Tagged: CDR: Carbon Dioxide Removal Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:41 pm on August 18, 2022 Permalink | Reply
    Tags: "Episodic aseismic creep": tectonic strain released in a quasi-steady motion that reduces the potential for large earthquakes along some segments., "Geological carbon sequestration in mantle rocks prevents large earthquakes in parts of the San Andreas Fault", , CDR: Carbon Dioxide Removal, Climate & Weather, , , Smaller and more frequent quakes help to reduce tectonic strain.,   

    From The Woods Hole Oceanographic Institution: “Geological carbon sequestration in mantle rocks prevents large earthquakes in parts of the San Andreas Fault” 

    From The Woods Hole Oceanographic Institution

    Authors: Frieder Klein1*, David L. Goldsby2, Jian Lin1, Muriel Andreani3


    1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

    2 University of Pennsylvania, Department of Earth and Environmental Sciences, Philadelphia, PA, USA

    3 Laboratoire de Géologie de Lyon, UMR 5276, ENS et Université Lyon 1, 69622 Villeurbanne Cedex, France

    *corresponding author

    Outcrop of carbonate-altered mantle rock in the San Andreas Fault area. A recent study shows that carbon sequestration in mantle rocks may prevent large earthquakes in parts of the San Andreas Fault. Image credit: Frieder Klein/©Woods Hole Oceanographic Institution.

    Smaller and more frequent quakes help to reduce tectonic strain.

    The San Andreas Fault in California is renowned for its large and infrequent earthquakes.

    However, some segments of the San Andreas Fault instead are characterized by frequent quakes of small to moderate magnitude and high rates of continuous or episodic aseismic creep. With tectonic strain released in a quasi-steady motion that reduces the potential for large earthquakes along those segments.

    Now, researchers say ubiquitous evidence for ongoing geological carbon sequestration in mantle rocks in the creeping sections of the SAF is one underlying cause of aseismic creep along a roughly 150 kilometer-long SAF segment between San Juan Bautista and Parkfield, California, and along several other fault segments.

    “Although there is no consensus regarding the underlying cause of aseismic creep, aqueous fluids and mechanically weak minerals appear to play a central role,” researchers say in a new paper, “Carbonation of serpentinite in creeping faults of California,” published in Geophysical Research Letters [below].

    The new study integrates field observations and thermodynamic modeling “to examine possible relationships between the occurrence of serpentinite, silica-carbonate rock, and CO2-rich aqueous fluids in creeping faults of California,” the paper states. “Our models predict that carbonation of serpentinite leads to the formation of talc and magnesite, followed by silica-carbonate rock. While abundant exposures of silica-carbonate rock indicate complete carbonation, serpentinite hosted CO2-rich spring fluids are strongly supersaturated with talc at elevated temperatures. Hence, carbonation of serpentinite is likely ongoing in parts of the San Andres Fault system and operates in conjunction with other modes of talc formation that may further enhance the potential for aseismic creep, thereby limiting the potential for large earthquakes.”

    The paper indicates that because wet talc is a mechanically weak mineral, “its formation through carbonation promotes tectonic movements without large earthquakes.”

    The researchers recognized several possible underlying mechanisms causing aseismic creep in the SAF, and they also noted that because the rates of aseismic creep are significantly higher in some parts of the SAF system, an additional or different mechanism – the carbonation of serpentinite – is needed to account for the full extent of the creep.

    With fluids basically everywhere along the SAF, but with only certain portions of the fault being lubricated, researchers considered that a rock could be responsible for the lubrication. Some earlier studies had suggested that the lubricant could be talc, a soft and slippery component that is commonly used in baby powder. A well-established mechanism for forming talc is by adding silica to mantle rocks. However, the researchers here focused on another talc-forming mechanism: adding CO2 to mantle rocks to form soapstone.

    “The addition of CO2 to mantle rocks – which is the mineral carbonation or carbon sequestration process – had not previously been investigated in the context of earthquake formation or the natural prevention of earthquakes. Using basic geological constraints, our study showed where these carbonate-altered mantle rocks are and where there are springs along the fault line in California that are enriched in CO2. It turned out that when you plot the occurrence and distribution of these rock types and the occurrence of CO2-rich springs in California, they all line up along the San Andreas Fault in creeping sections of the fault where you don’t have major earthquakes,” said Frieder Klein, lead author of the journal article.

    Klein, an associate scientist in the Marine Chemistry and Geochemistry Department at the Woods Hole Oceanographic Institution, explained that carbonation is basically the uptake of CO2 by a rock. Klein noted that he had used existing U.S. Geological Survey databases and Google Earth to plot the locations of carbonate-altered rocks and CO2-rich springs.

    “The geological evidence suggests that this mineral carbonation process is taking place and that talc is an intermediary reaction product of that process,” Klein said. Although researchers did not find soapstone on mantle rock outcrops, results from theoretical models “strongly suggest that carbonation is an ongoing process and that soapstone indeed could form in the SAF at depth,” the paper notes.

    These theoretical models “suggest that carbon sequestration with the SAF is taking place today and that the process is actively helping to lubricate the fault and minimize strong earthquakes in the creeping portions of the SAF,” Klein said.

    The paper also notes that this mechanism may also be present in other fault systems. “Because CO2-rich aqueous fluids and ultramafic rocks are particularly common in young orogenic belts and subduction zones, the formation of talc via mineral carbonation may play a critical role in controlling the seismic behavior of major tectonic faults around the world.”

    “Our study allows us to better understand the fundamental processes that are taking place within fault zones where these ingredients are present, and allows us to better understand the seismic behavior of these faults, some of which are in densely populated areas and some of which are in lightly populated or oceanic settings,” Klein said.

    This work was supported by grants from the National Science Foundation.

    Science paper:
    Geophysical Research Letters

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission Statement

    The Woods Hole Oceanographic Institution is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology. WHOI is accredited by the New England Association of Schools and Colleges . WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.


    In 1927, a National Academy of Sciences committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution.

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

  • richardmitnick 12:18 pm on April 25, 2022 Permalink | Reply
    Tags: "Managing UK agriculture with rock dust could absorb up to 45% the atmospheric carbon dioxide needed for net-zero", , , CDR: Carbon Dioxide Removal, The authors show this technique could make a contribution to the UK's requirement for greenhouse gas removal with a removal potential of 6–30 million tons of carbon dioxide annually by 2050., , This approach to CDR is the potential to deliver major wins in terms of lowering emissions of nitrous oxide reversing soil acidification that limits yields and reducing demands for imported fertilizer   

    From The University of Sheffield (UK) via phys.org: “Managing UK agriculture with rock dust could absorb up to 45% the atmospheric carbon dioxide needed for net-zero” 

    From The University of Sheffield (UK)



    April 25, 2022

    Credit: Pixabay/CC0 Public Domain.

    Adding rock dust to UK agricultural soils could absorb up to 45% of the atmospheric carbon dioxide needed to reach net zero, according to a major new study led by scientists at the University of Sheffield.

    The study, led by the Leverhulme Centre for Climate Change Mitigation at the University, provides the first detailed analysis of the potential and costs of greenhouse gas removal by enhanced weathering in the UK over the next 50 years.

    The authors show this technique could make a major overlooked contribution to the UK’s requirement for greenhouse gas removal in the coming decades with a removal potential of 6–30 million tons of carbon dioxide annually by 2050. This represents up to 45% of the atmospheric carbon removal required nationally to meet net-zero greenhouse gas emissions alongside emissions reductions.

    Deployment could be straightforward because the approach uses existing infrastructure and has costs of carbon removal lower than other Carbon Dioxide Removal (CDR) strategies, such as direct air capture with carbon capture storage, and bioenergy crops with carbon capture and storage.

    A clear advantage of this approach to CDR is the potential to deliver major wins for agriculture in terms of lowering emissions of nitrous oxide, reversing soil acidification that limits yields and reducing demands for imported fertilizers.

    The advantages of reducing reliance on imported food and fertilizers have been highlighted by the war in Ukraine that has caused the price of food and fertilizers to spike worldwide as exports of both are interrupted.

    The authors of the study highlight that societal acceptance is required from national politics through to local community and farm scales. While mining operations for producing the basalt rock dust will generate additional employment and could contribute to the UK government’s leveling up agenda; however this will need to be done in ways which are both fair and respectful of local community concerns.

    This new study provides much needed detail of what enhanced rock weathering as a carbon dioxide removal strategy could deliver for the UK’s net-zero commitment by 2050. The Committee on Climate Change, which provides independent advice to the government on climate change and carbon budgets, overlooked enhanced weathering in their recent net-zero report because it required further research. The new study now indicates enhanced weathering is comparable to other options on the table and has considerable co-benefits to UK food production and soil health.

    Professor David Beerling, Director of the Leverhulme Centre for Climate Change Mitigation at the University of Sheffield and senior author of the study, says that their “analysis highlights the potential of UK agriculture to deliver substantial carbon drawdown by transitioning to managing arable farms with rock dust, with added benefits for soil health and food security.”

    Dr. Euripides Kantzas of the Leverhulme Centre for Climate Change Mitigation at the University of Sheffield and lead author, says that “by quantifying the carbon removal potential and co-benefits of amending crops with crushed rock in the UK, we provide a blueprint for deploying enhanced rock weathering on a national level, adding to the toolbox of solutions for carbon-neutral economies.”

    Professor Nick Pidgeon, a partner in the study and Director of the Understanding Risk Group at Cardiff University, says that “meeting our net zero targets will need widespread changes to the way UK agriculture and land is managed. For this transformation to succeed we will need to fully engage rural communities and farmers in this important journey.”

    The research was published in Nature Geoscience.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Sheffield (UK) is a public research university in Sheffield, South Yorkshire, England. It received its royal charter in 1905 as successor to the University College of Sheffield, which was established in 1897 by the merger of Sheffield Medical School (founded in 1828), Firth College (1879) and Sheffield Technical School (1884).

    Sheffield is a multi-campus university predominantly over two campus areas: the Western Bank and the St George’s. The university is organised into five academic faculties composed of multiple departments. It had 20,005 undergraduate and 8,710 postgraduate students in 2016/17. The annual income of the institution for 2016–17 was £623.6 million of which £155.9 million was from research grants and contracts, with an expenditure of £633.0 million. Sheffield ranks among the top 10 of UK universities for research grant funding.

    Sheffield was placed 75th worldwide according to QS World University Rankings and 104th worldwide according to Times Higher Education World University Rankings. It was ranked 12th in the UK amongst multi-faculty institutions for the quality (GPA) of its research and for its Research Power in the 2014 Research Excellence Framework. In 2011, Sheffield was named ‘University of the Year’ in the Times Higher Education awards. The Times Higher Education Student Experience Survey 2014 ranked the University of Sheffield 1st for student experience, social life, university facilities and accommodation, among other categories.

    It is one of the original red brick universities, a member The Russell Group Association (UK), the Worldwide Universities Network, the N8 Group of the eight most research intensive universities in Northern England and the White Rose University Consortium. There are eight Nobel laureates affiliated with Sheffield and six of them are the alumni or former long-term staffs of the university.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: