Tagged: CERN Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:49 pm on October 18, 2019 Permalink | Reply
    Tags: "Medipix: Two decades of turning technology into applications", CERN   

    From CERN: “Medipix: Two decades of turning technology into applications” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    18 October, 2019

    The story of how detector components ended up in medical imaging, in art restoration and even in space.

    1
    The Timepix3 chip developed by the Medipix3 collaboration (Image: CERN)

    How could microchips developed for detectors at the Large Hadron Collider (LHC) be used beyond high-energy physics? This was a question that led to the Medipix and Timepix families of pixel-sensor chips. Researchers saw many possible applications for this technology, and for the last 20 years these chips have been used in medical imaging, in spotting forgeries in the art world, in detecting radioactive material and more. A recent CERN symposium commemorated the two decades since the Medipix2 collaboration was established, in 1999.

    Pixel-sensor chips are used in detectors at the LHC to trace the paths of electrically charged particles. When a particle hits the sensor, it deposits a charge that is processed by the electronics. This is similar to light hitting pixels in a digital camera, but instead they register particles up to 40 million times a second.

    In the late 1990s, engineers and physicists at CERN were developing integrated circuits for pixel technologies. They realised that adding a counter to each pixel and counting the number of particles hitting the sensors could allow the chips to be used for medical imaging. The Medipix2 chip was born. Later, the Timepix chip added the ability to record either the arrival time of the particles or the energy deposited within a pixel.

    As the chips evolved from Medipix2 to Medipix3, their growing use in medical imaging led to the first colour X-ray of parts of the human body in 2018, with the first clinical trials now beginning in New Zealand. In addition, the versatile chips have gone beyond medicine, for example, a start-up called InsightART allows researchers to use Medipix3 chips to peer through the layers of works of art and study the composition of materials to determine the authenticity of pieces attributed to renowned artists.

    The team behind InsightART, based in Prague, recently scanned an alleged Van Gogh, concluding that the work was most likely to have been produced by the Dutch master, having observed an underlying sketch very similar to other figures Van Gogh painted at the time. The work will be sent to the Van Gogh Museum to be vetted with this evidence, and it might be that not one but two Van Goghs have been found in the same piece.

    Timepix-based detectors have been aboard the International Space Station since 2012 to measure the radiation dose to which astronauts and equipment are exposed, and in 2015, high-school students from the UK sent their own Timepix-based detector to the ISS with astronaut Tim Peake. The ability of the chips to detect gamma rays has been exploited to help with the decommissioning of nuclear reactors and is being evaluated for the detection of thyroid cancer with greater resolution than before and with a lower radiation dose to the patient.

    The Medipix and Timepix chips, developed by three collaborations involving around 32 institutes in total, have been remarkable examples of knowledge transfer from CERN to wider society.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

     
  • richardmitnick 2:51 pm on October 15, 2019 Permalink | Reply
    Tags: "LS2 Report: renovation of the electrical infrastructure", BE1 and BE2 substations, CERN   

    From CERN: “LS2 Report: renovation of the electrical infrastructure” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    15 October, 2019
    Anaïs Schaeffer

    1
    The BE1 input station in Prévessin is currently undergoing maintenance and consolidation work (Image: CERN)

    You arrive at your office, switch on the lights and pick up the phone, while your computer hums into life. Without electricity, the scenario is slightly different… CERN’s electrical network is so reliable that we forget what’s going on behind the scenes.

    The Laboratory’s electrical infrastructure – which plays an essential role in the excellent performance of our experiments and accelerators, and of all CERN facilities – is anything but trivial. In its nominal configuration, it comprises two substations (BE1 and BE2) with an input voltage of 400 kilovolts (kV), supplied by the French electrical grid. Downstream, these are connected to another substation that lowers the voltage to 66 kV. Part of this network supplies facilities several kilometres away (notably in the LHC), while the other undergoes a further conversion to 18 kV in order to supply the nearby Meyrin and Prévessin sites, as well as the SPS. To provide redundancy, CERN’s electrical infrastructure is also connected to the Swiss grid, ensuring that a reduced power supply continues in the event of a problem with the French grid or CERN’s internal network. The switchover to the Swiss grid happens automatically thanks to an “auto-transfer” system.

    During LS2, due to the major renovation and maintenance work under way, CERN’s electrical network is working somewhat differently. “At the beginning of July, the BE1 input station was disconnected. We are now consolidating its protection system because, since this station dates from the 1970s, some of its equipment had reached the end of its life,” says Davide Bozzini, technical coordinator in the Electrical Engineering (EN-EL) group. During the course of the work, which should finish some time in November, the BE2 substation is therefore supplying the entire Laboratory alone.

    2
    CERN’s newest and biggest power transformer, for the new BE2 electrical substation, was installed in September 2018 to reinforce CERN’s electrical network (Image: CERN)

    In mid-September, Meyrin’s main substation, ME9, which has supplied the site with 18 kV since the 1960s, was “unplugged”. It is being completely renovated and should come back into operation at the end of April 2020. In parallel, the auto-transfer system will also be entirely renovated. While these two renovations are taking place, the connection to the Swiss grid has also had to be suspended. This enables the EN-EL group to carry out important work on the ME9 substation, but also deprives CERN’s general network of one of its sources, which could, in rare cases, lead to temporary power cuts*.

    Major work is also under way on the SPS, where five of the seven 18 kV substations located at the seven SPS surface points are being renovated. Work on four of them required new buildings to be constructed, which meant that the EN-EL group could start work before LS2 began, while the accelerator was still running.

    The EN-EL group is also working on the LHC Injectors Upgrade (LIU) project. “Our LIU activities are very varied, just like the needs of our clients,” says Davide Bozzini. “In the PS Booster and the PS, for example, we have replaced several electrical boards and low-voltage switch boxes dating from the 1970s, as well as the lighting systems, which were antiquated and have now been replaced with new radiation-resistant lights. The latter were developed by the EN-EL group in collaboration with manufacturers.”

    Many other activities, notably maintenance, are also under way in preparation for future runs: maintenance of several hundred transformers and circuit breakers, replacement of the batteries of critical supply systems in the LHC, updating of network status control systems, etc. Currently, more than 200 people (personnel from CERN and from external companies) are working on the consolidation, maintenance and operation of CERN’s electrical infrastructure, on which depend all the activities carried out at the Laboratory.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

     
  • richardmitnick 1:35 pm on October 10, 2019 Permalink | Reply
    Tags: CERN, CLOUD Experiment   

    From CERN: “From cosmic rays to clouds” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    10 October, 2019
    Ana Lopes

    A new run of the CLOUD experiment examines the direct effect of cosmic rays on clouds.

    1
    The CLOUD experiment in the CERN East Hall at the start of the CLOUDy run, on 23 September 2019. The chamber is enclosed inside a thermal housing that precisely controls the temperature between -65 °C and +40 °C. Instruments surrounding the chamber continuously sample and analyse its contents. (Image: CERN)

    CERN’s colossal complex of accelerators is in the midst of a two-year shutdown for upgrade work. But that doesn’t mean all experiments at the Laboratory have ceased to operate. The CLOUD experiment, for example, has just started a data run that will last until the end of November.

    The CLOUD experiment studies how ions produced by high-energy particles called cosmic rays affect aerosol particles, clouds and the climate. It uses a special cloud chamber and a beam of particles from the Proton Synchrotron to provide an artificial source of cosmic rays. For this run, however, the cosmic rays are instead natural high-energy particles from cosmic objects such as exploding stars.

    “Cosmic rays, whether natural or artificial, leave a trail of ions in the chamber,” explains CLOUD spokesperson Jasper Kirkby, “but the Proton Synchrotron provides cosmic rays that can be adjusted over the full range of ionisation rates occurring in the troposphere, which comprises the lowest ten kilometres of the atmosphere. That said, we can also make progress with the steady flux of natural cosmic rays that make it into our chamber, and this is what we’re doing now.”

    In its 10 years of operation, CLOUD has made several important discoveries on the vapours that form aerosol particles in the atmosphere and can seed clouds. Although most aerosol particle formation requires sulphuric acid, CLOUD has shown that aerosols can form purely from biogenic vapours emitted by trees, and that their formation rate is enhanced by cosmic rays by up to a factor 100.

    Most of CLOUD’s data runs are aerosol runs, in which aerosols form and grow inside the chamber under simulated conditions of sunlight and cosmic-ray ionisation. The run that has just started is of the “CLOUDy” type, which studies the ice- and liquid-cloud-seeding properties of various aerosol species grown in the chamber, and direct effects of cosmic-ray ionisation on clouds.

    The present run uses the most comprehensive array of instruments ever assembled for CLOUDy experiments, including several instruments dedicated to measuring the ice- and liquid-cloud-seeding properties of aerosols over the full range of tropospheric temperatures. In addition, the CERN CLOUD team has built a novel generator of electrically charged cloud seeds to investigate the effects of charged aerosols on cloud formation and dynamics.

    “Direct effects of cosmic-ray ionisation on the formation of fair-weather clouds are highly speculative and almost completely unexplored experimentally,” says Kirkby. “So this run could be the most boring we’ve ever done – or the most exciting! We won’t know until we try, but by the end of the CLOUD experiment, we want to be able to answer definitively whether cosmic rays affect clouds and the climate, and not leave any stone unturned.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

     
  • richardmitnick 11:28 am on September 25, 2019 Permalink | Reply
    Tags: , CERN, , In 2018 the NA62 team reported finding one candidate event for the K+ → π+ ν ν decay in a dataset recorded in 2016 that comprised about 100 billion K+ decays., , , , , The NA62 experiment produces positively charged kaons (K+) and other particles by hitting a beryllium target with protons from the Super Proton Synchrotron accelerator., The transformation or “decay” of a positively charged variant of a particle known as kaon into a positively charged pion and a neutrino–antineutrino pair.   

    From CERN : “NA62 spots two potential instances of rare particle decay” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    23 September, 2019
    Ana Lopes

    The NA62 experiment has detected two candidate events for the decay of a positively charged kaon into a pion and a neutrino–antineutrino pair.

    CERN NA62

    CERN NA62

    CERN NA62 innards

    Are there new, unknown particles that can explain dark matter and other mysteries of the universe? To try to answer this question, particle physicists typically sift through the myriad of particles that are produced in particle collisions. But they also have an indirect but powerful way of looking for new particles, which is to measure processes that are both rare and precisely predicted by the Standard Model of particle physics. A slight discrepancy between the Standard Model prediction and a high-precision measurement would be a sign of new particles or phenomena never before observed.

    One such process is the transformation, or “decay”, of a positively charged variant of a particle known as kaon into a positively charged pion and a neutrino–antineutrino pair. In a seminar that took place today at CERN, the NA62 collaboration reported two potential instances of this ultra-rare kaon decay. The result, first presented at the International Conference on Kaon Physics, shows the experiment’s potential to make a precise test of the Standard Model.

    The Standard Model predicts that the odds of a positively charged kaon decaying into a positively charged pion and a neutrino–antineutrino pair (K+ → π+ ν ν) are only about one in ten billion, with an uncertainty of less than ten percent. Finding a deviation, even if small, from this prediction would indicate new physics beyond the Standard Model.

    The NA62 experiment produces positively charged kaons (K+) and other particles by hitting a beryllium target with protons from the Super Proton Synchrotron accelerator. It then uses several types of detector to identify and measure the K+ kaons and the particles into which they decay.

    In 2018, the NA62 team reported finding one candidate event for the K+ → π+ ν ν decay in a dataset recorded in 2016 that comprised about 100 billion K+ decays. In its new study, the collaboration analysed an approximately 10-fold larger dataset recorded in 2017 and spotted two candidate events. By combining this result with the previous result, the team finds that the relative frequency (known as “branching ratio”) of the K+ → π+ ν ν decay would be at most 24.4 in 100 billion K+ decays. This combined result is compatible with the Standard Model prediction and allowed the team to put limits on beyond-Standard-Model theories that predict frequencies larger than this upper bound.

    “This is a great achievement and one we will build upon. Having clearly established our experimental technique, we’ll now explore ways to perfect it using a dataset that we took in 2018,” says spokesperson Cristina Lazzeroni. “The 2018 dataset is twice as large as the 2017 dataset, so it should allow us to find more events and make a more precise test of the Standard Model.”

    For a detailed account of the results, see the recording of the CERN seminar and the EP newsletter article.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

     
  • richardmitnick 12:45 pm on September 24, 2019 Permalink | Reply
    Tags: , CERN, , , , ,   

    From Penn Today: “Can neutrinos help explain what’s the matter with antimatter?” 


    From Penn Today

    September 23, 2019
    Erica K. Brockmeier

    Results of a new study will help physicists establish a cutting-edge neutrino research facility to study some of the most abundant yet least understood particles in the universe.

    1
    The Main Injector is a powerful particle accelerator at Fermilab near Chicago. It is also the source of the world’s highest-energy neutrino beams that will be used in the Deep Underground Neutrino Experiment (DUNE), an international flagship neutrino experiment involving researchers at Penn. (Image: Peter Ginter/Fermilab)

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    In physics, antimatter is simply the “opposite” of matter. Antimatter particles have the same mass as their counterparts but with other properties flipped; for example, protons in matter have a positive charge while antiprotons are negative. Antimatter can be made in a lab using high-energy particle collisions, but these events almost always create equal parts of both antimatter and matter and, when two opposing particles come in contact with one another, both are destroyed in a powerful wave of pure energy.

    What puzzles physicists is that most everything in the universe, people included, is made of matter, not of equal parts matter and antimatter. While looking for insights that could explain what kept the universe from creating separate matter and antimatter galaxies, or exploding into nothingness, researchers found some evidence that the answer could be hiding in very common yet poorly understood particles known as neutrinos.

    A team of researchers led by Christopher Mauger published results from the first set of experiments that can help answer these and other questions in fundamental physics. As part of the Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrino (CAPTAIN) program, their results, published in Physical Review Letters, are an important first step towards building the Deep Underground Neutrino Experiment (DUNE), an experimental facility for neutrino science and particle physics research.

    Particle colliders, such as the Large Hadron Collider at CERN, do experiments on quarks, one type of elementary particle.

    LHC

    CERN map


    CERN LHC Maximilien Brice and Julien Marius Ordan


    CERN LHC particles

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS

    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    These experiments found some evidence that explains matter-antimatter symmetry, but only part of it. Experiments on another type of elementary particle, leptons, hints that these particles could more fully explain this universal asymmetry. Previous research on neutrinos, a type of lepton, found unexpected patterns in the three neutrino “flavors,” results which physicists believe might also mean that their asymmetry might be larger than expected.

    2
    The outer structures (red) for two prototype DUNE detectors that are currently being evaluated at CERN. (Image: CERN)

    But the challenge with studying neutrinos is that they rarely interact with other particles; a single neutrino can pass through a light-year of lead without doing anything. Finding these rare interactions means that researchers need to study a large number of neutrinos for long periods of time. As an added challenge, the steady stream of muons produced by cosmic ray interactions in the upper atmosphere can make it difficult to spot the infrequent interactions that researchers are more interested in seeing.

    The solution? Go 5,000 feet underground, build four 10-kiloton detectors filled with liquid argon, and fire a beam of neutrinos made in a particle accelerator that’s 800 miles away. This is the eventual goal of DUNE, an international neutrino research facility run by Fermilab, a particle physics and accelerator laboratory near Chicago. Excavations for the detector, which will be installed at the Sanford Underground Research Facility in South Dakota, are underway, and researchers are now busy with experiments before the first detector is installed in 2022.

    3
    Los Alamos National Lab staff member Charles Taylor prepares the Mini-CAPTAIN detector. (Image: Christopher Mauger)

    As the first publication to come from CAPTAIN, researchers addressed a key technical challenge: How to handle measurements on other particle interactions. For example, when a neutrino interacts with argon, the neutrino picks up a charge and kicks out neutrons. A large fraction of the energy from the interaction will go into the neutron, but it has not been possible to determine the amount. “We must understand argon-neutron interactions if we want to properly do the experiment that’s going to impact our understanding of matter and antimatter asymmetry,” says Mauger.

    He and his team built a 400-kilogram prototype of the DUNE detector, known as Mini-CAPTAIN, and collected data from a neutron beam at the Los Alamos National Laboratory. Former Penn postdoc Jorge Chaves, who worked as the analysis leader for this research, says that the bulk of the work involved reconstructing the signals from the detector into meaningful insights about the properties that they are interested in studying further.

    Cern ProtoDune


    CERN Proto Dune

    As the first-ever dataset on neutron interactions in liquid argon at the energy ranges that will be used in DUNE, Chaves says that he is encouraged by the results obtained so far, even though they still need to get additional data. “Before, there was no measurement of this interaction cross-section, but now we have provided actual experimental results,” he says. “With more data of the same quality, we would be able to make an even more precise measurement.”

    In the near-term, the CAPTAIN team will focus on refining the methods developed for this paper as well as on running other experiments before DUNE begins collecting data in 2026. Once the project officially kicks off, researchers hope to be able to use this facility to help answer questions from the fields of particle physics, nuclear physics, and even astrophysics.

    Mauger considers the ongoing efforts of CAPTAIN and other projects as “Physics R&D,” work that will help researchers collect important measurements and study phenomena in a way never done before. The many lofty goals of DUNE will take decades to complete, but Mauger says that what they are trying to achieve makes the effort worthwhile.

    “Neutrinos are so hard to measure, sort of enigmatic, and there’s some kind of allure in trying to understand how they work. Studying this really interesting particle that’s all around us, and yet is so hard to measure, that could hold the key to understanding why we’re here at all, is exciting—and I get to do this for a living,” says Mauger.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at Penn is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

     
  • richardmitnick 1:36 pm on August 31, 2019 Permalink | Reply
    Tags: "Sensor used at CERN could help gravitational-wave hunters", Advanced Virgo detector, CERN, Compared to weight–spring seismometers the PLI can detect angular motion in addition to translational motion (up-and-down and side-to-side)., JINR- Joint Institute for Nuclear Research in Dubna Russia, PLI-Precision laser inclinometer, The PLI can pick up low-frequency motion with a very high precision.   

    From CERN: “Sensor used at CERN could help gravitational-wave hunters” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    30 August, 2019
    Ana Lopes

    A new seismic device developed by CERN and JINR is now being tested at the Advanced Virgo detector.

    2
    Aerial view of the Advanced Virgo detector, where a precision laser interferometer used at CERN was installed and is being tested (Image: Virgo collaboration)

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    It started with a relatively simple goal: create a prototype for a new kind of device to monitor the motion of underground structures at CERN. But the project – the result of a collaboration between CERN and the Joint Institute for Nuclear Research (JINR) in Dubna, Russia – quickly evolved. The prototype turned into several full-blown devices that can potentially serve as early warning systems for earthquakes and can be used to monitor other seismic vibrations. What’s more, the devices, called precision laser inclinometers, can be used at CERN and beyond.

    2

    The researchers behind the project are now testing one device at the Advanced Virgo detector, which recently detected gravitational waves – tiny ripples in the fabric of space-time that were predicted by Einstein a century ago. If all goes to plan, this device could help gravitational-wave hunters minimize the noise that seismic events have on the waves’ signal.

    Unlike traditional seismometers, which detect ground motions through their effect on weights hanging from springs, the precision laser inclinometer (PLI) measures their effect on the surface of a liquid. The measurement is done by pointing laser light at a liquid and seeing how it is reflected. Compared to weight–spring seismometers, the PLI can detect angular motion in addition to translational motion (up-and-down and side-to-side), and it can pick up low-frequency motion with a very high precision.

    “The PLI is extremely sensitive, it can even detect the waves on Lake Geneva on windy days,” says principal investigator Beniamino Di Girolamo from CERN. “It can pick up seismic motion that has a frequency between 1 mHz and 12.4 Hz with a sensitivity of 2.4 × 10−5 μrad/Hz½,” explains co-principal investigator Julian Budagov from JINR. “This is equivalent to measuring a vertical displacement of 24 picometres (24 trillionth of a metre) over a distance of 1 metre,” adds co-principal investigator Mikhail Lyablin, also from JINR.

    The team assembled and tested the PLI prototype at JINR and at CERN’s TT1 tunnel. It performed so well that it showed potential to be a helpful early warning seismic system for the High-Luminosity Large Hadron Collider (HL-LHC) and other machines and experiments. The Large Hadron Collider and its proton beams are extremely robust to seismic activity, but the HL-LHC will use narrower beams to increase the number of proton–proton collisions and as a result the potential for particle-physics discoveries. This means beams are more likely to go off centre in the event of a high-magnitude earthquake with an epicentre relatively close to CERN. PLIs located at several points along the machine could serve as early warning systems for such events.

    3
    The PLI (bottom two plots) picked up the same signals as devices already installed at Virgo (top two plots) for an earthquake in Northern Italy on 17 August (Image: Beniamino Di Girolamo/CERN)

    Given the PLI’s potential, the HL-LHC project has supported the team to construct several new PLIs. One PLI is already installed at the Garni Seismic Observatory in Armenia and another has been deployed with the support of CERN’s Knowledge Transfer group and Italy’s INFN institute to the European Gravitational Observatory, Italy, where Advanced Virgo is located. The Virgo PLI is the result of a collaboration that started after the APPEC conference in November 2018, triggered by the JINR Director-General and encouraged by CERN management. The collaboration went so smoothly that, less than a year after, the Virgo PLI was tested.

    The results from the first tests are encouraging. With just 15 minutes of data taken on 6 August, the PLI picked up the same signals as devices already installed at Virgo, and from that day onwards it started running continuously and detected several small-magnitude earthquakes. The Virgo and PLI teams are now setting up the flow of data from the PLI to the Virgo data system. This will make it easier to compare data from different seismic devices and to assess the PLI’s potential impact on Virgo’s operation and detection of gravitational waves. “Virgo and the two LIGO detectors in the US have recently began another search for gravitational waves, one that will reach deeper into the universe than previous searches,” says former Virgo spokesperson Fulvio Ricci from La Sapienza University, Rome. “We’re confident that the PLI can play a part in this important search,” he added.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

     
  • richardmitnick 9:59 am on August 29, 2019 Permalink | Reply
    Tags: , , , CERN, CERN’s VESPER facility, , , , Radiation exposure to satellites in space   

    From European Space Agency: “CERN’s VESPER facility” 

    ESA Space For Europe Banner

    From European Space Agency

    1
    CERN’s VESPER facility

    This test facility at CERN, the European Organization for Nuclear Research, was used to simulate the high-radiation environment surrounding Jupiter to prepare for ESA’s JUICE mission to the largest planet in our Solar System.

    ESA JUICE Schematic

    ESA/Juice spacecraft depiction

    All candidate hardware to be flown in space first needs to be tested against radiation: space is riddled with charged particles from the Sun and further out in the cosmos. An agreement with CERN gives access to the most intense beam radiation beams available – short of travelling into orbit.

    Initial testing of candidate components for ESA’s JUpiter ICy moons Explorer, JUICE, took place last year using CERN’s VESPER (Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments) facility.

    VESPER’s high energy electron beamline simulated conditions within Jupiter’s massive magnetic field, which has a million times greater volume than Earth’s own magnetosphere, trapping highly energetic charged particles within it to form intense radiation belts.

    Due to launch in 2022, JUICE needs to endure this harsh radiation environment in order to explore Callisto, Europa and Ganymede – moons of Jupiter theorised to hide liquid water oceans beneath their icy surfaces. JUICE is being built by Airbus for ESA, with construction of its spacecraft flight model due to begin next month.

    Last month ESA and CERN signed a new implementing protocol, building upon their existing cooperation ties.

    Signed by Franco Ongaro, ESA’s Director of Technology, Engineering and Quality, and Eckhard Elsen, CERN Director for Research and Computing, this new agreement identifies seven specific high-priority projects: high-energy electron tests; high-penetration heavy-ion tests; assessment of commercial off-the-shelf components and modules; in-orbit technology demonstration; ‘radiation-hard’ and ‘radiation-tolerant’ components and modules; radiation detectors monitors; and dosimeters and simulation tools for radiation effects.

    “The radiation environment that CERN is working with within its tunnels and experimental areas is very close to what we have in space,” explains Véronique Ferlet-Cavrois, Head of ESA’s Power Systems, EMC & Space Environment Division.

    “The underlying physics of the interaction between particles and components is the same, so it makes sense to share knowledge of components, design rules and simulation tools. Plus access to CERN facilities allows us to simulate the kind of high-energy electrons and cosmic rays found in space. At the same time we are collaborating on flying CERN-developed components for testing in space.”

    Petteri Nieminen, heading ESA’s Space Environments and Effects section adds: “Along with JUICE, CERN heavy-energy radiation testing will also be useful for our proposed Ice Giants mission to Neptune and Uranus. The spacecraft may have to be pass through Jupiter’s vast magnetic field on the way to these outer planets, and both worlds have radiation belts of their own.

    “And the ability to simulate cosmic rays benefits a huge number of missions, especially those venturing beyond Earth orbit, including Athena and LISA as well as JUICE. It is also a huge interest for human spaceflight and exploration to study radiobiology effects of heavy ion cosmic rays on astronaut DNA. Not to mention that radiation simulations developed in collaboration with CERN help set space environment specifications for all ESA missions.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 9:36 am on August 29, 2019 Permalink | Reply
    Tags: "From capturing collisions to avoiding them", , CERN, , , , ,   

    From CERN: “From capturing collisions to avoiding them” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    29 August, 2019
    Kate Kahle

    1
    Around 100 simultaneous proton–proton collisions in an event recorded by the CMS experiment (Image: Thomas McCauley/CMS/CERN)

    With about one billion proton–proton collisions per second at the Large Hadron Collider (LHC), the LHC experiments need to sift quickly through the wealth of data to choose which collisions to analyse. To cope with an even higher number of collisions per second in the future, scientists are investigating computing methods such as machine-learning techniques. A new collaboration is now looking at how these techniques deployed on chips known as field-programmable gate arrays (FPGAs) could apply to autonomous driving, so that the fast decision-making used for particle collisions could help prevent collisions on the road.

    FPGAs have been used at CERN for many years and for many applications. Unlike the central processing unit of a laptop, these chips follow simple instructions and process many parallel tasks at once. With up to 100 high-speed serial links, they are able to support high-bandwidth inputs and outputs. Their parallel processing and re-programmability make them suitable for machine-learning applications.

    2
    An FPGA-based readout card for the CMS tracker (Image: John Coughlan/CMS/CERN)

    The challenge, however, has been to fit complex deep-learning algorithms – a particular class of machine-learning algorithms – in chips of limited capacity. This required software developed for the CERN-based experiments, called “hls4ml”, which reduces the algorithms and produces FPGA-ready code without loss of accuracy or performance, allowing the chips to execute decision-making algorithms in micro-seconds.

    A new collaboration between CERN and Zenuity, the autonomous driving software company headquartered in Sweden, plans to use the techniques and software developed for the experiments at CERN to research their use in deploying deep learning on FPGAs, a particular class of machine-learning algorithms, for autonomous driving. Instead of particle-physics data, the FPGAs will be used to interpret huge quantities of data generated by normal driving conditions, using readouts from car sensors to identify pedestrians and vehicles. The technology should enable automated drive cars to make faster and better decisions and predictions, thus avoiding traffic collisions.

    To find out more about CERN technologies and their potential applications, visit kt.cern/technologies.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

     
  • richardmitnick 11:22 am on July 26, 2019 Permalink | Reply
    Tags: "CERN and ESA forge closer ties with cooperation protocol", CERN,   

    From CERN: “CERN and ESA forge closer ties with cooperation protocol” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    26 July, 2019

    3

    A new collaboration agreement between CERN and ESA, signed on 11 July, will address the challenge of operating in harsh radiation environments, found in both particle-physics facilities and outer space. The agreement concerns radiation environments, technologies and facilities with potential applications in both space systems and particle-physics experiments or accelerators.

    This first implementing protocol of CERN-ESA bilateral cooperation covers a broad range of activities, from general aspects like coordination, financing and personnel exchange, to a list of irradiation facilities for joint R&D activities. It also states the willingness of both organisations to support PhD students working on radiation subjects of common interest.

    1
    Franco Ongaro, Director of Technology, Engineering and Quality Head of ESTEC, European Space Agency (left) with Eckhard Elsen, CERN Director for Research and Computing (Image: Julien Ordan/CERN)

    The agreement identifies seven specific projects with high priority: high-energy electron tests; high-penetration heavy-ion tests; assessment of EEE commercial components and modules (COTS); in-orbit technology demonstration; “radiation-hard” and “radiation-tolerant” components and modules; radiation detectors, monitors and dosimeters; and simulation tools for radiation effects.

    In some cases, important preliminary results have already been achieved: high-energy electron tests for the JUICE mission were performed in the CLEAR/VESPER facility to simulate the environment of Jupiter. Complex components were also tested with xenon and lead ions in the SPS North Area at CERN for an in-depth analysis of galactic cosmic-ray effects. These activities will continue and the newly identified ones will be implemented under the coordination of the CERN-ESA Committee on Radiation Issues.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Tunnel

    CERN LHC particles

     
  • richardmitnick 1:49 pm on June 26, 2019 Permalink | Reply
    Tags: 200 copper signal cables are being installed in the SPS, “CERN is probably the only place in the world where several thousand kilometres of radiation-resistant optical fibre are needed” says Daniel Ricci., CERN, , Of the 40 000 cables to be dealt with during LS2 15 000 are obsolete copper cables that need to be removed. But first they need to be identified., Since CERN was founded 65 years ago some 450 000 cables have been installed and many of them are still snaking through the nooks and crannies of the Laboratory., some 20 000 optical fibres contained within 220 cables lie at the heart of the ALICE experiment   

    From CERN: “LS2 Report: 2000 kilometres of cable” 

    Cern New Bloc

    Cern New Particle Event


    From CERN

    25 June, 2019
    Anaïs Schaeffer

    1
    During LS2, 20 000 optical fibres contained within 220 cables lie at the heart of the ALICE experiment (Image: CERN)

    Some 40 000 cables will be installed or removed at CERN during LS2. Laid end to end, they would stretch for 2000 kilometres!

    The work involves two types of cable: copper cables, which transmit signals to the accelerator systems and supply the magnets, and fibre-optic cables, which transmit data in the form of light signals. The latter weave through all of CERN’s installations, from Meyrin to Prévessin, including the accelerator tunnels, experiments and technical halls, like an enormous spider’s web.

    “Optical fibres and copper cables transmit all the information collected or sent by the detectors, beam instrumentation, sensors, control panels, computing infrastructure, and so on,” explains Daniel Ricci, the leader of the section in charge of cabling (EN-EL-FC) within the EN department. “Our work covers all of CERN’s service networks: optical fibres and copper cables are everywhere.”

    2
    Water-cooled cables in the LHC tunnel. These cables carry the current (up to 13 000 amperes) from the power converters to the power supplies (Image: CERN)

    They are indeed, and in impressive quantities: for example, some 20 000 optical fibres contained within 220 cables lie at the heart of the ALICE experiment, and 1200 copper signal cables are being installed in the SPS in the framework of the Fire Safety project. The EN-EL-FC section is also contributing to other major CERN projects during LS2, including the LIU (LHC Injectors Upgrade), the renovation of the East Area, the renovation of the SPS access system, the commissioning of the ELENA extraction lines and the HL-LHC.

    “CERN is probably the only place in the world where several thousand kilometres of radiation-resistant optical fibre are needed,” says Daniel Ricci. “We maintain very close ties with industry, where our expertise is used to adapt and improve this type of fibre.”

    Of the 40 000 cables to be dealt with during LS2, 15 000 are obsolete copper cables that need to be removed. But first, they need to be identified. Since CERN was founded 65 years ago, some 450 000 cables have been installed, and many of them are still snaking through the nooks and crannies of the Laboratory. “Since LS1, we have been methodically going through all of CERN’s old paper cable databases, identifying each cable and listing it in our digital database,” explains Daniel Ricci. “Of the 95 000 cables to be retained, 50 000 have already been digitised.”

    3
    Many cables that are still needed for operations were pulled out of their cable trays in order to facilitate the removal of obsolete ones (here, in the SPS) (Image: CERN)

    CERN’s biggest ever cable removal campaign has been under way since 2016. During the most recent year-end technical stops (YETS and EYETS), the Booster and middle ring of the PS were relieved of their old, obsolete cables. Cable removal is currently under way at points 3 and 5 of the SPS.

    To complete this gargantuan task, the EN-EL-FC section, which usually comprises 20 people, has recruited some outside help. Sixteen extra people – fellows, project associates and members of other groups – are lending a hand during LS2. The contractors’ teams, which comprise several dozen technicians working on site, have also been reinforced in order to keep up with the breakneck pace of work during the long shutdown. “Coordination, planning and teamwork are indispensable if we are to successfully complete the 120 cabling and cable removal projects scheduled for LS2,” says Daniel Ricci. “We’re lucky to have a very versatile team who are able to advise clients on different types of cable, carry out technical studies, organise logistics and coordination between the various parties and supervise the worksites.”

    No fewer than 140 members of the CERN personnel and contractors’ personnel are working on the various LS2 cabling and cable removal projects, collaborating with the end users to ensure that quality control is as efficient as possible. “We would like to thank all the teams and users for their professionalism and their commitment. They are working to an extremely high standard while scrupulously respecting both deadlines and safety,” says Daniel Ricci.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    CERN ATLAS Image Claudia Marcelloni CERN/ATLAS


    ALICE

    CERN/ALICE Detector


    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Grand Tunnel

    CERN LHC particles

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: