Tagged: Chemical engineering Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:34 am on February 5, 2020 Permalink | Reply
    Tags: "A new stretchable battery can power wearable electronics", , Chemical engineering, , , Providing a safe and comfortable power source for technologies that must bend and flex with our bodies.,   

    From Stanford University Engineering: “A new stretchable battery can power wearable electronics” 

    From Stanford University Engineering

    January 15, 2020.
    Tom Abate

    The experimental device promises to provide a safe and comfortable power source for technologies that must bend and flex with our bodies.

    The adoption of wearable electronics is limited by their need to derive power from bulky, rigid batteries that reduce comfort. | Unsplash/Nadine Shaabana

    Electronics are showing up everywhere: on our laps, in pockets and purses and, increasingly, snuggled up against our skin or sewed into our clothing.

    But the adoption of wearable electronics has so far been limited by their need to derive power from bulky, rigid batteries that reduce comfort and may present safety hazards due to chemical leakage or combustion.

    Now Stanford researchers have developed a soft and stretchable battery that relies on a special type of plastic to store power more safely than the flammable formulations used in conventional batteries today.

    A stretchable battery to power wearable electronics

    “Until now we haven’t had a power source that could stretch and bend the way our bodies do, so that we can design electronics that people can comfortably wear,” said chemical engineer Zhenan Bao, who teamed up with materials scientist Yi Cui to develop the device they describe in the Nov. 26 edition of Nature Communications.

    The use of plastics, or polymers, in batteries is not new. For some time, lithium ion batteries have used polymers as electrolytes — the energy source that transports negative ions to the battery’s positive pole. Until now, however, those polymer electrolytes have been flowable gels that could, in some cases, leak or burst into flame.

    To avoid such risks, the Stanford researchers developed a polymer that is solid and stretchable rather than gooey and potentially leaky, and yet still carries an electric charge between the battery’s poles. In lab tests the experimental battery maintained a constant power output even when squeezed, folded and stretched to nearly twice its original length.

    The prototype is thumbnail-sized and stores roughly half as much energy, ounce for ounce, as a comparably sized conventional battery. Graduate student David Mackanic said the team is working to increase the stretchable battery’s energy density, build larger versions of the device and run future experiments to demonstrate its performance outside the lab. One potential application for such a device would be to power stretchable sensors designed to stick to the skin to monitor heart rate and other vital signs as part of the BodyNet wearable technology being developed in Bao’s lab.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford Engineering has been at the forefront of innovation for nearly a century, creating pivotal technologies that have transformed the worlds of information technology, communications, health care, energy, business and beyond.

    The school’s faculty, students and alumni have established thousands of companies and laid the technological and business foundations for Silicon Valley. Today, the school educates leaders who will make an impact on global problems and seeks to define what the future of engineering will look like.

    Our mission is to seek solutions to important global problems and educate leaders who will make the world a better place by using the power of engineering principles, techniques and systems. We believe it is essential to educate engineers who possess not only deep technical excellence, but the creativity, cultural awareness and entrepreneurial skills that come from exposure to the liberal arts, business, medicine and other disciplines that are an integral part of the Stanford experience.

    Our key goals are to:

    Conduct curiosity-driven and problem-driven research that generates new knowledge and produces discoveries that provide the foundations for future engineered systems
    Deliver world-class, research-based education to students and broad-based training to leaders in academia, industry and society
    Drive technology transfer to Silicon Valley and beyond with deeply and broadly educated people and transformative ideas that will improve our society and our world.

    The Future of Engineering

    The engineering school of the future will look very different from what it looks like today. So, in 2015, we brought together a wide range of stakeholders, including mid-career faculty, students and staff, to address two fundamental questions: In what areas can the School of Engineering make significant world‐changing impact, and how should the school be configured to address the major opportunities and challenges of the future?

    One key output of the process is a set of 10 broad, aspirational questions on areas where the School of Engineering would like to have an impact in 20 years. The committee also returned with a series of recommendations that outlined actions across three key areas — research, education and culture — where the school can deploy resources and create the conditions for Stanford Engineering to have significant impact on those challenges.

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

  • richardmitnick 10:34 am on January 22, 2020 Permalink | Reply
    Tags: "Pioneers in Biomaterials", , Chemical engineering, , Life-saving technologies of modern medicine,   

    From University of Washington – Chemical Engineering: “Pioneers in Biomaterials” 

    From University of Washington – Chemical Engineering

    December 6, 2019 [Just now in social media.]
    Lindsey Doermann

    How visionary chemical engineers at the UW set the stage for decades of biomaterials innovation.

    Illustration from the December 2018 cover of Advanced Biosystems.

    The history of the field has seemingly little to do with the life-saving technologies of modern medicine. The origin story of biomaterials involves parachutes, repurposed car parts, and the Atomic Energy Commission. In the present day, the landscape is comprised of molecules called zwitterions, materials governed by Boolean logic, chemical ‘light sabers,’ and other science fiction-like concepts.

    One can’t explain how we got from the just-make-do approach to biomaterials — using parachute cloth for blood vessel replacements, for example — to today’s precision engineering without talking about some visionary chemical engineers at the University of Washington. UW has had a long history of leadership in biomaterials. And today, ChemE researchers continue to generate new ideas and innovations at the leading edge of the field.

    It’s tough to pinpoint when the term ‘biomaterials’ first appeared, says self-made biomaterials historian Buddy Ratner. But the concept has existed as long as physicians have needed substances — be they natural or synthetic, organic or inorganic — and devices that work harmoniously with the body.

    An early victory for biocompatibility was the first successful kidney dialysis treatment, post-WWII. With a dialysis machine that utilized cellophane and a water pump from a Ford automobile, Dutch physician Willem Kolff revived a comatose woman, who went on to live for seven more years.

    Engineers and physicians at the UW later picked up on this proof of concept. In the early 1960s, nephrologist Belding Scribner was working on hemodialysis as a treatment for acute kidney failure. Wells Moulton connected Scribner with fellow chemical engineer Albert “Les” Babb because of his expertise in mass transfer. Babb, Scribner, and bioengineer Wayne Quinton iterated on devices until they achieved the first portable dialysis machine, thereby ending the era of restrictive, hospital-based treatment.

    “Those guys made the major breakthrough,” says Ratner, a ChemE and bioengineering professor. Though, as Ratner may know better than anyone, they would’ve been mistaken if they thought the problem was solved. But let’s not get ahead of ourselves.

    In 1970, chemical engineer Allan Hoffman came to the UW to join the Center for Bioengineering and the Department of Chemical Engineering. Here, he started the first biomaterials group on campus and one of only a handful in the world at the time. (Today, by Ratner’s running list, there are upwards of 40 faculty at UW alone that either make or heavily use biomaterials.)

    Ratner joined Hoffman’s group as a polymer scientist in 1972, fresh from his Ph.D. work on kidney dialysis membranes. He began research on hydrogels, a mainstay in today’s field but new at the time. Hoffman also recruited now-Professor Emeritus Tom Horbett to this early group.

    In collaboration with physicians, the group moved the needle toward deliberate design of materials for medical devices and drug delivery. “I think we [at the UW] are pioneers in getting engineers and chemists to talk to clinical researchers,” says ChemE professor Cole DeForest. It’s now common practice, he says, but he attributes the shift in part to people such as Hoffman and Ratner.

    Over time, it’s become clear that applying the chemical engineering mindset to problems in biology and medicine has been key to better materials and devices. With nonfouling surfaces, for example, Hoffman figured out how to graft hydrogels onto surfaces such as tubing (using a radiation grafter borrowed from the fisheries department, as it so happens). Then, with a hematologist and a ChemE graduate student, he studied the kinetics of platelets interacting with those surfaces and found a counterintuitive, yet consequential, relationship between hydrogel water content and platelet destruction.

    The group advanced their surface science work in this period with funding from an unlikely source: the Atomic Energy Commission. The AEC fostered peacetime applications of nuclear science (and was abolished in 1974). One such idea was a plutonium 238-powered artificial heart. The AEC funded Westinghouse to develop the device and the UW team to work on the surface materials that would contact blood. Not surprisingly, that particular device didn’t gain traction, but the project kept the group moving forward. Ratner has held onto binders of their monthly reports to the agency as relics of an odd era in U.S. government R&D.

    Buddy Ratner (left) and Tom Horbett (right), shown here in their labs, worked with Allan Hoffman in UW’s first biomaterials group.

    The quest for nonfouling surfaces remains central to the field. Shaoyi Jiang, who joined the ChemE faculty in 2000, brought “incredible energy” to this work, says Ratner, and has consistently driven innovation in biocompatible materials. In what Ratner calls the culmination of 18 years of work, he and Jiang developed and successfully demonstrated an ideal substance that proteins don’t stick to — and hence remains invisible to the body. Their findings resulted in a 2014 Nature Biotechnology paper.

    Current ChemE faculty have advanced other ideas from the original group, such as materials that respond to specific chemical conditions. In 1983, Ratner and Horbett reported the development of a responsive material that delivered a drug based on a stimulus. In this case, it was a hydrogel — call it a “smart” material — that released insulin in response to glucose. Now, says Ratner, “Cole has come along and made smarter materials.”

    Indeed, DeForest is developing materials that respond to well-defined combinations of chemical cues, “adding another level of programmability,” he says. His group recently garnered attention when they showed they could control the release of different therapeutics from a hydrogel by applying Boolean logic. They exposed their material to one or two-input combinations of enzymes, reductants, and light, and triggered the release of bioactive proteins through “yes/or/and” control.

    Looking ahead in other avenues of research, DeForest is excited about taking a protein engineering approach to biomaterials synthesis, as an alternative to more-common synthetic chemistry methods. He also aims to expand his work on synthetic capillaries, which are not only critical in tissue engineering but can also serve as novel tools for basic research.

    Cole DeForest’s group achieved light-controlled release/immobilization of different proteins within a hydrogel biomaterial over time.

    Despite such modern developments in the field, it can be hard to fathom that dialysis has remained fundamentally unchanged since its early successes. Quality of life and outcomes for people receiving dialysis treatment remain shockingly poor, with patient life expectancies hovering at 3–5 years.

    These factors contributed to Ratner and nephrologist Jonathan Himmelfarb establishing the Center for Dialysis Innovation (CDI) at UW in 2016. Continuing a familiar theme in biomaterials development, the center brings together engineers and medical researchers to develop novel solutions that both improve dialysis therapy and give patients more autonomy.

    Its research involves several ChemE faculty who work on the molecular-level and electrochemical aspects of dialysis, including Jiang, Jim Pfaendtner, and Eric Stuve. In one line of inquiry, for example, Pfaendtner is using molecular simulation to understand how toxins besides urea are bound up in the blood — and consequently how dialysis could remove them.

    The CDI’s goals are lofty, given the problems with dialysis that have persisted for decades. With how the biomaterials field has advanced on the UW campus, though, there’s good reason to hope that the time and place are right for serious innovation.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Department

    Educating top-quality engineers is the department’s highest priority. Our students work with internationally-recognized faculty and participate in specialist Ph.D. training in molecular engineering, nanotechnology and clean energy. ChemE faculty and students play key roles in interdisciplinary centers on campus including the Molecular Engineering and Sciences Institute, the Clean Energy Institute, the eScience Institute and the Center for the Science of Synthesis Across Scales. Through continuous curriculum improvements, world-class research and startup creation, we are charting the future of chemical engineering.


    The University of Washington Chemical Engineering community values diversity and inclusiveness, collegiality and respect. Quality and excellence are prized, together with multidisciplinary thinking and entrepreneurial spirit. The department strives for continuous improvement for creativity and innovation in both undergraduate and graduate research and education.


    To educate the next generation of visionaries, prepare students for leadership in diverse careers, create knowledge, and provide multidisciplinary solutions to broad societal problems.

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

  • richardmitnick 3:41 pm on November 12, 2019 Permalink | Reply
    Tags: "SMART discovers nondisruptive way to characterize the surface of nanoparticles", , , Chemical engineering, ,   

    From MIT News: “SMART discovers nondisruptive way to characterize the surface of nanoparticles” 

    MIT News

    From MIT News

    November 12, 2019
    Singapore-MIT Alliance for Research and Technology

    New method overcomes limitations of existing chemical procedures and may accelerate nanoengineering of materials.

    Schematic illustration of probe adsorption influenced by an attractive interaction within the corona.

    Researchers from the Singapore-MIT Alliance for Research and Technology (SMART) have made a discovery that allows scientists to “look” at the surface density of dispersed nanoparticles. This technique enables researchers to understand the properties of nanoparticles without disturbing them, at a much lower cost and far more quickly than with existing methods.

    The new process is explained in a paper entitled “Measuring the Accessible Surface Area within the Nanoparticle Corona using Molecular Probe Adsorption,” published in the academic journal Nano Letters. It was led by Michael Strano, co-lead principal investigator of the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) research group at SMART and the Carbon P. Dubbs Professor at MIT, and MIT graduate student Minkyung Park. DiSTAP is a part of SMART, MIT’s research enterprise in Singapore, and develops new technologies to enable Singapore, a city-state which is dependent upon imported food and produce, to improve its agriculture yield to reduce external dependencies.

    The molecular probe adsorption (MPA) method is based on a noninvasive adsorption of a fluorescent probe on the surface of colloidal nanoparticles in an aqueous phase. Researchers are able to calculate the surface coverage of dispersants on the nanoparticle surface — which are used to make it stable at room temperature — by the physical interaction between the probe and nanoparticle surface.

    “We can now characterize the surface of the nanoparticle through its adsorption of the fluorescent probe. This allows us to understand the surface of the nanoparticle without damaging it, which is, unfortunately, the case with chemical processes widely used today,” says Park. “This new method also uses machines that are readily available in labs today, opening up a new, easy method for the scientific community to develop nanoparticles that can help revolutionize different sectors and disciplines.”

    The MPA method is also able to characterize a nanoparticle within minutes compared to several hours that the best chemical methods require today. Because it uses only fluorescent light, it is also substantially cheaper.

    DiSTAP has started to use this method for nanoparticle sensors in plants and nanocarriers for delivery of molecular cargo into plants.

    “We are already using the new MPA method within DiSTAP to aid us in creating sensors and nanocarriers for plants,” says Strano. “It has enabled us to discover and optimize more sensitive sensors and understand the surface chemistry, which in turn allows for greater precision when monitoring plants. With higher-quality data and insight into plant biochemistry, we can ultimately provide optimal nutrient levels or beneficial hormones for healthier plants and higher yields.”

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

  • richardmitnick 7:16 am on September 7, 2018 Permalink | Reply
    Tags: , , Chemical engineering, , , Piezoelectric materials,   

    From University of New South Wales: ” Accelerometer breakthrough makes energy savings a piezo-cake” 

    U NSW bloc

    From University of New South Wales

    07 Sep 2018

    Lachlan Gilbert
    UNSW Media & Content
    0404 192 367

    Professor Kourosh Kalantar-zadeh
    UNSW Faculty of Engineering
    0488 332 245

    Accelerometers – the motion sensing devices in mobile phones – will be much cheaper to produce in a way that uses much less energy, thanks to new research led by Professor Kourosh Kalantar-zadeh.

    Piezoelectric materials are used in accelerometers in mobile phones that determine tilt, pitch and orientation of the device. Picture: Shutterstock

    Chemical engineering researchers from UNSW and RMIT have discovered a revolutionary way to bring down costs and save energy in the manufacture of accelerometers which are used to detect motion in devices such as mobile phones.

    The research team, which was led by UNSW Chemical Engineering Professor Kourosh Kalantar-zadeh, found a way to ‘print’ large-scale sheets of two-dimensional piezoelectric material, enabling it to be placed directly onto silicon chips [Nature Communication].

    Piezoelectric materials convert applied mechanical force or strain into electrical energy. They form the basis of sound and pressure sensors as well as embedded devices that are powered by vibration or bending. One domestic application is the ‘piezo’ lighter used for gas BBQs and stovetops.

    Piezoelectric materials can also take advantage of the small voltages generated by tiny mechanical displacement, vibration, bending or stretching to power miniaturised devices.

    Until now, piezoelectric material has been manufactured in large chucks of crystals, making it impossible to integrate with silicon chips or use in large-scale surface manufacturing.

    This limitation meant that piezo accelerometer devices – such as vehicle air bag triggers or the devices that recognise orientation changes in mobile phones – have required separate, expensive components to be embedded onto silicon substrates, adding significant manufacturing costs.

    The new 2D printing technique opens the way for gallium phosphate (GaPO4), an important piezoelectric material commonly used in pressure sensors and microgram-scale mass measurement, to be placed onto silicon substrates – or any other surface – on a large scale using low-cost, low-temperature manufacturing processes.

    Professor Kalantar-zadeh, who is an ARC Australian Laureate Fellow, began the research while Professor of Electronic Engineering at RMIT University. He said the work followed on from other wins in the laboratory.

    “As so often in science, this work builds on past successes,” Professor Kalantar-zadeh said. “We adopted the liquid-metal material deposition technique we developed recently to create 2D films of GaPO4 through an easy, two-step process.”

    The researchers believe this simple, industry-compatible procedure to print large surface area 2D piezoelectric films onto any substrate offers tremendous opportunities for the development of piezo-sensors and energy harvesters.

    Dr Torben Daenke is the now the lead collaborator at RMIT working on this project.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    Welcome to UNSW Australia (The University of New South Wales), one of Australia’s leading research and teaching universities. At UNSW, we take pride in the broad range and high quality of our teaching programs. Our teaching gains strength and currency from our research activities, strong industry links and our international nature; UNSW has a strong regional and global engagement.

    In developing new ideas and promoting lasting knowledge we are creating an academic environment where outstanding students and scholars from around the world can be inspired to excel in their programs of study and research. Partnerships with both local and global communities allow UNSW to share knowledge, debate and research outcomes. UNSW’s public events include concert performances, open days and public forums on issues such as the environment, healthcare and global politics. We encourage you to explore the UNSW website so you can find out more about what we do.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: