From The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] (CH) “Accelerating Science” : “A new concept of using THz radiation for electron acceleration”
10 June, 2022
By Rasmus Ischebeck (PSI), Benedikt Hermann (PSI) & Urs Haeusler (Friedrich-Alexander-Universität Erlangen-Nürnberg FAU)
An electron beam (blue) passes along the surface of the inverse-designed dielectric structure emitting Smith-Purcell radiation (red).(Image credit: ACS Photonics 2022, 9, 4, 1143-1149 License: CC BY-NC-ND 4.0)
Terahertz radiation has a wavelength of 0.1 − 1mm and is situated in the electromagnetic spectrum between infrared (>3 THz) and microwaves (<0.3 THz). It has various applications in scientific and technological areas, including wireless communication, biomedical and material science, and electron acceleration. The most common technique to generate THz radiation uses laser pulses sent onto a nonlinear crystal, which results in broadband THz pulses by a process known as optical rectification. An alternative approach uses free electrons passed along a periodic structure, which emits synchronous radiation via the Smith-Purcell effect. The precise shape of the structure thereby determines the wavelength and spectral width of the emitted radiation.
In a paper recently published by B. Hermann, et al in ACS Photonics, the authors employed the technique of photonic inverse design to optimize a structure for Smith-Purcell radiation from ultra-relativistic electrons. The goal of the optimization was the generation of narrowband THz radiation around a wavelength of 0.9 mm. They manufactured this structure using additive manufacturing on a stereolithography 3D printer and measured the spectrum of the radiation emitted when 3.2 GeV electron bunches from SwissFEL passed through the structure.
Since these electron bunches are shorter than the Smith-Purcell wavelength, the radiation is emitted coherently and scales quadratically with the bunch charge.
Figure 1: A 3D-printed inverse design structure for Smith-Purcell radiation. (a) Electrons are accelerated to an energy of 3.2 GeV at SwissFEL and focused into the THz structure. (b) The 2D design of our structure is overlaid onto the field simulation of the magnetic field Hz. (c) The 3D-printed structure is 10mm wide and 45mm long. Adapted from [1], published by ACS Photonics.
Design
At the heart of the inverse design algorithm lies the objective function, which quantifies the performance of a structure design. Here the authors measured the emitted radiation at the design wavelength to evaluate the performance of the structure. The algorithm then maximises this value by varying all possible structure parameters. The parameters can be thought of as the ∼ 10, 000 pixels which define a structure design, but more generally, they can also comprise design constraints, such as symmetry and feature size.
The researchers optimised a single unit cell of the grating with periodic boundaries in a 2D finite differences frequency-domain simulation. The design region excluded a 0.15-mm-broad vacuum channel in the middle to ensure that electrons can propagate freely through the structure. The resulting design (shown in Fig. 1b) exhibits distributed Bragg reflectors on each side of the electron channel, which enable resonant enhancement at the emission wavelength of 0.9 mm. It is this resonant enhancement which yields the desired narrowband emission spectrum.
Fabrication and Measurement
The authors fabricated the inverse-designed structure in a stereolithography 3D printer, which is ideal for rapid prototyping. To this end, they chose a high-temperature polymer resin which fulfils all their requirements: First, it has a low absorption coefficient but high refractive index in the targeted THz range. And second, it needs to comply with the stringent vacuum requirements of the accelerator of SwissFEL. The fabricated structure with a periodicity of 0.9mm is shown in Fig. 1c.
To characterise the performance of the inverse-designed Smith-Purcell radiator, the researchers installed it inside the ACHIP vacuum chamber at SwissFEL and set up an interferometer with a Schottky diode as detector to measure the first-order autocorrelation.
The retrieved spectrum fits well to that of a finite-difference time-domain (FDTD) simulation, see Fig. 2. By scanning the charge of the electron bunch, a quadratic scaling of the emitted THz energy was observed, which demonstrates coherent enhancement.
Figure 2: Narrowband emission spectrum. The experimental data (black dots) was retrieved from a first-order autocorrelation measurement. The green curve is the result of a 3D finite-differences time-domain simulation. Adapted from [1], published by ACS Photonics.
Outlook
The wavelength of coherent emission is defined by the periodicity of the structure. As the index of refraction depends only weakly on the frequency in the THz region, the structure can easily be adapted to generate different wavelengths by scaling, and manufacturing using suitable resins reaches sub-micrometre accuracy in commercially available 3D printers. The versatility of inverse design offers the possibility to optimise it for different photon and beam energies. This method could thus advance beam-based THz generation for a wide range of applications.
The THz pulse energy demonstrated in this study was relatively low but can be increased linearly with the collection efficiency and quadratically with the electron bunch charge.
Acknowledgements
This work was supported by the Gordon and Betty Moore Foundation through Grant GBMF4744 (ACHIP) to Stanford.
The research was published in ACS Photonics:
[1] Benedikt Hermann, Urs Haeusler, Gyanendra Yadav, Adrian Kirchner, Thomas Feurer, Carsten Welsch, Peter Hommelhoff, and Rasmus Ischebeck. Inverse designed narrowband THz radiator for ultrarelativistic electrons. ACS Photonics, 9(4):1143–1149, 2022.
See the full article here .
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Our mission
The Knowledge Transfer group at CERN (CH) aims to engage with experts in science, technology and industry in order to create opportunities for the transfer of CERN’s technology and know-how. The ultimate goal is to accelerate innovation and maximise the global positive impact of CERN on society. This is done by promoting and transferring the technological and human capital developed at CERN. The CERN KT group promotes CERN as a centre of technological excellence, and promotes the positive impact of fundamental research organisations on society.
“Places like CERN contribute to the kind of knowledge that not only enriches humanity, but also provides the wellspring of ideas that become the technologies of the future.”
Fabiola Gianotti, Director-General of CERN
From Organisation européenne pour la recherche nucléaire technologies to society
Below, you can see how CERN’s various areas of expertise translates into impact across industies beyond CERN. Read more about this at the from CERN technologies to society page.
The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL) [CERN]
See the full article here.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Stem Education Coalition
Meet CERN in a variety of places:
THE FOUR MAJOR PROJECT COLLABORATIONS
ATLAS
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] ATLAS.
ALICE
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] ALICE.
CMS
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] CMS.
LHCb
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] LHCb.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] map.
CERN LHC underground tunnel and tube.
OTHER PROJECTS AT CERN
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] AEGIS.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] ALPHA Antimatter Factory.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] ALPHA-g Detector.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] AMS.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] ASACUSA.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] ATRAP.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] Antiproton Decelerator.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] AWAKE.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] BASE: Baryon Antibaryon Symmetry Experiment.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] BASE instrument.
European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN] BASE: Baryon Antibaryon Symmetry Experiment.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] CAST Axion Solar Telescope.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] CLOUD.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] COMPASS.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] CRIS experiment.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] DIRAC.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] FASER experiment schematic.
CERN FASER is designed to study the interactions of high-energy neutrinos and search for new as-yet-undiscovered light and weakly interacting particles. Such particles are dominantly produced along the beam collision axis and may be long-lived particles, travelling hundreds of metres before decaying. The existence of such new particles is predicted by many models beyond the Standard Model that attempt to solve some of the biggest puzzles in physics, such as the nature of dark matter and the origin of neutrino masses.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] GBAR.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] ISOLDE Looking down into the ISOLDE experimental hall.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] LHCf.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] The MoEDAL experiment- a new light on the high-energy frontier.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] NA62.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] NA64.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] NTOF.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] TOTEM.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] UA9.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] The SPS’s new RF system.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] Proto Dune.
The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] HiRadMat-High Radiation to Materials.
Reply