Tagged: CERN Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:23 pm on November 20, 2018 Permalink | Reply
    Tags: , CERN, , , , ,   

    From Fermi National Accelerator Lab: “How to build a towering millikelvin thermometer” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    November 15, 2018
    Jim Daley

    Cary Kendziora had expected the long, slender temperature profile monitor to droop a bit, but not as much as this. As part of a joint project with the University of Hawaii at Manoa, Kendziora, a mechanical engineer at the U.S. Department of Energy’s Fermilab, had designed the device to measure the variation in temperature inside a massive neutrino detector located at the European laboratory CERN. The detector, the size of a small house, is filled with liquid argon. The temperature profile monitor is a solid piece of metal about 8 meters tall — about two stories tall — and as thin as a curtain rod. It bowed considerably when it was horizontal.

    Kendziora said he’d never worked with such a long, solid piece of metal that was also so narrow.

    “It turned out to be a lot more flexible than I imagined because of its length,” Kendziora said. “That was a surprise.”

    As a workaround, he helped build an exoskeleton support to keep the device rigid while it was being installed.

    The detector, one of two known as the ProtoDUNE detectors, contains 770 tons of liquid argon maintained at temperatures around 90 Kelvin.

    CERN Proto Dune

    Cern ProtoDune

    That’s a chilling minus 300 degrees Fahrenheit. As particles pass through the detector, they occasionally smash into the nuclei of argon atoms. The particles emerging from these collisions release electrons from argon atoms as they pass by. These electrons drift toward sensors that record their tracks. The tracks, in turn, give scientists information about the particle that started the reaction.

    2
    The temperature profiler from one of the ProtoDUNE detectors stands 8 meters tall. Photo: Cary Kendziora

    The ProtoDUNE detectors are prototypes for the international, Fermilab-hosted Deep Underground Neutrino Experiment. The DUNE detector, expected to be complete in the mid-2020s, will be mammoth, comprising four modules that are each nearly as long as a football field.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    SURF DUNE LBNF Caverns at Sanford Lab

    FNAL DUNE Argon tank at SURF

    In liquid-argon detectors like DUNE and the ProtoDUNE detector, monitoring the variation in internal temperature is important because it’s correlated to the argon’s purity. ProtoDUNE contains 770 tons of liquid argon. DUNE will hold 70,000 tons. At this scale, the purification efficiency has to be checked regularly. If the argon doesn’t mix properly, it begins to stratify into layers of different temperatures, which can affect how far electrons can drift.

    “If the argon is pure, the electrons can drift the distance to the ProtoDUNE sensors, no problem,” said Jelena Maricic, an associate professor of physics at the University of Hawaii at Manoa who leads the group that worked on the design, construction and installation of the ProtoDUNE dynamic temperature profile monitor, along with Kendziora.

    But impurities have a great affinity for electrons and can trap them on their way to the sensors. And if they’re trapped, they won’t be detected, or at least not as easily.

    The temperature profile monitor hangs vertically from the detector’s ceiling near one corner of the detector, taking readings of the circulating liquid argon. By monitoring the argon’s temperature, scientists will be able to tell right away whether any problems are developing in the detector.

    Calibration by cross-reference

    Designing and building a temperature profile monitor that is accurate to within tens of millikelvin inside a massive liquid-argon detector is no small feat. While the degree of bowing was an unexpected problem, it was hardly the most difficult challenge to overcome. Kendziora ticked off a laundry list of them.

    “It had to be electrically and thermally isolated, and leak-tight,” he said. “And it’s a high-purity application, so all the materials had to be selected based on their not contributing any contaminants to the liquid. All the little threaded holes that the components are screwed into had to be vented so they wouldn’t trap any gas that would give off oxygen over a long period of time. All the parts had to be cleaned.”

    The entire design of the profile monitor also needed to address a unique question: How do you calibrate a probe that is sealed inside a giant box full of liquid argon? Erik Voirin, an engineer at Fermilab, and Yujing Sun, a postdoc in Maricic’s lab, independently hit upon the same, elegant idea.

    The team designed the profile monitor with an array of 23 motor-driven, remotely moveable sensors along its 8-meter height. Each takes a reading of the argon immediately surrounding it. And since they’re moveable, not only can a sensor take the temperature in multiple locations, but a single location’s temperature can be read out by more than one sensor.

    4
    The profile monitor is outfitted with an array of 23 motor-driven, remotely moveable sensors along its 8-meter height. Each takes a reading of the argon immediately surrounding it. Photo: Cary Kendziora

    Voirin, a thermal-fluids engineer, performed the computational fluid dynamics simulations for ProtoDUNE. Sun tested and demonstrated the idea to work with the prototype using just four sensors in 2017, deploying the rod in the 35-ton liquid-argon detector.

    “Our system allows you to move the sensors along the vertical axis and perform cross-calibration,” Maricic said.

    One could use sensor A to take the temperature at, say, the 3-meter mark, and then check its reading against sensor B’s at the same location. That way, scientists can determine if any sensor is out of whack.

    Maricic said that the University of Hawaii group team, will be performing the cross-calibration in the late November or early December.

    The DUNE far detector will require a similar temperature profile monitor that adheres to the same set of strict requirements that the ProtoDUNE detector needed – but with one difference. DUNE is much larger than ProtoDUNE, so its profile monitor needs to be scaled up accordingly. It will be 15 meters long — nearly double the length of the prototype profile monitor.

    “I don’t have a solution for the long length,” Kendziora says, other than to construct another extensive support infrastructure.

    Another engineering effort for DUNE— and he’s on top of it.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

    Advertisements
     
  • richardmitnick 4:36 pm on October 24, 2018 Permalink | Reply
    Tags: 4 weeks of lead atoms, , CERN, Final lap of the LHC track for protons in 2018, , Lead colllisions allow studies to be conducted on quark-gluon plasma- a state of matter that is thought to have existed a few millionths of a second after the Big Bang, , ,   

    From CERN: “Final lap of the LHC track for protons in 2018” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    24 Oct 2018
    Corinne Pralavorio

    1
    View of the LHC accelerator in 2018. (Image: Maximilien Brice, Julien Ordan/CERN)

    Today, protons said their goodbyes to the Large Hadron Collider during a last lap of the track. At 6 a.m., the beams from fill number 7334 were ejected towards the beam dumps. It was the LHC’s last proton run from now until 2021, as CERN’s accelerator complex will be shut down from 10 December to undergo a full renovation.

    2
    LHC Page1, showing the operational state of the accelerator at 6.02 a.m. on Wednesday 24 October. The spiral represents the proton bunches stopped by the beam dump (Image: CERN)

    Now is the time for the scientists who read the collisions meter to make a first assessment. The integrated luminosity in 2018 (or the number of collisions likely to be produced during the 2018 run) reached 66 inverse femtobarns (fb-1) for ATLAS and CMS, which is 6 points better than expected. About 13 million billion potential collisions were delivered to the two experiments. LHCb accumulated 2.5 fb-1, more than the 2.0 predicted, and ALICE 27 inverse picobarns. The remarkable efficiency of the LHC this year is due to excellent machine availability and an instantaneous luminosity that regularly exceeded the nominal value. Since the start of the second run at a collision energy of 13 TeV, the integrated luminosity was 160 fb-1, higher than the 150 fb-1 expected.

    However, this does not mean that the LHC runs are finished for this year. The show will go on for four more weeks, during which time the collider will master another kind of particle, lead atoms. After a few days of machine tests, the teams will inject heavy ions, which have been prepared over recent months in the injectors. The LHC will therefore be able to carry out collisions of lead ions – lead atoms formed of 208 protons and neutrons that have been ionised, meaning they have had about 30 electrons removed. These collisions allow studies to be conducted on quark-gluon plasma, a state of matter that is thought to have existed a few millionths of a second after the Big Bang.

    3
    This graph shows the integrated luminosity delivered to the ATLAS and CMS experiments during different LHC runs. The 2018 run produced 65 inverse femtobarns of data, which is 16 points more than in 2017. (Image: CERN)

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE

    CERN/ALICE Detector

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

    CERN Proto Dune

    CERN Proto Dune

     
  • richardmitnick 3:48 pm on October 11, 2018 Permalink | Reply
    Tags: , CERN, European Strategy for Particle Physics, , , ,   

    From CERN: “European Strategy for Particle Physics” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    The European Strategy for Particle Physics is the cornerstone of Europe’s decision-making process for the long-term future of the field. Mandated by the CERN Council, it is formed through a broad consultation of the grass-roots particle physics community, it actively solicits the opinions of physicists from around the world, and it is developed in close coordination with similar processes in the US and Japan in order to ensure coordination between regions and optimal use of resources globally.

    The European Strategy process was initiated by the CERN Council in 2005, resulting in a document being adopted by the Council in 2006. Unsurprisingly, this document placed the LHC at the top of Europe particle physics’ scientific priorities, with a significant luminosity upgrade already being mooted. A ramp-up of R&D into future accelerators also featured high on the priority list, followed by coordination with a potential International Linear Collider, and participation in a global neutrino programme.

    ILC schematic, being planned for the Kitakami highland, in the Iwate prefecture of northern Japan

    The original Strategy also foresaw increased collaboration with neighbouring fields such as astroparticle and nuclear physics, and it recognised the importance of complementary issues such as communications and technology transfer.

    The original European Strategy prescribed regular updates to take into account the evolution of the field. The first of these was prepared in 2012 and adopted in 2013. By this time, the LHC had proved its capacity with the discovery of the long-sought Higgs boson, evidence for the Brout-Englert-Higgs mechanism through which fundamental particles acquire their mass.

    CERN CMS Higgs Event


    CERN ATLAS Higgs Event

    Again, it came as no surprise that the LHC topped the list of scientific priorities for European particle physics, with the high-luminosity upgrade increasing in importance, and preparations for the post-LHC future taking shape. “Europe”, said the Strategy document, “needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update.”

    Post LHC map

    The remainder of the updated recommendations represented logical and evidence-based evolutions of those contained in the initial European Strategy. All have been, or are in the process of being, implemented.

    As the second update of the European Strategy gets underway, the stakes are high. Europe, in collaboration with partners from around the world, is engaged in R&D projects for a range of ambitious post-LHC facilities under the CLIC and FCC umbrellas.


    CERN/CLIC

    It is time to check progress on these, matching their expected performance to physics needs. The discussions will be based on scientific evidence gleaned from the impressive results coming in from the LHC, as well as from technological and resourcing considerations.

    In other areas of particle physics, much has changed since the last strategy update. Europe, through CERN, is now contributing fully to a globally-coordinated neutrino programme with experiments to be carried out in the USA and Japan. The International Linear Collider, which would be complementary to the LHC, remains on the table with a site having been identified in Japan and a decision on whether to go forward expected soon. There are ambitious plans to build a large collider in China. And at CERN, a study to investigate the potential for physics beyond colliders, maximising the potential for CERN’s unique accelerator complex, was launched in 2016. All of these factors will feed into the deliberations soon to get underway to update the European Strategy for Particle Physics.

    The current update of the European Strategy was initiated by the CERN Council in December 2016 to be carried out between 2018 and 2020, a date deemed optimal for the major decisions that need to be taken for the future of particle physics in Europe. A call for input was made in March 2018, with dates being fixed for the key information gathering and drafting stages in August 2018.

    Strategic planning in European particle physics is an open, inclusive and evidence-driven process. Follow the current strategy update as it evolves, and join us on the unfolding adventure of research at the frontier of knowledge.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

    CERN Proto Dune

    CERN Proto Dune

     
  • richardmitnick 9:10 am on September 18, 2018 Permalink | Reply
    Tags: , CERN, , , , , ,   

    From Interactions.org: “First particle tracks seen in prototype for international neutrino experiment” 

    From Interactions.org

    CERN and Fermilab announce big step in Deep Underground Neutrino Experiment.

    18 September 2018 – The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE).

    5
    DUNE collaboration

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    DUNE’s scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe. Neutrinos are all around us, but we know very little about them. Scientists on the DUNE collaboration think that neutrinos may help answer one of the most pressing questions in physics: why we live in a universe dominated by matter. In other words, why we are here at all.

    The enormous ProtoDUNE detector – the size of a three-story house and the shape of a gigantic cube – was built at CERN, the European Laboratory for Particle Physics, as the first of two prototypes for what will be a much, much larger detector for the DUNE project, hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory in the United States. When the first DUNE detector modules record data in 2026, they will each be 20 times larger than these prototypes.

    CERN Proto Dune

    ProtoDune


    Cern ProtoDune

    It is the first time CERN is investing in infrastructure and detector development for a particle physics project in the United States.

    The first ProtoDUNE detector took two years to build and eight weeks to fill with 800 tons of liquid argon, which needs to be kept at temperatures below -184 degrees Celsius (-300 degrees Fahrenheit). The detector records traces of particles in that argon, from both cosmic rays and a beam created at CERN’s accelerator complex. Now that the first tracks have been seen, scientists will operate the detector over the next several months to test the technology in depth.

    “Only two years ago we completed the new building at CERN to house two large-scale prototype detectors that form the building blocks for DUNE,” said Marzio Nessi, head of the Neutrino Platform at CERN. “Now we have the first detector taking beautiful data, and the second detector, which uses a different approach to liquid-argon technology, will be online in a few months.”

    The technology of the first ProtoDUNE detector will be the same to be used for the first of the DUNE detector modules in the United States, which will be built a mile underground at the Sanford Underground Research Facility in South Dakota. More than 1,000 scientists and engineers from 32 countries spanning five continents – Africa, Asia, Europe, North America and South America – are working on the development, design and construction of the DUNE detectors. The groundbreaking ceremony for the caverns that will house the experiment was held in July of 2017.

    “Seeing the first particle tracks is a major success for the entire DUNE collaboration,” said DUNE co-spokesperson Stefan Soldner-Rembold of the University of Manchester, UK. “DUNE is the largest collaboration of scientists working on neutrino research in the world, with the intention of creating a cutting-edge experiment that could change the way we see the universe.”

    When neutrinos enter the detectors and smash into the argon nuclei, they produce charged particles. Those particles leave ionization traces in the liquid, which can be seen by sophisticated tracking systems able to create three-dimensional pictures of otherwise invisible subatomic processes. (An animation of how the DUNE and ProtoDUNE detectors work, along with other videos about DUNE, is available here: https://www.fnal.gov/pub/science/lbnf-dune/photos-videos.html.)

    “CERN is proud of the success of the Neutrino Platform and enthusiastic about being a partner in DUNE, together with Institutions and Universities from its Member States and beyond” said Fabiola Gianotti, Director-General of CERN. “These first results from ProtoDUNE are a nice example of what can be achieved when laboratories across the world collaborate. Research with DUNE is complementary to research carried out by the LHC and other experiments at CERN; together they hold great potential to answer some of the outstanding questions in particle physics today.”

    DUNE will not only study neutrinos, but their antimatter counterparts as well. Scientists will look for differences in behavior between neutrinos and antineutrinos, which could give us clues as to why the visible universe is dominated by matter. DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay. Observing proton decay would bring us closer to fulfilling Einstein’s dream of a grand unified theory.

    “DUNE is the future of neutrino research,” said Fermilab Director Nigel Lockyer. “Fermilab is excited to host an international experiment with such vast potential for new discoveries, and to continue our long partnership with CERN, both on the DUNE project and on the Large Hadron Collider.”

    To learn more about the Deep Underground Neutrino Experiment, the Long-Baseline Neutrino Facility that will house the experiment, and the PIP-II particle accelerator project at Fermilab that will power the neutrino beam for the experiment, visit http://www.fnal.gov/dune.

    Footnotes:
    DUNE comprises 175 institutions from 32 countries: Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Paraguay, Peru, Poland, Portugal, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and United States. The DUNE interim design report provides a detailed description of the technologies that will be used for the DUNE detectors. More information is at dunescience.org.
    CERN, the European Organization for Nuclear Research, is one of the world’s leading laboratories for particle physics. The Organization is located on the French-Swiss border, with its headquarters in Geneva. Its Member States are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland and United Kingdom. Cyprus, Serbia and Slovenia are Associate Member States in the pre-stage to Membership. India, Lithuania, Pakistan, Turkey and Ukraine are Associate Member States. The European Union, Japan, JINR, the Russian Federation, UNESCO and the United States of America currently have Observer status.

    Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC, a joint partnership between the University of Chicago and the Universities Research Association, Inc. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @Fermilab.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

    See the Fermilab article here .
    See the Symmetry article here.
    See the Berkeley lab article here .
    See the CERN article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 1:59 pm on August 24, 2018 Permalink | Reply
    Tags: , , CERN, Taking the temperature of protoDUNE   

    From CERN: “Taking the temperature of protoDUNE” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    24 Aug 2018
    Sarah Charley

    1
    This 7.5-metre thermometer can measure 48 different temperatures simultaneously, enabling scientists to monitor the cooling and filtration system of the liquid-argon protoDUNE-SP detector. (Image: Roberto Acciarri)

    When crane operators at CERN lowered a custom 7.5-metre thermometer into one of the prototypes for the planned Deep Underground Neutrino Experiment (DUNE) earlier this month, it looked like a silver straw sliding into a giant juice carton. But designing and installing this intricate instrument was far from child’s play.

    The thermometer was constructed by the Instituto de Física Corpuscular in Valencia, Spain, and then shipped to CERN in three delicate pieces. The thermometer is 12.5 cm in diameter and was lowered into place through a hole that has less than 2 cm of wiggle room. It is currently hanging from the ceiling of a colossal cryostat for protoDUNE-SP, one of the two prototype liquid-argon detectors for the DUNE experiment. DUNE will study subatomic particles called neutrinos by measuring the light and clouds of electrons that they leave behind as they pass through huge vats of liquid argon.

    The purpose of the thermometer is to measure the temperature of the detector’s liquid-argon tank at 48 different depths, enabling scientists to make sure that the filtration and cooling system of the detectoris working as expected.

    “The argon will constantly cycle through an external filtration and cooling system to keep it pure and chilled to around -196 degrees Celsius,” said Anselmo Cervera, a scientist from the Instituto de Física Corpuscular who helped design and build the thermometer. “It will take about 5.5 days for all the argon to make one complete pass through this system, so its temperature will always vary based on the depth. We know from simulations what the temperatures should be at each depth, and if the measurement matches the prediction, it’s a clear indication that the filtration and cooling system is working properly.”

    According to Cervera, this is of the utmost importance because impurities (such as oxygen or water) will “eat” the electrons emitted by the passing neutrinos and destroy their signal. “We’re aiming to have less than 10 water molecules for every trillion argon atoms,” Cervera said.

    The thermometer consists of a fibreglass skeleton with 48 platinum sensors spaced along its spine. The entire instrument is encased in a metallic structure known as a Faraday cage to avoid electrical discharges between the thermometer and other parts of the detector.

    This thermometer can determine the relative temperatures of the liquid argon inside the cryostat at 48 depths with a precision of 0.003 degrees Celsius – approximately 100 times more precise than a standard household thermometer. “After extensively calibrating the platinum sensors, we can accurately calculate any changes in their temperature by measuring changes in their electrical resistance,” Cervera said.

    2
    Crane operators needed excellent precision to lower the 7.5-metre thermometer into a tiny opening with less than 2 cm of wiggle room. (Image: Roberto Acciarri)

    The thermometer is one of two inside the protoDUNE-SP cryostat. The second thermometer, which is also 7.5 metres long and contains 22 sensors, was constructed by the University of Hawaii and Fermilab and uses a different technique to calibrate its sensors and obtain high-precision temperature measurements at different depths.

    “Because we won’t be able to access the thermometer while it is inside the cryostat to verify its measurements, we’ve developed a way to continuously calibrate its temperature sensors by moving the thermometer up and down by 1.5 metres inside the liquid argon,” said Jelena Maricic, a professor at the University of Hawaii who helped design and build this thermometer. “We can then cross-reference the sensors’ measurements at various heights and verify if the sensors are correctly calibrated.”

    Testing these two devices inside the protoDUNE-SP detector is an important step in perfecting the technology for DUNE, which will be 1.6 kilometres underground and consist of four detectors, each of which will be 20 times larger than the 8-metre-cubed prototypes.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN map

    CERN LHC Grand Tunnel

    CERN LHC particles

    CERN Proto Dune

     
  • richardmitnick 2:01 pm on August 16, 2018 Permalink | Reply
    Tags: , , CERN, , Hunt for the sterile neutrino, , , , , , , , Short-Baseline Neutrino experiments   

    From Fermi National Accelerator Lab: “ICARUS neutrino detector installed in new Fermilab home” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    August 16, 2018
    Leah Hesla

    For four years, three laboratories on two continents have prepared the ICARUS particle detector to capture the interactions of mysterious particles called neutrinos at the U.S. Department of Energy’s Fermi National Accelerator Laboratory.

    On Tuesday, Aug. 14, ICARUS moved into its new Fermilab home, a recently completed building that houses the large, 20-meter-long neutrino hunter. Filled with 760 tons of liquid argon, it is one of the largest detectors of its kind in the world.

    With this move, ICARUS now sits in the path of Fermilab’s neutrino beam, a milestone that brings the detector one step closer to taking data.

    It’s also the final step in an international scientific handoff. From 2010 to 2014, ICARUS operated at the Italian Gran Sasso National Laboratory, run by the Italian National Institute for Nuclear Physics. Then the detector was sent to the European laboratory CERN, where it was refurbished for its future life at Fermilab, outside Chicago. In July 2017, ICARUS completed its trans-Atlantic trip to the American laboratory.

    1
    The second of two ICARUS detector modules is lowered into its place in the detector hall. Photo: Reidar Hahn

    “In the first part of its life, ICARUS was an exquisite instrument for the Gran Sasso program, and now CERN has improved it, bringing it in line with the latest technology,” said CERN scientist and Nobel laureate Carlo Rubbia, who led the experiment when it was at Gran Sasso and currently leads the ICARUS collaboration. “I eagerly anticipate the results that come out of ICARUS in the Fermilab phase of its life.”

    Since 2017, Fermilab, working with its international partners, has been instrumenting the ICARUS building, getting it ready for the detector’s final, short move.

    “Having ICARUS settled in is incredibly gratifying. We’ve been anticipating this moment for four years,” said scientist Steve Brice, who heads the Fermilab Neutrino Division. “We’re grateful to all our colleagues in Italy and at CERN for building and preparing this sophisticated neutrino detector.”

    Neutrinos are famously fleeting. They rarely interact with matter: Trillions of the subatomic particles pass through us every second without a trace. To catch them in the act of interacting, scientists build detectors of considerable size. The more massive the detector, the greater the chance that a neutrino stops inside it, enabling scientists to study the elusive particles.

    ICARUS’s 760 tons of liquid argon give neutrinos plenty of opportunity to interact. The interaction of a neutrino with an argon atom produces fast-moving charged particles. The charged particles liberate atomic electrons from the argon atoms as they pass by, and these tracks of electrons are drawn to planes of charged wires inside the detector. Scientists study the tracks to learn about the neutrino that kicked everything off.

    Rubbia himself spearheaded the effort to make use of liquid argon as a detection material more than 25 years ago, and that same technology is being developed for the future Fermilab neutrino physics program.

    “This is an exciting moment for ICARUS,” said scientist Claudio Montanari of INFN Pavia, who is the technical coordinator for ICARUS. “We’ve been working for months choreographing and carrying out all the steps involved in refurbishing and installing it. This move is like the curtain coming down after the entr’acte. Now we’ll get to see the next act.”

    ICARUS is one part of the Fermilab-hosted Short-Baseline Neutrino program, whose aim is to search for a hypothesized but never conclusively observed type of neutrino, known as a sterile neutrino. Scientists know of three neutrino types. The discovery of a fourth could reveal new physics about the evolution of the universe. It could also open an avenue for modeling dark matter, which constitutes 23 percent of the universe’s mass.

    ICARUS is the second of three Short-Baseline Neutrino detectors to be installed. The first, called MicroBooNE, began operating in 2015 and is currently taking data. The third, called the Short-Baseline Near Detector, is under construction. All use liquid argon.

    FNAL/MicroBooNE

    FNAL Short-Baseline Near Detector

    Fermilab’s powerful particle accelerators provide a plentiful supply of neutrinos and will send an intense beam of the particle through the three detectors — first SBND, then MicroBooNE, then ICARUS. Scientists will study the differences in data collected by the trio to get a precise handle on the neutrino’s behavior.

    “So many mysteries are locked up inside neutrinos,” said Fermilab scientist Peter Wilson, Short-Baseline Neutrino coordinator. “It’s thrilling to think that we might solve even one of them, because it would help fill in our frustratingly incomplete picture of how the universe evolved into what we see today.”

    2
    Members of the crew that moved ICARUS stand by the detector. Photo: Reidar Hahn

    The three Short-Baseline Neutrino experiments are just one part of Fermilab’s vibrant suite of experiments to study the subtle neutrino.

    NOvA, Fermilab’s largest operating neutrino experiment, studies a behavior called neutrino oscillation.


    FNAL/NOvA experiment map


    FNAL NOvA detector in northern Minnesota


    FNAL Near Detector

    The three neutrino types change character, morphing in and out of their types as they travel. NOvA researchers use two giant detectors spaced 500 miles apart — one at Fermilab and another in Ash River, Minnesota — to study this behavior.

    Another Fermilab experiment, called MINERvA, studies how neutrinos interact with nuclei of different elements, enabling other neutrino researchers to better interpret what they see in their detectors.

    Scientists at Fermilab use the MINERvA to make measurements of neutrino interactions that can support the work of other neutrino experiments. Photo Reidar Hahn

    FNAL/MINERvA


    “Fermilab is the best place in the world to do neutrino research,” Wilson said. “The lab’s particle accelerators generate beams that are chock full of neutrinos, giving us that many more chances to study them in fine detail.”

    The construction and operation of the three Short-Baseline Neutrino experiments are valuable not just for fundamental research, but also for the development of the international Deep Underground Neutrino Experiment (DUNE) and the Long-Baseline Neutrino Facility (LBNF), both hosted by Fermilab.

    DUNE will be the largest neutrino oscillation experiment ever built, sending particles 800 miles from Fermilab to Sanford Underground Research Facility in South Dakota. The detector in South Dakota, known as the DUNE far detector, is mammoth: Made of four modules — each as tall and wide as a four-story building and almost as long as a football field — it will be filled with 70,000 tons of liquid argon, about 100 times more than ICARUS.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    The knowledge and expertise scientists and engineers gain from running the Short-Baseline Neutrino experiments, including ICARUS, will inform the installation and operation of LBNF/DUNE, which is expected to start up in the mid-2020s.

    “We’re developing some of the most advanced particle detection technology ever built for LBNF/DUNE,” Brice said. “In preparing for that effort, there’s no substitute for running an experiment that uses similar technology. ICARUS fills that need perfectly.”

    Eighty researchers from five countries collaborate on ICARUS. The collaboration will spend the next year instrumenting and commissioning the detector. They plan to begin taking data in 2019.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 3:11 pm on July 5, 2018 Permalink | Reply
    Tags: , , , CERN, CLEAR at CERN   

    From CERN Accelerating Science: “First experimental results from the CLEAR facility at CERN” 

    From CERN Accelerating Science


    Knowledge Transfer

    03 Jul 2018

    D. Gamba
    A. Curcio
    R. Corsini

    The plasma lens experiment after being fully installed in the CLEAR beamline Credit Wilfrid Farabolini – cern.ch

    The continuous development of high gradient technologies (e.g. X-band, THz radiation, plasma acceleration) makes compact linear electron accelerators attractive for many applications, e.g.such as photon sources (Free Electron Lasers and Inverse Compton), medical application, and components irradiation studies.

    Linear accelerators are also the only viable solution for electron-positron colliders at the high-energy frontier. In this case, high gradient technologies allow for cost optimisation and/or for maximizing the energy reach of such machines.

    The CERN Linear Electron Accelerator for Research (CLEAR) facility at CERN was set up to expand the testing capabilities of those ideas and technologies and to provide on top the possibility to perform direct measurement with beam of machine components and training of young scientists.

    The new CLEAR facility at CERN started its operation in fall 2017 (link is external). CLEAR results from the conversion of the probe beam line of the former CLIC Test Facility (CTF3) into a new testbed for general accelerator R&D and component studies for existing and possible future accelerator applications, such as X-band structures, plasma and THz technology, nm- and fs-resolution beam instrumentation, sub-ps bunches production, but also for investigating possible use of electron beams for medical purposes or electrical component sensitivity to radiation.

    The hardware modifications implemented in 2017 to the existing infrastructure allowed to provide stable and reliable electron beams with energies between 60 and 220 MeV in single or multi bunch configuration at 1.5 GHz.

    CLEAR inherited not only the equipment, but also the experience of from operating the previous CTF3 facility: the first beam was set up in August 2017 and, after only a few weeks of commissioning, users could take the first beams to perform experiments in September.

    The first CLEAR beam was used for the continuation of the irradiation tests performed on the Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments (VESPER), which was set up at the end of the CALIFES beamline already during the CTF3 era.

    VESPER was initially set up to characterise electronic components for the operation in a Jovian environment – as foreseen in the JUpiter Icy Moon Explorer mission (JUICE) of ESA, in which trapped electrons of energies up to several hundred MeVs are present with very large fluxes.

    ESA/Juice spacecraft

    Initial measurements showed the first experimental evidence of electron-induced single event upsets (SEU) on electronic components, pointing to the necessity of extending such an investigation to different electron energies. The CLEAR flexibility allowed to continue the study, showing a dependency of SEU cross-section with energy. Instead, no dependency was observed on radiation flux, suggesting that such components do not suffer from prompt dose effects.

    A wider range of devices has also been tested, showing a strong dependency on the device process technology. Preliminary test on a set of memories sensitive to latch-up, a type of short circuit which disrupts the proper functioning of the memory, has also shown that electrons can cause destructive events. Further tests on 16 nm FinFET technology devices were performed by ESA and their contractors IROC in March 2018 and the data are now being analysed.

    CERN The CLEAR beam line seen by the final dump. Credit Davide Gamba-cern.ch)

    The scope of VESPER was extended to dosimetry for medical applications.

    Recent advances in compact high-gradient accelerator technology, largely prompted by the CLIC study, renewed the interest in using very-high energy electrons (VHEE) in the 50 – 250 MeV energy range for radiotherapy of deep-seated tumours.

    Understanding the dosimetry of such beams is essential in order to assess their viability for treatment. For this reason a group from the University of Manchester carried out studies in the VESPER installation on energy deposition using a set of EBT3 Gafchromic films submerged in water. The measured dose deposition profile was in agreement with Monte Carlo tracking simulations within 5%. At the same time, the possible aberration of crossing in-homogenous bodies was investigated by measuring the longitudinal dose profiles with and without inserts of various density material. The results confirmed the expectation from simulations that electron beam are relatively unaffected by both high-density and low-density media.

    The obtained results indicated that VHEE has the potential to be a reliable mode of radiotherapy for treating tumors also in highly inhomogeneous and mobile regions such as lungs.

    Further studies on the dose distribution of a converging beam as opposed to a parallel wide beam, and possibly on multi-angle irradiation are planned for the future.

    CLEAR opened the possibility of exploring also new accelerator technologies, one being active plasma lenses which are a promising technology for strongly focusing particle beams. Their compact size is a plus for potential use in novel accelerators. However, transverse field uniformity and beam excitation of plasma wake-fields may turn out to be significant limitations.

    Lead by the University of Oslo, a collaboration between CERN, DESY and Oxford University was set up to develop a novel low-cost, scalable plasma lens. The developed setup consists of a 1 mm diameter, 15 mm long sapphire capillary installed in the middle of a 20x20x20 cm3 aluminum vacuum chamber. The capillary is filled with He or Ar at a controllable pressure. The gas is ionized by a 500 A peak current discharge with a duration of up to a few hundred ns, provided by a 20 kV spark-gap compact Marx bank generator. The longitudinal discharge current is responsible as well for the transverse focusing force in both transverse planes.

    The experimental set-up was installed in the CLEAR beamline in September 2017 and after a fast commissioning it was possible to show a clear focusing effect. Extensive measurements were taken during December 2017 and March 2018. Transverse position scans of a pencil beam revealed gradients as high as 350 T/m, which would be compatible with its use for a staged plasma accelerator. More studies are now being conducted for measuring the uniformity of the field and beam emittance preservation also employing different gas species.

    Moreover, evidence of non-linear self-focusing at relatively high bunch charge (∼50 pC/bunch) was observed when the beam goes throw the plasma after the discharge. This opens another branch of possible studies on passive plasma lenses that will be further developed.

    Overview of the CLEAR plasma lens setup. The actual plasma lens, a 1 mm diameter, 15 mm long sapphire capillary, is installed inside the cubic vacuum chamber. Credit Kyrre Ness Sjobaek@cern

    Another technology being explored at CLEAR is the possibility of producing terahertz radiation (1 THz corresponds to 4 meV photon energy, or 300 µm radiation wavelength). This technology has a strong impact in many areas of research, spanning the quantum control of materials, plasmonics, and tunable optical devices based on Dirac-electron systems to technological applications such as medical imaging and security.

    The aim at CLEAR is to characterize a LINAC-based THz source, exploiting relativistic electron bunches which emit coherent radiation in the THz domain. For such a source sub-picosecond electron bunches are needed. This triggered a study and optimisation of the CLEAR injector in collaboration with the “Laboratoire de l’Accélérateur Linéaire” (LAL), thanks to which sub-ps bunches down to 200 fs rms have been demonstrated in the machine, paving the way to the THz radiation generation.

    The current studies at CLEAR are focused on the production of (sub-)THz radiation by Coherent Transition Radiation (CTR), i.e. making the electron beams passing through thin metal foils and collecting the emitted radiation. With this technique, a peak power of about 1 MW at 0.3 THz have been measured, in agreement with theoretical expectations.

    Further experimental tests have been started for producing THz radiation by Coherent Smith-Purcell Radiation (CSPR) targets, where the electron beam passes nearby a periodic structure, emitting radiation at harmonics of its period.

    At the same time, investigations are ongoing for producing THz radiation using the Coherent Cherenkov Radiation (CCR) mechanism.

    CLEAR allows to continue the R&D for CLIC technologies, for example by measuring the resolution of CLIC cavity Beam Position Monitor prototypes and by verifying the behavior of the Wake Field Monitor installed on the present design of the CLIC accelerating structures.

    Additionally, CLEAR serves as unique opportunity for fast verification of beam instrumentation, e.g. it was possible to perform first calibration of the scintillator screen used in the electron spectrometer of the AWAKE experiment.

    Finally, CLEAR offers also a unique playground for young accelerator physics. During march 2018 part of the students from the Joint Universities Accelerator School (JUAS) had the opportunity of spending one day at the facility performing hands on experiments.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Our mission

    The Knowledge Transfer group at CERN aims to engage with experts in science, technology and industry in order to create opportunities for the transfer of CERN’s technology and know-how. The ultimate goal is to accelerate innovation and maximise the global positive impact of CERN on society. This is done by promoting and transferring the technological and human capital developed at CERN. The CERN KT group promotes CERN as a centre of technological excellence, and promotes the positive impact of fundamental research organisations on society.

    “Places like CERN contribute to the kind of knowledge that not only enriches humanity, but also provides the wellspring of ideas that become the technologies of the future.”

    Fabiola Gianotti, Director-General of CERN

    From CERN technologies to society

    Below, you can see how CERN’s various areas of expertise translates into impact across industies beyond CERN. Read more about this at the from CERN technologies to society page.

    1

     
  • richardmitnick 1:35 pm on July 4, 2018 Permalink | Reply
    Tags: , , CERN, , , , ,   

    From CERN: “We need to talk about the Higgs” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    4 Jul 2018
    Anais Schaeffer

    1
    François Englert (left) and Peter Higgs at CERN on 4 July 2012, on the occasion of the announcement of the discovery of a Higgs boson (Image: Maximilien Brice/CERN)

    It is six years ago that the discovery of the Higgs boson was announced, to great fanfare in the world’s media, as a crowning success of CERN’s Large Hadron Collider (LHC).

    CERN/CMS Detector


    CERN CMS Higgs Event


    CERN/ATLAS detector


    CERN ATLAS Higgs Event

    The excitement of those days now seems a distant memory, replaced by a growing sense of disappointment at the lack of any major discovery thereafter.

    While there are valid reasons to feel less than delighted by the null results of searches for physics beyond the Standard Model (SM), this does not justify a mood of despondency. A particular concern is that, in today’s hyper-connected world, apparently harmless academic discussions risk evolving into a negative outlook for the field in broader society. For example, a recent news article in Nature led on the LHC’s “failure to detect new particles beyond the Higgs”, while The Economist reported that “Fundamental physics is frustrating physicists”. Equally worryingly, the situation in particle physics is sometimes negatively contrasted with that for gravitational waves: while the latter is, quite rightly, heralded as the start of a new era of exploration, the discovery of the Higgs is often described as the end of a long effort to complete the SM.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Let’s look at things more positively. The Higgs boson is a totally new type of fundamental particle that allows unprecedented tests of electroweak symmetry breaking. It thus provides us with a novel microscope with which to probe the universe at the smallest scales, in analogy with the prospects for new gravitational-wave telescopes that will study the largest scales. There is a clear need to measure its couplings to other particles – especially its coupling with itself – and to explore potential connections between the Higgs and hidden or dark sectors. These arguments alone provide ample motivation for the next generation of colliders including and beyond the high-luminosity LHC upgrade.

    So far the Higgs boson indeed looks SM-like, but some perspective is necessary. It took more than 40 years from the discovery of the neutrino to the realisation that it is not massless and therefore not SM-like; addressing this mystery is now a key component of the global particle-physics programme. Turning to my own main research area, the beauty quark – which reached its 40th birthday last year – is another example of a long-established particle that is now providing exciting hints of new phenomena (see Beauty quarks test lepton universality). One thrilling scenario, if these deviations from the SM are confirmed, is that the new physics landscape can be explored through both the b and Higgs microscopes. Let’s call it “multi-messenger particle physics”.

    How the results of our research are communicated to the public has never been more important. We must be honest about the lack of new physics that we all hoped would be found in early LHC data, yet to characterise this as a “failure” is absurd. If anything, the LHC has been more successful than expected, leaving its experiments struggling to keep up with the astonishing rates of delivered data. Particle physics is, after all, about exploring the unknown; the analysis of LHC data has led to thousands of publications and a wealth of new knowledge, and there is every possibility that there are big discoveries waiting to be made with further data and more innovative analyses. We also should not overlook the returns to society that the LHC has brought, from technology developments with associated spin-offs to the training of thousands of highly skilled young researchers.

    The level of expectation that has been heaped on the LHC seems unprecedented in the history of physics. Has any other facility been considered to have produced disappointing results because only one Nobel-prize winning discovery was made in its first few years of operation? Perhaps this reflects that the LHC is simply the right machine at the right time, but that time is not over: our new microscope is set to run for the next two decades and bring physics at the TeV scale into clear focus. The more we talk about that, the better our long-term chances of success.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

     
  • richardmitnick 1:49 pm on June 19, 2018 Permalink | Reply
    Tags: , , CERN, , , , ,   

    From CERN: “Major work starts to boost the luminosity of the LHC” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    1
    Civil works have begun on the ATLAS and CMS sites to build new underground structures for the High-Luminosity LHC. (Image: Julien Ordan / CERN)

    CERN map

    The Large Hadron Collider (LHC) is officially entering a new stage. Today, a ground-breaking ceremony at CERN celebrates the start of the civil-engineering work for the High-Luminosity LHC (HL-LHC): a new milestone in CERN’s history. By 2026 this major upgrade will have considerably improved the performance of the LHC, by increasing the number of collisions in the large experiments and thus boosting the probability of the discovery of new physics phenomena.

    The LHC started colliding particles in 2010. Inside the 27-km LHC ring, bunches of protons travel at almost the speed of light and collide at four interaction points. These collisions generate new particles, which are measured by detectors surrounding the interaction points. By analysing these collisions, physicists from all over the world are deepening our understanding of the laws of nature.

    While the LHC is able to produce up to 1 billion proton-proton collisions per second, the HL-LHC will increase this number, referred to by physicists as “luminosity”, by a factor of between five and seven, allowing about 10 times more data to be accumulated between 2026 and 2036. This means that physicists will be able to investigate rare phenomena and make more accurate measurements. For example, the LHC allowed physicists to unearth the Higgs boson in 2012, thereby making great progress in understanding how particles acquire their mass. The HL-LHC upgrade will allow the Higgs boson’s properties to be defined more accurately, and to measure with increased precision how it is produced, how it decays and how it interacts with other particles. In addition, scenarios beyond the Standard Model will be investigated, including supersymmetry (SUSY), theories about extra dimensions and quark substructure (compositeness).

    “The High-Luminosity LHC will extend the LHC’s reach beyond its initial mission, bringing new opportunities for discovery, measuring the properties of particles such as the Higgs boson with greater precision, and exploring the fundamental constituents of the universe ever more profoundly,” said CERN Director-General Fabiola Gianotti.

    The HL-LHC project started as an international endeavour involving 29 institutes from 13 countries. It began in November 2011 and two years later was identified as one of the main priorities of the European Strategy for Particle Physics, before the project was formally approved by the CERN Council in June 2016. After successful prototyping, many new hardware elements will be constructed and installed in the years to come. Overall, more than 1.2 km of the current machine will need to be replaced with many new high-technology components such as magnets, collimators and radiofrequency cavities.

    2
    Prototype of a quadrupole magnet for the High-Luminosity LHC. (Image: Robert Hradil, Monika Majer/ProStudio22.ch)

    FNAL magnets such as this one, which is mounted on a test stand at Fermilab, for the High-Luminosity LHC Photo Reidar Hahn

    The secret to increasing the collision rate is to squeeze the particle beam at the interaction points so that the probability of proton-proton collisions increases. To achieve this, the HL-LHC requires about 130 new magnets, in particular 24 new superconducting focusing quadrupoles to focus the beam and four superconducting dipoles. Both the quadrupoles and dipoles reach a field of about 11.5 tesla, as compared to the 8.3 tesla dipoles currently in use in the LHC. Sixteen brand-new “crab cavities” will also be installed to maximise the overlap of the proton bunches at the collision points. Their function is to tilt the bunches so that they appear to move sideways – just like a crab.

    FNAL Crab cavities for the HL-LHC

    CERN crab cavities that will be used in the HL-LHC

    Another key ingredient in increasing the overall luminosity in the LHC is to enhance the machine’s availability and efficiency. For this, the HL-LHC project includes the relocation of some equipment to make it more accessible for maintenance. The power converters of the magnets will thus be moved into separate galleries, connected by new innovative superconducting cables capable of carrying up to 100 kA with almost zero energy dissipation.

    “Audacity underpins the history of CERN and the High-Luminosity LHC writes a new chapter, building a bridge to the future,” said CERN’s Director for Accelerators and Technology, Frédérick Bordry. “It will allow new research and with its new innovative technologies, it is also a window to the accelerators of the future and to new applications for society.”

    To allow all these improvements to be carried out, major civil-engineering work at two main sites is needed, in Switzerland and in France. This includes the construction of new buildings, shafts, caverns and underground galleries. Tunnels and underground halls will house new cryogenic equipment, the electrical power supply systems and various plants for electricity, cooling and ventilation.

    During the civil engineering work, the LHC will continue to operate, with two long technical stop periods that will allow preparations and installations to be made for high luminosity alongside yearly regular maintenance activities. After completion of this major upgrade, the LHC is expected to produce data in high-luminosity mode from 2026 onwards. By pushing the frontiers of accelerator and detector technology, it will also pave the way for future higher-energy accelerators.


    The LHC will receive a major upgrade and transform into the High-Luminosity LHC over the coming years. But what does this mean and how will its goals be achieved? Find out in this video featuring several people involved in the project. (Video: Polar Media/CERN.)

    Fermilab is leading the U.S. contribution to the HL-LHC, in addition to building new components for the upgraded detector for the CMS experiment. The main innovation contributed by the United States for the HL-LHC is a novel new type of accelerator cavity that uses a breakthrough superconducting technology.

    Fermilab is also contributing to the design and construction of superconducting magnets that will focus the particle beam much more tightly than the magnets currently in use in the LHC. Fermilab scientists and engineers have also partnered with other CMS collaborators on new designs for tracking modules in the CMS detector, enabling it to respond more quickly to the increased number of collisions in the HL-LHC.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
  • richardmitnick 3:11 pm on June 12, 2018 Permalink | Reply
    Tags: Big data and social media, CERN   

    From CERN: “Big data and social media” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    From CERN

    12 Jun 2018
    Kate Kahle

    1
    Vint Cerf’s slides included this visualisation of inbound traffic on the NSFNET T1 backbone in September 1991 (purple for zero bytes to white for 100 billion bytes). (Image: Donna Cox and Robert Patterson, Merit Network, Inc., NCSA and NSF)

    “It’s not a surprise that networking produces social effects” stated Vint Cerf when he spoke at CERN on 6 June. As an American Internet pioneer, often referred to as one of the fathers of the Internet, Cerf shared his thoughts on big data and social media, as well as acknowledging the birth of the World Wide Web at CERN. His talk not only looked back at the history of the Internet but also at its future and the challenges ahead.

    He recounted the pre-Internet days of 1969, when, as a graduate student, he wrote software for the ARPANET project. After the project’s success, he and Robert Kahn worked on the Internet design before publishing a paper in 1974. The team they assembled built a fully distributed system with no central control that was international from the beginning.

    He reminisced too about the early days of email, developed on the ARPANET in 1971 as an experiment that instantly caught on. Rather than decreasing travel budgets, it did the opposite; projects became bigger and more international, and people travelled from further afield to attend meetings. Mailing lists quickly sprang up from “Sci-fi lovers” to the “Yum-Yum” reviews of local restaurants. It was clear that the technological development had social characteristics.

    Indeed from early email, to web pages, to today’s social media, people have wanted to share knowledge and feel that it was useful to others. This quest for positive feedback, however, runs into issues when sharing personal information. Now, with the prevalence of e-commerce and the Internet of things, the amount of information that companies have about a person over time becomes concerning, hence the recent EU data protection changes to protect people’s privacy.

    2
    Vint Cerf presents “Big data and social media on the Internet” in CERN’s main auditorium on 6 June. Many empty seats. (Image: Julien Ordan/CERN)

    People need to be aware of both the benefits and the hazards of being online. Misinformation, whether malicious or unintentional, has entered the system and the challenge is to distinguish good and bad quality content. Now more than ever, thinking critically is important. Yet it takes time and effort.

    “Everyone, especially young people, should think critically about the information they encounter. Where did this come from? Is there any corroborating evidence? What was the motivation for putting this information into the system? Could there possibly have been some ulterior motive in placing that information into a social-networking environment or on a webpage?” – Vint Cerf

    In the age of big data, there are challenges ahead not only in processing such vast quantities of information but also in digital preservation. The digital content created today may not be readable in 50 years’ time. The media may not be available, the reader may no longer exist, or even if it does, the software may be unmaintained and no longer run on the then available hardware. To preserve digital information means building emulators and keeping software updated among other things. Perhaps making programmers feel an ethical responsibility for the code that they produce could help them to fix and update the code, avoiding bugs and vulnerabilities.

    Though his talk focused on the technical challenges, he acknowledged that there are also legal and business challenges of big data and social media. Yet despite highlighting the risks, Cerf’s presentation was both entertaining and optimistic. As he leapt nimbly around the auditorium for the questions and answers, microphone in hand, he provided the audience not only with a feast of anecdotes but also food for thought for the Internet of tomorrow.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: