Tagged: CERN LHCb Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:56 am on April 20, 2017 Permalink | Reply
    Tags: , , CERN LHCb, , New LHC Results Hint At New Physics... But Are We Crying Wolf?, ,   

    From Ethan Siegel: “New LHC Results Hint At New Physics… But Are We Crying Wolf?” 

    Ethan Siegel
    Apr 20, 2017

    1
    The LHCb collaboration is far less famous than CMS or ATLAS, but the bottom-quark-containing particles they produce holds new physics hints that the other detectors cannot probe. CERN / LHCb Collaboration

    Over at the Large Hadron Collider at CERN, particles are accelerated to the greatest energies they’ve ever reached in history. In the CMS and ATLAS detectors, new fundamental particles are continuously being searched for, although only the Higgs boson has come through. But in a much lesser-known detector — LHCb — particles containing bottom quarks are produced in tremendous numbers. One class of these particles, quark-antiquark pairs where one is a bottom quark, have recently been observed to decay in a way that runs counter to the Standard Model’s predictions. Even though the evidence isn’t very good, it’s the biggest hint for new physics we’ve had from accelerators in years.

    2
    A decaying B-meson, as shown here, may decay more frequently to one type of lepton pair than the other, contradicting Standard Model expectations. KEK / BELLE collaboration

    KEK Belle detector, at the High Energy Accelerator Research Organisation (KEK) in Tsukuba, Ibaraki Prefecture, Japan

    There are two ways, throughout history, that we’ve made extraordinary advances in fundamental physics. One is when an unexplained, robust phenomenon pops up, and we’re compelled to rethink our conception of the Universe. The other is when multiple, competing, but heretofore indistinguishable explanations of the same set of observations are subject to a critical test, where only one explanation emerges as a valid one. Particle physics is at a crossroads right now, because even though there are fundamentally unsolved questions, the energy scales that we can probe with experiments all give results that are perfectly in line with the Standard Model.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    3
    The discovery of the Higgs Boson in the di-photon (γγ) channel at CMS. That ‘bump’ in the data is an unambiguous new particle: the Higgs.

    CERN CMS Higgs Event

    CERN/CMS Detector

    The Higgs boson, discovered earlier this decade, was created over and over at the LHC, with its decays measured in excruciating detail. If there were any hints of departures from the Standard Model — if it decayed into one type of particle more-or-less frequently than predicted — it could be an extraordinary hint of new physics. Similarly, physicists searches exhaustively for new “bumps” where there shouldn’t be any in the data: a signal of a potential new particle. Although they showed up periodically, with some mild significance, they always went away entirely with more and better data.

    4
    The observed Higgs decay channels vs. the Standard Model agreement, with the latest data from ATLAS and CMS included. The agreement is astounding, but there are outliers (which is expected) when the error-bars are larger.

    CERN ATLAS Higgs Event

    CERN/ATLAS detector

    Statistically, this is about what you’d expect. If you had a fair coin and tossed it 10 times, you might expect that you’d get 5 heads and 5 tails. Although that’s reasonable, sometimes you’ll get 6 and 4, sometimes you’ll get 8 and 2, and sometimes you’ll get 10 and 0, respectively. If you got 10 heads and 0 tails, you might begin to suspect that the coin isn’t fair, but the odds aren’t that bad: about 0.2% of the time, you’ll have all ten flips give the same result. And if you have 1000 people each flipping a coin ten times, it’s very likely (86%) that at least one of them will get the same result all ten times.

    The Standard Model makes predictions for lots of different quantities — particle production rates, scattering amplitudes, decay probabilities, branching ratios, etc. — for every single particle (both fundamental and composite) that can be created. Literally, there are hundreds of such composite particles that have been created in such numbers, and thousands of quantities like that we can measure. Since we look at all of them, we demand an extremely high level of statistical significance before we’re willing to claim a discovery. In particle physics, the odds of a fluke need to be less than one-in-three-million to get there.

    6
    The standard model calculated predictions (the four colored points) and the LHCb results (black, with error bars) for the electron/positron to muon/antimuon ratios at two different energies. LHCb Collaboration / Tommaso Dorigo

    Earlier this week, the LHCb collaboration announced their greatest departure yet observed from the Standard Model: a difference in the rate of decay of bottom-quark-containing mesons into strange-quark-containing mesons with either a muon-antimuon pair or an electron-positron pairs. In the Standard Model, the ratios should be 1.0 (once mass differences of muons and electrons are taken into account), but they observed a ratio of 0.6. That sure sounds like a big deal, and like it might be a hint of physics beyond the Standard Model!

    7
    The known particles and antiparticles of the Standard Model all have been discovered. All told, they make explicit predictions. Any violation of those predictions would be a sign of new physics, which we’re desperately seeking. E. Siegel

    The case gets even stronger when you consider that the BELLE collaboration, last decade, discovered these decays and began to notice a slight discrepancy themselves. But a closer inspection of the latest data shows that the statistical significance is only about 2.4 and 2.5 sigma, respectively, at the two energies measured. This is about a 1.5% chance of a fluke individually, or about 3.7-sigma significance (0.023% chance of a fluke) combined. Now, 3.7-sigma is a lot more exciting than 2.5-sigma, but it’s still not exciting enough. Given that there were thousands of things these experiments looked at, these results barely even register as “suggestive” of new physics, much less as compelling evidence.

    7
    The ATLAS and CMS diphoton bumps from 2015, displayed together, clearly correlating at ~750 GeV. This suggestive result was significant at more than 3-sigma, but went away entirely with more data. CERN, CMS/ATLAS collaborations; Matt Strassler

    Yet already, just on Wednesday, there were six new papers out (with more surely coming) attempting to use beyond-the-Standard-Model physics to explain this not-even-promising result.

    Why?

    Because, quite frankly, we don’t have any good ideas in place. Supersymmetry, grand unification, string theory, technicolor, and extra dimensions, among others, were the leading extensions to the Standard Model, and colliders like the LHC have yielded absolutely no evidence for any of them. Signals from direct experiments for physics beyond the Standard Model have all yielded results completely consistent with the Standard Model alone. What we’re seeing now is rightly called ambulance-chasing, but it’s even worse than that.

    8
    The Standard Model particles and their supersymmetric counterparts. Non-white-male-American scientists have been instrumental in the development of the Standard Model and its extensions. Claire David

    We know that results like this have a history of not holding up at all; we expect there to be fluctuations like this in the data, and this one isn’t even as significant as the others that have gone away with more and better data. You expect a 2-sigma discrepancy in one out of every 20 measurements you make, and these two are little better than that. Even combined, they’re hardly impressive, and the other things you’d seek to measure about this decay line up with the Standard Model perfectly. In short, the Standard Model is much more likely than not to hold up once more and better data arrives.

    9
    The string landscape might be a fascinating idea that’s full of theoretical potential, but it doesn’t predict anything that we can observe in our Universe. University of Cambridge

    What we’re seeing right now is a response from the community is what we’d expect to an alarm that’s crying “Wolf!” There might be something fantastic and impressive out there, and so, of course we have to look. But we know that, more than 99% of the time, an alarm like this is merely the result of which way the wind blew. Physicists are so bored and so out of good, testable ideas to extend the Standard Model — which is to say, the Standard Model is so maddeningly successful — that even a paltry result like this is enough to shift the theoretical direction of the field.

    A few weeks ago, famed physicist (and supersymmetry-advocate) John Ellis asked the question, Where is Particle Physics going? Unless experiments can generate new, unexpected results, the answer is likely to be “nowhere new; nowhere good” for the indefinite future.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 12:29 pm on April 19, 2017 Permalink | Reply
    Tags: A new search to watch from LHCb, , CERN LHCb,   

    From Symmetry: “A new search to watch from LHCb” 

    Symmetry Mag

    Symmetry

    04/18/17
    Sarah Charley

    A new result from the LHCb experiment could be an early indicator of an inconsistency in the Standard Model.

    CERN/LHCb

    The subatomic universe is an intricate mosaic of particles and forces. The Standard Model of particle physics is a time-tested instruction manual that precisely predicts how particles and forces behave.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    But it’s incomplete, ignoring phenomena such as gravity and dark matter.

    Today the LHCb experiment at CERN European research center released a result that could be an early indication of new, undiscovered physics beyond the Standard Model.

    However, more data is needed before LHCb scientists can definitively claim they’ve found a crack in the world’s most robust roadmap to the subatomic universe.

    “In particle physics, you can’t just snap your fingers and claim a discovery,” says Marie-Hélène Schune, a researcher on the LHCb experiment from Le Centre National de la Recherche Scientifique in Orsay, France. “It’s not magic. It’s long, hard work and you must be obstinate when facing problems. We always question everything and never take anything for granted.”

    The LHCb experiment records and analyzes the decay patterns of rare hadrons—particles made of quarks—that are produced in the Large Hadron Collider’s energetic proton-proton collisions.

    CERN/LHC Map


    CERN LHC Tube



    CERN LHC

    By comparing the experimental results to the Standard Model’s predictions, scientists can search for discrepancies. Significant deviations between the theory and experimental results could be an early indication of an undiscovered particle or force at play.

    This new result looks at hadrons containing a bottom quark as they transform into hadrons containing a strange quark. This rare decay pattern can generate either two electrons or two muons as byproducts. Electrons and muons are different types or “flavors” of particles called leptons. The Standard Model predicts that the production of electrons and muons should be equally favorable—essentially a subatomic coin toss every time this transformation occurs.

    “As far as the Standard Model is concerned, electrons, muons and tau leptons are completely interchangeable,” Schune says. “It’s completely blind to lepton flavors; only the large mass difference of the tau lepton plays a role in certain processes. This 50-50 prediction for muons and electrons is very precise.”

    But instead of finding a 50-50 ratio between muons and electrons, the latest results from the LHCb experiment show that it’s more like 40 muons generated for every 60 electrons.

    “If this initial result becomes stronger with more data, it could mean that there are other, invisible particles involved in this process that see flavor,” Schune says. “We’ll leave it up to the theorists’ imaginations to figure out what’s going on.”

    However, just like any coin-toss, it’s difficult to know if this discrepancy is the result of an unknown favoritism or the consequence of chance. To delineate between these two possibilities, scientists wait until they hit a certain statistical threshold before claiming a discovery, often 5 sigma.

    “Five sigma is a measurement of statistical deviation and means there is only a 1-in-3.5-million chance that the Standard Model is correct and our result is just an unlucky statistical fluke,” Schune says. “That’s a pretty good indication that it’s not chance, but rather the first sightings of a new subatomic process.”

    Currently, this new result is at approximately 2.5 standard deviations, which means there is about a 1-in-125 possibility that there’s no new physics at play and the experimenters are just the unfortunate victims of statistical fluctuation.

    This isn’t the first time that the LHCb experiment has seen unexpected behavior in related processes. Hassan Jawahery from the University of Maryland also works on the LHCb experiment and is studying another particle decay involving bottom quarks transforming into charm quarks. He and his colleagues are measuring the ratio of muons to tau leptons generated during this decay.

    “Correcting for the large mass differences between muons and tau leptons, we’d expect to see about 25 taus produced for every 100 muons,” Jawahery says. “We measured a ratio of 34 taus for every 100 muons.”

    On its own, this measurement is below the line of statistical significance needed to raise an eyebrow. However, two other experiments—the BaBar experiment at SLAC and the Belle experiment in Japan—also measured this process and saw something similar.

    “We might be seeing the first hints of a new particle or force throwing its weight around during two independent subatomic processes,” Jawahery says. “It’s tantalizing, but as experimentalists we are still waiting for all these individual results to grow in significance before we get too excited.”

    More data and improved experimental techniques will help the LHCb experiment and its counterparts narrow in on these processes and confirm if there really is something funny happening behind the scenes in the subatomic universe.

    “Conceptually, these measurements are very simple,” Schune says. “But practically, they are very challenging to perform. These first results are all from data collected between 2011 and 2012 during Run 1 of the LHC. It will be intriguing to see if data from Run 2 shows the same thing.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 1:56 pm on April 18, 2017 Permalink | Reply
    Tags: , , , CERN LHCb, , LHCb Finds New Hints of Possible Deviations from the Standard Model, ,   

    From Astro Watch: “LHCb Finds New Hints of Possible Deviations from the Standard Model” 

    Astro Watch bloc

    Astro Watch

    April 18, 2017
    CERN

    1
    CERN LHCb

    The LHCb experiment finds intriguing anomalies in the way some particles decay. If confirmed, these would be a sign of new physics phenomena not predicted by the Standard Model of particle physics. The observed signal is still of limited statistical significance, but strengthens similar indications from earlier studies. Forthcoming data and follow-up analyses will establish whether these hints are indeed cracks in the Standard Model or a statistical fluctuation.

    Today, in a seminar at CERN, the LHCb collaboration presented new long-awaited results on a particular decay of B0 mesons produced in collisions at the Large Hadron Collider. The Standard Model of particle physics predicts the probability of the many possible decay modes of B0 mesons, and possible discrepancies with the data would signal new physics.

    In this study, the LHCb collaboration looked at the decays of B0 mesons to an excited kaon and a pair of electrons or muons. The muon is 200 times heavier than the electron, but in the Standard Model its interactions are otherwise identical to those of the electron, a property known as lepton universality. Lepton universality predicts that, up to a small and calculable effect due to the mass difference, electron and muons should be produced with the same probability in this specific B0 decay. LHCb finds instead that the decays involving muons occur less often.

    While potentially exciting, the discrepancy with the Standard Model occurs at the level of 2.2 to 2.5 sigma, which is not yet sufficient to draw a firm conclusion. However, the result is intriguing because a recent measurement by LHCb involving a related decay exhibited similar behavior.

    While of great interest, these hints are not enough to come to a conclusive statement. Although of a different nature, there have been many previous measurements supporting the symmetry between electrons and muons. More data and more observations of similar decays are needed in order to clarify whether these hints are just a statistical fluctuation or the first signs for new particles that would extend and complete the Standard Model of particles physics. The measurements discussed were obtained using the entire data sample of the first period of exploitation of the Large Hadron Collider (Run 1). If the new measurements indeed point to physics beyond the Standard Model, the larger data sample collected in Run 2 will be sufficient to confirm these effects.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:22 pm on March 17, 2017 Permalink | Reply
    Tags: , CERN LHCb, , , , The LHC Just Discovered A New System of Five Particles   

    From Futurism: “The LHC Just Discovered A New System of Five Particles” 

    futurism-bloc

    Futurism

    3.17.17
    Sarah Marquart

    The Large Hadron Collider (LHC), the latest addition to CERN’s accelerator complex, is the most powerful particle accelerator ever built. It features a 27 kilometer (16 mile) ring made of superconducting magnets and accelerating structures built to boost the energy of particles in the chamber. In the accelerator, two high-energy particle beams are forced to collide from opposite directions at speeds close to the speed of light.




    LHC at CERN

    The energy densities that are created when these collisions occur cause ordinary matter to melt into its constituent parts—quarks and gluons. This allows us to interrogate the basic constituents of matter–the fundamental particles of the Standard Model.


    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    It is a project of massive, unparalleled proportions.

    More than 10,000 scientists and engineers are currently working together to help us learn about the fundamental properties of physics using the LHC. To date, these men and women have brought about some impressive discoveries. The LHC team is responsible for the discovery of the Higgs Boson, potentially disproving the existence of the paranormal, and discovering a host of new particles.


    CERN CMS Higgs Event


    CERN/CMS Detector


    CERN ATLAS Higgs Event


    CERN/ATLAS detector

    And today, a paper proved that these discoveries aren’t slowing down.

    The Large Hadron Collider beauty experiment (LHCb) collaboration just announced the discovery of a new system of five particles all in a single analysis. Discovering a new state is a feat in itself – but discovering five new states all at once is exceptional. Especially since there’s such an overwhelming level of statistical significance – i.e. this isn’t just a fluke.


    CERN/LHCb

    3
    4
    Subsequently the Ξc+ candidates were combined with K- mesons present in the same event. The Ξc+ K- invariant mass distribution obtained in this way is shown in the right image above, revealing for the first time five narrow structures with an overwhelming statistical significance. These structures are interpreted as manifestations of excited states of the Ωc0 baryon. These excited states decay into a Ξc+ baryon and a K- meson via the strong interactions, in contrast to the weak decays responsible for the three particles used to form the Ξc+ mass peak.

    Excitement Abounds

    Each of the five particles were found to be excited states of Omega-c-zero, a particle with three quarks. These particle states are named, according to the standard convention, Ωc(3000)0, Ωc(3050)0, Ωc(3066)0, Ωc(3090)0 and Ωc(3119)0

    Now, the researchers need to determine the quantum numbers of these new particles, and their theoretical significance. This will all add to our understanding of the correlation between quarks, and multi-quark states, which will further the way we comprehend our universe and quantum theory in general.

    Ultimately, CERN called this “a hotbed of new and outstanding physics results.” And it’s just the beginning. More experiments and results are on their way.


    Access mp4 video here .

    This is why the importance of international collaborations cannot be overstated. The LHC is the largest international scientific collaboration in history (scientists from more than 85 countries are involved in the LHC and its experiments at the European laboratory CERN). As such, perhaps it is no surprise that it is leading to a new era in physics and opening new doors in our understanding of the universe, in fact, it could even prove the existence of higher dimensions.

    Over the coming months and years, the LHC will use its amazing amount of energy to open up the “dark sector of physics,” revealing currently unknown particles and helping solve some of our greatest cosmic mysteries (such as dark matter, parallel dimensions, and what happened during the earliest moments of the Big Bang). With new updates coming to the LHC, the team promises “even more impressive” physics opportunities.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Futurism covers the breakthrough technologies and scientific discoveries that will shape humanity’s future. Our mission is to empower our readers and drive the development of these transformative technologies towards maximizing human potential.

     
  • richardmitnick 11:17 am on March 9, 2017 Permalink | Reply
    Tags: , , CERN LHCb, , ,   

    From Futurism: “Scientists May Have Solved the Biggest Mystery of the Big Bang” 

    futurism-bloc

    Futurism

    February 2, 2017 [Where has this been hiding?]
    Chelsea Gohd

    The Unanswered Question

    The European Council for Nuclear Research (CERN) works to help us better understand what comprises the fabric of our universe. At this French association, engineers and physicists use particle accelerators and detectors to gain insight into the fundamental properties of matter and the laws of nature. Now, CERN scientists may have found an answer to one of the most pressing mysteries in the Standard Model of Physics, and their research can be found in Nature Physics.


    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    According to the Big Bang Theory, the universe began with the production of equal amounts of matter and antimatter. Since matter and antimatter cancel each other out, releasing light as they destroy each other, only a minuscule number of particles (mostly just radiation) should exist in the universe. But, clearly, we have more than just a few particles in our universe. So, what is the missing piece? Why is the amount of matter and the amount of antimatter so unbalanced?

    The Standard Model of particle physics does account for a small percentage of this asymmetry, but the majority of the matter produced during the Big Bang remains unexplained. Noticing this serious gap in information, scientists theorized that the laws of physics are not the same for matter and antimatter (or particles and antiparticles). But how do they differ? Where do these laws separate?

    This separation, known as charge-parity (CP) violation, has been seen in hadronic subatomic particles (mesons), but the particles in question are baryons. Finding evidence of CP violation in these particles would allow scientists to calculate the amount of matter in the universe, and answer the question of why we have an asymmetric universe. After decades of effort, the scientists at CERN think they’ve done just that.

    Using a Large Hadron Collider (LHC) detector, CERN scientists were able to witness CP violation in baryon particles.




    LHC at CERN

    When smashed together, the matter (Λb0) and antimatter (Λb0-bar) versions of the particles decayed into different components with a significant difference in the quantities of the matter and antimatter baryons. According to the team’s report, “The LHCb data revealed a significant level of asymmetries in those CP-violation-sensitive quantities for the Λb0 and Λb0-bar baryon decays, with differences in some cases as large as 20 percent.”


    CERN/LHCb

    This discovery isn’t yet statistically significant enough to claim that it is definitive proof of a CP variation, but most believe that it is only a matter of time. “Particle physics results are dragged, kicking and screaming, out of the noise via careful statistical analysis; no discovery is complete until the chance of it being a fluke is below one in a million. This result isn’t there yet (it’s at about the one-in-a-thousand level),” says scientist Chris Lee. “The asymmetry will either be quickly strengthened or it will disappear entirely. However, given that the result for mesons is well and truly confirmed, it would be really strange for this result to turn out to be wrong.”

    This borderline discovery is one huge leap forward in fully understanding what happened before, during, and after the Big Bang. While developments in physics like this may seem, from the outside, to be technical achievements exciting only to scientists, this new information could be the key to unlocking one of the biggest mysteries in modern physics. If the scientists at CERN are able to prove that matter and antimatter do, in fact, obey separate laws of physics, science as we know it would change and we’ll need to reevaluate our understanding of our physical world.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Futurism covers the breakthrough technologies and scientific discoveries that will shape humanity’s future. Our mission is to empower our readers and drive the development of these transformative technologies towards maximizing human potential.

     
  • richardmitnick 2:09 pm on February 14, 2017 Permalink | Reply
    Tags: , An exceptional result on a very rare decay of a particle called Bs0, , CERN LHCb,   

    From CERN: “The Standard Model stands its ground” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    14 Feb 2017
    Stefania Pandolfi

    1
    Event display of a typical Bs0 decay into two muons. The two muon tracks from the Bs0 decay are seen as a pair of green tracks traversing the whole detector. (Image: LHCb collaboration)

    Today, in a seminar at CERN, the LHCb collaboration has presented an exceptional result on a very rare decay of a particle called Bs0. This observation marks yet another victory for the Standard Model (SM) of particle physics – the model that explains, to the best of our knowledge, the behaviour of all fundamental particles in the universe – over all its principal theoretical alternatives.

    CERN/LHCb
    CERN/LHCb

    The LHCb collaboration has reported the observation of the decay of the Bs0 meson – a heavy particle made of a bottom anti-quark and a strange quark – into a pair of muons. This decay is extremely rare, the rarest ever seen: according to the theoretical predictions, it should occur about 3 times in every billion total decays of that particle.

    3
    Event display from the LHCb experiment shows examples of collisions that produced candidates for the rare decay of the Bs0 meson. Image credit: LHCb Collaboration.

    The decay of the Bs0 meson has been long regarded as a very promising place to look for cracks in the armour of the Standard Model, which, despite being our best available description of the subatomic world, leaves some questions unanswered. Therefore, over time, physicists came up with many alternatives or complementary theories. A large class of theories that extend the Standard Model into new physics, such as Supersymmetry, predicts significantly higher values for the Bs0 decay probability. Therefore, an observation of any significant deviation from the SM predicted value would suggest the presence of new, yet unknown, physics.

    The experimental value found by the LHCb collaboration for this probability is in an excellent agreement with the one predicted by the theory, and the result is confirmed to a very high level of reliability, at the level of 7.8 standard deviations: that is, the scientists are extremely sure that it hasn’t occurred just by chance. The LHCb collaboration obtained the first evidence of this phenomenon in November 2012, with a significance of 3.5 standard deviations. Three years later, together with the CMS collaboration, LHCb obtained the first confirmed observation in May 2015, with a significance of 6.2 standard deviations (for more information read the CERN Press release and the paper published on Nature ).

    This new finding limits the room for action of other models of physics beyond the SM: all candidate models will have to demonstrate their compatibility with this important result.

    Further reading on the LHCb website.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    CernCourier
    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 1:33 pm on January 14, 2017 Permalink | Reply
    Tags: , , CERN LHCb, , ,   

    From CERN Courier: “Run 2 promises a harvest of beauty for LHCb” 

    CERN Courier

    1
    New measurement

    The first b-physics analysis using data from LHC Run 2, which began in 2015 with proton–proton collisions at an energy of 13 TeV, shows great promise for the physics programme of LHCb. During 2015 and 2016, the experiment collected a data sample corresponding to an integrated luminosity of about 2 fb^–1. Although this value is smaller than the total integrated luminosity collected in the three years of Run 1 (3 fb^–1), the significant increase of the LHC energy in Run 2 has almost doubled the production cross-section of beauty particles. Furthermore, the experiment has improved the performance of its trigger system and particle-identification capabilities. Once such an increase is taken into account, along with improvements in the trigger strategy and in the particle identification of the experiment, LHCb has already more than doubled the statistics of beauty particles on tape with respect to Run 1.

    The new analysis is based on 1 fb–1 of available data, aiming to measure the angle γ of the CKM unitarity triangle using B– → D0K*– decays. While B– → D0K– decays have been extensively studied in the past, this is the first time the B– → D0K*– mode has been investigated. The analysis, first presented at CKM2016 (see Triangulating in Mumbai in Faces & Places), allows the LHCb collaboration to cross-check expectations for the increase of signal yields in Run 2 using real data. A significant increase, roughly corresponding to a factor three, is observed per unit of integrated luminosity. This demonstrates that the experiment has benefitted from the increase in b-production cross-section, but also that the trigger of the detector performs better than in Run 1. Although the statistical uncertainty on γ from this measurement alone is still large, the sensitivity will be improved by the addition of more data, as well as by the use of other D-meson decay modes. This bodes well for future measurements of γ to be performed in this and other decay modes with the full Run 2 data set.

    Measurements of the angle γ are of great importance because it is the least well-known angle of the unitarity triangle. The latest combination from direct measurements with charged and neutral B-meson decays and a variety of D-meson final states, all performed with Run 1 data, yielded a central value of 72±7 degrees. LHCb’s ultimate aim, following detector upgrades relevant for LHC Run 3, is to determine γ with a precision below 1°, providing a powerful test of the Standard Model.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

     
  • richardmitnick 4:25 pm on December 6, 2016 Permalink | Reply
    Tags: 2016: an exceptional year for the LHC, , , , , , , CERN LHCb   

    From CERN: “2016: an exceptional year for the LHC” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    6 Dec 2016
    Corinne Pralavorio

    1
    This proton-lead ion collision in the ATLAS detector produced a top quark – the heaviest quark – and its antiquark (Image: ATLAS)

    It’s the particles’ last lap of the ring. On 5 December 2016, protons and lead ions circulated in the Large Hadron Collider (LHC) for the last time. At exactly 6.02am, the experiments recorded their last collisions (also known as ‘events’).

    When the machines are turned off, the LHC operators take stock, and the resulting figures are astonishing.

    The number of collisions recorded by ATLAS and CMS during the proton run from April to the end of October was 60% higher than anticipated. Overall, all of the LHC experiments observed more than 6.5 million billion (6.5 x 1015) collisions, at an energy of 13 TeV. That equates to more data than had been collected in the previous three runs combined.

    3
    One of the first proton-lead ion collisions at 8.16 TeV recorded by the ALICE experiment. (Image: ALICE/CERN)

    In technical terms, the integrated luminosity received by ATLAS and CMS reached 40 inverse femtobarns (fb−1), compared with the 25fb−1 originally planned. Luminosity, which measures the number of potential collisions in a given time, is a crucial indicator of an accelerator’s performance.

    “One of the key factors contributing to this success was the remarkable availability of the LHC and its injectors,” explains Mike Lamont, who leads the team that operates the accelerators. The LHC’s overall availability in 2016 was just shy of 50%, which means the accelerator was in ‘collision mode’ 50% of the time: a very impressive achievement for the operators. “It’s the result of an ongoing programme of work over the last few years to consolidate and upgrade the machines and procedures,” Lamont continues.

    4
    An event recorded by the CMS experiment during the LHC’s proton-lead ion run for which no fewer than 449 particles tracks were reconstructed. (Image: CMS/CERN)

    For the last four weeks, the machine has turned to a different type of collision, where lead ions have been colliding with protons. “This is a new and complex operating mode, but the excellent functioning of the accelerators and the competence of the teams involved has allowed us to surpass our performance expectations,” says John Jowett, who is in charge of heavy-ion runs.

    With the machine running at an energy of 8.16 TeV, a record for this assymetric type of collision, the experiments have recorded more than 380 billion collisions. The machine achieved a peak luminosity over seven times higher than initially expected, as well as exceptional beam lifetimes. The performance is even more remarkable considering that colliding protons with lead ions, which have a mass 206 times greater and a charge 82 times higher, requires numerous painstaking adjustments to the machine.

    The physicists are now analysing the enormous amounts of data that have been collected, in preparation for presenting their results at the winter conferences.

    6
    A proton-lead ion collision recorded by the LHCb experiment in the last few days of the LHC’s 2016 run. (Image: LHCb)

    Meanwhile, CERN’s accelerators will take a long break, called the Extended Year End Technical Stop (EYETS) until the end of March 2017. But, while the accelerators might be on holiday, the technical teams certainly aren’t. The winter stop is an opportunity to carry out maintenance on these extremely complex machines, which are made up of thousands of components. The annual stop for the LHC is being extended by two months in 2017 to allow more major renovation work on the accelerator complex and its 35 kilometres of machines to take place. Particles will return to the LHC in spring 2017.

    7
    The integrated luminosity of the LHC with proton-proton collisions in 2016 compared to previous years. Luminosity is a measure of a collider’s efficiency and is proportional to the number of collisions. The integrated luminosity achieved by the LHC in 2016 far surpassed expectations and is double that achieved at a lower energy in 2012. (Image : CERN)

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 1:50 pm on September 28, 2016 Permalink | Reply
    Tags: , CERN LHCb, ,   

    From CERN: “Looking for charming asymmetries” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    28 Sep 2016
    Stefania Pandolfi

    1
    A view of the LHCb experimental cavern. (Image: Maximilien Brice/CERN)
    CERN LHCb New

    One of the biggest challenges in physics is to understand why everything we see in our universe seems to be formed only of matter, whereas the Big Bang should have created equal amounts of matter and antimatter.

    CERN’s LHCb experiment is one of the best hopes for physicists looking to solve this longstanding mystery.

    At the VIII International Workshop on Charm Physics (link is external), which took place in Bologna earlier this month, the LHCb Collaboration presented the most precise measurement to date of a phenomenon called Charge-Parity (CP) violation among particles that contain a charm quark.

    CP symmetry states that laws of physics are the same if a particle is interchanged with its anti-particle (the “C” part) and if its spatial coordinates are inverted (P). The violation of this symmetry in the first few moments of the universe is one of the fundamental ingredients to explain the apparent cosmic imbalance in favour of matter.

    Until now, the amount of CP violation detected among elementary particles can only explain a tiny fraction of the observed matter-antimatter asymmetry. Physicists are therefore extending their search in the quest to identify the source of the missing anti-matter.

    The LHCb collaboration made a precise comparison between the decay lifetime of a particle called a D0 meson (formed by a charm quark and an up antiquark) and its anti-matter counterpart D0 (formed by an charm antiquark and up quark), when decaying either to a pair of pions or a pair of kaons. Any difference in these lifetimes would provide strong evidence that an additional source of CP violation is at work. Although CP violation has been observed in processes involving numerous particles that contain b and s quarks, the effect is still unobserved in the charm-quark sector and its magnitude is predicted to be very small in the Standard Model.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Thanks to the excellent performance of CERN’s Large Hadron Collider, for the first time the LHCb collaboration is accumulating a dataset large enough to access the required level of precision on CP-violating effects in charm-meson decays. The latest results indicate that the lifetimes of the D0 and D0 particles, measured using their decays to pions or kaons, are still consistent, thereby demonstrating that any CP violation effect that is present must indeed be at a tiny level.

    However, with many more analyses and data to come, LHCb is looking forward to delving even deeper into the possibility of CP violation in the charm sector and thus closing in on the universe’s missing antimatter. “The unique capabilities of our experiment, and the huge production rate of charm mesons at the LHC, allow us to perform measurements that are far beyond the sensitivity of any previous facility,” says Guy Wilkinson, spokesperson for the LHCb collaboration. “However, nature demands that we dig even deeper in order to uncover an effect. With the data still to come, we are confident of responding to this challenge,” he adds.

    More information is available on the LHCb website.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 4:00 pm on June 29, 2016 Permalink | Reply
    Tags: , , CERN LHCb, , , , , Tetraquarks? For real?   

    From Symmetry: “LHCb discovers family of tetraquarks” 

    Symmetry Mag

    Symmetry

    06/29/16
    Sarah Charley

    1
    LHCb. Courtesy of CERN

    Researchers found four new particles made of the same four building blocks.

    It’s quadruplets! Syracuse University researchers on the LHCb experiment confirmed the existence of a new four-quark particle and serendipitously discovered three of its siblings.

    Quarks are the solid scaffolding inside composite particles like protons and neutrons. Normally quarks come in pairs of two or three, but in 2014 LHCb researchers confirmed the existence four-quark particles and, one year later, five-quark particles.

    The particles in this new family were named based on their respective masses, denoted in mega-electronvolts: X(4140), X(4274), X(4500) and X(4700). Each particle contains two charm quarks and two strange quarks arranged in a unique way, making them the first four-quark particles composed entirely of heavy quarks. Researchers also measured each particle’s quantum numbers, which describe their subatomic properties. Theorists will use these new measurements to enhance their understanding of the formation of particles and the fundamental structures of matter.

    “What we have discovered is a unique system,” says Tomasz Skwarnicki, a physics professor at Syracuse University. “We have four exotic particles of the same type; it’s the first time we have seen this and this discovery is already helping us distinguish between the theoretical models.”

    Evidence of the lightest particle in this family of four and a hint of another were first seen by the CDF experiment at the US Department of Energy’s Fermi National Accelerator Lab in 2009.

    FNAL/Tevatron CDF detector
    FNAL/Tevatron machine
    FNAL/Tevatron map
    CDF; Tevatron; Tevtron map

    However, other experiments were unable to confirm this observation until 2012, when the CMS experiment at CERN reported seeing the same particle-like bumps with a much greater statistical certainty.

    CERN/CMS Detector
    CERN/CMS Detector

    Later, the D0 collaboration at Fermilab also reported another observation of this particle.

    FNAL/Tevatron DZero detector
    D0/FNAL

    “It was a long road to get here,” says University of Iowa physicist Kai Yi, who works on both the CDF and CMS experiments. “This has been a collective effort by many complementary experiments. I’m very happy that LHCb has now reconfirmed this particle’s existence and measured its quantum numbers.”

    The US contribution to the LHCb experiment is funded by the National Science Foundation.

    LHCb researcher Thomas Britton performed this analysis as his PhD thesis at Syracuse University.

    “When I first saw the structures jumping out of the data, little did I know this analysis would be such an aporetic saga,” Britton says. “We looked at every known particle and process to make sure these four structures couldn’t be explained by any pre-existing physics. It was like baking a six-dimensional cake with 98 ingredients and no recipe—just a picture of a cake.”

    Even though the four new particles all contain the same quark composition, they each have a unique internal structure, mass and their own sets of quantum numbers. These characteristics are determined by the internal spatial configurations of the quarks.

    “The quarks inside these particles behave like electrons inside atoms,” Skwarnicki says. “They can be ‘excited’ and jump into higher energy orbitals. The energy configuration of the quarks gives each particle its unique mass and identity.”

    According to theoretical predictions, the quarks inside could be tightly bound (like three quarks packed inside a single proton) or loosely bound (like two atoms forming a molecule.) By closely examining each particle’s quantum numbers, scientists were able to narrow down the possible structures.

    “The molecular explanation does not fit with the data,” Skwarnicki says. “But I personally would not conclude that these are definitely tightly bound states of four quarks. It could be possible that these are not even particles. The result could show the complex interplays of known particle pairs flippantly changing their identities.”

    Theorists are currently working on models to explain these new results—be it a family of four new particles or bizarre ripple effects from known particles. Either way, this study will help shape our understanding of the subatomic universe.

    “The huge amount of data generated by the LHC is enabling a resurgence in searches for exotic particles and rare physical phenomena,” Britton says. “There’s so many possible things for us to find and I’m happy to be a part of it.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: