Tagged: CERN Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:03 pm on February 20, 2017 Permalink | Reply
    Tags: CERN, , Neutrino research   

    From CERN Courier: “ProtoDUNE revealed” 

    CERN Courier

    Feb 15, 2017
    Matthew Chalmers

    1
    Outer vessel

    This 11 m-high structure with thick steel walls will soon contain a prototype detector for the Deep Underground Neutrino Experiment (DUNE), a major international project based in the US for studying neutrinos and proton decay.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA
    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA
    FNAL DUNE Argon tank at SURF
    FNAL DUNE Argon tank at SURF

    It is being assembled in conjunction with CERN’s Neutrino Platform, which was established in 2014 to support neutrino experiments hosted in Japan and the US (CERN Courier July/August 2016 p21), and is pictured here in December as the roof of the structure was lowered into place. Another almost identical structure is under construction nearby and will house a second prototype detector for DUNE. Both are being built at CERN’s new “EHN1” test facility, which was completed last year at the north area of the laboratory’s Prévessin site.

    3
    CERN’s Neutrino Platform

    DUNE, which is due to start operations in the next decade, will address key outstanding questions about neutrinos. In addition to determining the ordering of the neutrino masses, it will search for leptonic CP violation by precisely measuring differences between the oscillations of muon-type neutrinos and antineutrinos into electron-type neutrinos and antineutrinos, respectively (CERN Courier December 2015 p19). To do so, DUNE will consist of two advanced detectors placed in an intense neutrino beam produced at Fermilab’s Long-Baseline Neutrino Facility (LBNF). One will record particle interactions near the source of the beam before the neutrinos have had time to oscillate, while a second, much larger detector will be installed deep underground at the Sanford Underground Research Laboratory in Lead, South Dakota, 1300 km away.

    SURF logo
    Sanford Underground Research Facility Interior
    Sanford Underground Research Facility Interior

    4
    Technology demonstrator

    In collaboration with CERN, the DUNE team is testing technology for DUNE’s far detector based on large liquid-argon (LAr) time-projection chambers (TPCs). Two different technologies are being considered – single-phase and double-phase LAr TPCs – and the eventual DUNE detectors will comprise four modules, each with a total LAr mass of 17 kt. The single-phase technique is well established, having been deployed in the ICARUS experiment at Gran Sasso…

    INFN Gran Sasso ICARUS
    INFN Gran Sasso ICARUS

    …while the double-phase concept offers potential advantages. Both may be used in the final DUNE far detector. Scaling LAr technology to such industrial levels presents several challenges – in particular the very large cryostats required, which has led the DUNE collaboration to use technological solutions inspired by the liquified-natural-gas (LNG) shipping industry.

    The outer structure of the cryostat (red, pictured at top) for the single-phase protoDUNE module is now complete, and an equivalent structure for the double-phase module is taking shape just a few metres away and is expected to be complete by March. In addition, a smaller technology demonstrator for the double-phase protoDUNE detector is complete and is currently being cooled down at a separate facility on the CERN site (image above). The 3 × 1 × 1 m3 module will allow the CERN and DUNE teams to perfect the double-phase concept, in which a region of gaseous argon situated above the usual liquid phase provides additional signal amplification.

    The large protoDUNE modules are planned to be ready for test beam by autumn 2018 at the EHN1 facility using dedicated beams from the Super Proton Synchrotron. Given the intensity of the future LBNF beam, for which Fermilab’s Main Injector recently passed an important milestone by generating a 700 kW, 120 GeV proton beam for a period of more than one hour, the rate and volume of data produced by the DUNE detectors will be substantial. Meanwhile, the DUNE collaboration continues to attract new members and discussions are now under way to share responsibilities for the numerous components of the project’s vast far detectors (see “DUNE collaboration meeting comes to CERN” in this month’s Faces & Places).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

     
  • richardmitnick 1:13 pm on January 14, 2017 Permalink | Reply
    Tags: , CERN, Percussion at CERN, STOMP   

    From Symmetry: “STOMP visits CERN” 

    Symmetry Mag
    Symmetry

    01/13/17
    Kathryn Jepsen

    1
    Maximilien Brice, CERN

    A group known for making music with everyday objects recently got their hands on some extraordinary props.

    CERN, home to the Large Hadron Collider, is known for high-speed, high-energy feats of coordination, so it’s only fitting that the touring percussion group STOMP would stop by for a visit.

    After taking a tour of the research center, STOMP performers were game to share their talent by turning three pieces of retired scientific equipment into a gigantic drum set. Check out the video below to hear the beat of an LHC dipole magnet, the Gargamelle bubble chamber and a radiofrequency cavity from the former Large Electron-Positron Collider.

    As CERN notes, these are trained professionals who were briefed on how to avoid damaging the equipment they used. Lab visitors are generally discouraged from hitting the experiments.


    Access mp4 video here .

    On Friday 6 January, the percussion group STOMP took time out from their worldwide tour to visit CERN. After seeing the Synchrocyclotron, Antiproton Decelerator and S’Cool Lab, it was time to bring out the drumsticks.

    In the Microcosm garden – home to items from CERN’s history including the Gargamelle bubble chamber and a LEP RF cavity – the cast sprang into action. With sticks whirring and hips shaking, they brought life and fantastic sound to the normally silent, sombre artefacts.

    The performance built to a crescendo at the LHC dipole magnet next to the Globe of Science and Innovation. There, the whole group leapt towards the magnet giving voice to the mighty blue tube in deep, resonating, powerful beats.

    The LHC never sounded so good. See the results for yourself in the video above.

    Disclaimer: No CERN objects were damaged in the making of this film. CERN does not normally encourage visitors to hit its historic objects and these trained percussionists were fully briefed beforehand to avoid fragile components.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:21 pm on January 12, 2017 Permalink | Reply
    Tags: Bessy1, CERN, SESAME - Synchrotron-light for Experimental Science and Applications in the Middle East   

    From CERN: “Pioneering SESAME light source circulates first beam” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    Allan, Jordan,
    12 January 2017

    SESAME PRESS RELEASE
    Pioneering SESAME light source circulates first beam

    Allan, Jordan, 12 January 2017. A beam circulated for the first time in the pioneering
    SESAME synchrotron at 18:12 (UTC+3) yesterday. The next step will be to store the
    beam.

    1
    SESAME | Synchrotron-light for Experimental Science and Applications in the Middle East

    This is an important milestone on the way to research getting underway at the first
    light-source laboratory in the Middle East. SESAME was established under the
    auspices of UNESCO before becoming a fully independent intergovernmental
    organisation in its own right in 2004.

    SESAME’s Members are Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority and Turkey. Its mission
    is to provide a world-class research facility for the region, while fostering
    international scientific cooperation. The first call for proposals to carry out research at
    SESAME was recently issued.

    “This is a very proud moment for the entire SESAME community,” said Professor
    Khaled Toukan, SESAME Director. “SESAME is now opening for business.”

    SESAME, which stands for Synchrotron-light for Experimental Science and
    Applications in the Middle East, is a light-source; a particle accelerator-based facility
    that uses electromagnetic radiation emitted by circulating electron beams to study a
    range of properties of matter.

    Experiments at SESAME will enable research in fields
    ranging from medicine and biology, through materials science, physics and chemistry
    to healthcare, the environment, agriculture and archaeology.

    Today’s milestone follows a series of key events, including the establishment of a
    Middle East Scientific Collaboration group in the mid-1990s. This was followed by
    the donation of the BESSY1 accelerator by the BESSY laboratory in Berlin.

    2
    Gift from BESSY-1

    A refurbished and upgraded BESSY1 now serves as the injector for the new SESAME
    main ring, which is a competitive third-generation light source built by SESAME with
    support from the SESAME Members themselves, the European Commission, CERN
    and Italy.

    “This is a great day for SESAME,” said Professor Sir Chris Llewellyn-Smith,
    President of the SESAME Council. “It’s a tribute to the skill and devotion of the
    scientists and decision-makers from the region who have worked tirelessly to make
    scientific collaboration between countries in the Middle East and neighbouring
    regions a reality.”

    The first circulating beam is an important step on the way to first light, which marks
    the start of the research programme at any new synchrotron light-source facility, but
    there is much to be done before experiments can get underway.

    Beams have to be accelerated to SESAME’s operating energy of 2.5 GeV. Then the light emitted as the
    beams circulate has to be channelled along SESAME’s two day-one beam lines and
    optimised for the experiments that will take place there. This process is likely to take
    around six months, leading to first experiments in the summer of 2017.

    In the meantime, scientists wishing to carry out research at SESAME are encouraged
    to submit their proposals following the procedure described at
    http://www.sesame.org.jo/sesame/component/content/article/85-uncategorised/440-cfp.html

    Contact:
    Clarissa Formosa-Gauci c.formosa-gauci@unesco.org

    Received via email, no link available.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 3:22 pm on January 6, 2017 Permalink | Reply
    Tags: , CERN, ,   

    From Symmetry: “CERN ramps up neutrino program” 

    Symmetry Mag
    Symmetry

    01/06/17
    Sarah Charley

    1
    Maximilien Brice, CERN

    The research center aims to test two large prototype detectors for the DUNE experiment.

    FNAL LBNF/DUNE from FNAL to SURF
    FNAL LBNF/DUNE from FNAL to SURF

    [I know that I am not a scientist and basically know nothing. But it bothers me that CERN is doing ANY work for DUNE. The U.S. Congress killed the Superconducting Super Collider in 1993 and virtually ceded HEP to Europe. I got into this blog when I found out that 30% of the people at CERN were from the U.S. and our press did not cover anything like this. I know that neutrino research virtually saved FNAL from the scrap heap. I just wish that anything being done for DUNE was being done here in the U.S. in one of our great D.O.E. labs or our great universities like MIT, Hopkins, Caltech, Illinois.]

    In the midst of the verdant French countryside is a workshop the size of an aircraft hangar bustling with activity. In a well lit new extension, technicians cut through thick slices of steel with electric saws and blast metal joints with welding torches.

    Inside this building sits its newest occupant: a two-story-tall cube with thick steel walls that resemble castle turrets. This cube will eventually hold a prototype detector for the Deep Underground Neutrino Experiment, or DUNE, the flagship research program hosted at the Department of Energy’s Fermi National Accelerator Laboratory [FNAL] to better understand the weird properties of neutrinos.

    Neutrinos are the second-most abundant fundamental particle in the visible universe, but because they rarely interact with atoms, little is known about them. The little that is known presents a daunting challenge for physicists since neutrinos are exceptionally elusive and incredibly lightweight.

    They’re so light that scientists are still working to pin down the masses of their three different types. They also continually morph from one of their three types into another—a behavior known as oscillation, one that keeps scientists on their toes.

    “We don’t know what these masses are or have a clear understanding of the flavor oscillation,” says Stefania Bordoni, a CERN researcher working on neutrino detector development. “Learning more about neutrinos could help us better understand how the early universe evolved and why the world is made of matter and not antimatter.”

    In 2015 CERN and the United States signed a new cooperation agreement that affirmed the United States’ continued participation in the Large Hadron Collider research program and CERN’s commitment to serve as the European base for the US-hosted neutrino program. Since this agreement, CERN has been chugging full-speed ahead to build and refurbish neutrino detectors.

    “Our past and continued partnerships have always shown the United States and CERN are stronger together,” says Marzio Nessi, the head of CERN’s neutrino platform. “Our big science project works only because of international collaboration.”

    The primary goal of CERN’s neutrino platform is to provide the infrastructure to test two large prototypes for DUNE’s far detectors. The final detectors will be constructed at Sanford Lab in South Dakota. Eventually they will sit 1.5 kilometers underground, recording data from neutrinos generated 1300 kilometers away at Fermilab.

    Two 8-meter-tall cubes, currently under construction at CERN, will each contain 770 metric tons of liquid argon permeated with a strong electric field. The international DUNE collaboration will construct two smaller, but still large, versions of the DUNE detector to be tested inside these cubes.

    In the first version of the DUNE detector design, particles traveling through the liquid knock out a trail of electrons from argon atoms. This chain of electrons is sucked toward the 16,000 sensors lining the inside of the container. From this data, physicists can derive the trajectory and energy of the original particle.

    In the second version, the DUNE collaboration is working on a new type of technology that introduces a thin layer of argon gas hovering above the liquid argon. The idea is that the additional gas will amplify the signal of these passing particles and give scientists a higher sensitivity to low-energy neutrinos. Scientists based at CERN are currently developing a 3-cubic-meter model, which they plan to scale up into the much larger prototype in 2017.

    In addition to these DUNE prototypes, CERN is also refurbishing a neutrino detector, called ICARUS, which was used in a previous experiment at the Italian Institute for Nuclear Physics’ Gran Sasso National Laboratory in Italy.

    INFN Gran Sasso ICARUS
    INFN Gran Sasso ICARUS

    FNAL/ICARUS
    FNAL/ICARUS

    ICARUS will be shipped to Fermilab in March 2017 and incorporated into a separate experiment.

    CERN plans to serve as a resource for neutrino programs hosted elsewhere in the world as scientists delve deeper into this enigmatic niche of particle physics.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 12:16 pm on December 15, 2016 Permalink | Reply
    Tags: Accelerating News, , ADAM, , , CERN, , LINAC4 project   

    From ILC and CERN via Accelerating News: “A revolutionary mini-accelerator” 

    CERN

    CERN

    2

    Accelerating News

    12.15.16
    Panos Charitos (CERN)

    1
    A glimpse in the accelerator structures of the world’s smallest accelerator (Credit: CERN)

    CERN is the home of the 27-kilometre Large Hadron Collider (LHC) that searches for new discoveries by colliding protons at extraordinarily high energies.

    CERN/LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    The unprecedented energy levels led to the discovery of the Higgs boson, the last missing piece in the Standard Model, and now open a new chapter in fundamental physics. The development of such complex machines is based on the advancement of novel technologies and invaluable know-how, which can be capitalised in other fields outside particle physics.

    Sometimes working for the largest accelerators gives ideas on how to build the smallest ones; the construction of the world’s smallest Radio Frequency Quadrupole (RFQ) for proton acceleration that was completed in September provides one of the most successful examples. This miniature machine is a linear accelerator (linac) consisting of four sections of only 130 mm diameter, operating at a frequency of 750 MHz, for a total length of 2 metres. It can accelerate low-intensity proton beams of a few hundreds of microA up to the energy of 5 MeV.

    It should be noted that the mini RFQ cannot be used for the large colliders needed for fundamental research, since it cannot achieve high peak currents. The small size and low current is however what makes this design ideal for a wide range of medical and industrial applications.

    Maurizio Vretenar (CERN), head of the LINAC4 project and coordinator of the design and construction of the mini accelerator, said: “The challenge to develop this miniature accelerator came from a spin-off company that aims to take advantage of the knowledge and infrastructure of CERN in building new accelerators. The main idea was that a mini-RFQ is a much more efficient injector than a cyclotron to a compact proton linac for particle therapy. The linac-based facility under development will permit a more precise 3D scanning of tumours than what is possible with other proton therapy machines or conventional radiotherapy.”

    Vretenar explained: “Reaching high frequencies is particularly challenging, but it is the only way to build compact accelerators. For proton linacs at CERN, we started with the 200 MHz LINAC2 at the end of the 1970s and since then we have almost doubled the frequency to 350 MHz for the recently commissioned LINAC4. With the new LINAC4 we will be able to double the beam intensity in the LHC injectors, thus significantly contributing to an increase of the LHC luminosity,” and continues: “the idea of constructing a smaller accelerator that could produce low-intensity beams for medical purposes has been a long-standing technological challenge. It dates back to the 1990s when it seemed almost impossible to build such a small RFQ.”

    The rich experience that the CERN team has gained from the design and development of LINAC4 made a new miniature RFQ accelerator seem more plausible. The main challenge was to double the operating frequency, resulting in more accelerating cells and a shorter length, but at the same time leading to a very challenging beam optics design and RF resonator. With the high frequency RFQ, we have more than doubled the accelerating capabilities (2.5 MeV/metre in place of 1 for the LINAC4 RFQ) and reduced by a factor 2 the construction cost per metre.

    The way to the higher frequencies was opened by a new beam dynamics approach developed by Alessandra Lombardi, who now follows the testing and commissioning of the RFQ in ADAM’s premises. The next challenges to address were the tuning of RFQs that are long with respect to the wavelength and the machining and brazing of RFQ parts of unprecedented small size.

    The design and construction of the RFQ relied on a sophisticated mechanical approach defined by Serge Mathot and on a detailed definition of the resonator properties and tuning strategy by Alexej Grudiev (BE).

    Thanks to the collaborative spirit and the passionate work of CERN’s people who worked in this project, the team recently completed the brand-new mini accelerator. The four modules that make up the final accelerator have been entirely constructed in CERN’s workshops within less than two years through the effort of a small but enthusiastic team. The fact that what they were building could help treating thousands of patients gave extra motivation to everyone involved in the project. In addition, Serge Mathot explains: “the construction was a very delicate procedure, given the need for high precision and the geometry of each module. Thanks to the experience and the skills we have gained from our previous works on the cavities for LINAC4, we successfully met the challenges of this project”.

    2
    Serge Mathot in front of one of the four modules (Credit: CERN)

    The technological breakthrough achieved by the team behind the mini-accelerator has attracted interest from the industry, in first instance from A.D.A.M. SA (link is external), which stands for Applications of Detectors and Accelerators to Mediciane, a Geneva-based spin-off company from CERN, and from its parent company Advanced Oncotherapy in the United Kingdom. “Behind every innovative aspect of this accelerator, there is unique CERN intellectual property and know-how”, says David Mazur from CERN’s Knowledge Transfer Group, “and we have concluded a license agreement with A.D.A.M. SA which enables them to commercialize such accelerators in the field of proton therapy, based on our IP”.

    The mini accelerator was delivered to the ADAM test facility last September and is presently being commissioned. It is more modular, more compact and cheaper than its “big brothers”. Its small size and light weight mean that the mini-RFQ could become the key element of proton therapy systems but also of systems able to produce radioactive isotopes on-site in hospitals.

    3
    The mini accelerator (RFQ) installed in the ADAM test stand (Credit: ADAM)

    The team that developed the mini-RFQ foresees many other potential medical applications, such as acceleration of alpha particles for advanced radiotherapy techniques that may be the new frontier in the treatment of cancer or industrial applications, where a mini accelerator could analyse the quality of surfaces or trace aerosol pollution for example.

    Also, the small size of the new accelerator means that it can be easily transported, which would be particularly useful for the surface analysis of archaeological materials or artworks presently exhibited in museums around the world, using proton-induced x-ray emission (PIXE) analytical technique. Indeed a new generation of mini accelerators have great potential and could find numerous applications in many fields. The mini-RFQ offers another example of the societal benefits stemming from fundamental research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The International Linear Collider (ILC) is a proposed linear particle accelerator.It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). The host country for the accelerator has not yet been chosen and proposed locations are Japan, Europe (CERN) and the USA (Fermilab). Japan is considered the most likely candidate, as the Japanese government is willing to contribute half of the costs, according to a representative for the European Commission on Future Accelerators.Construction could begin in 2015 or 2016 and will not be completed before 2026.

     
  • richardmitnick 7:00 am on December 3, 2016 Permalink | Reply
    Tags: , , CERN, , In Practice: What do data analysts do all day?, , , , The appeal of the unknown   

    From CERN: “In Practice: What do data analysts do all day?” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    2 Dec 2016
    Kathryn Coldham
    Kate Kahle
    Harriet Jarlett

    1
    CMS physicist Nadjieh Jafari switched from theoretical to experimental physics early on in her career. “It was an easy decision,” she says. “Once I saw CERN, it became my quest.” (Image: Sophia Bennett/ CERN)

    Another day, another mountain of data to analyse. In 2016, CERN’s Large Hadron Collider produced more collisions than in all previous years of operation put together. Experimental physicists spend much of their professional lives analysing collision data, working towards a potential discovery or to sharpen our picture of nature. But when the day-to-day findings become predictable, do physicists lose motivation?

    What if there’s nothing there?

    CERN has made headlines with its discoveries, but does this mean today’s researchers are just seeking fame and fortune? For most, being front-page news is not what stokes their physics passion, as they stare at their computer screens for hours. Instead, it’s the knowledge and excitement of understanding our universe at the most fundamental level.

    Siegfried Foertsch, run coordinator of the ALICE experiment, is motivated by “the completely new discoveries that lie around the corner. They’ve become ascertainable because of the new energies that the LHC machine is providing.”

    2
    Sitting in the ALICE control room, Siegfried explains: “I think what motivates people in these experiments is that you are entering terra incognita, it’s completely new science. It drives most people in these big experiments, it’s about new discoveries.” (Image: Sophia Bennett/CERN)

    These headline-worthy discoveries are rare. Instead, researchers make small, incremental findings day-by-day. “It doesn’t bother me that it’s not going to make front-page news. I know that within the particle physics community the research is important and that’s enough,” says Sneha Malde of the LHCb experiment.

    For CMS physicist Anne-Marie Magnan, her colleagues provide the much-needed push.

    “We have deadlines, so if you are part of an analysis you have pressure to make progress and you put personal pressure on yourself because you want to see the result. If you’re on a review committee you have deadlines, you need to provide feedback, the same if you’re managing a subgroup, you’re responsible for the group to show results at conferences. So you push people and they push you back to try and make progress,” she explains.

    Magnan analyses data to search for Higgs bosons . She describes her daily work as “programming, mostly. A lot of interaction with people, I have students to Skype with and when they say ‘I’m stuck, I don’t know what to do’ we chat and find solutions. At some points I’ve been a subgroup convener. There you encourage people to make progress and provide feedback on their analyses.”

    “It’s an exercise of patience because, after time, the incremental findings lead to a result. And even if you’re just working towards a result, you still have to solve technical problems each day,” explains Leticia Cunqueiro Mendez, a senior postdoctoral researcher working with the ALICE detector.

    Building bonds: the road to success

    Each one of these incremental, small discoveries are documented by a research paper. At CERN, these papers are often authored by hundreds, even thousands of people, as was the case with the papers announcing the Higgs discovery. And they aren’t just experimental physicists; students, technicians, engineers and computer scientists are all often equally involved.

    Having a high level of motivation can only get a physicist so far, working with others is the route to success.

    “People need each other here,” says Siegfried Foertsch, “the idea of a physicist without an engineer at CERN is unthinkable, and similarly vice versa. It’s symbiotic.”

    “I think the work of the technicians is a major contribution to the applied physics that I’m involved in. They are the unsung heroes in most of what we do to some extent,” says David Francis, Project Leader of the ATLAS Trigger and Data Acquisition System.

    For Cunqueiro Mendez, “the main thing is to know the possibilities of your detector and to have an interesting idea of what physics might be observable. For this you need interaction with the theorists so, in principle, you have to be reading papers and attending conferences. Here at CERN, you can meet your theory colleagues for a coffee and discuss your possibilities.”

    Eeney meeney miney mo

    Working with others can be collaborative, but it can also be competitive. There is a point of pride for one experiment to beat the competition to a discovery.

    3
    Sneha Malde standing in the corridor outside of her office (Image: Maximilien Brice/CERN)

    While the ATLAS and CMS experiments perform similar searches, the LHCb and ALICE experiments have particular fields of study, and the work that the associated physicists do differs as a result.

    Bump searches are what physicists call it when they try to find statistically significant peaks in the data; the presence of a bump could indicate the existence of a new particle. Some of these searches are done at ATLAS and CMS, where new particles are the name of the game. At LHCb and ALICE they try to take precision measurements of phenomenon, more than particles.

    “I don’t think I would be very happy just looking at empty plots with nothing in them, which could happen in bump searches if they don’t find anything new,” muses Malde. “I like the precision measurement aspect of LHCb’s data.”

    Studying and searching for different things means the data plots for different experiments look very different.

    “I like having obvious things in my plots. I like nice bumps, big ones. We have lots of bumps that don’t disappear, and they are really big peaks. We don’t have bumps, we have mountains!” – Sneha Malde, LHCb data analyst

    ATLAS physicist Anatolli Romaniouk, marvels at this range of LHC experiments. They “embrace an incredible field of physics, they search for everything.”

    “This is physics; if we know what we are searching for, then we don’t need experiments. If you know what exactly you want to find, it’s already found, or will be found soon. That’s why our experiments are beautiful because these experiments embrace an incredible field of physics, the LHC, it searches for everything,” explains Romaniouk.

    The beauty of the unknown

    4
    ATLAS physicist Anatolli Romaniouk has worked at CERN since 1990. The students he sees in the collaboration “know a bit of electronics, data acquisition and data analysis, very often they do it from second year of university and this is interesting. I find this brilliant, that they practice real physics at an early stage of their education.” (Image: Sophia Bennett/CERN)

    The appeal of the unknown, the as yet undiscovered, ignites the curiosity in the physicists and fuels them in their analyses.

    “When you have something in theory and think that it could be real – that it could exist – then you start to really think how you can look for it and try to find it,” says CMS physicist Nadjieh Jafari. “You build your experiment based on the theories. The CMS’s muon system was perfectly designed to discover the Higgs boson but at the moment of designing it, it was just an idea that we might find it. For me, that’s the most beautiful part of what we do.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 1:14 pm on November 25, 2016 Permalink | Reply
    Tags: CERN, , , NA64 experiment hunts the mysterious dark photon, ,   

    From CERN: “NA64 hunts the mysterious dark photon” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    25 Nov 2016
    Stefania Pandolfi
    Posted by Corinne Pralavorio

    1
    An overview of the NA64 experimental set-up at CERN. NA64 hunts down dark photons, hypothetic dark matter particles. (Image: Maximilien Brice/CERN)

    One of the biggest puzzles in physics is that eighty-five percent of the matter in our universe is “dark”: it does not interact with the photons of the conventional electromagnetic force and is therefore invisible to our eyes and telescopes. Although the composition and origin of dark matter are a mystery, we know it exists because astronomers observe its gravitational pull on ordinary visible matter such as stars and galaxies.

    Some theories suggest that, in addition to gravity, dark matter particles could interact with visible matter through a new force, which has so far escaped detection. Just as the electromagnetic force is carried by the photon, this dark force is thought to be transmitted by a particle called “dark” photon which is predicted to act as a mediator between visible and dark matter.

    “To use a metaphor, an otherwise impossible dialogue between two people not speaking the same language (visible and dark matter) can be enabled by a mediator (the dark photon), who understands one language and speaks the other one,” explains Sergei Gninenko, spokesperson for the NA64 collaboration.

    CERN’s NA64 experiment looks for signatures of this visible-dark interaction using a simple but powerful physics concept: the conservation of energy. A beam of electrons, whose initial energy is known very precisely, is aimed at a detector. Interactions between incoming electrons and atomic nuclei in the detector produce visible photons. The energy of these photons is measured and it should be equivalent to that of the electrons. However, if the dark photons exist, they will escape the detector and carry away a large fraction of the initial electron energy.

    Therefore, the signature of the dark photon is an event registered in the detector with a large amount of “missing energy” that cannot be attributed to a process involving only ordinary particles, thus providing a strong hint of the dark photon’s existence.

    If confirmed, the existence of the dark photon would represent a breakthrough in our understanding the longstanding dark matter mystery.


    View of the NA64 experiment set-up. (Video: Christoph Madsen/Noemi Caraban/CERN)

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 4:34 pm on November 3, 2016 Permalink | Reply
    Tags: , ASAUSA, CERN, , ,   

    From CERN: “CERN experiment improves precision of antiproton mass measurement with new innovative cooling technique” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    03 Nov 2016
    No writer credit found

    1
    The ASACUSA experiment (Image: CERN)
    Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

    In a paper published today in the journal Science, the ASACUSA experiment at CERN1 reported new precision measurement of the mass of the antiproton relative to that of the electron. This result is based on spectroscopic measurements with about 2 billion antiprotonic helium atoms cooled to extremely cold temperatures of 1.5 to 1.7 degrees above absolute zero. In antiprotonic helium atoms an antiproton takes the place of one of the electrons that would normally be orbiting the nucleus. Such measurements provide a unique tool for comparing with high precision the mass of an antimatter particle with its matter counterpart. The two should be strictly identical.

    “A pretty large number of atoms containing antiprotons were cooled below minus 271 degrees Celsius. It’s kind of surprising that a ‘half-antimatter’ atom can be made so cold by simply placing it in a refrigerated gas of normal helium,” said Masaki Hori, Group Leader of the ASACUSA collaboration.

    Matter and antimatter particles are always produced as a pair in particle collisions. Particles and antiparticles have the same mass and opposite electric charge. The positively charged positron, for example, is an anti-electron, the antiparticle of the negatively charged electron. Positrons have been observed since the 1930s, both in natural collisions from cosmic rays and in particle accelerators. They are used today in hospital in PET scanners. However, studying antimatter particles with high-precision remains a challenge because when matter and antimatter come into contact, they annihilate – disappearing in a flash of energy.

    CERN’s Antiproton Decelerator is a unique facility delivering low-energy antiproton beams to experiments for antimatter studies. In order to make measurements with these antiprotons, several experiments trap them for long periods using magnetic devices. ASACUSA’s approach is different as the experiment is able to create very special hybrid atoms made of a mix of matter and antimatter: these are the antiprotonic helium atoms composed of an antiproton and an electron orbiting a helium nucleus. They are made by mixing antiprotons with helium gas. In this mixture, about 3% of the antiprotons replace one of the two electrons of the helium atom. In antiprotonic helium, the antiproton is in orbit around the helium nucleus, and protected by the electron cloud that surrounds the whole atom, making antiprotonic helium stable enough for precision measurements.

    The measurement of the antiproton’s mass is done by spectroscopy, by shining a laser beam onto the antiprotonic helium. Tuning the laser to the right frequency causes the antiprotons to make a quantum jump within the atoms. From this frequency the antiproton mass relative to the electron mass can be calculated. This method has been successfully used before by the ASACUSA collaboration to measure with high accuracy the antiproton’s mass. However, the microscopic motion of the antiprotonic helium atoms introduced a significant source of uncertainty in previous measurements.

    The major new achievement of the collaboration, as reported in Science, is that ASACUSA has now managed to cool down the antiprotonic helium atoms to temperatures close to absolute zero by suspending them in a very cold helium buffer-gas. In this way, the microscopic motion of the atoms is reduced, enhancing the precision of the frequency measurement. The measurement of the transition frequency has been improved by a factor of 1.4 to 10 compared with previous experiments. Experiments were conducted from 2010 to 2014, with about 2 billion atoms, corresponding to roughly 17 femtograms of antiprotonic helium.

    According to standard theories, protons and antiprotons are expected to have exactly the same mass. To date, no difference has been found between their masses, but pushing the precision limits of this comparison is a very important test of key theoretical principles such as the CPT symmetry. CPT is a consequence of basic symmetries of space-time, such as its isotropy in all directions. The observation of even a minute breaking of CPT would call for a review of our assumptions about the nature and properties of space-time.

    The ASACUSA collaboration is confident that it will be able to further improve the precision of antiproton’s mass by using two laser beams. In the near future, the start of the ELENA facility at CERN will also allow the precision of such measurements to be improved.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 11:51 am on September 7, 2016 Permalink | Reply
    Tags: , , CERN,   

    From CERN: “The LHC MoEDAL experiment publishes its first paper on its search for magnetic monopoles” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    10 Aug 2016
    No writer credit found

    1
    Magnetic monopoles and dipoles (Image: CERN)

    In a paper published by the Journal of High Energy Physics today, the MoEDAL experiment at CERN1 narrows the window of where to search for a hypothetical particle, the magnetic monopole. Over the last decades, experiments have been trying to find evidence for magnetic monopoles at accelerators, including at CERN’s Large Hadron Collider. Such particles were first predicted by physicist Paul Dirac in the 1930s but have never been observed so far.

    “Today MoEDAL celebrates the release of its first physics result and joins the other LHC experiments at the discovery frontier,” says Spokesperson of the MoEDAL experiment, James Pinfold.

    Just as electricity comes with two charges, positive and negative, so magnetism comes with two poles, North and South. The difference is that while it’s easy to isolate a positive or negative electric charge, nobody has ever seen a solitary magnetic charge, or monopole. If you take a bar magnet and cut it in half, you end up with two smaller bar magnets, each with a North and South pole. Yet theory suggests that magnetism could be a property of elementary particles. So just as electrons carry negative electric charge and protons carry positive charge, so magnetic monopoles could in theory carry a North or a South pole.

    If monopoles exist, they are believed to be very massive. As the LHC produces collisions at unprecedented energy, physicists may be able to observe such particles if they are light enough to be in the LHC’s reach. For instance, high-energy photon–photon interactions could produce pairs of North and South monopoles. Monopoles could manifest their presence via their magnetic charge and through their very high ionizing power, estimated to be about 4700 times higher than that of the protons. The MoEDAL experiment at the LHC is designed specifically to look at these effects.

    MoEDAL is composed of a largely passive detector, installed next to the LHCb experiment. As monopoles would be highly ionizing, they would leave tracks in plastic detectors (NTDs) that are examined by a microscope afterwards. Monopoles would also lose their energy very quickly and could therefore be slowed down by another device consisting of 0.8 tonnes of aluminium detectors that act as a trap. A trapped monopole would signal its presence afterwards, when a magnetometer ‘scans’ the detectors for a magnetic charge. Additionally, MoEDAL includes an array of TimePix silicon pixel detectors used to monitor the experiment’s environment in real-time.

    The paper published today is based on an analysis of data collected during the LHC’s first run, when the trapping detector was still a prototype. Although showing no evidence for trapped monopoles, the results have allowed the MoEDAL collaboration to place new mass limits, assuming a simple production mode of these hypothetical particles. They also provide a clear demonstration of the power of the MoEDAL detector, as the LHC delivers data at higher energy. The MoEDAL collaboration is now actively working on the analysis of data obtained with the full detector – including plastic NTDs and trapping detectors – in 2015, with the exciting possibility of revolutionary discoveries in a number of new physics scenarios.

    The paper published today was signed by school students from the Simon Langton School, Canterbury, UK, which joined the MoEDAL collaboration in 2013, and the Institute for Research in Schools (IRIS), which aims is to bring first-class cutting-edge research into high-schools.

    2

    Footnote(s)

    1. CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. Its headquarters are in Geneva. Its Member States are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland and United Kingdom. Cyprus and Serbia are Associate Member States in the pre-stage to Membership. Pakistan and Turkey are Associate Member States. The European Union, India, Japan, JINR, the Russian Federation, UNESCO and the United States of America have Observer status.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 8:52 am on August 13, 2016 Permalink | Reply
    Tags: , CERN, Romania becomes CERN Member State   

    From CERN: “Romania becomes CERN Member State” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    Aug 12, 2016

    Romania has become the 22nd Member State of CERN, having acceded to the Organization’s founding convention, which is deposited with UNESCO, on 17 July. The accession crowns a period of co-operation that stretches back 25 years. “This is a very special moment for Romania and its relationship with CERN,” says ambassador Adrian Vierita, Romania’s permanent representative to the United Nations in Geneva.

    1

    Bilateral discussions between the Romanian government and CERN began in 1991. Aspiring to become a Member State and therefore to contribute fully to the governance of the laboratory, Romania submitted its formal application to join CERN in April 2008.

    Today, Romania has around 100 visiting scientists at CERN and a particularly strong presence in the LHC experiments ATLAS, ALICE and LHCb, in addition to the DIRAC, n_TOF and NA62 experiments. “The accession of Romania to full CERN membership underlines the importance of European research collaboration in the quest to understand nature at its most fundamental level,” says the president of CERN Council, Sijbrand de Jong. “United, we can do so much more than as individual countries.” The Romanian flag will be raised alongside 21 others at the CERN entrance on 5 September.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: