoring it seemed like the obvious, most desirable outcome, at first.

    But it could lead to the negative effects of gentrification, as research shows that sharply rising property values often make an area prohibitively expensive for Black homeowners and residents, forcing them to sell or move, Zhou noted.

    “But then I realized it’s not only about bringing back part of the history,” she said. “It’s more about, how do you really strengthen a community nowadays?”

    For D’Oca, the students successfully generated ideas that were “big, bold, and long-term,” but also “sensitive and responsive” to a community’s needs.

    “As designers and planners, we too often assume that creativity and reality are at odds: that accommodating community preferences restrains creativity and undermines good design” he said. “I think these students demonstrated that this isn’t the case. I was really impressed with their ability to digest the sometimes-conflicting feedback they received … and create visions that are enticing to people in and out of Gund Hall.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Harvard University campus

    Harvard University (US) is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s bestknown landmark.

    Harvard University (US) has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University (US)’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University (US) had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University (US)’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University (US) has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University (US) was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge(UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University (US) has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University (US)’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University (US) became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University (US)’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University (US)’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University (US) professors to repeat their lectures for women) began attending Harvard University (US) classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University (US) has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University (US).

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University (US)’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
  • richardmitnick 11:20 am on February 3, 2022 Permalink | Reply
    Tags: "Designs for the real world", , Because kids grow so quickly the prosthetics have to be replaced or resized every few years., , Civil Engineering, , Creating an affordable 3D-printed prosthetic for children born with upper limb congenital disorders., , , It wasn’t easy work making a 3D-printed prosthetic with bendable knuckles; an opposable thumb and compressible fingertips., , , This interdisciplinary program bridges the gap between theory and practice and it prepares the students well for what lies ahead after graduation.   

    From The University of Delaware (US): “Designs for the real world” 

    U Delaware bloc

    From The University of Delaware (US)

    February 02, 2022
    Maddy Lauria
    Photos courtesy of Cameron Jones and Ashlyn Kapinski

    1
    This 3D-printed prosthetic hand for children was created by University of Delaware students as part of the College of Engineering’s Capstone Design Program. The program challenges senior engineering students to design, build and create a solution to an engineering challenge posed by an industry sponsor.

    Senior engineering students team up to solve industry problems.

    Helping children with disabilities complete everyday tasks that many of us take for granted — like picking up a water bottle or throwing on a backpack — was an effort University of Delaware biomedical engineering senior and Honors student Cameron Jones knew he could get behind.

    Jones didn’t hesitate to sign up during the fall semester to be on the team tasked with creating an affordable 3D-printed prosthetic for children born with upper limb congenital disorders. Not only are high-end prosthetics extremely expensive and often not covered by insurance, but because kids grow so quickly they have to be replaced or resized every few years. It’s simply not possible for many families to spend the tens of thousands of dollars every few years on a new prosthetic.

    “It’s no fault of the kids, parents or families that they’re in this situation,” Jones said. “This is a great project to help the kids have a little more functionality. Why not just help the kids out?”

    From 3D prosthetics to automating food packaging operations to optimizing aircraft engines, 224 senior engineering students from the College of Engineering, including Jones, had the opportunity to work with big-name companies and philanthropic organizations on real-world problems during the fall 2021 Capstone Design Program. The students represented the College’s Departments of Biomedical Engineering, Civil and Environmental Engineering, Electrical and Computer Engineering and Mechanical Engineering, with the majority coming from the biomedical and mechanical disciplines.

    At the beginning of the fall semester, Jones and three of his classmates teamed up and chose, from over 50 challenges, the project proposed by the MORE Foundation, an Arizona-based nonprofit whose mission is to empower individuals to “Keep Life in Motion ” through innovative research, community education and charitable assistance.

    While the students’ creation may not be as high-tech as expensive prosthetics that include electrical and sensing systems, it offers families who had to go without any assistance an affordable solution to make their children’s lives just a bit better.

    But it wasn’t easy work making a 3D-printed prosthetic with bendable knuckles; an opposable thumb and compressible fingertips. The trial-and-error process students explored ultimately led to a prototype that may enable a young person the ability to pick up something like a toy, a spoon or a water bottle for the first time in their lives.

    “Even in our final prototype, there are things we want to improve on,” Jones said. “But that’s the iterative process of engineering: you just have to keep redesigning and keep building.”

    In mid-December, about four months after accepting their engineering design challenge, Jones’s team and 51 others showcased their projects at the culmination of this six-credit interdisciplinary course. Since the program started in 1999, over 500 design challenges have been tackled by 2,000 engineering students working with 100 industry, academic and community sponsors. This time, sponsors included Stanley Black & Decker, Under Armour and Christiana Care, just to name a few.

    Many sponsors are looking to upgrade or expand existing products or technologies in new ways to make consumers’ lives easier or safer. For example, the Maryland-based tool and hardware manufacturer Stanley Black & Decker challenged mechanical engineering students to come up with a new dual floor cleaning solution that would allow for mopping and vacuuming within one tool.

    “This interdisciplinary program bridges the gap between theory and practice and it prepares the students well for what lies ahead after graduation,” said Ashutosh Khandha, assistant professor in the Department of Biomedical Engineering.

    Pandemic problems

    COVID-19 has posed unprecedented challenges for most industries, and companies are looking for innovative ways to address their unique problems. In the case of W.L. Gore & Associates, company officials wanted to showcase how well its N95 mask performs against its competitors.

    Not only would their project have to interactively display how the mask works, and do so safely, but it would also have to be aesthetically pleasing since it would be on display for anyone passing through the Gore Capabilities Center in Newark, Delaware.

    Working on a project related to the pandemic was important to mechanical engineering senior Clare Dudley, who said her family has been hard hit by COVID-19.

    “This is something we built that a big company like Gore is going to use and hearing them say they liked it was really cool,” Dudley said.

    Now, as these students head to graduate school, industry or elsewhere, they’ll be able to say their design is on display for a well-known international company. Khandha said about two-thirds of UD engineering students pursue industry careers after graduation, so facing a challenge on a tight timeline (the months-long semester) prepares them for the real world.

    In addition to the devastation and problems the pandemic has caused, the expanded use of virtual meeting formats has also made it easier than ever to connect across continents and time zones. While a return to campus this fall revived the hands-on, in-person elements of the program, 2021 also marked the first time an international sponsor participated in the Capstone Design Program.

    The University of Cape Town (SA) proposed three interdisciplinary engineering projects, including one that could have a significantly positive impact on low-income families struggling with a surprisingly common medical condition.

    Around the world, a variety of diseases can lead to anorectal malformations that can be life-threatening and often require surgery, devoted at-home care and follow-up procedures. In South Africa, a severe wealth disparity means that some families are unable to afford the devices needed to help a child recover from anoplasty, a procedure that involves reconstruction of the anus.

    “When people don’t have really good access to dilators, they use household objects,” said faculty adviser Julie Karand, explaining the importance of the University of Cape Town’s effort to find an alternative take-home dilator for communities in South Africa. The device UD students aimed to create was a more affordable and user-friendly version of the dilator kits hospitals would normally give to patients.

    They were able to create a safe, plastic-based product that comes as one unit with exchangeable extensions that are different sizes, instead of a package of separate pieces. The students worked with medical professionals to get the sizing correct and ended up with a product that costs less than $6 to make, which is a fraction of the cost of the hospital-issued devices.

    Not only did they find a cheaper solution, but their design will also be universally available since it can be 3D-printed. The open-source nature of their results was a requirement of the project proposed by the University of Cape Town.

    “We’re trying to provide access to this medical device for everyone,” said biomedical engineering senior Tori Reiner, one of the students on the five-student team that tackled this project. “This project opened my eyes and allowed me to put my foot in the door to start working on something significant like this to make the world a better and healthier place.”

    Lessons learned

    While many of the teams were able to successfully engineer assigned challenges into new and improved solutions, every year there are a few problems posed that cannot be solved in just a matter of months. And over the years, it seems that the challenges have become more and more complicated, said Khandha.

    “We also have a lot more industry focused projects compared to previous years,” he said, noting that despite the increasing level of challenge, students have still been able to succeed year after year.

    From understanding the problem to evaluating multiple solutions to finally designing and creating an end-product, UD’s Capstone Design Program aims to give students the time-constrained, interdisciplinary experiences they’re sure to encounter after graduation.

    The project even inspired Jones’ teammate, Ashlyn Kapinski, an Honors biomedical engineering senior, to create a children’s book on how to use and care for the 3D-printed prosthetic hand.

    “This project has meant so much to me in addition to re-designing the prosthetic hand,” Kapinski said. “I think educating children on how to use their device is crucial to ensuring their safety and avoiding frustration. User guides are usually too dense and technical for a child to understand, and I hope that by providing a guide in a picture-book format, we can better get the right message across in a fun way.”

    While many teams end the semester with a final product, not having a perfect prototype in hand after just a few months isn’t necessarily seen as a failure. In such cases, the projects can continue as independent study the next semester, or the project may return for the next group of senior engineering students to tackle, Khandha said. Even for teams who did finalize their project, these blossoming engineers may still have ideas for further improvements, as is the case with Kapinski and Jones’ team’s 3D prosthetic, for example.

    “Engineers are at the interface of technology and human needs,” Khandha said. “Being able to be productive with limited resources in face of the challenges that we cannot anticipate, like COVID, and still having the fundamental engineering skills to be independent and conduct the required work, that’s a big deal.”

    To see all the 2021 senior design projects, including 90-second videos produced by each of the 52 teams, go to http://www.engr.udel.edu/senior-design-celebration.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The The University of Delaware (US) is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    University of Delaware (US) is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation (US), UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    University of Delaware (US) is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    University of Delaware (US) traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, the University of Delaware (US) signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware (US) expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 4:35 pm on December 18, 2021 Permalink | Reply
    Tags: "Researchers test physics of coral as an indicator of reef health", , Civil Engineering, , , , Marine scientists have relied on a single instrument to calculate flow around reefs. Measurements must be made with limited time and costly tools that can only be anchored in certain locations., , Replication is the foundation of our ability to trust science., , Stanford scientists recently addressed this imbalance demonstrating that measuring the physics of just a small portion of reef with a single instrument can reveal insights., , The researchers conducted field work in different locations within the Salomon Atoll in the Chagos Archipelago in the Indian Ocean., Water movement is foundational to reef success bringing nutrients and food and removing waste; far less research has been focused on the physics of these living communities.   

    From Stanford Earth (US) : “Researchers test physics of coral as an indicator of reef health” 

    From Stanford Earth (US)

    at

    Stanford University Name
    Stanford University (US)

    December 14, 2021

    Danielle T. Tucker
    School of Earth, Energy & Environmental Sciences
    dttucker@stanford.edu
    (650) 497-9541

    Mathilde Lindhart
    School of Engineering
    lindhart@stanford.edu
    (650) 250-9530

    Rob Dunbar
    School of Earth, Energy & Environmental Sciences
    dunbar@stanford.edu

    Alexy Khrizman
    School of Earth, Energy & Environmental Sciences
    khrizman@stanford.edu
    (650) 374-6153


    Stanford Earth Matters.

    Vast amounts of energy flow around the ocean as waves, tides and currents, eventually impacting coasts, including coral reefs that provide food, income and coastal protection to more than 500 million people. This water movement is foundational to reef success bringing nutrients and food and removing waste; yet far less research has been focused on the physics in comparison to the biology of these living communities.

    Stanford scientists recently addressed this imbalance by demonstrating that measuring the physics of just a small portion of reef with a single instrument can reveal insights about the health of an entire reef system. The findings point to low-cost methods for scaling up monitoring efforts of these enigmatic living structures, which are at risk of devastation in a changing climate. The results appeared in the Journal of Geophysical Research: Oceans Dec. 14, 2021.

    “This approach is like building a weather station for coral reefs,” said lead study author Mathilde Lindhart, a PhD student in civil and environmental engineering. “If we have a couple of weather stations around, we can then determine the weather everywhere on the reef.”

    Limited resources

    For decades, marine scientists have often relied on a single instrument to calculate the flow around reefs because the measurements must be made with limited time and costly tools that can only be anchored in certain locations. As a result, they have had to assume that one measurement is representative of flow over the entire reef. This new work confirms that assumption is correct, bringing renewed credibility to previously collected data.

    “Replication is the foundation of our ability to trust science,” said senior study author Rob Dunbar, a professor of Earth system science in Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth). “Our results are building a solid foundation for other studies of coral reef physics.”

    The study authors tested a suite of current meters, which send out sound waves that scatter off the currents and suspended particles, including sediment and plankton, then return with a shift in frequency that translates into flow velocities. They measured the fluid dynamics at different resolutions, with ranges from about 3 to 40 feet, depending on the instrument.

    2
    PhD student Mathilde Lindhart deploys several instruments to measure the flow of water around reefs off Île Anglaise in the Indian Ocean in 2019. Credit: Rob Dunbar.

    “Marine biologists that do research on specific fish or corals or other organisms need to measure the flow,” said study co-author Alexy Khrizman, a PhD student in Earth system science. “It’s very important to know that the choice of the instrument is not going to affect the research. It’s also important that we get the flow and turbulence work correct, otherwise our calculations of production and calcification will not be correct.”

    Serendipitous science

    The researchers conducted field work in different locations within the Salomon Atoll in the Chagos Archipelago in the Indian Ocean, south of the Maldives. They were collecting data about a reef off Île Anglaise as part of a larger initiative to study the British Indian Ocean Territory Marine Protected Area when they realized they were prepared to test the assumption that one instrument would provide enough information to understand the flow of the entire reef.

    “We were sort of testing our toolbox,” Lindhart said. “We had all these instruments in the water already and were actually looking for something else – it’s rare that you have the opportunity to measure the same thing, but in different ways.”

    The researchers used the data they collected to construct a three-dimensional model of the reef and its flow, bringing new clarity to the life of these underwater cities.

    “This is the first three-dimensional construct that tells us how the roughness and its variability from place to place impacts water flow over the reef,” Dunbar said. “There’s a direct correlation between the roughness of the coral reef and the biodiversity of the reef.”

    Fundamental insights

    Through their research, the study authors aim to answer foundational questions about how these incredibly complex structures interact with incoming energy.

    “There are so many ways to study reefs, what we sometimes call the currency by which you’re going to see what’s going on. For most people, it’s fish or the corals themselves,” Dunbar said. “What’s really new is that our currency is different – this paper is about using the physics of moving water as currency.”

    They also hope the findings will be useful to conservation managers. Coral reefs are like “super-efficient cement factories,” according to Dunbar, producing architectures and buildings that are self-healing. Although they comprise less than 1 percent of the surface area of the ocean, reefs are home to about 25 percent of all marine life.

    “In order to make any kind of projection about climate change, we need to know how they are working right now,” Lindhart said. “The beautiful thing about physics is that it’s the same everywhere – once we’ve established some principles, you can take them and use them somewhere else.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Stanford School of Earth, Energy & Environmental Sciences (US), which changed its name from the School of Earth Sciences in February 2015, is one of three schools at Stanford awarding both graduate and undergraduate degrees. Stanford’s first faculty member was a professor of geology; as such it is considered the oldest academic foundation of Stanford University. It is composed of four departments and two interdisciplinary programs. Research and teaching span a wide range of disciplines.

    Earth Sciences at Stanford can trace its roots to the university’s beginnings, when Stanford’s first president, David Starr Jordan, hired John Casper Branner, a geologist, as the university’s first professor. The search for and extraction of natural resources was the focus of Branner’s geology department during that period of Western development. Departments were originally not organized into schools but this changed when the department of geology became part of the School of Physical Sciences in 1926. This changed in 1946 when the School of Mineral Sciences was established and geology eventually split into several departments.

    Stanford University campus
    Stanford University (US)

    Leland and Jane Stanford founded Stanford University (US) to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 11:35 am on December 9, 2021 Permalink | Reply
    Tags: "Ag-inspired engineering", , , Civil Engineering, Common ground between corn and bridges that will allow them to better understand the structural stability upon which both objects rely., How a building or bridge deforms — how it bends or flexes under the weight of cars on it or in the face of a large storm., , , Studying the phenomenon of how or why things bend or flex, , Whether they were looking at concrete or plant material both engineers were trying to quantify the object’s structural stability., While the stakes may seem higher when someone is trying to pinpoint the weak points on a busy bridge so it doesn’t collapse farmers also stand to lose a lot when an entire crop — their livelihood   

    From The University of Delaware (US) : “Ag-inspired engineering” 

    U Delaware bloc

    From The University of Delaware (US)

    December 08, 2021
    Maddy Lauria
    Photos courtesy of Colleges of Engineering and Agriculture and Natural Resources

    1
    Two UD professors from two different colleges have found common ground between corn and bridges that will allow them to better understand the structural stability upon which both objects rely.

    How engineering principals support plant science

    When Tropical Storm Isaias pummeled the East Coast in summer 2020, it created life-threatening tornadoes and weather conditions that ruined homes and flattened farm fields across Delaware. But in Newark, in a small field planted with different varieties of corn, one professor noticed that not all of the plants had the same damage.

    University of Delaware Assistant Professor Erin Sparks wondered: what allows some corn stalks to stay standing while others are knocked to the ground? The answer is complicated, but Sparks is getting much closer to understanding these plant mechanics thanks to an engineering-based approach typically used on man made structures proposed by the College of Engineering’s Monique Head.

    As associate professor and associate chair of the Department of Civil and Environmental Engineering, Head has been using advanced technology and digital image correlation (DIC) to understand and estimate how a building or bridge deforms — how it bends or flexes under the weight of cars on it or in the face of a large storm — without ever having to touch the structure itself. To do that, she utilizes high-resolution cameras that capture an immense amount of data, not unlike the equipment used by professional surveyors. Just like old-school movies, the equipment is used to take an immense amount of photographs that can then be pieced together, analyzed using complex DIC algorithms, allowing Head to see how structures shift over time due to various influences, such as wind or weight.

    It took a few years for Head and Sparks to connect the dots between their work. After four shared events outside of the classroom, including one encouraging young female students to explore futures in science, technology, engineering and math (STEM), and hearing each other use so many similar descriptions as they spoke about their work, they saw clearly that they shared much more common ground than just being science-minded colleagues at UD. Sparks’ questions about corn and Head’s work with bridges were almost exactly the same: whether they were looking at concrete or plant material they were both trying to quantify the object’s structural stability.

    “We realized we were trying to study the phenomenon of how or why things bend or flex,” Head said. “Moreso, we’ve done that with bridges. We wanted to see if we can do the same thing to quantify the response in corn and if we could use the same methodologies in a non-contact way.”

    While the stakes may seem higher when someone is trying to pinpoint the weak points on a busy bridge so it doesn’t collapse farmers also stand to lose a lot when an entire crop — their livelihood — is destroyed because the plants are broken or bent to the ground. And just as some bridge foundations may be difficult to reach, so are the underground root systems of plants like corn.

    “People often think of plants as basically a rigid attachment to the ground and a stick,” said Sparks, who teaches plant molecular biology in UD’s College of Agriculture and Natural Resources. But that’s not the case at all, especially with corn plants, which have a complex above- and below-ground root system that is able to rotate and shift, she said.

    “Dr. Head and her team, Shaymaa Obayes (doctoral student), Luke Timber (master’s student), and David Bydalek (2020 graduate), were able to take measurements of what’s actually happening as plants bend and flex, and translate this information into models,” Sparks said. That modeling approach cuts back on the amount of time needed working directly with the plants in the field, and allows researchers to explore infinite combinations of variables to better understand why the corn behaves the way it does.

    With Head an experienced, tenured professor and Sparks a newer, untenured faculty member, they teamed up in 2020 and pursued funding for their interdisciplinary, collaborative work through UD’s Research Foundation Strategic Initiatives grants, which provided $45,000 in funding to support one doctoral student pursuing this work in Head’s lab.

    But when Shaymaa Khudhair Obayes, a civil engineering doctoral student, first heard about working with corn instead of bridges, she wasn’t so sure how it would pan out.

    “My master’s was related to the design of bridges, and I expected I’d work on bridges as well as I pursued my Ph.D.,” Obayes said, admitting that shifting her focus to corn was quite difficult at first. “It’s kind of like engineering from a different perspective.”

    Applying what she knows about engineering theories and analysis to something new also boosted her confidence in her abilities as a professional, she said. Obayes already has a job in her home country, Iraq, but has many options for her future engineering career.

    “At the end of my work, we learned we can apply all of the engineering theories to the corn and it works very well,” she said. “Now, if someone talks about the connection between agriculture and engineering, I already see the relationship between them and how we can use engineering to make improvements.”

    A collaborative journal paper on their findings is submitted and expected to be published in the near future, Head said.

    By using digital imaging, modeling and analysis tools, these researchers have been able to mimic how a corn plant’s stalk and root system could be represented with engineering mechanics, which Head said has not been done before with field measurements to support the analysis. From there, researchers can try to figure out what attributes caused a plant to stay upright or get knocked to the ground.

    2
    Engineers like Monique Head can learn a lot about the structural stability of a bridge without ever coming into contact with it thanks to structural monitoring techniques that include high-tech cameras and modeling.

    “We can understand the science of why it’s doing what it’s doing,” Head said. “The monitoring enabled us to see things we wouldn’t be able to with the naked eye.”

    Sparks said there’s a lot of interest from companies in trying to understand these characteristics, as well, when they’re breeding different varieties. Knowing exactly what could compromise a corn stalks’ ability to stand tall could lead to hardier plants and better yields for farmers, which would have a positive impact on agricultural-based economies. One company is even trying to figure that out with their own proprietary approach that involves a high-tech wind simulator that allows them to see how well their varieties stand up.

    3
    The same techniques used to understand how bridges withstand loads can be applied to corn as well, allowing researchers to better understand what characteristics help a plant stay standing while others get knocked over by wind, for example.

    “We’re taking a deconstructed approach,” Sparks said. “That if we understand the architectures that lead to stability, then we don’t have to wait for a wind event to select for that. The next question for us is: how do those architectures interact with different soil types or with different management strategies?”

    By scaling down engineering applications and models from a large bridge to a single corn stalk, they were also able to get incredibly fine measurements, down to 1/100 of an inch. That precision has allowed Head to update the models she uses for bridges, as well.

    “That’s a really nice thing about collaborative research: You can see things from other people’s perspectives and really bring it together to something unique,” she said.

    The work is inspired by nature, Head said, but in a way that is helping engineers and scientists better understand what is happening in order to then inform their equations and produce accurate, predictive modeling that would illustrate how specific situations — 50 mile per hour northeast winds, for example — would impact the object they’re studying. It’s also allowing them to take a more holistic approach to these mechanics and has raised questions about how variations in soil properties could be playing a key role in the stability of corn and built structures, as well.

    Their work, which has spanned about two years after hitting delays due to the COVID-19 pandemic, has now opened the door to a wide breadth of future research for faculty and students at UD.

    “We have more ideas than we can possibly manage at the moment,” Sparks said with enthusiasm. “I would call this foundational work, and now we’re going to be able to go in 30 different directions.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The The University of Delaware (US) is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    University of Delaware (US) is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation (US), UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    University of Delaware (US) is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    University of Delaware (US) traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, the University of Delaware (US) signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware (US) expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 8:43 pm on August 3, 2021 Permalink | Reply
    Tags: "Caltech Announces Breakthrough $100 Million Gift to Fund Space-based Solar Power Project", , Civil Engineering,   

    From California Institute of Technology (US) : “Caltech Announces Breakthrough $100 Million Gift to Fund Space-based Solar Power Project” 

    Caltech Logo

    From California Institute of Technology (US)

    August 03, 2021

    Kathy Svitil
    (626) 395‑8022
    ksvitil@caltech.edu

    1
    Collecting solar power in space and transmitting the energy wirelessly to Earth through microwaves enables terrestrial power availability unaffected by weather or time of day. Solar power could be continuously available anywhere on earth.

    Our concept is based on the modular assembly of ultralight, foldable, 2D integrated elements. Integration of solar power and RF conversion in one element avoids a power distribution network throughout the structure, further reducing weight and complexity. This concept enables scalability and mitigates local element failure impact on other parts of the system.

    Most recently we demonstrated the lightest (by an order of magnitude) integrated multifunctional prototype which collects sunlight, converts it to RF electrical power, then wirelessly transmit that power in a steerable beam.
    Credit: Caltech.

    Today, Caltech is announcing that Donald Bren, chairman of Irvine Company and a lifetime member of the Caltech Board of Trustees, donated over $100 million to form the Space-based Solar Power Project (SSPP), which is developing technology capable of generating solar power in space and beaming it back to Earth.

    The donation was made anonymously in 2013, but the gift is now being disclosed as SSPP nears a significant milestone: a test launch of multifunctional technology-demonstrator prototypes that collect sunlight and convert it to electrical energy, transfer energy wirelessly in free-space using radio frequency (RF) electrical power, and deploy ultralight structures that will be used to integrate them.

    Donald Bren first learned about the potential for space-based solar energy manufacturing in an article in the magazine Popular Science and in 2011, he approached Caltech’s then-president Jean-Lou Chameau to discuss the creation of a space-based solar power research project. In 2013, he and his wife, Brigitte, a Caltech trustee, agreed to make the donation to fund the project. The first of the donations that now exceed $100 million was made that year through the Donald Bren Foundation, and the research began.

    2
    From left, Sergio Pellegrino, the Joyce and Kent Kresa Professor of Aeronautics and Professor of Civil Engineering, JPL-Caltech (US) Senior Research Scientist and co-director of the Space-Based Solar Power Project; Brigitte Bren; Donald Bren; Ali Hajimiri, the Bren Professor of Electrical Engineering and Medical Engineering and co-director of the Space-Based Solar Power Project; and Richard Madonna, project manager of the Space-Based Solar Power Project. Credit: Caltech.

    “Donald Bren has brought the same drive and discipline that he has demonstrated with master planning communities to the Space Solar Program,” says Caltech President Thomas F. Rosenbaum. “He has presented a remarkable technical challenge that promises a remarkable payoff for humanity: a world powered by uninterruptible renewable energy.”

    Donald Bren is best known for master planning and master building the all-new City of Irvine, regularly named one of America’s greenest cities. He has led Irvine Company’s effort to permanently preserve more than 60 percent (57,500 acres) of the Irvine Ranch property along the California coast.

    “I have been a student researching the possible applications of space-based solar energy for many years,” says Donald Bren. “My interest in supporting the world-class scientists at Caltech is driven by my belief in harnessing the natural power of the sun for the benefit of everyone.”

    SSPP aims to ultimately produce a global supply of affordable, renewable, clean energy. A key benefit of harnessing solar power from space is that it provides access to the sun to create power all day, every day, free from weather constraints or darkness of night.

    The project’s first test, which will occur in early 2023, will launch technology prototypes for the solar power generators and RF wireless power transfer, and includes a deployable structure measuring roughly 6 feet by 6 feet.

    The Brens have no financial stake in the project and will not benefit financially from any technology that is created.

    “It shows the magnitude of the generosity,” says Ali Hajimiri, Caltech’s Bren Professor of Electrical Engineering and Medical Engineering and co-director of SSPP. “They really want to change the world and truly see this as an opportunity to make a lasting difference for the planet, while generating a broad range of novel technologies with impact in many areas such as wireless power, communications, and sensing.”

    The Bren’s gift has allowed researchers to overcome many early hurdles and funded the hiring of doctoral students to work on the project with a five-year commitment, notes Sergio Pellegrino, Caltech’s Joyce and Kent Kresa Professor of Aerospace and Professor of Civil Engineering and co-director of SSPP. Pellegrino is also a senior research scientist at JPL, which Caltech manages for National Aeronautics Space Agency (US).

    “It allows us to think ahead,” Pellegrino says. “Without that, it couldn’t get done.”

    “Solar energy is the world’s most abundant energy resource. However, sunlight is intermittent at the earth’s surface. This ambitious project is a transformative approach to large-scale solar energy harvesting for the Earth that overcomes this intermittency and the need for energy storage, since sunlight shines continuously in space,” says Harry A. Atwater, who is an SSPP researcher, Otis Booth Leadership Chair of the Division of Engineering and Applied Science and the Howard Hughes Professor of Applied Physics and Materials Science, and director of the Liquid Sunlight Alliance.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Caltech campus

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: