Tagged: CERN Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:01 pm on August 16, 2018 Permalink | Reply
    Tags: (DUNE)Deep Underground Neutrino Experiment, , CERN, , Hunt for the sterile neutrino, , , , , , , , Short-Baseline Neutrino experiments   

    From Fermi National Accelerator Lab: “ICARUS neutrino detector installed in new Fermilab home” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    August 16, 2018
    Leah Hesla

    For four years, three laboratories on two continents have prepared the ICARUS particle detector to capture the interactions of mysterious particles called neutrinos at the U.S. Department of Energy’s Fermi National Accelerator Laboratory.

    On Tuesday, Aug. 14, ICARUS moved into its new Fermilab home, a recently completed building that houses the large, 20-meter-long neutrino hunter. Filled with 760 tons of liquid argon, it is one of the largest detectors of its kind in the world.

    With this move, ICARUS now sits in the path of Fermilab’s neutrino beam, a milestone that brings the detector one step closer to taking data.

    It’s also the final step in an international scientific handoff. From 2010 to 2014, ICARUS operated at the Italian Gran Sasso National Laboratory, run by the Italian National Institute for Nuclear Physics. Then the detector was sent to the European laboratory CERN, where it was refurbished for its future life at Fermilab, outside Chicago. In July 2017, ICARUS completed its trans-Atlantic trip to the American laboratory.

    1
    The second of two ICARUS detector modules is lowered into its place in the detector hall. Photo: Reidar Hahn

    “In the first part of its life, ICARUS was an exquisite instrument for the Gran Sasso program, and now CERN has improved it, bringing it in line with the latest technology,” said CERN scientist and Nobel laureate Carlo Rubbia, who led the experiment when it was at Gran Sasso and currently leads the ICARUS collaboration. “I eagerly anticipate the results that come out of ICARUS in the Fermilab phase of its life.”

    Since 2017, Fermilab, working with its international partners, has been instrumenting the ICARUS building, getting it ready for the detector’s final, short move.

    “Having ICARUS settled in is incredibly gratifying. We’ve been anticipating this moment for four years,” said scientist Steve Brice, who heads the Fermilab Neutrino Division. “We’re grateful to all our colleagues in Italy and at CERN for building and preparing this sophisticated neutrino detector.”

    Neutrinos are famously fleeting. They rarely interact with matter: Trillions of the subatomic particles pass through us every second without a trace. To catch them in the act of interacting, scientists build detectors of considerable size. The more massive the detector, the greater the chance that a neutrino stops inside it, enabling scientists to study the elusive particles.

    ICARUS’s 760 tons of liquid argon give neutrinos plenty of opportunity to interact. The interaction of a neutrino with an argon atom produces fast-moving charged particles. The charged particles liberate atomic electrons from the argon atoms as they pass by, and these tracks of electrons are drawn to planes of charged wires inside the detector. Scientists study the tracks to learn about the neutrino that kicked everything off.

    Rubbia himself spearheaded the effort to make use of liquid argon as a detection material more than 25 years ago, and that same technology is being developed for the future Fermilab neutrino physics program.

    “This is an exciting moment for ICARUS,” said scientist Claudio Montanari of INFN Pavia, who is the technical coordinator for ICARUS. “We’ve been working for months choreographing and carrying out all the steps involved in refurbishing and installing it. This move is like the curtain coming down after the entr’acte. Now we’ll get to see the next act.”

    ICARUS is one part of the Fermilab-hosted Short-Baseline Neutrino program, whose aim is to search for a hypothesized but never conclusively observed type of neutrino, known as a sterile neutrino. Scientists know of three neutrino types. The discovery of a fourth could reveal new physics about the evolution of the universe. It could also open an avenue for modeling dark matter, which constitutes 23 percent of the universe’s mass.

    ICARUS is the second of three Short-Baseline Neutrino detectors to be installed. The first, called MicroBooNE, began operating in 2015 and is currently taking data. The third, called the Short-Baseline Near Detector, is under construction. All use liquid argon.

    FNAL/MicroBooNE

    FNAL Short-Baseline Near Detector

    Fermilab’s powerful particle accelerators provide a plentiful supply of neutrinos and will send an intense beam of the particle through the three detectors — first SBND, then MicroBooNE, then ICARUS. Scientists will study the differences in data collected by the trio to get a precise handle on the neutrino’s behavior.

    “So many mysteries are locked up inside neutrinos,” said Fermilab scientist Peter Wilson, Short-Baseline Neutrino coordinator. “It’s thrilling to think that we might solve even one of them, because it would help fill in our frustratingly incomplete picture of how the universe evolved into what we see today.”

    2
    Members of the crew that moved ICARUS stand by the detector. Photo: Reidar Hahn

    The three Short-Baseline Neutrino experiments are just one part of Fermilab’s vibrant suite of experiments to study the subtle neutrino.

    NOvA, Fermilab’s largest operating neutrino experiment, studies a behavior called neutrino oscillation.


    FNAL/NOvA experiment map


    FNAL NOvA detector in northern Minnesota


    FNAL Near Detector

    The three neutrino types change character, morphing in and out of their types as they travel. NOvA researchers use two giant detectors spaced 500 miles apart — one at Fermilab and another in Ash River, Minnesota — to study this behavior.

    Another Fermilab experiment, called MINERvA, studies how neutrinos interact with nuclei of different elements, enabling other neutrino researchers to better interpret what they see in their detectors.

    Scientists at Fermilab use the MINERvA to make measurements of neutrino interactions that can support the work of other neutrino experiments. Photo Reidar Hahn

    FNAL/MINERvA


    “Fermilab is the best place in the world to do neutrino research,” Wilson said. “The lab’s particle accelerators generate beams that are chock full of neutrinos, giving us that many more chances to study them in fine detail.”

    The construction and operation of the three Short-Baseline Neutrino experiments are valuable not just for fundamental research, but also for the development of the international Deep Underground Neutrino Experiment (DUNE) and the Long-Baseline Neutrino Facility (LBNF), both hosted by Fermilab.

    DUNE will be the largest neutrino oscillation experiment ever built, sending particles 800 miles from Fermilab to Sanford Underground Research Facility in South Dakota. The detector in South Dakota, known as the DUNE far detector, is mammoth: Made of four modules — each as tall and wide as a four-story building and almost as long as a football field — it will be filled with 70,000 tons of liquid argon, about 100 times more than ICARUS.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    The knowledge and expertise scientists and engineers gain from running the Short-Baseline Neutrino experiments, including ICARUS, will inform the installation and operation of LBNF/DUNE, which is expected to start up in the mid-2020s.

    “We’re developing some of the most advanced particle detection technology ever built for LBNF/DUNE,” Brice said. “In preparing for that effort, there’s no substitute for running an experiment that uses similar technology. ICARUS fills that need perfectly.”

    Eighty researchers from five countries collaborate on ICARUS. The collaboration will spend the next year instrumenting and commissioning the detector. They plan to begin taking data in 2019.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

    Advertisements
     
  • richardmitnick 3:11 pm on July 5, 2018 Permalink | Reply
    Tags: , , , CERN, CLEAR at CERN   

    From CERN Accelerating Science: “First experimental results from the CLEAR facility at CERN” 

    From CERN Accelerating Science


    Knowledge Transfer

    03 Jul 2018

    D. Gamba
    A. Curcio
    R. Corsini

    The plasma lens experiment after being fully installed in the CLEAR beamline Credit Wilfrid Farabolini – cern.ch

    The continuous development of high gradient technologies (e.g. X-band, THz radiation, plasma acceleration) makes compact linear electron accelerators attractive for many applications, e.g.such as photon sources (Free Electron Lasers and Inverse Compton), medical application, and components irradiation studies.

    Linear accelerators are also the only viable solution for electron-positron colliders at the high-energy frontier. In this case, high gradient technologies allow for cost optimisation and/or for maximizing the energy reach of such machines.

    The CERN Linear Electron Accelerator for Research (CLEAR) facility at CERN was set up to expand the testing capabilities of those ideas and technologies and to provide on top the possibility to perform direct measurement with beam of machine components and training of young scientists.

    The new CLEAR facility at CERN started its operation in fall 2017 (link is external). CLEAR results from the conversion of the probe beam line of the former CLIC Test Facility (CTF3) into a new testbed for general accelerator R&D and component studies for existing and possible future accelerator applications, such as X-band structures, plasma and THz technology, nm- and fs-resolution beam instrumentation, sub-ps bunches production, but also for investigating possible use of electron beams for medical purposes or electrical component sensitivity to radiation.

    The hardware modifications implemented in 2017 to the existing infrastructure allowed to provide stable and reliable electron beams with energies between 60 and 220 MeV in single or multi bunch configuration at 1.5 GHz.

    CLEAR inherited not only the equipment, but also the experience of from operating the previous CTF3 facility: the first beam was set up in August 2017 and, after only a few weeks of commissioning, users could take the first beams to perform experiments in September.

    The first CLEAR beam was used for the continuation of the irradiation tests performed on the Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments (VESPER), which was set up at the end of the CALIFES beamline already during the CTF3 era.

    VESPER was initially set up to characterise electronic components for the operation in a Jovian environment – as foreseen in the JUpiter Icy Moon Explorer mission (JUICE) of ESA, in which trapped electrons of energies up to several hundred MeVs are present with very large fluxes.

    ESA/Juice spacecraft

    Initial measurements showed the first experimental evidence of electron-induced single event upsets (SEU) on electronic components, pointing to the necessity of extending such an investigation to different electron energies. The CLEAR flexibility allowed to continue the study, showing a dependency of SEU cross-section with energy. Instead, no dependency was observed on radiation flux, suggesting that such components do not suffer from prompt dose effects.

    A wider range of devices has also been tested, showing a strong dependency on the device process technology. Preliminary test on a set of memories sensitive to latch-up, a type of short circuit which disrupts the proper functioning of the memory, has also shown that electrons can cause destructive events. Further tests on 16 nm FinFET technology devices were performed by ESA and their contractors IROC in March 2018 and the data are now being analysed.

    CERN The CLEAR beam line seen by the final dump. Credit Davide Gamba-cern.ch)

    The scope of VESPER was extended to dosimetry for medical applications.

    Recent advances in compact high-gradient accelerator technology, largely prompted by the CLIC study, renewed the interest in using very-high energy electrons (VHEE) in the 50 – 250 MeV energy range for radiotherapy of deep-seated tumours.

    Understanding the dosimetry of such beams is essential in order to assess their viability for treatment. For this reason a group from the University of Manchester carried out studies in the VESPER installation on energy deposition using a set of EBT3 Gafchromic films submerged in water. The measured dose deposition profile was in agreement with Monte Carlo tracking simulations within 5%. At the same time, the possible aberration of crossing in-homogenous bodies was investigated by measuring the longitudinal dose profiles with and without inserts of various density material. The results confirmed the expectation from simulations that electron beam are relatively unaffected by both high-density and low-density media.

    The obtained results indicated that VHEE has the potential to be a reliable mode of radiotherapy for treating tumors also in highly inhomogeneous and mobile regions such as lungs.

    Further studies on the dose distribution of a converging beam as opposed to a parallel wide beam, and possibly on multi-angle irradiation are planned for the future.

    CLEAR opened the possibility of exploring also new accelerator technologies, one being active plasma lenses which are a promising technology for strongly focusing particle beams. Their compact size is a plus for potential use in novel accelerators. However, transverse field uniformity and beam excitation of plasma wake-fields may turn out to be significant limitations.

    Lead by the University of Oslo, a collaboration between CERN, DESY and Oxford University was set up to develop a novel low-cost, scalable plasma lens. The developed setup consists of a 1 mm diameter, 15 mm long sapphire capillary installed in the middle of a 20x20x20 cm3 aluminum vacuum chamber. The capillary is filled with He or Ar at a controllable pressure. The gas is ionized by a 500 A peak current discharge with a duration of up to a few hundred ns, provided by a 20 kV spark-gap compact Marx bank generator. The longitudinal discharge current is responsible as well for the transverse focusing force in both transverse planes.

    The experimental set-up was installed in the CLEAR beamline in September 2017 and after a fast commissioning it was possible to show a clear focusing effect. Extensive measurements were taken during December 2017 and March 2018. Transverse position scans of a pencil beam revealed gradients as high as 350 T/m, which would be compatible with its use for a staged plasma accelerator. More studies are now being conducted for measuring the uniformity of the field and beam emittance preservation also employing different gas species.

    Moreover, evidence of non-linear self-focusing at relatively high bunch charge (∼50 pC/bunch) was observed when the beam goes throw the plasma after the discharge. This opens another branch of possible studies on passive plasma lenses that will be further developed.

    Overview of the CLEAR plasma lens setup. The actual plasma lens, a 1 mm diameter, 15 mm long sapphire capillary, is installed inside the cubic vacuum chamber. Credit Kyrre Ness Sjobaek@cern

    Another technology being explored at CLEAR is the possibility of producing terahertz radiation (1 THz corresponds to 4 meV photon energy, or 300 µm radiation wavelength). This technology has a strong impact in many areas of research, spanning the quantum control of materials, plasmonics, and tunable optical devices based on Dirac-electron systems to technological applications such as medical imaging and security.

    The aim at CLEAR is to characterize a LINAC-based THz source, exploiting relativistic electron bunches which emit coherent radiation in the THz domain. For such a source sub-picosecond electron bunches are needed. This triggered a study and optimisation of the CLEAR injector in collaboration with the “Laboratoire de l’Accélérateur Linéaire” (LAL), thanks to which sub-ps bunches down to 200 fs rms have been demonstrated in the machine, paving the way to the THz radiation generation.

    The current studies at CLEAR are focused on the production of (sub-)THz radiation by Coherent Transition Radiation (CTR), i.e. making the electron beams passing through thin metal foils and collecting the emitted radiation. With this technique, a peak power of about 1 MW at 0.3 THz have been measured, in agreement with theoretical expectations.

    Further experimental tests have been started for producing THz radiation by Coherent Smith-Purcell Radiation (CSPR) targets, where the electron beam passes nearby a periodic structure, emitting radiation at harmonics of its period.

    At the same time, investigations are ongoing for producing THz radiation using the Coherent Cherenkov Radiation (CCR) mechanism.

    CLEAR allows to continue the R&D for CLIC technologies, for example by measuring the resolution of CLIC cavity Beam Position Monitor prototypes and by verifying the behavior of the Wake Field Monitor installed on the present design of the CLIC accelerating structures.

    Additionally, CLEAR serves as unique opportunity for fast verification of beam instrumentation, e.g. it was possible to perform first calibration of the scintillator screen used in the electron spectrometer of the AWAKE experiment.

    Finally, CLEAR offers also a unique playground for young accelerator physics. During march 2018 part of the students from the Joint Universities Accelerator School (JUAS) had the opportunity of spending one day at the facility performing hands on experiments.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Our mission

    The Knowledge Transfer group at CERN aims to engage with experts in science, technology and industry in order to create opportunities for the transfer of CERN’s technology and know-how. The ultimate goal is to accelerate innovation and maximise the global positive impact of CERN on society. This is done by promoting and transferring the technological and human capital developed at CERN. The CERN KT group promotes CERN as a centre of technological excellence, and promotes the positive impact of fundamental research organisations on society.

    “Places like CERN contribute to the kind of knowledge that not only enriches humanity, but also provides the wellspring of ideas that become the technologies of the future.”

    Fabiola Gianotti, Director-General of CERN

    From CERN technologies to society

    Below, you can see how CERN’s various areas of expertise translates into impact across industies beyond CERN. Read more about this at the from CERN technologies to society page.

    1

     
  • richardmitnick 1:35 pm on July 4, 2018 Permalink | Reply
    Tags: , , CERN, , , , ,   

    From CERN: “We need to talk about the Higgs” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    4 Jul 2018
    Anais Schaeffer

    1
    François Englert (left) and Peter Higgs at CERN on 4 July 2012, on the occasion of the announcement of the discovery of a Higgs boson (Image: Maximilien Brice/CERN)

    It is six years ago that the discovery of the Higgs boson was announced, to great fanfare in the world’s media, as a crowning success of CERN’s Large Hadron Collider (LHC).

    CERN/CMS Detector


    CERN CMS Higgs Event


    CERN/ATLAS detector


    CERN ATLAS Higgs Event

    The excitement of those days now seems a distant memory, replaced by a growing sense of disappointment at the lack of any major discovery thereafter.

    While there are valid reasons to feel less than delighted by the null results of searches for physics beyond the Standard Model (SM), this does not justify a mood of despondency. A particular concern is that, in today’s hyper-connected world, apparently harmless academic discussions risk evolving into a negative outlook for the field in broader society. For example, a recent news article in Nature led on the LHC’s “failure to detect new particles beyond the Higgs”, while The Economist reported that “Fundamental physics is frustrating physicists”. Equally worryingly, the situation in particle physics is sometimes negatively contrasted with that for gravitational waves: while the latter is, quite rightly, heralded as the start of a new era of exploration, the discovery of the Higgs is often described as the end of a long effort to complete the SM.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Let’s look at things more positively. The Higgs boson is a totally new type of fundamental particle that allows unprecedented tests of electroweak symmetry breaking. It thus provides us with a novel microscope with which to probe the universe at the smallest scales, in analogy with the prospects for new gravitational-wave telescopes that will study the largest scales. There is a clear need to measure its couplings to other particles – especially its coupling with itself – and to explore potential connections between the Higgs and hidden or dark sectors. These arguments alone provide ample motivation for the next generation of colliders including and beyond the high-luminosity LHC upgrade.

    So far the Higgs boson indeed looks SM-like, but some perspective is necessary. It took more than 40 years from the discovery of the neutrino to the realisation that it is not massless and therefore not SM-like; addressing this mystery is now a key component of the global particle-physics programme. Turning to my own main research area, the beauty quark – which reached its 40th birthday last year – is another example of a long-established particle that is now providing exciting hints of new phenomena (see Beauty quarks test lepton universality). One thrilling scenario, if these deviations from the SM are confirmed, is that the new physics landscape can be explored through both the b and Higgs microscopes. Let’s call it “multi-messenger particle physics”.

    How the results of our research are communicated to the public has never been more important. We must be honest about the lack of new physics that we all hoped would be found in early LHC data, yet to characterise this as a “failure” is absurd. If anything, the LHC has been more successful than expected, leaving its experiments struggling to keep up with the astonishing rates of delivered data. Particle physics is, after all, about exploring the unknown; the analysis of LHC data has led to thousands of publications and a wealth of new knowledge, and there is every possibility that there are big discoveries waiting to be made with further data and more innovative analyses. We also should not overlook the returns to society that the LHC has brought, from technology developments with associated spin-offs to the training of thousands of highly skilled young researchers.

    The level of expectation that has been heaped on the LHC seems unprecedented in the history of physics. Has any other facility been considered to have produced disappointing results because only one Nobel-prize winning discovery was made in its first few years of operation? Perhaps this reflects that the LHC is simply the right machine at the right time, but that time is not over: our new microscope is set to run for the next two decades and bring physics at the TeV scale into clear focus. The more we talk about that, the better our long-term chances of success.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

     
  • richardmitnick 1:49 pm on June 19, 2018 Permalink | Reply
    Tags: , , CERN, , , , ,   

    From CERN: “Major work starts to boost the luminosity of the LHC” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    1
    Civil works have begun on the ATLAS and CMS sites to build new underground structures for the High-Luminosity LHC. (Image: Julien Ordan / CERN)

    CERN map

    The Large Hadron Collider (LHC) is officially entering a new stage. Today, a ground-breaking ceremony at CERN celebrates the start of the civil-engineering work for the High-Luminosity LHC (HL-LHC): a new milestone in CERN’s history. By 2026 this major upgrade will have considerably improved the performance of the LHC, by increasing the number of collisions in the large experiments and thus boosting the probability of the discovery of new physics phenomena.

    The LHC started colliding particles in 2010. Inside the 27-km LHC ring, bunches of protons travel at almost the speed of light and collide at four interaction points. These collisions generate new particles, which are measured by detectors surrounding the interaction points. By analysing these collisions, physicists from all over the world are deepening our understanding of the laws of nature.

    While the LHC is able to produce up to 1 billion proton-proton collisions per second, the HL-LHC will increase this number, referred to by physicists as “luminosity”, by a factor of between five and seven, allowing about 10 times more data to be accumulated between 2026 and 2036. This means that physicists will be able to investigate rare phenomena and make more accurate measurements. For example, the LHC allowed physicists to unearth the Higgs boson in 2012, thereby making great progress in understanding how particles acquire their mass. The HL-LHC upgrade will allow the Higgs boson’s properties to be defined more accurately, and to measure with increased precision how it is produced, how it decays and how it interacts with other particles. In addition, scenarios beyond the Standard Model will be investigated, including supersymmetry (SUSY), theories about extra dimensions and quark substructure (compositeness).

    “The High-Luminosity LHC will extend the LHC’s reach beyond its initial mission, bringing new opportunities for discovery, measuring the properties of particles such as the Higgs boson with greater precision, and exploring the fundamental constituents of the universe ever more profoundly,” said CERN Director-General Fabiola Gianotti.

    The HL-LHC project started as an international endeavour involving 29 institutes from 13 countries. It began in November 2011 and two years later was identified as one of the main priorities of the European Strategy for Particle Physics, before the project was formally approved by the CERN Council in June 2016. After successful prototyping, many new hardware elements will be constructed and installed in the years to come. Overall, more than 1.2 km of the current machine will need to be replaced with many new high-technology components such as magnets, collimators and radiofrequency cavities.

    2
    Prototype of a quadrupole magnet for the High-Luminosity LHC. (Image: Robert Hradil, Monika Majer/ProStudio22.ch)

    FNAL magnets such as this one, which is mounted on a test stand at Fermilab, for the High-Luminosity LHC Photo Reidar Hahn

    The secret to increasing the collision rate is to squeeze the particle beam at the interaction points so that the probability of proton-proton collisions increases. To achieve this, the HL-LHC requires about 130 new magnets, in particular 24 new superconducting focusing quadrupoles to focus the beam and four superconducting dipoles. Both the quadrupoles and dipoles reach a field of about 11.5 tesla, as compared to the 8.3 tesla dipoles currently in use in the LHC. Sixteen brand-new “crab cavities” will also be installed to maximise the overlap of the proton bunches at the collision points. Their function is to tilt the bunches so that they appear to move sideways – just like a crab.

    FNAL Crab cavities for the HL-LHC

    CERN crab cavities that will be used in the HL-LHC

    Another key ingredient in increasing the overall luminosity in the LHC is to enhance the machine’s availability and efficiency. For this, the HL-LHC project includes the relocation of some equipment to make it more accessible for maintenance. The power converters of the magnets will thus be moved into separate galleries, connected by new innovative superconducting cables capable of carrying up to 100 kA with almost zero energy dissipation.

    “Audacity underpins the history of CERN and the High-Luminosity LHC writes a new chapter, building a bridge to the future,” said CERN’s Director for Accelerators and Technology, Frédérick Bordry. “It will allow new research and with its new innovative technologies, it is also a window to the accelerators of the future and to new applications for society.”

    To allow all these improvements to be carried out, major civil-engineering work at two main sites is needed, in Switzerland and in France. This includes the construction of new buildings, shafts, caverns and underground galleries. Tunnels and underground halls will house new cryogenic equipment, the electrical power supply systems and various plants for electricity, cooling and ventilation.

    During the civil engineering work, the LHC will continue to operate, with two long technical stop periods that will allow preparations and installations to be made for high luminosity alongside yearly regular maintenance activities. After completion of this major upgrade, the LHC is expected to produce data in high-luminosity mode from 2026 onwards. By pushing the frontiers of accelerator and detector technology, it will also pave the way for future higher-energy accelerators.


    The LHC will receive a major upgrade and transform into the High-Luminosity LHC over the coming years. But what does this mean and how will its goals be achieved? Find out in this video featuring several people involved in the project. (Video: Polar Media/CERN.)

    Fermilab is leading the U.S. contribution to the HL-LHC, in addition to building new components for the upgraded detector for the CMS experiment. The main innovation contributed by the United States for the HL-LHC is a novel new type of accelerator cavity that uses a breakthrough superconducting technology.

    Fermilab is also contributing to the design and construction of superconducting magnets that will focus the particle beam much more tightly than the magnets currently in use in the LHC. Fermilab scientists and engineers have also partnered with other CMS collaborators on new designs for tracking modules in the CMS detector, enabling it to respond more quickly to the increased number of collisions in the HL-LHC.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
  • richardmitnick 3:11 pm on June 12, 2018 Permalink | Reply
    Tags: Big data and social media, CERN   

    From CERN: “Big data and social media” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    12 Jun 2018
    Kate Kahle

    1
    Vint Cerf’s slides included this visualisation of inbound traffic on the NSFNET T1 backbone in September 1991 (purple for zero bytes to white for 100 billion bytes). (Image: Donna Cox and Robert Patterson, Merit Network, Inc., NCSA and NSF)

    “It’s not a surprise that networking produces social effects” stated Vint Cerf when he spoke at CERN on 6 June. As an American Internet pioneer, often referred to as one of the fathers of the Internet, Cerf shared his thoughts on big data and social media, as well as acknowledging the birth of the World Wide Web at CERN. His talk not only looked back at the history of the Internet but also at its future and the challenges ahead.

    He recounted the pre-Internet days of 1969, when, as a graduate student, he wrote software for the ARPANET project. After the project’s success, he and Robert Kahn worked on the Internet design before publishing a paper in 1974. The team they assembled built a fully distributed system with no central control that was international from the beginning.

    He reminisced too about the early days of email, developed on the ARPANET in 1971 as an experiment that instantly caught on. Rather than decreasing travel budgets, it did the opposite; projects became bigger and more international, and people travelled from further afield to attend meetings. Mailing lists quickly sprang up from “Sci-fi lovers” to the “Yum-Yum” reviews of local restaurants. It was clear that the technological development had social characteristics.

    Indeed from early email, to web pages, to today’s social media, people have wanted to share knowledge and feel that it was useful to others. This quest for positive feedback, however, runs into issues when sharing personal information. Now, with the prevalence of e-commerce and the Internet of things, the amount of information that companies have about a person over time becomes concerning, hence the recent EU data protection changes to protect people’s privacy.

    2
    Vint Cerf presents “Big data and social media on the Internet” in CERN’s main auditorium on 6 June. Many empty seats. (Image: Julien Ordan/CERN)

    People need to be aware of both the benefits and the hazards of being online. Misinformation, whether malicious or unintentional, has entered the system and the challenge is to distinguish good and bad quality content. Now more than ever, thinking critically is important. Yet it takes time and effort.

    “Everyone, especially young people, should think critically about the information they encounter. Where did this come from? Is there any corroborating evidence? What was the motivation for putting this information into the system? Could there possibly have been some ulterior motive in placing that information into a social-networking environment or on a webpage?” – Vint Cerf

    In the age of big data, there are challenges ahead not only in processing such vast quantities of information but also in digital preservation. The digital content created today may not be readable in 50 years’ time. The media may not be available, the reader may no longer exist, or even if it does, the software may be unmaintained and no longer run on the then available hardware. To preserve digital information means building emulators and keeping software updated among other things. Perhaps making programmers feel an ethical responsibility for the code that they produce could help them to fix and update the code, avoiding bugs and vulnerabilities.

    Though his talk focused on the technical challenges, he acknowledged that there are also legal and business challenges of big data and social media. Yet despite highlighting the risks, Cerf’s presentation was both entertaining and optimistic. As he leapt nimbly around the auditorium for the questions and answers, microphone in hand, he provided the audience not only with a feast of anecdotes but also food for thought for the Internet of tomorrow.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
  • richardmitnick 2:06 pm on May 22, 2018 Permalink | Reply
    Tags: , CERN, , Opera collaboration at Gran Sasso,   

    From CERN: OPERA presents its final results on neutrino oscillations 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    OPERA at Gran Sasso (Image: INFN)

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    22 May 2018
    Achintya Rao

    The OPERA experiment, located at the Gran Sasso Laboratory of the Italian National Institute for Nuclear Physics (INFN), was designed to conclusively prove that muon-neutrinos can convert to tau-neutrinos, through a process called neutrino oscillation, whose discovery was awarded the 2015 Nobel Physics Prize. In a paper published today in the journal Physical Review Letters, the OPERA collaboration reports the observation of a total of 10 candidate events for a muon to tau-neutrino conversion, in what are the very final results of the experiment. This demonstrates unambiguously that muon neutrinos oscillate into tau neutrinos on their way from CERN, where muon neutrinos were produced, to the Gran Sasso Laboratory 730 km away, where OPERA detected the ten tau neutrino candidates.

    Today the OPERA collaboration has also made their data public through the CERN Open Data Portal. By releasing the data into the public domain, researchers outside the OPERA Collaboration have the opportunity to conduct novel research with them. The datasets provided come with rich context information to help interpret the data, also for educational use. A visualiser enables users to see the different events and download them. This is the first non-LHC data release through the CERN Open Data portal, a service launched in 2014.

    There are three kinds of neutrinos in nature: electron, muon and tau neutrinos. They can be distinguished by the property that, when interacting with matter, they typically convert into the electrically charged lepton carrying their name: electron, muon and tau leptons. It is these leptons that are seen by detectors, such as the OPERA detector, unique in its capability of observing all three. Experiments carried out around the turn of the millennium showed that muon neutrinos, after travelling long distances, create fewer muons than expected, when interacting with a detector. This suggested that muon neutrinos were oscillating into other types of neutrinos. Since there was no change in the number of detected electrons, physicists suggested that muon neutrinos were primarily oscillating into tau neutrinos. This has now been unambiguously confirmed by OPERA, through the direct observation of tau neutrinos appearing hundreds of kilometres away from the muon neutrino source. The clarification of the oscillation patterns of neutrinos sheds light on some of the properties of these mysterious particles, such as their mass.

    The OPERA collaboration observed the first tau-lepton event (evidence of muon-neutrino oscillation) in 2010, followed by four additional events reported between 2012 and 2015, when the discovery of tau neutrino appearance was first assessed. Thanks to a new analysis strategy applied to the full data sample collected between 2008 and 2012 – the period of neutrino production – a total of 10 candidate events have now been identified, with an extremely high level of significance.

    “We have analysed everything with a completely new strategy, taking into account the peculiar features of the events,” said Giovanni De Lellis Spokesperson for the OPERA collaboration. “We also report the first direct observation of the tau neutrino lepton number, the parameter that discriminates neutrinos from their antimatter counterpart, antineutrinos. It is extremely gratifying to see today that our legacy results largely exceed the level of confidence we had envisaged in the experiment proposal.”

    Beyond the contribution of the experiment to a better understanding of the way neutrinos behave, the development of new technologies is also part of the legacy of OPERA. The collaboration was the first to develop fully automated, high-speed readout technologies with sub-micrometric accuracy, which pioneered the large-scale use of the so-called nuclear emulsion films to record particle tracks. Nuclear emulsion technology finds applications in a wide range of other scientific areas from dark matter search to volcano and glacier investigation. It is also applied to optimise the hadron therapy for cancer treatment and was recently used to map out the interior of the Great Pyramid, one of the oldest and largest monuments on Earth, built during the dynasty of the pharaoh Khufu, also known as Cheops.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
  • richardmitnick 9:52 pm on April 29, 2018 Permalink | Reply
    Tags: , , , CERN, , , , , , , ,   

    From Symmetry : “Putting the puzzle together” 

    Symmetry Mag
    Symmetry

    [While this article was written for a journal specializing in Physics, everything in it is true for all Basic and Applied Science. Soemwhere in my archives is an article from Natural History Magazine by Stephen Jay Gould in which he states that many new scientific ideas arise out of the existence of the devices built by technicians for the last experimental project. So it will be with the HL-LHC and the ILC.]

    11/21/17 [in social media today]
    Ali Sundermier

    1
    Photos by Fermilab and CERN

    Successful physics collaborations rely on cooperation between people from many different disciplines.

    So, you want to start a physics experiment. Maybe you want to follow hints of an as yet unseen particle. Or maybe you want to learn something new about a mysterious process in the universe. Either way, your next step is to find people who can help you.

    In large science collaborations, such as the ATLAS and CMS experiments at the Large Hadron Collider; the Deep Underground Neutrino Experiment (DUNE); and Fermilab’s NOvA, hundreds to thousands of people spread out across many institutions and countries keep things operating smoothly. Whether they’re senior scientists, engineers, technicians or administrators, each of them has an important role to play.

    CERN/ATLAS detector

    CERN CMS detector

    LHC

    CERN/LHC Map

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    CERN LHC Tunnel

    CERN LHC particles

    FNAL NOvA Near Detector


    FNAL/NOvA experiment map

    Think of it like a jigsaw puzzle: This list will give you an idea about how their work fits together to create the big picture.

    Dreaming up the experiment

    Many particle physics experiments begin with a fundamental question. Why do objects have mass? Or, why is the universe made of matter?

    When scientists encounter these big, seemingly inscrutable questions, part of their job is to identify possible ways to answer them. A large part of this is breaking down the big questions into a program of smaller, answerable questions.

    In the case of the LHC, scientists who wondered about things such as undiscovered particles and the origin of mass designed a 27-kilometer particle collider and four giant detectors to learn more.

    Each scientist in a collaboration brings their own unique perspective and skill set to the table, whether it’s providing an understanding of the physics or offering expertise in operations or detector design.


    CERN/ALICE Detector

    CERN/LHCb detector

    (ATLAS and CMS detectors are depicted above.]

    Perfecting the design

    Once scientists have an idea about the experiment they want to do and the approach they want to take, it’s the job of the engineers to turn the concepts into pieces of hardware that can be built, function and meet the experiment’s requirements.

    For example, engineers might have to figure out how the experiment should be supported mechanically or how to connect all the electrical systems and make signals available in a detector.

    In the case of NOvA [depicted above], which investigates neutrino oscillations, scientists needed a detector that was huge and free of dense materials, which made conventional construction techniques unworkable. They had to work with engineers who could understand plastic as a building material so they could be confident about using it to build a gigantic, free-standing structure that fit the requirements.

    Keeping things running

    Technicians come in when the experimental apparatus and instrumentation are being built and often have complementary knowledge about what they’re working on. They build the hardware and coordinate the integration of components. It’s their work that, in the end, pulls everything together so the experiment functions.

    Once the experiment is built, technicians are responsible for keeping everything humming along at top performance. When physicists notice things going wrong with the detectors, the technicians usually have first eyes on it. It’s a vital task, since every second counts when it comes to collecting data.

    Doing the heavy lifting

    When designing and constructing the experiment, the scientists also recruit postdocs and grad students, who do the bulk of the data analysis.

    Grad students, who are still working on their PhDs, have to balance their own coursework with the real-world experiment, learning their way around running simulations, analyzing data and developing algorithms. They also make sure that every part of the detector is working up to par. In addition, they may work in instrumentation, developing new instruments and electronics.

    Postdocs, on the other hand, have already worked on experiments and obtained their PhDs, so they typically assume more of a leadership role in these collaborations. Part of their role is to guide the grad students in a sort of apprenticeship.

    Postdocs are often in charge of certain types of analysis or detector operations. Because they’ve worked on previous experiments, they have a tool kit and experience to draw on to solve problems when they crop up.

    Postdocs and grad students often work with technicians and engineers to ensure everything is properly built.

    Making the data accessible

    The LHC produces about 25 petabytes of data every year, or 25 billion megabytes. If the average size of an MP3 is about one megabyte per minute, then it would take almost 50,000 years to play 25 petabytes of songs. In physics collaborations, computer scientists and engineers have to organize the computing networks to ensure against bottlenecks or traffic jams when this massive amount of data is shared.

    They also maintain the software framework, which takes care of data handling and archiving. Say a scientist wants to know what happened on Feb. 27, 2015, at 3 a.m. Computing experts have to be able to go into the data catalogue and find, among the petabytes of data, where that event is stored.

    Sorting out the logistics

    One often overlooked group is the administrators.

    It’s up to the administrators to sequence all the different projects so they get the funds they need to make progress. They sort the logistics to make sure the right people are in the right places working on the right things.

    Administrators manage a group of people who are constantly coming and going. Is someone traveling to a site from a different institution? The administrators make sure that people get connected, work out itineraries and schedule where visiting scientists will live and work.

    Administrators also organize collaboration meetings, transfer money, and procure and ship equipment.

    Translating discoveries to the public

    While every single person involved in an experiment has a responsibility to effectively communicate with others, it can be challenging to communicate about research in a way that’s relatable to people from different backgrounds. That’s where the professional communicators come in.

    Communicators can translate a paper full of jargon and complicated science into a fascinating story that the rest of the world can get excited about.

    In addition to doing outreach for the public and writing press releases and pitching stories for the media, communicators offer coaching to people in a scientific collaboration on how to relay the science to a general audience, which is important for generating public interest. [Everyone involved need to remember that all of this work is publicly funded with tax dollars, except in places like China where it is virtually the same thing.]

    [One of the main reasons I started this blog was that I found out that 30% of the scientists on the LHC are USA scientists and the US press does not write about science except the rare person like Dennis Overbye of the New York Times. I had seen the PBS video Creation of the Universe by Timothy Ferris (music by Brian Eno); The PBS video The Atom Smashers, centered on but not limited to the Tevatron at Fermilab and hints of what was to come in Europe in stead of Waxahachie, Texas; and The Big Bang Machine, with (Sir) Brian Cox, all about the LHC, with a nod back to the Tevatron. Someone at Quantum Diaries put me on to the Greybook which lists every institution in the world processing data from the LHC. I collected as much of their social media as I could and that was my start. Of course by now my source list has grown considerably and my subjects have also increased.]

    Fitting the pieces

    Now that you know many of the pieces that must fall into place for a large physics collaboration to be successful, also know that none of these roles is performed in a vacuum. For an experiment to work, there must be a synergy of tasks: Each relies on the success of the others. Now go start that experiment!

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 11:58 pm on April 28, 2018 Permalink | Reply
    Tags: , Antiatoms sent to ALPHA - ASACUSA -BASE- AEGIS- GBARY[TUDY ANTIMAATER AND 'CREATE' ANTIATOMS, , Antiproton Decelerator, , CERN, CERN Antiproton Decelerator produces antiatoms, , , , Proton Synchrotron   

    From CERN: ” LIVE- Inside CERN’s antimatter factory” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    26 Apr 2018
    Harriet Kim Jarlett

    1
    This is the antimatter trap at AEgIS, one of the experiments studying antimatter using CERN’s Antiproton Decelerator (Image: Maximilien Brice and Julien Ordan/CERN)

    For the first time, join us on Facebook for a live behind-the-scenes insight into CERN’s Antiproton Decelerator.

    CERN Antiproton Decelerator

    The Antiproton Decelerator (AD) is a unique machine that produces low-energy antiprotons for studies of antimatter, and “creates” antiatoms. The Decelerator produces antiproton beams and sends them to the different experiments.

    A proton beam that comes from the PS (Proton Synchrotron) is fired into a block of metal. These collisions create a multitude of secondary particles, including lots of antiprotons. These antiprotons have too much energy to be useful for making antiatoms. They also have different energies and move randomly in all directions. The job of the AD is to tame these unruly particles and turn them into a useful, low-energy beam that can be used to produce antimatter.

    Unlike the rest of CERN’s accelerator complex, which speed up particles to study them at high energies, this unique machine slows particles down. The decelerator tames these unruly particles and directs them to six different experiments, ALPHA, ASACUSA, ATRAP, BASE, AEGIS and GBAR. to study antimatter and ‘create’ antiatoms.

    The Big Bang should have created equal amounts of matter and antimatter in the early universe. But today, everything we see from the smallest life forms on Earth to the largest stellar objects is made almost entirely of matter. Comparatively, there is not much antimatter to be found. Something must have happened to tip the balance. One of the greatest challenges in physics is to figure out what happened to the antimatter, or why we see an asymmetry between matter and antimatter.

    We’ll find out why CERN is now the only lab in the world producing antimatter, how we create these antimatter particles and what these experiments will teach us about our Universe.

    Watch the live on Facebook:

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
  • richardmitnick 1:31 pm on April 24, 2018 Permalink | Reply
    Tags: , , CERN, , , , , ,   

    From CERN: “Crabs settled in the tunnel” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    23 Apr 2018
    Giovanna Vandoni

    `
    CERN scientist, Giovanna Vandoni, coordinated the recent installation of crab cavities. (Image: Julien Ordan/CERN)

    The High-Luminosity LHC (HL-LHC) project aims at increasing the number of collisions in the LHC and consequently improving the precision of the experiments’ analyses. For several years, engineers, technicians and operators have been devising, designing and building the components, some of which are completely novel. Among these innovative components are the “crab cavities”, which will rotate bunches of the beams to increase the overlap between them and therefore the probability of collisions inside the experiments.

    2
    26 Sep 2017 — The two crab cavities have been put in their helium vessels and are currently being installed in their cryostat

    I have coordinated the recent installation of the cryomodule containing the first two prototype cavities in the Super Proton Synchrotron (SPS), where they will be tested this year.

    The Super Proton Synchrotron (SPS), CERN’s second-largest accelerator. (Image: Julien Ordan/CERN

    Here’s the story so far in pictures. (Images from Julien Ordan and Maximilien Brice/CERN).

    4
    A January morning at 6 a.m., in heavy rain, all eyes are on the delicate operation of moving the cryomodule containing the first two crab-cavity prototypes from the SM18 hall to the SPS tunnel. The prototypes must be tested with a proton beam to validate their design and operation.

    5
    After a descent of 40 metres, the cryomodules are now in the SPS tunnel. Only another 40 metres or so to go to reach the test station. The movement of the cryomodule is monitored continuously by sensors: it must not be tilted by more than 10 degrees and acceleration must stay below 0.3 g. At the final location, a delicate lifting operation is undertaken: the cryomodule is taken up by high precision positioning jacks.

    6
    The cryomodule must be tested with a proton beam under real-life conditions, but without interfering with the operation of the SPS. It is therefore installed on a mobile transfer table, designed and fabricated by AVS Spain, allowing the crab cavities to be inserted into or removed from the beam line with almost micron-level precision.

    7
    CERN’s cryogenics team had to develop a mobile cooling unit – a first. Unlike the LHC, the SPS does not have a cryogenic infrastructure, but the crab cavities are superconductors and must therefore be cooled to 2 kelvin (-271 °C).

    8
    The last phase of the installation is the positioning of the cryomodule, which was first successfully tested above ground. In order to follow the movements of the transfer table, all of the services connected to the cryomodule must be articulated or flexible. This includes the radiofrequency power transfer lines and the vacuum chambers that connect the cryomodule to the SPS beam line. The vacuum chambers are articulated with bellows, allowing the cryomodule to be positioned in or out of the beam line without affecting the quality of the vacuum. Quite a feat of engineering. Finally, three flexible cryogenic lines transport coolant liquid and gas. Only once all of these flexible components are connected can the movement of the transfer table be tested.

    The engineer responsible for the transfer table controls its movement from above ground: the table begins to move, the two rotating parts that connect the radiofrequency power lines to the cavities slowly extend and the articulated vacuum chambers slide along their supports. But something isn’t going as planned with the cryogenic lines: they aren’t moving in the way they are supposed to. The team gets back to work to modify the vacuum chamber in which they are contained: cutting, moving and re-soldering. It’s February and only a few days to go until the SPS closes its doors…

    9
    The teams work relentlessly to resolve the problem. And finally… the cryomodule is ready for beam. SPS has now restarted and tests will take place this year.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
  • richardmitnick 5:35 pm on April 6, 2018 Permalink | Reply
    Tags: , , CERN, , , , ,   

    From University of Toronto: “U of T staff (ethically) hack CERN, world’s largest particle physics lab” 

    U Toronto Bloc

    University of Toronto

    1
    CERN, the international lab near Geneva, is home to the Large Hadron Collider, the world’s largest particle accelerator (photo by Claudia Marcelloni/CERN).
    U of T staff (ethically) hack CERN, world’s largest particle physics lab.
    In Geneva, where U of T scientists are on the frontier of physics with world’s largest particle accelerator.

    It takes 22 member states, more than 10,000 scientists and state-of-the-art technology for CERN to investigate the mysteries of the universe. But no matter how cutting-edge a system is, it can have vulnerabilities – and last year University of Toronto employees helped CERN find theirs.

    CERN, the European Organization for Nuclear Research, asked for help to hack its digital infrastructure last year, organizing the White Hat Challenge. Allan Stojanovic and David Auclair from U of T’s ITS Information Security Enterprise and Architecture department, along with a group of security professionals, were more than willing to answer the call.

    Passionate advocates for information security, Stojanovic and Auclair say regular testing is essential for any organization.

    “Vulnerabilities are not created, they are discovered,” says Stojanovic. “Just because something has been working, doesn’t mean there wasn’t a flaw in it all along.”

    Their director, Mike Wiseman, supported their participation in the challenge. “This competition was an opportunity to bring experts together to exercise their skill as well as give CERN a valuable test of their infrastructure.”

    Stojanovic first heard about the challenge during a presentation at a Black Hat digital security conference. He jumped at the opportunity, immediately approaching the presenter, Stefan Lüders, CERN’s security manager.

    Stojanovic put together a group of eight industry professionals (pen testers, consultants, Computer Information Systems administrators and programmers), set goals for the test and created a ten-day timeline.

    Any penetration test involves three main stages: scoping, reconnaissance and scanning. Before the scanning stage begins, testers are not allowed to interact with the system directly, but try to learn everything they can about it.

    During the “scoping” stage, testers define what is “in scope” and specify what IP spaces and domains they can and cannot probe during the testing. The “recon” stage is exactly what it sounds like: reconnaissance. The testers try to find out everything they can about the domains that are in scope, helping guide them towards potential weaknesses.

    With scoping and recon complete, the team was able to officially begin the scanning stage. Scanning is like a huge treasure hunt, beginning with a broad search and gradually narrowing it down, burrowing deeper and deeper into the most interesting areas and letting go of the others.

    This went on for nine days. It was a gruelling process – the team would find a tiny foothold, investigate it, but nothing significant would emerge. This happened again and again.

    Finally, Stojanovic was woken up one day by a short message, “I got it!” Someone on the team had solved the puzzle – a breakthrough generated by multiple late nights of patient analysis.

    Details of the breakthrough are kept secret due to a confidentiality agreement with CERN. But after more than two weeks of work, the team revealed weaknesses in CERN’s security infrastructure and provided important recommendations on how to improve it.

    CERN’s security group was then able to roll out fixes and address the identified vulnerabilities before U of T’s formal report even hit their desks.

    Stojanovic hopes that his team’s success will encourage educators to use penetration testing as a pedagogical tool. “It’s a lot of really fantastic experience,” he says, adding that these are the hands-on skills that new security professionals are going to need in the fast-growing information security industry.

    Stojanovic hopes that other institutions, including U of T, will follow CERN’s lead in opening themselves up to testing of this nature.

    And this won’t be the last CERN will see of U of T – Lüders has already asked for round two.

    The U of T at CERN

    Working on a small piece of the world’s largest experiment, it’s easy to lose sight of the big picture.

    Kyle Cormier, a University of Toronto grad student in particle physics, is a member of U of T’s research group at CERN, the sprawling international lab on the French-Swiss border that is home to the largest particle accelerator, the Large Hadron Collider.

    His job? Researching a silicon microchip for a planned upgrade to the 7,000-tonne Atlas detector, one of four major experiments at the LHC. He has designed, tested and redesigned the chip to withstand extreme cold and radiation exposure – all so that it can read data from proton collisions without needing a tune-up for at least a decade.

    It may not sound glamorous, but it’s the type of precise, exacting work that led CERN researchers to the 2012 discovery of the Higgs boson, a particle that had been theorized in the 1960s.

    “If you’re on a big hike up a mountain, you’re stepping over root branches working your way up,” Cormier says.

    2
    Professor Pekka Sinervo and U of T students, including Vincent Pascuzzi, Joey Carter, Laurelle Veloce, Kyle Cormier (seated right), at CERN outside Geneva (photo by Geoffrey Vendeville)

    At first glance, CERN, a collection of low-slung concrete buildings on the outskirts of Geneva, doesn’t look like a state-of-the-art, multibillion-dollar research facility. But deep underground, the accelerator races protons around a 27-kilometre ring until they are travelling nearly the speed of light and then smashes them together. Like crash scene investigators looking for clues in rubble, scientists analyze the debris from the collisions, which send subatomic particles flying in every direction.

    CERN scientists used this method to detect the Higgs boson in 2012, a particle explaining why others have mass. Now they’re digging even deeper, investigating questions such as the nature of dark matter.

    The mysterious type of matter, which makes up more than a quarter of the universe, has puzzled scientists since the first clues about its existence arose in the 1930s through astronomical observation and calculations.

    “We’re at the point where we’ve looked where the light’s brightest,” says Pekka Sinervo, a professor of experimental high energy physics at U of T. “Now we’re looking in all the dark corners that are hard to investigate.”

    3

    Researchers may still be a long way off from answering the dark matter riddle, but some breakthrough is just a matter of time, says Laurelle Veloce, who is also studying particle physics at U of T and working at CERN.

    “You just put one foot in front of the other and eventually you know someone will find something,” she says.

    The U of T research group is the largest Canadian team working on the Atlas experiment, with 17 graduate students, four postdocs and six faculty members. Over the summer, undergraduate students can take a summer course at CERN.

    Olivier Arnaez, now a U of T postdoc, spent years searching for the Higgs. When CERN researchers had gathered enough statistical evidence to confirm the discovery of a new particle, there was no eureka moment, he recalls – just relief.

    “We were happy because we knew we could sleep soon,” he says, “which didn’t happen because we then had to investigate more properties of the Higgs.” The celebrations involved litres of champagne and Nobel prizes for the theorists who proposed the Higgs mechanism decades earlier.

    Years of research at CERN haven’t been without setbacks, however. Only nine days after the first successful beam tests in 2008, a soldering error caused an accident that put the project behind schedule by more than 18 months. And last year, researchers who thought they had discovered another new particle admitted they had misinterpreted the data.

    But researchers are still hopeful and morale remains high, says Sinervo.

    “We’re trying to do things every day that nobody has ever done before,” he says.

    Engineering a microchip to work for 10 years without the need for repair, as his student Cormier is doing, is no small feat, he adds. “That’s like how you build spaceships for a moonshot.

    “We know that there is going to be some discovery over the horizon,” Sinervo says. “How far do we have to go to reach it? That’s something we don’t know.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Toronto Campus

    Established in 1827, the University of Toronto has one of the strongest research and teaching faculties in North America, presenting top students at all levels with an intellectual environment unmatched in depth and breadth on any other Canadian campus.

    Established in 1827, the University of Toronto has one of the strongest research and teaching faculties in North America, presenting top students at all levels with an intellectual environment unmatched in depth and breadth on any other Canadian campus.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: