Tagged: CERN Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:40 pm on January 15, 2016 Permalink | Reply
    Tags: , CERN, , ,   

    From CERN: “A year of challenges and successes” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    Jan 15, 2016
    No writer credit found

    Temp 1
    LHC Page 1

    2015 was a tough year for CERN’s accelerator sector. Besides assuring delivery of beam to the extensive non-LHC facilities such as the AD, ISOLDE, nTOF and the North Area, many teams also had to work hard to bring the LHC back into business after the far-reaching efforts of the long shutdown.

    At the end of 2014 and start of 2015, the LHC was cooled down sector by sector and all magnet circuits were put through a campaign of powering tests to fully re-qualify everything. The six-month-long programme of rigorous tests involved the quench-protection system, power converters, energy extraction, UPS, interlocks, electrical quality assurance and magnet-quench behaviour. The powering-test phase eventually left all magnetic circuits fully qualified for 6.5 TeV.

    Some understandable delay was incurred during this period and three things can be highlighted. First was the decision to perform in situ tests of the consolidated splices – the so called Copper Stabilizer Continuity Measurement (CSCM) campaign. These were a success and provided confirmation of the quality work done during the shutdown.

    Second, dipole-quench re-training took some time – in particular, the dipoles of sector 45 proved a little recalcitrant and reached the target 11,080 A after some 51 training quenches.

    Third, after an impressive team effort co-ordinated by the machine-protection team to conceive, prototype, test and deploy the system, a small piece of metallic debris that was causing an earth fault in a dipole in sector 34 was successfully burnt away on the afternoon of Tuesday 31 March.

    First beam 2015 went around the LHC on Easter Sunday, 5 April. Initial commissioning delivered first beam at 6.5 TeV after five days and first “stable beams” after two months of careful set up and validation.

    Ramp up

    Two scrubbing runs delivered good beam conditions for around 1500 bunches per beam, after a concerted campaign to re-condition the beam vacuum. However, the electron cloud, anticipated to be more of a problem with the nominal 25 ns bunch-spacing beam, was still significant at the end of the scrubbing campaign.

    The initial 50 ns and 25 ns intensity ramp-up phase was tough going and had to contend with a number of issues, including earth faults, unidentified falling objects (UFOs), an unidentified aperture restriction in a main dipole, and radiation affecting specific electronic components in the tunnel. Although operating the machine in these conditions was challenging, the teams succeeded in colliding beams with 460 bunches and delivered some luminosity to the experiments, albeit with poor efficiency.

    The second phase of the ramp-up following the technical stop at the start of September was dominated by the electron cloud and the heat load that it generates in the beam screens of the magnets in the cold sectors. The challenge was then for cryogenics, which had to wrestle with transients and operation close to the cooling-power limits. The ramp-up in number of bunches was consequently slow but steady, culminating in a final figure for the year of 2244 bunches per beam.

    Importantly, the electron cloud generated during physics runs at 6.5 TeV serves to slowly condition the surface of the beam screen and so reduce the heat load at a given intensity. As time passed, this effect opened up a margin for the use of more bunches. Cryogenics operations were therefore kept close to the acceptable maximum heat load, and at the same time in the most effective scrubbing regime.

    The overall machine availability is a critical factor in integrated-luminosity delivery, and remained respectable with around 32% of the scheduled time spent in stable beams during the final period of proton–proton physics from September to November. By the end of the 2015 proton run, 2244 bunches per beam were giving peak luminosities of 5.2 × 1033 cm–2s–1 in ATLAS and CMS, with both being delivered an integrated luminosity of around 4 fb–1 for the year. Levelled luminosity of 3 × 1032 cm–2s–1 in LHCb and 5 × 1030 cm–2s–1 in ALICE was provided throughout the run.

    Also of note were dedicated runs at high β* for TOTEM and ALFA. These provided important data on elastic and diffractive scattering at 6.5 TeV, and interestingly a first test of the CMS-TOTEM Precision Proton Spectrometer (CT-PPS), which aims to probe double-pomeron exchange.

    As is now traditional, the final four weeks of operations in 2015 were devoted to the heavy-ion programme. To make things more challenging, it was decided to include a five-day proton–proton reference run in this period. The proton–proton run was performed at a centre-of-mass energy of 5.02 TeV, giving the same nucleon–nucleon collision energy as that of both the following lead–lead run and the proton–lead run that took place at the start of 2013.

    Good intensities

    Both the proton reference run and ion run demanded re-set-up and validation of the machine at new energies. Despite the time pressure, both runs went well and were counted a success. Performance with ions is strongly dependent on the beam from the injectors (source, Linac3, LEIR, PS and SPS), and extensive preparation allowed the delivery of good intensities, which open the way for delivery of a levelled design luminosity of 1 × 1027 cm–2s–1 to ALICE and more than 3 × 1027 cm–2s–1 to ATLAS and CMS. For the first time in an ion–ion run, LHCb also took data following participation in the proton–lead run. Dedicated ion machine development included crystal collimation and quench-level tests, the latter providing important input to future ion operation in the HL-LHC era.

    The travails of 2015 have opened the way for a full production run in 2016. Following initial commissioning, a short scrubbing run should re-establish the electron cloud conditions of 2015, allowing operation with 2000 bunches and more. This figure can then be incrementally increased to the nominal 2700 as conditioning progresses. Following extensive machine development campaigns in 2015, the β* will be reduced to 50 cm for the 2016 run. Nominal bunch intensity and emittance will bring the design peak luminosity of 1 × 1034 cm–2s–1 within reach. Reasonable machine availability and around 150 days of 13 TeV proton–proton physics should allow the 23 fb–1 total delivered to ATLAS and CMS in 2012 to be exceeded.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 1:26 pm on September 1, 2015 Permalink | Reply
    Tags: , , CERN, , ,   

    From CERN: “ATLAS and CMS experiments shed light on Higgs properties” 

    CERN New Masthead

    01 Sep 2015
    No Writer Credit

    1
    Results of the analyses by individual experiments (coloured) and both experiments together (black), showing the improvement in precision resulting from the combination of results.

    Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual Large Hadron Collider Physics Conference (LHCP 2015). By combining their analyses of the data collected in 2011 and 2012, ATLAS and CMS draw the sharpest picture yet of this novel boson. The new results provide in particular the best precision on its production and decay and on how it interacts with other particles. All of the measured properties are in agreement with the predictions of the Standard Model and will become the reference for new analyses in the coming months, enabling the search for new physics phenomena. This follows the best measurement of the mass of the Higgs boson, published in May 2015 (link is external) after a combined analysis by the two collaborations.

    “The Higgs boson is a fantastic new tool to test the Standard Model of particle physics and study the Brout-Englert-Higgs mechanism that gives mass to elementary particles,” said CERN* Director General Rolf Heuer.

    1
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “There is much benefit in combining the results of large experiments to reach the high precision needed for the next breakthrough in our field. By doing so, we achieve what for a single experiment would have meant running for at least 2 more years.”

    There are different ways to produce a Higgs boson, and different ways for a Higgs boson to decay to other particles. For example, according to the Standard Model, the theory that describes best forces and particles, when a Higgs boson is produced, it should decay immediately in about 58% of cases into a bottom quark and a bottom antiquark. By combining their results, ATLAS and CMS determined with the best precision to date the rates of the most common decays.

    Such precision measurements of decay rates are crucially important as they are directly linked to the strength of the interaction of the Higgs particle with other elementary particles, as well as to their masses. Therefore, the study of its decays is essential in determining the nature of the discovered boson. Any deviation in the measured rates compared to those predicted by the Standard Model would bring into question the Brout-Englert-Higgs mechanism and possibly open the door to new physics beyond the Standard Model.

    “This is a big step forward, both for the mechanics of the combinations and in our measurement precision, ” said ATLAS Spokesperson Dave Charlton. “As an example, from the combined results the decay of the Higgs boson to tau particles is now observed with more than 5 sigma significance, which was not possible from CMS or ATLAS alone.”

    “Combining results from two large experiments was a real challenge as such analysis involves over 4200 parameters that represent systematic uncertainties,” said CMS Spokesperson Tiziano Camporesi. “With such a result and the flow of new data at the new energy level at the LHC, we are in a good position to look at the Higgs boson from every possible angle”.

    • CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. It has its headquarters in Geneva. At present, its member states are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a Candidate for Accession. Serbia is an Associate Member in the pre-stage to Membership. Pakistan and Turkey are Associate Members. India, Japan, the Russian Federation, the United States of America, the European Union, JINR and UNESCO have observer status.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 8:46 am on July 31, 2015 Permalink | Reply
    Tags: CERN, Pakistan   

    From CERN: “Pakistan becomes Associate Member State of CERN” 

    CERN New Masthead

    31 Jul 2015
    Cian O’Luanaigh

    Today, the Islamic Republic of Pakistan became an Associate Member of CERN. This follows notification that Pakistan has ratified an agreement signed in December, granting that status to the country.

    Pakistan and CERN signed a Co-operation Agreement in 1994. The signature of several protocols followed this agreement, and Pakistan contributed to building the CMS and ATLAS experiments. Pakistan contributes today to the ALICE and CMS experiments. Pakistan is also involved in accelerator developments, making it an important partner for CERN.

    The Associate Membership of Pakistan will open a new era of cooperation that will strengthen the long-term partnership between CERN and the Pakistani scientific community. Associate Membership will allow Pakistan to participate in the governance of CERN, through attending the meetings of the CERN Council. Moreover, it will allow Pakistani scientists to become members of the CERN staff, and to participate in CERN’s training and career-development programmes. Finally, it will allow Pakistani industry to bid for CERN contracts, thus opening up opportunities for industrial collaboration in areas of advanced technology.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 9:31 am on July 28, 2015 Permalink | Reply
    Tags: , , CERN,   

    From CERN: “A miniature accelerator to treat cancer” 

    CERN New Masthead

    28 Jul 2015
    Matilda Heron

    1
    Serge Mathot with the first of the four modules that will make up the miniature accelerator (Image: Maximilien Brice/CERN)

    CERN, home of the 27-kilometre Large Hadron Collider (LHC), is developing a new particle accelerator. just two metres long.

    The miniature linear accelerator (mini-Linac) is designed for use in hospitals for imaging and the treatment of cancer. It will consist of four modules, each 50cm long, the first of which has already been constructed. “With this first module we have validated all of the stages of construction and the concept in general”, says Serge Mathot of the CERN engineering department.

    Designing an accelerator for medical purposes presented a new technological challenge for the CERN team. “We knew the technology was within our reach after all those years we had spent developing Linac4,” says Maurizio Vretenar, coordinator of the mini-Linac project. Linac4, a larger accelerator designed to boost negative hydrogen ions to high energies, is scheduled to be connected to the CERN accelerator complex in 2020.

    The miniature accelerator is a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains. RFQs are designed to produce high-intensity beams. The challenge for the mini-Linac was to double the operating frequency of the RFQ in order to shorten its length. This desired high frequency had never before been achieved. “Thanks to new beam dynamics and innovative ideas for the radiofrequency and mechanical aspects, we came up with an accelerator design that was much better adapted to the practical requirements of medical applications,” says Alessandra Lombardi, in charge of the design of the RFQ.

    The “mini-RFQ” can produce low-intensity beams, with no significant losses, of just a few microamps that are grouped at a frequency of 750 MHz. These specifications make the “mini-RFQ” a perfect injector for the new generation of high-frequency, compact linear accelerators used for the treatment of cancer with protons.

    And the potential applications go beyond hadron therapy. The accelerator’s small size and light weight mean that is can be set up in hospitals to produce radioactive isotopes for medical imaging. Producing isotopes on site solves the complicated issue of transporting radioactive materials and means that a wider range of isotopes can be produced.

    The “mini-RFQ” will also be capable of accelerating alpha particles for advanced radiotherapy. As the accelerator can be fairly easily transported, it could also be used for other purposes, such as the analysis of archaeological materials.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 9:34 am on July 16, 2015 Permalink | Reply
    Tags: , CERN, Sri Lanka   

    From CERN: “CERN and Sri Lanka develop partnership” 

    CERN New Masthead

    16 Jul 2015
    Corinne Pralavorio

    1
    CERN Director General Rolf Heuer and Sri Lanka‘s Permanent Representative in Geneva, Ambassador Ravinatha Aryasinha, sign the Expression of Interest witnessed by Mrs. Samantha Jayasuriya, Deputy Permanent Representative and Ms. Dilini Gunasekera, Second Secretary of the Sri Lanka Permanent Mission, and by CERN’s Head of International Relations Rüdiger Voss.(Image: Maximilien Brice/CERN)

    CERN and Sri Lanka have formed a partnership with the aim of formalizing and broadening their cooperation. To this end, CERN Director General Rolf Heuer and Sri Lanka‘s Permanent Representative at the UN in Geneva, Ambassador Ravinatha Aryasinha, signed an Expression of Interest on Thursday 25 June 2015.

    This agreement will pave the way for international cooperation with Sri Lanka in order to enhance collaboration and scholarly exchanges with CERN and to expose students, university scientists, engineers, and research institutes from Sri Lanka to cutting edge technology and research in the field of high-energy physics.

    This agreement incorporates Sri Lanka in CERN’s High School Teachers and Summer Student Programmes. It also aims at preparing a platform that will include scientists from Sri Lanka to participate in CERN’s cutting-edge research programmes. Several scientists from Sri Lankan universities have participated in LHC experiments within the frameworks of sabbatical leaves or similar, whereas others have participated as visiting scientist employed by universities in third countries. In order to allow for a broader and more sustained participation, discussions have started in order to form a “cluster” of Sri Lankan Universities and research institutes with the aim of joining one of the LHC collaborations.

    Sri Lanka is the most recent Asian Country to have strengthened its partnership with CERN. Other countries include those as diverse as Bangladesh, Thailand, Indonesia and Mongolia.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 2:27 pm on May 7, 2015 Permalink | Reply
    Tags: , CERN, , ,   

    From Symmetry: “The US and CERN upgrade their relationship” 

    Symmetry

    CERN LHC particles

    May 07, 2015
    Sarah Charley

    Today in a White House ceremony in Washington, DC, representatives from the US Department of Energy, the US National Science Foundation and the European research center CERN signed a cooperation agreement that lays the groundwork for continued joint research in particle physics and advanced computing both at CERN and in the United States.

    The agreement succeeds an existing US-CERN agreement, signed in 1997 and set to expire in 2017, that was the basis for significant US participation in research at the Large Hadron Collider.

    CERN LHC Map
    CERN LHC Grand Tunnel
    LHC

    The new agreement aligns the United States’ and CERN’s long-term strategies for particle physics and provides for “reciprocity,” opening the way for potential CERN participation in US-hosted experiments, including prospective projects focused on neutrinos.

    “Today’s agreement not only enables US scientists to continue their vital contribution to the important work at CERN, but it also opens the way to CERN’s participation in experiments hosted in the United States,” says Energy Secretary Ernest Moniz in a press release. “As we’ve seen, international collaboration between the United States and CERN helps provide a foundation for groundbreaking discoveries that push crucial scientific frontiers and expand our understanding of the universe.”

    The signing of the new agreement sets the stage for a new level of cooperation. CERN already has established a test facility that is being used to refurbish the 760-ton ICARUS neutrino detector before it is shipped to DOE’s Fermi National Accelerator Laboratory for use in a suite of experiments to search for a new type of neutrino.

    FNAL ICARUS
    ICARUS

    At the same time, more than 1700 scientists from US institutions are working on the next phase of the LHC experiments.

    “I am delighted to sign this agreement,” says CERN Director General Rolf Heuer in the press release. “It allows us to look forward to a fruitful long-term collaboration with the United States, in particular in guiding the Large Hadron Collider to its full potential over many years through a series of planned upgrades. This agreement is also historic since it formalizes CERN’s participation in US-based programs such as prospective future neutrino facilities for the first time.”

    Europe and the United States have a rich history of collaboration in particle physics research. In 1954, American physicist Isidor Rabi served as one of the founding members of CERN. Seven years later, Austrian-American physicist Victor Weisskopf became CERN’s director general. On the other side of the Atlantic, physicist Maurice Goldhaber, who received his PhD in England, became director of DOE’s Brookhaven National Laboratory in 1961, and European-born scientists, such as Carlo Rubbia, played significant roles in shaping the experimental program at Fermilab.

    Scientists from European institutions have made major contributions toward planning and advancing experiments at Fermilab, SLAC and other DOE national laboratories. In the last two decades, they accounted for up to 50 percent of the researchers working on the Tevatron and BaBar experiments in the US, which led to the discovery of the top quark and the observation of quark mixing in greater detail than ever before.

    FNALTevatron
    FNAL CDF
    FNAL DZero
    FNAL/Tevatron

    SLAC Babar
    SLAC/BaBar

    Simultaneously, US scientists played significant roles in the four experiments at CERN’s Large Electron-Positron collider. MIT physicist and Nobel Laureate Sam Ting, for example, led LEP’s L3 experiment.

    CERN LEP
    Cern/LEP

    In the 1990s, CERN invented the technology that would become the World Wide Web, revolutionizing the way in which people share information and do business. European research institutions and three US laboratories—SLAC, Fermilab and MIT—were the first ones to operate Web servers and publish webpages.

    Today, the American and European physics communities remain closely intertwined. Scientists and engineers from US institutions are heavily involved in LHC research, representing 20 percent of the ATLAS collaboration and 33 percent of the CMS collaboration.

    CERN ATLAS New
    ATLAS

    CERN CMS New
    CMS

    US scientists hold key leadership positions within the several-thousand-physicist collaborations, and they lead many of the physics analyses that study the properties of the Higgs boson and look for hints of new physics. UCLA physicist Joe Incandela, who was the spokesperson of the CMS experiment from 2012 to 2014, presented the collaboration’s results at the press conference that announced the discovery of the Higgs boson.

    US institutions also built vital parts of the LHC accelerator, including the focusing magnets that concentrate the high-energy particles into hair-thin beams as they enter the experimental halls and some of the cryogenic systems that keep the superconducting magnets at a frigid 1.7 Kelvin. And US institutions provide approximately a third of the computing power necessary to analyze the LHC data.

    “CERN is a place for explorers, in the truest sense of the word,” says NSF Director France A. Córdova in the press release. “The discoveries enabled by this world-class laboratory—insights into the Standard Model, into the fundamental nature of our universe—have yielded answers to some questions and produced new questions.”

    3
    Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces. It also depicts the crucial role of the Higgs boson in electroweak symmetry breaking, and shows how the properties of the various particles differ in the (high-energy) symmetric phase (top) and the (low-energy) broken-symmetry phase (bottom).

    Fabiola Gianotti, who will become the director general of CERN in 2016, served on the US Particle Physics Project Prioritization Panel, which in May 2014 outlined the plan for US particle physics research for the next decade. The panel’s top recommendations included the United States’ continued participation in LHC research and upgrades, as well as the establishment of an international, world-class neutrino research facility at Fermilab, culminating in the construction of the Deep Underground Neutrino Experiment.

    FNAL DUNE
    DUNE

    CERN is taking steps to coordinate and support European scientists’ participation in the US-based neutrino research program.

    The new agreement between CERN and the US has an initial five-year duration and, unless a change or termination is set in motion, will renew automatically every five years. It will enable American and European scientists to continue to develop technologies, build experiments and seek answers to questions such as: What is dark matter? Why do particles have mass? Are there more Higgs particles? Are neutrinos the key to the dominance of matter over antimatter in our universe?

    “Society and the global research community benefit greatly from productive scientific cooperation across borders,” says John P. Holdren, director of the White House Office of Science and Technology Policy, in the press release. “Today’s agreement is a model for the kinds of international scientific collaboration that can enable breakthrough insights and innovations in areas of mutual interest.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 12:42 pm on March 18, 2015 Permalink | Reply
    Tags: CERN, CERN Control Center,   

    From Symmetry: “Inside the CERN Control Centre” 

    Symmetry

    March 18, 2015
    Sarah Charley

    Take a tour of one of the most important rooms at CERN.

    CERN is more than just the Large Hadron Collider. A complex network of beam lines feeds particles from one accelerator to the next, gradually ramping up their energy along the way.

    Before reaching the LHC, protons must first zip from the source, down a linear accelerator (Linac2), and through a series of other accelerators (the Proton Synchrotron Booster, the Proton Synchrotron and the Super Proton Synchrotron). Ions accelerated at CERN have their own unique journey through another set of accelerators that eventually bring them to the PS, SPS and finally, the LHC.

    At one point, each of CERN’s accelerators had its own team and its own control room—which made communication between the different accelerators cumbersome, says Mike Lamont, the Beam Department’s head of operations. “The guys running the SPS would have to push an intercom to communicate with the PS.” So, during the construction of the LHC, the control rooms were brought together into one room. The CERN Control Centre was born.

    If the accelerator complex is CERN’s nervous system, then the CCC is its brain. Let us take you on a tour of one of the most important rooms at CERN.

    The islands

    The CCC is made up of four “islands,” each a circular arrangement of consoles and displays. Each island hosts the controls for a set of machines.

    1
    Artwork by Sandbox Studio, Chicago

    CERN Control Center

    PS and Booster island

    This island controls the Proton Synchrotron (PS) and Booster, two of the oldest accelerators at CERN. The PS was CERN’s flagship machine when it accelerated its first protons in 1959. Now it passes its particles on to the Super Proton Synchrotron, which feeds particles either to the LHC or a number of fixed-target experiments. The PS also serves a number of other users, which include the anti-proton decelerator (the AD) and a neutron experimental facility (nTOF).

    2

    CERN Proton Synchrotron
    Proton Synchrotron

    CERN Booster
    Booster

    SPS island

    This island controls the Super Proton Synchrotron, the second largest accelerator in CERN’s complex. It ramps up the energy of protons and ions before diverting them to fixed-target experiments or injecting them into the LHC.

    3

    CERN Super Proton Synchrotron
    Super Proton Synchrotron

    LHC island

    This island controls CERN’s largest and most powerful accelerator, the Large Hadron Collider. It’s the end of the line for particles that are about to get the ride of a lifetime. The LHC accelerates protons or ions to even higher energies and drives them into collisions in the center of the massive detectors of the ATLAS, ALICE, CMS and LHCb experiments.

    4

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC

    CERN ATLAS New
    ATLAS

    CERN ALICE New II
    ALICE

    CERN CMS New II
    CMS

    CERN LHCb New II
    LHCb

    Technical infrastructure island

    What would an accelerator be without power? The infrastructure that supports CERN’s accelerator complex is so important that it gets its own island in the CCC. Here, operators oversee things like the ventilation, safety systems and the electrical network. Even during a shutdown when no accelerators are running, there are always two people operating this island. A separate team also based at this island looks after the vast cryogenics system that cools the helium used in the LHC magnets.

    5

    Operators

    The men and women who oversee the performance of the accelerators are a collection of operators, engineers and physicists. They are responsible for ensuring that all of the equipment in CERN’s massive accelerator complex runs like clockwork.

    During operation with beam, there are always at least two operators per island to monitor the machines’ health and safety—even in the middle of the night and over the holidays.

    6

    Champagne bottles

    This row of empty bottles represents the history of the LHC: first beam in the LHC, record energy, record luminosity, first collisions and about a dozen other events. Operators, physicists and engineers celebrated them all with personalized bottles of bubbly—generously donated by the experiments as a “thank you” to the men and women in the CCC.

    7

    Wall screens

    How do you make sure an accelerator is healthy? You can check on it in real time. CERN’s accelerators are outfitted with special technology that monitors things such as beam quality, beam intensity, spacing between the proton bunches, cooling and the power supplies. The computer monitors lining the walls of the CCC give the operators real-time updates about the heath of the accelerators so that they can quickly respond if anything goes wrong.

    8

    Access Control

    Wedged between the computer screens are huge metal boxes with rows of yellow, green and red buttons and dangling keys. It looks like something you might find in a 1960s sci-fi movie, but it is actually the system that controls access to the underground areas.

    “This allows us to let people into ring,” Lamont says. “It’s carefully controlled because this area can contain a high level of radiation, so we want to make sure we know who goes in and out.” The need for very high reliability is so important that the operators in the CCC use physical keys and switches instead of a software system.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 4:07 am on March 6, 2015 Permalink | Reply
    Tags: , , CERN   

    From CERN: “LHC injector tests to begin” 

    CERN New Masthead

    6 Mar 2015
    Cian O’Luanaigh

    1
    A “splash event” in the LHCb detector, recorded during an injection test in 2009 (Image: LHCb)

    With the Large Hadron Collider (LHC) due to start up again at the end of this month, the team in the LHC Control Centre are busy testing the systems that deliver the beams.

    At CERN, a series of accelerators boosts protons or ions to successively higher energies until they are injected into the LHC. The LHC then further accelerates the particles before delivering collisions to the four detectors ALICE, ATLAS, CMS and LHCb. The penultimate accelerator in the chain is the Super Proton Synchrotron (SPS), a machine nearly 7 kilometres in circumference, which receives particles from the Proton Synchrotron at 26 GeV, and boosts them to the 450 GeV needed for injection to the LHC.

    Now, the LHC control team is testing the injection systems to ensure that the upcoming startup of the accelerator runs as smoothly as possible. Though particles will be injected into parts of the LHC this weekend, there will be no fully circulating beams until the planned startup at the end of this month.

    “We will do two tests,” says Ronaldus Suykerbuyk of the LHC operation team. “Beam 1 will pass through the ALICE detector up to point 3, where we will dump the beam on a collimator, and for Beam 2 we will go through the LHCb detector up to the beam dump at point 6.” A screen placed in the beam pipe will register a successful pass as a bright dot. The team will also record other parameters, including the timings of the injection kickers – fast pulsing dipole magnets that “kick” the beam into the accelerator – and the beam trajectory in the injection lines and LHC beam pipe.

    2
    Beams will not circulate all the way around the LHC, but rather reach point 3 and point 6 during the tests (Image: Leonard Rimensberger/CERN)

    “This test really is a massive debugging exercise,” says Mike Lamont, head of the operations team. “We’ve already pre-tested all the control systems without beam. If the beam goes around we’ll be happy!”

    The ALICE and LHCb experiments are preparing their detectors to receive the pulses of particles. “ALICE will receive muons originating from the SPS beam dump,” says ALICE physicist Despina Hatzifotiadou, “They will be used for trigger timing studies and to align the muon spectrometer”.

    LHCb will also be taking data. “These tests create an excellent opportunity for us to commission the LHCb detector and data-acquisition system. The collected data are also invaluable for detector studies and alignment purposes, that is, determining the relative geometrical locations of the different sub-detectors with respect to each other,” says Patrick Robbe of LHCb. “It’s exciting because the tests show that we are getting closer and closer to the restart!”

    But there is still much work to do before first circulating beams, says Suykerbuyk. “We have to finish all the powering tests and magnet training as well as test all the other hardware and beam-diagnostic systems.” It’s going to be a busy few weeks for all concerned.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 9:51 am on December 19, 2014 Permalink | Reply
    Tags: , CERN   

    From CERN: “Long Shutdown 1: Exciting times ahead” 

    CERN New Masthead

    Posted by Cian O’Luanaigh on 8 Feb 2013.
    Updated 11 Dec 2014
    Caroline Duc

    The Large Hadron Collider (LHC) has provided physicists with a huge quantity of data to analyse since the first physics run in 2009. Now it’s time for the machine, along with CERN’s other accelerators, to get a facelift. “Long Shutdown 1” (LS1) will begin on 14 February 2013, but this doesn’t mean that life at CERN will be any less rich and exciting. Although there will be no collisions for a period of almost two years, the whole CERN site will be a hive of activity, with large-scale work under way to modernize the infrastructure and prepare the LHC for operation at higher energy.

    1
    Over 10,000 high-current splices between LHC magnets will be opened and consolidated during the first Long Shutdown of the LHC. This image shows their installation in 2007 (Image: CERN)

    “A whole series of renovation work will be carried out around the LHC during LS1,” says Simon Baird, deputy head of the Engineering department. “The key driver is of course the consolidation of the 10,170 high-current splices (link is external) between the superconducting magnets. The teams will start by opening up the 1695 interconnections between each of the cryostats of the main magnets. They will repair and consolidate around 500 interconnections simultaneously. The maintenance work will gradually cover the entire 27-kilometre circumference of the LHC.” The LHC will be upgraded as well as renovated during the period concerned. In the framework of the Radiation to Electronics project (R2E), sensitive electronic equipment protection will be optimized by relocating the equipment or by adding shielding.

    The work will by no means be confined to the LHC. Major renovation work is scheduled, for example, for the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). During LS1 the upgrade of the PS access control system, which includes the installation of 25 new biometrically controlled access points, will continue. The whole tunnel ventilation system will also be dismantled and replaced, with 25 air-handling units representing a cumulated flow rate of 576,000 cubic metres per hour to be installed around the accelerator’s 628-metre circumference. Meanwhile, at the SPS, about 100 kilometres of radiation-damaged cables used in the instrumentation and control systems will be removed or replaced.

    CERN will take advantage of LS1 to improve the installations connected with the experiments, accelerators, electronics, and so on, with a view to a spectacular resumption of its main activities after the shutdown. While the shutdown work is in progress, life at the laboratory will be anything but boring. Stay tuned to keep abreast of all the developments.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries

     
  • richardmitnick 10:28 pm on December 3, 2014 Permalink | Reply
    Tags: , , , CERN, , , , , , ,   

    From isgtw: “Volunteer computing: 10 years of supporting CERN through LHC@home” 


    international science grid this week

    December 3, 2014
    Andrew Purcell

    LHC@home recently celebrated a decade since its launch in 2004. Through its SixTrack project, the LHC@home platform harnesses the power of volunteer computing to model the progress of sub-atomic particles traveling at nearly the speed of light around the Large Hadron Collider (LHC) at CERN, near Geneva, Switzerland. It typically simulates about 60 particles whizzing around the collider’s 27km-long ring for ten seconds, or up to one million loops. Results from SixTrack were used to help the engineers and physicists at CERN design stable beam conditions for the LHC, so today the beams stay on track and don’t cause damage by flying off course into the walls of the vacuum tube. It’s now also being used to carry out simulations relevant to the design of the next phase of the LHC, known as the High-Luminosity LHC.

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    “The results of SixTrack played an essential role in the design of the LHC, and the high-luminosity upgrades will naturally require additional development work on SixTrack,” explains Frank Schmidt, who works in CERN’s Accelerators and Beam Physics Group of the Beams Department and is the main author of the SixTrack code. “In addition to its use in the design stage, SixTrack is also a key tool for the interpretation of data taken during the first run of the LHC,” adds Massimo Giovannozzi, who also works in CERN’s Accelerators and Beams Physics Group. “We use it to improve our understanding of particle dynamics, which will help us to push the LHC performance even further over the coming years of operation.” He continues: “Managing a project like SixTrack within LHC@home requires resources and competencies that are not easy to find: Igor Zacharov, a senior scientist at the Particle Accelerator Physics Laboratory (LPAP) of the Swiss Federal Institute of Technology in Lausanne (EPFL), provides valuable support for SixTrack by helping with BOINC integration.”

    c
    Volunteer computing is a type of distributed computing through which members of the public donate computing resources (usually processing power) to aid research projects. Image courtesy Eduardo Diez Viñuela, Flickr (CC BY-SA 2.0).

    Before LHC@home was created, SixTrack was run only on desktop computers at CERN, using a platform called the Compact Physics Screen Saver (CPSS). This proved to be a useful tool for a proof of concept, but it was first with the launch of the LHC@home platform in 2004 that things really took off. “I am surprised and delighted by the support from our volunteers,” says Eric McIntosh, who formerly worked in CERN’s IT Department and is now an honorary member of the Beams Department. “We now have over 100,000 users all over the world and many more hosts. Every contribution is welcome, however small, as our strength lies in numbers.”

    Virtualization to the rescue

    Building on the success of SixTrack, the Virtual LHC@home project (formerly known as Test4Theory) was launched in 2011. It enables users to run simulations of high-energy particle physics using their home computers, with the results submitted to a database used as a common resource by both experimental and theoretical scientists working on the LHC.

    Whereas the code for SixTrack was ported for running on Windows, OS X, and Linux, the high-energy-physics code used by each of the LHC experiments is far too large to port in a similar way. It is also being constantly updated. “The experiments at CERN have their own libraries and they all run on Linux, while the majority of people out there have common-or-garden variety Windows machines,” explains CERN honorary staff member of the IT department and chief technology officer of the Citizen Cyberscience Centre Ben Segal. “Virtualization is the way to solve this problem.”

    The birth of the LHC@home platform

    In 2004, Ben Segal and François Grey , who were both members of CERN’s IT department at the time, were asked to plan an outreach event for CERN’s 50th anniversary that would help people around the world to get an impression of the computational challenges facing the LHC. “I had been an early volunteer for SETI@home after it was launched in 1999,” explains Grey. “Volunteer computing was often used as an illustration of what distributed computing means when discussing grid technology. It seemed to me that it ought to be feasible to do something similar for LHC computing and perhaps even combine volunteer computing and grid computing this way.”

    “I contacted David Anderson, the person behind SETI@Home, and it turned out the timing was good, as he was working on an open-source platform called BOINC to enable many projects to use the SETI@home approach,” Grey continues. BOINC (Berkeley Open Infrastructures for Network Computing)is an open-source software platform for computing with volunteered resources. It was first developed at the University of California, Berkeley in the US to manage the SETI@Home project, and uses the unused CPU and GPU cycles on a computer to support scientific research.

    “I vividly remember the day we phoned up David Anderson in Berkeley to see if we could make a SETI-like computing challenge for CERN,” adds Segal. “We needed a CERN application that ran on Windows, as over 90% of BOINC volunteers used that. The SixTrack people had ported their code to Windows and had already built a small CERN-only desktop grid to run it on, as they needed lots of CPU power. So we went with that.”

    A runaway success

    “I was worried that no one would find the LHC as interesting as SETI. Bear in mind that this was well before the whole LHC craziness started with the Angels and Demons movie, and news about possible mini black holes destroying the planet making headlines,” says Grey. “We made a soft launch, without any official announcements, in 2004. To our astonishment, the SETI@home community immediately jumped in, having heard about LHC@home by word of mouth. We had over 1,000 participants in 24 hours, and over 7,000 by the end of the week — our server’s maximum capacity.” He adds: “We’d planned to run the volunteer computing challenge for just three months, at the time of the 50th anniversary. But the accelerator physicists were hooked and insisted the project should go on.”

    Predrag Buncic, who is now coordinator of the offline group within the ALICE experiment, led work to create the CERN Virtual Machine in 2008. He, Artem Harutyunyan (former architect and lead developer of CernVM Co-Pilot), and Segal subsequently adopted this virtualization technology for use within Virtual LHC@home. This has made it significantly easier for the experiments at CERN to create their own volunteer computing applications, since it is no longer necessary for them to port their code. The long-term vision for Virtual LHC@home is to support volunteer-computing applications for each of the large LHC experiments.
    Growth of the platform

    The ATLAS experiment recently launched a project that simulates the creation and decay of supersymmetric bosons and fermions. “ATLAS@Home offers the chance for the wider public to participate in the massive computation required by the ATLAS experiment and to contribute to the greater understanding of our universe,” says David Cameron, a researcher at the University of Oslo in Norway. “ATLAS also gains a significant computing resource at a time when even more resources will be required for the analysis of data from the second run of the LHC.”

    CERN ATLAS New
    ATLAS

    ATLAS@home

    Meanwhile, the LHCb experiment has been running a limited test prototype for over a year now, with an application running Beauty physics simulations set to be launched for the Virtual LHC@home project in the near future. The CMS and ALICE experiments also have plans to launch similar applications.

    CERN LHCb New
    LHCb

    CERN CMS New
    CMS

    CERN ALICE New
    ALICE

    An army of volunteers

    “LHC@home allows CERN to get additional computing resources for simulations that cannot easily be accommodated on regular batch or grid resources,” explains Nils Høimyr, the member of the CERN IT department responsible for running the platform. “Thanks to LHC@home, thousands of CPU years of accelerator beam dynamics simulations for LHC upgrade studies have been done with SixTrack, and billions of events have been simulated with Virtual LHC@home.” He continues: “Furthermore, the LHC@home platform has been an outreach channel, giving publicity to LHC and high-energy physics among the general public.”

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    iSGTW is an international weekly online publication that covers distributed computing and the research it enables.

    “We report on all aspects of distributed computing technology, such as grids and clouds. We also regularly feature articles on distributed computing-enabled research in a large variety of disciplines, including physics, biology, sociology, earth sciences, archaeology, medicine, disaster management, crime, and art. (Note that we do not cover stories that are purely about commercial technology.)

    In its current incarnation, iSGTW is also an online destination where you can host a profile and blog, and find and disseminate announcements and information about events, deadlines, and jobs. In the near future it will also be a place where you can network with colleagues.

    You can read iSGTW via our homepage, RSS, or email. For the complete iSGTW experience, sign up for an account or log in with OpenID and manage your email subscription from your account preferences. If you do not wish to access the website’s features, you can just subscribe to the weekly email.”

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 536 other followers

%d bloggers like this: