Tagged: Catalysis Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:09 am on June 7, 2023 Permalink | Reply
    Tags: "The future of greenhouse gases", A chemical engineer explains why he thinks a better approach to greenhouse gases in the sky is to turn them into other chemicals., , Can we use chemical principle to directly grab these molecules from the atmosphere and store them and sequester them into appropriate reservoirs?, Carbon monoxide: Carbon monoxide is actually a poison. It's very toxic for human beings it can kill us. But in the chemical industry, Catalysis, , , CO2 has an effect that can last for many many decades because of the stability of this molecule., , it's a very crucial building block., Matteo Cargnello, Methane is 20 to 80 times more powerful than CO2., Methane is despite being dilute in the atmosphere-it's about 200 times less concentrated than CO2 but because of its higher global warming potential then it turns out to be a big offender., , One thing that is important to keep in mind is that CO2 is the main one that is anthropogenic., , , There are actually researchers that are looking at the possibility of running this chemistry in the sky-in the atmosphere., We started working on chemical processes at industrial scale using nanomaterials long before we recognized that these materials are nano.   

    From The School of Engineering At Stanford University: “The future of greenhouse gases” Matteo Cargnello 

    From The School of Engineering

    At

    Stanford University Name

    Stanford University

    6.2.23

    A chemical engineer explains why he thinks a better approach to greenhouse gases in the sky is to turn them into other chemicals.

    1
    Can we transform greenhouse gases into benign chemicals? | zhongguo/iStock.

    Guest Matteo Cargnello approaches the challenge of greenhouse gases from a different perspective.

    He doesn’t study how harmful chemicals got in the skies, or even the consequences. Instead, Cargnello is using his skills as a chemical engineer to turn them into other benign or useful chemicals. So far, he’s turned greenhouse gases into valuable industrial chemicals, polymers, renewable fuels, and even ethanol. Useful products from greenhouse gases, that’s the dream, Cargnello tells Russ Altman.


    The future of greenhouse gases. Stanford.
    28 minutes.

    Matteo Cargnello: Take CO2 and create more complex molecules. For example, hydrocarbons. So then we could make fuels like gasoline that powers our cars from CO2 and hydrogen, and, uh, make our fuels less damaging for the atmosphere.

    Russ Altman: This is Stanford Engineering’s The Future of Everything, and I’m Russ Altman.

    Today, Matteo Cargnello will tell us how his lab is developing new materials to catalyze the transformation of greenhouse gases into benign chemicals like water, nitrogen, and even alcohol. It’s the future of greenhouse gases.

    We have all heard about greenhouse gases. These are the chemicals that enter the atmosphere and create an insulation layer around the earth. Although many of these gases are naturally occurring, the rate at which they’re being produced has remarkably increased in the last 200 years, and now they’ve accumulated to the point where the planet is heating up.

    Global temperatures are increasing and threaten lots of changes to both land, sea, and air as a result. So that makes a double challenge. First, we wanna reduce our creation of these gases, but secondly, we need to figure out ways to remove them from the atmosphere. Matteo Cargnello is a professor of chemical engineering at Stanford University.

    His group creates new materials that can catalyze the transformation of greenhouse gases into benign chemicals. These main greenhouse gases are carbon dioxide. Methane and nitrous oxide. He’s also creating methods to store these gases, either for productive use or just to keep them away.
    ___________________________________________________________________________________

    Mateo, let’s start out with a very simple question.

    What is the problem that your research is trying to help solve?

    Matteo Cargnello: Thank you Russ, for having me here. The problem is kind of like very simple to explain. Uh, it’s of course much harder to, uh, solve. It’s the problem of greenhouse gas emissions and reducing the concentration of greenhouse gases in the atmosphere.

    That can be done in several, many different ways. It’s through energy usage, through avoiding greenhouse gases from getting into the atmosphere in first place, and also being able to capture those greenhouse gases that are already in the atmosphere. So all of that is. What I’m trying to solve and, uh, at the end of the day, it’s about reducing global warming and all the problems associated with it.

    Russ Altman: Great. So for people, I think everybody has heard this phrase “greenhouse gases” and we sometimes hear about specific gases. But I think it would be useful as we start for you to tell me like what the major targets are of these gases and what are our opportunities to kind of improve this situation?

    Or is the cat already out the cow already out of the barn and there’s nothing to be done?

    Matteo Cargnello: Yeah. By the way, cows are very important in this discussion too, but we can get to that later. Probably many people know that one of the main, um, uh, culprits of this problem is a gas called carbon dioxide, CO2. Uh, this is the gas that has increased in concentration tremendously in the last 150 years since the Industrial Revolution.

    And, uh, the problem is that this particular gas traps heat from, uh, the sun, uh, within the atmosphere. And this increases the temperature of the planet with all the consequences that, uh, we are, uh, probably aware of in terms of catastrophic disasters, ocean warming, increasing of ocean levels. Uh, it’s not just CO2 though.

    One thing that is important to keep in mind is that CO2 is the main one that is anthropogenic. It means that human beings increase the concentration of these gas. There are others as well that we are, uh, working on, um, as well as CO2. For example, methane is the second most prevalent, greenhouse gas and, uh, nitrogen oxides in the atmosphere.

    So there’s a variety, a few of them that are extremely important to controlling concentration. But absolutely, CO2 is by far the one that is the most relevant.

    Russ Altman: Now. Um, do those other, you just mentioned methane, uh, does it a act in the same way in terms of like, uh, sealing in the heat or are there other negative consequences that it has that are different from the CO2?

    Matteo Cargnello: Yeah, in principle, when we, uh, think about global warming. The, uh, principle by which these molecules act in increasing the temperature in the atmosphere is very similar in the sense that they trap the heat, that comes from the sun. Their effect though, uh, can last, uh, for different, uh, periods of time.

    CO2 has an effect that can last for many, many decades because of the stability of this molecule. Uh, methane, uh, lasts for less than CO2 because it gets converted into other molecules in the atmosphere. But for example, it has an immediate larger effect than CO2 that is equivalent to roughly 20 to 80 times dead of CO2, uh…

    Russ Altman: oh

    Matteo Cargnello: …with nitrogen oxide that’s even higher.

    Uh, so this is the so-called greenhouse gas, uh, power of, um, or potential of these gases that is varied. So it really depends in terms of time and intensity, but overall, the effect by which they warm the atmosphere is similar.

    Russ Altman: So let me just ask one more kind of setting up of the, of the whole discussion, which is what are the major sources for these three gases that, uh, I think we all have a rough idea that combustion engines produce something and, but why don’t you just kind of give us a rundown of what the major sources are?

    Matteo Cargnello: Yeah. There are natural processes that, uh, involve these gases and they’ve been around, uh, even before humanity was around on this planet. But clearly there are, um, artificial processes that increase or change the concentrations and the equilibria around this specific gases. And when it comes to CO2, the main source is, uh, human activities, especially energy generation, combustion of, uh, Oil and uh, related products for energy generation.

    Uh, in term, when it comes to methane, it’s, uh, the activity of extracting oil and, uh, agriculture and, um, uh, farming. Those are huge, uh, sources of methane. And when it comes to nitrogen.

    Russ Altman: This is where the cows come in?

    Matteo Cargnello: It’s when the cows come in, and that’s, uh, a big issue because that methane is, despite being dilute in the atmosphere, it’s about 200 times less concentrated than CO2, but because of its higher global warming potential, then it turns out to be a big offender when it comes to, uh, global warming. Um, so these are, there are these natural sources, but certainly, uh, farming, agriculture those are huge sources of methane and, uh, nitrogen oxides.

    Russ Altman: Okay, so now let’s get into your work and it’s very exciting because my understanding is you’re using the principles of chemistry to actually try to remediate all of these compounds. Um, what is the gen, what is the approach there? Tell us, uh, enough chemistry so that we can see both the challenge and the promise.

    Matteo Cargnello: Yeah. So there’s two facets, uh, in my research, uh, work.

    On one side because the emission of greenhouse gases come from the generation of energy and, uh, when it comes to energy generation, we’re talking about converting chemical species into others that would release with the release of energy that we can utilize, then we can, um, find out ways to, uh, run this chemical processes with less energy consumption.

    Which means that is then directly giving us the opportunity to reduce the, uh, energy emissions, uh, or the greenhouse gas emissions, sorry, from, from energy generation. So that’s, uh, essentially an indirect pathway to reduce the greenhouse gas emission.

    Russ Altman: Sure.

    Matteo Cargnello: On the other side, we can find chemical processes to convert these molecules such as methane into others that would be less damaging to the atmosphere. And that’s another facet.

    And the third one is, can we use chemical principle to directly grab these molecules from the atmosphere and store them and sequester them into appropriate reservoirs that could, uh, then last for a long time so that it don’t get back into the atmosphere. So it’s the chemistry of these small molecular compounds that is either in their conversion into others with lower emissions or directly converting them to remove them from the atmosphere.

    Russ Altman: So that was a great overview and I know that, I don’t know if it’s for all three of these challenges, prefer at least some of them you’re also creating new materials, so-called nano materials that have special properties.

    And a lot of people hear about nanoscience and maybe they’re thinking about computers or other things, but it’s very interesting to find out that this might have implications also for chemical catalysis and global warming. So what’s the connection between nano materials? Why are they special?

    Matteo Cargnello: Mm-hmm. Yeah, nano materials are very special.

    And by the way, we started, uh, as humanity. I mean we started working on this chemical processes at industrial scale using nanomaterials long before we recognize that these materials are nano.

    Russ Altman: Huh?

    Matteo Cargnello: That are small, small scale. And the reason why that’s the case is because when we want to run chemical transformations on molecules, then we need to have materials that interact with these molecules and to the highest possible extent.

    And the way to do that is to reduce the size of the materials. To the level of a few atoms, because then these materials will show the highest efficiency in interacting with these gauges molecules.

    So that’s why we need to use materials that are very small at the nanometer scale in order to make them very efficient for, uh, interacting with, uh, molecules in these chemical processes?

    Russ Altman: Is it basically a surface area situation that if you have tiny things, if you have a large volume, but if it’s all tiny particles, then they have a lot of opportunity to interact with like the air around them.

    Matteo Cargnello: Exactly.

    Russ Altman: Is that the idea?

    Matteo Cargnello: So the usual, uh, comparison or analogy we make is that if you take a cube, uh, that has macroscopic dimensions, most of those of the material in the cube will be in the internal space, volume of the material, and that will not be able to interact with the atmosphere, which is in the end what we’re trying to do. But when we start cutting down this, uh, cube into smaller and smaller pieces or bits, then we are able to expose more of the surface area, uh, which is one of the primary needs for, um, materials that we want to use for chemical transformations.

    Russ Altman: Okay. So what kind of chemical transformations, like what are we turning the CO2 into? I know, for example, that plants can turn it into sugar. Uh, yeah. Uh, and also what are we turning the meth methane into? I’m doubting that you’re making sugar, but I don’t want to pre-judge.

    Matteo Cargnello: Well, there’s, there are different pathways that are imagined in the, in our field in order to turn CO2 into something useful.

    Uh, there are some. Let’s say low hanging fruit in terms of compounds that can be made, such as carbon monoxide, which is one step away from CO2. Carbon monoxide is actually a poison. It’s very toxic for human beings it can kill us. But in the chemical industry, it’s a very crucial building block to prepare a variety of compounds, fuels, in other chemicals.

    So CO is one. Uh, we can, however, one, some of the most interesting compounds are those that have carbon, carbon bonds. So if you can take CO2 and create more complex molecules, for example, hydrocarbons, so then we could make fuels like gasoline that powers our cars from CO2 and hydrogen and, uh, make our fuels less damaging for the atmosphere, uh, in…

    Russ Altman: it’s almost like recycling the fuels?

    Matteo Cargnello: …exactly. Although it’s not the best way we have in order to reduce the, um, amount of green or CO2 that we put into the atmosphere but it’s a way to go. And more recently, um, I’m excited to share with you that we’ve also been making ethanol, which is basically alcohol from CO2.

    So I …

    Russ Altman: now you’re talking.

    Matteo Cargnello: …yeah, exactly. So I joke with my students, they were making booze from air. So in principle, the idea is to take CO2 from the atmosphere and hydrogen from sustainable renewable processes and make ethanol.

    The reason why we want to make ethanol is because, first of all, it can be used as a fuel. It’s already used in some countries as a hundred percent, uh, fuel for internal combustion engines, but it can also be used as a sustainable chemical for the production of a variety of important building blocks in the in industries for polymers, for example, in other applications.

    So there’s clearly a variety of things that we can do with CO2 but there’s a few ones in particular that are relevant when we want to solve the problem of CO2 emissions.

    Russ Altman: So let me go on a little tangent because this is very exciting and I just wanna make sure I kind of see the, kind of the use case. So you, as you develop these chemistries, can you do it like on the land in a factory or are you gonna have to get this stuff up into the sky to interact with all of the CO2 and for the other reactions, the methane or is that not necessary?

    This can all be done like terrestrially. I I’m just wondering how, what your vision is for how this gets scaled once you develop all the technologies.

    Matteo Cargnello: Uh, it depends on the final goal. There are actually researchers that are looking at the possibility of running this chemistry in the sky, in the atmosphere.

    Uh, for us, when we think about chemical engineering and producing chemicals from CO2, uh, we see it as an opportunity to do it, um, on land. So the idea is to…

    Russ Altman: Yes.

    Matteo Cargnello: …try and grab that CO2 from the atmosphere or from seawater, by the way. We can talk about that later on.

    Russ Altman: Ah.

    Matteo Cargnello: But then doing it in a factory and making useful chemicals then could replace other chemicals that we’re using today that come from fossil fuels.

    That will be really the vision and, uh, the, the dream.

    Russ Altman: Gotcha. And, uh, and, and before, before I went on that tangent, I wanted to also ask about methane. What are the kinds of things that we would, might be able to turn methane into?

    Matteo Cargnello: Yeah. Methane is a very interesting compound. Together with, uh, some colleagues, uh, from Stanford a few years ago, uh, we did some calculations on the methane concentration in the atmosphere and realized that, or demonstrated that if we were to magically remove methane from the atmosphere, we would be back to the greenhouse gas potential at, of like 1850.

    So methane is a big offender.

    Russ Altman: Huh

    Matteo Cargnello: now the question is what do we do though, given the fact that it’s such, that’s such low concentration in the atmosphere?

    So there are some ideas that we’re working on to turn methane into CO2. Uh, and now one will say, okay, why CO2? Well, because methane is 20 to 80 times more powerful than CO2. So even being able to convert that methane to CO2 would reduce the greenhouse gas potential of gases in the atmosphere and really help us, uh, solve, uh, this problem.

    So that’s one idea that we are working on.

    Russ Altman: Yes. It actually makes sense if it’s 20 or 30 times worse and you can turn a methane into one or two CO2 s and now you’re also developing CO2 remediation.

    You have created a pipeline towards, uh, towards a solution.

    Matteo Cargnello: Right.

    Russ Altman: I just wanted to make sure, by the way, Um, is the carbon monoxide and these other things that you’re turning, um, the CO2 into, are they gonna have the same greenhouse house problems or is the idea to capture them and store them so that they never get into the amosphere?

    Matteo Cargnello: uh, exactly. So this is an important point that, um, you mentioned. We have to ensure that whatever conversion we, uh, work on, it is we convert CO2 into, first of all, a useful chemical compact, but on the other side, we have to ensure that carbon is not going to end up in the atmosphere right away because otherwise any chemical process requires energy.

    And energy in principle means that we are, uh, emitting CO2 in using energy. So if we use energy and emit CO2 to make a chemical that would turn back into CO2 right away, that’s not a great way to solve this problem. So CO is. Um, so some of these gases, um, are not as, um, powerful as greenhouse gases as CO2, but we have to ensure that we turn them into compounds that, uh, would allow us to at least semi permanently store CO2 in chemical bonds that are not going to end up, uh, in the atmosphere again.

    So I emphasize the ethanol, for example, in polymers because in principle, uh, polymers that we use, um, all every day and they’re all around us are a way to semi permanently store carbon.

    Although we have. Lots of other problems with plastics for sure, but that’s also why in principle, turning CO2 into fuels that we use, uh, right away directly is not the best way to remediate, uh, this issue. So there’s very many considerations around the use and storage and, um, conversion of CO2. And we’re just discussing the tip of the iceberg essential.

    So the key to this, Matteo, is catalysis. And so I think it’s now time for you to tell us about the chemistry. What is Catalysis and what is the chemistry of catalysis?

    Matteo Cargnello: Yes, catalysis is a very crucial, uh, science in allowing us to fight global warming catalysis. The definition is that catalyst accelerates the rate of a chemical reaction. Now, the weight works is that any chemical reaction in order to occur as to overcome with some energy barrier.

    So we need to give it a kick in order for that to start. Now, a catalyst is a substance in principle, in my case, a nanomaterial, that would allow this, um, this reaction to start with a lower energy of activation. And it is clear then to imagine that when we, uh, think about less energy to run chemical transformations, we’re talking immediately, we are thinking immediately about reducing the CO2 footprint. Uh, of, uh, some of these chemical processes.

    And so then the trick or the important part of my research is in finding the appropriate materials that would work as the most efficient catalyst for the processes that involve greenhouse gases.

    Russ Altman: Now we all have a car with a catalytic converter, uh, and a lot of them are being stolen.

    Does this relate to the work that you are doing, or is it entirely different kind of catalysis?

    Matteo Cargnello: Absolutely yes. I, uh, I think catalytic converter is one of the most important inventions of the last century. Uh, we, if we are familiar with photos from cities in the US from the seventies, there was, uh, there were high concentrations of smog and pollution.

    And, uh, really the invention of the Cali converter allowed us to have, um, uh, better, clearer skies and, uh, better, um, air that we breathe in the cities and these devices take, um, uh, pollutants and toxic gases such as hydrocarbons, carbon monoxide, and nitrogen oxides, and turn them into harmless compounds that we can breathe, such as, uh, nitrogen, uh, CO2 and, uh, and water. Uh, and this is an incredibly important, uh, discovery that allowed us to make these materials with this very, very high efficiency for turning these gases.

    The fact is that most of these materials, most of these, uh, cali, um, or cali converters in particular, uh, work with, um, precious metals.

    Such as platinum, palladium, and roadium. And these metals are very, very precious and that’s the reason why Cali converters get stolen, because they’re very valuable.

    Russ Altman: And they’re not using nanomaterials is my guess. But you are?

    Matteo Cargnello: They are. No, even in Cali converters we have nanomaterials.

    Russ Altman: Okay.

    Matteo Cargnello: So again, in order to increase the efficiency of these, uh, metals in particular to work on, uh, gasses, uh, compounds and convert those, we need to make them very, very small and tiny.

    And these particles are in the order of like, uh, 5 to 50 nanometers in size. Which is about, uh, a thousand times, uh, smaller than the diameter of one of our hair. That’s the size that we’re talking about.

    And it is important to recognize that this, uh, materials play a crucial role in, not just in cali converters, but in many, many industrial processes that we run at the million ton scale on a daily basis.

    And it’s all based on the, and these small, tiny particles, uh, that we use as catalyst.

    Russ Altman: Yes. So when you’re building these nano materials, is it correct that you’re actually in, are you, uh, integrating some of these precious metals into the nano materials that you build? And then we talked before about the importance of making sure that the surface area is appropriate for the, for making a large volume.

    Uh, is that the kind of work that you’re doing?

    Matteo Cargnello: Yeah, exactly. So we use a so-called bottom up approach. A chemical approach that would allow us to start from single individual atoms of a material and build the materials atom by atom with, uh, a precision that would allow us to tune the properties of these materials because whether the particle is a certain size or another matter tremendously for the final efficiency and selectivity of these materials.

    So we’re using these chemical tools. They would allow us to, uh, build the materials atom, by atom and really get to on one side, under the fundamental understanding of how the size and morphology of the nanomaterials matter for a final application as well as engineering the properties of these materials.

    Russ Altman: Yes, I can imagine that in addition to making sure that it can catalyze the reaction that you want to happen, there are all kinds of operating conditions in terms of temperature and pressure and all those other things that you have to make sure you get it just right to optimize the reactions.

    Matteo Cargnello: Correct. Exactly.

    And these conditions will also affect the performance of the catalyst. So we also need to study how the material is going to get affected by the operating conditions and make it last for a long time, which is one of the main issues. For example, in Cali Converters, we don’t want, uh, the people to have to replace that expensive Cali Converter every 10,000 miles.

    It has to last at least 150,000 miles, if not more.

    Russ Altman: Right. Okay, great. Well, in the last two minutes, I want to change topics cuz I know that you’ve also written and done work with seawater and you might, people might not think of seawater as a big issue or a big opportunity. Where does seawater come into your, uh, professional life?

    Matteo Cargnello: Yeah, seawater is a project that we are starting to consider now and we go back to capturing CO2 from the atmosphere. That is like one of the biggest challenges that we have to really solve as a humanity and in this generation. So the fight that seawater is a storage medium for CO2. The CO2 from the atmosphere gets dissolved into the ocean water. And then we can try and take the CO2 from seawater rather than the atmosphere.

    The reason why that’s appealing is on one side, the concentration of CO2 is higher in seawater than it is in the atmosphere.

    Russ Altman: Oh, that’s interesting.

    Matteo Cargnello: Yeah, because seawater is a liquid and the atmosphere is a gas, so we can, uh, process less volumes of seawater to get to extract the same amount of CO2.

    On the other side, uh, the CO2 is not just the only. Um, if you want resource that we can harvest from seawater, there’s other compounds that are very important, uh, chemical compounds for industry and for processes. So we could in principle utilize, uh, seawater not just as a reservoir of CO2, but also to extract other important components such as lithium salts, for example, that are so critical for lithium ion batteries.

    So now there’s quite a few researchers around the world, uh, focusing their attention on the, uh, seawater and, uh, the resources that we can extract from it.

    Russ Altman: And is it possible that you’ll actually be doing catalysis in the water or, uh, and would it be water? I guess my question is, does the principles that you use, uh, for the, uh, non-aqueous, um, catalytic reactions do I, my guess is they have to be modified, but they still might be applicable in water?

    Matteo Cargnello: It’s possible there are some ideas in doing chemistry on the seawater or doing chemistry. With the CO2 that is removed from the seawater.

    So one of the dreams I think that many people have is to have potentially these floating islands that can capture renewable energy. For example, with solar panels, to power the processes to extract these important compounds, CO2, lithium matters from seawater, and then process them on this island and then, Using that to feed, um, and then populations, uh, on the coast and transport that.

    So that’s one vision of how we could have this, uh, islands to remediate greenhouse gas emissions and global warming in hopefully not too long from now.

    Russ Altman: Very exciting. So these are catalytic converters, not just for your car, but catalytic converters really for the earth and for the environment.

    Matteo Cargnello: Absolutely.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Stanford University School of Engineering has been at the forefront of innovation for nearly a century, creating pivotal technologies that have transformed the worlds of information technology, communications, health care, energy, business and beyond.

    The school’s faculty, students and alumni have established thousands of companies and laid the technological and business foundations for Silicon Valley. Today, the school educates leaders who will make an impact on global problems and seeks to define what the future of engineering will look like.
    Mission

    Our mission is to seek solutions to important global problems and educate leaders who will make the world a better place by using the power of engineering principles, techniques and systems. We believe it is essential to educate engineers who possess not only deep technical excellence, but the creativity, cultural awareness and entrepreneurial skills that come from exposure to the liberal arts, business, medicine and other disciplines that are an integral part of the Stanford experience.

    Our key goals are to:

    Conduct curiosity-driven and problem-driven research that generates new knowledge and produces discoveries that provide the foundations for future engineered systems
    Deliver world-class, research-based education to students and broad-based training to leaders in academia, industry and society
    Drive technology transfer to Silicon Valley and beyond with deeply and broadly educated people and transformative ideas that will improve our society and our world.

    The Future of Engineering

    The engineering school of the future will look very different from what it looks like today. So, in 2015, we brought together a wide range of stakeholders, including mid-career faculty, students and staff, to address two fundamental questions: In what areas can the School of Engineering make significant world‐changing impact, and how should the school be configured to address the major opportunities and challenges of the future?

    One key output of the process is a set of 10 broad, aspirational questions on areas where the School of Engineering would like to have an impact in 20 years. The committee also returned with a series of recommendations that outlined actions across three key areas — research, education and culture — where the school can deploy resources and create the conditions for The Stanford University College of Engineering to have significant impact on those challenges.

    Stanford University

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.

    Study abroad locations:

    Unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession.

    In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually. A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory,
    Stanford Research Institute, a center of innovation to support economic development in the region.

    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.

    Hasso Plattner Institute of Design -Stanford Engineering, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).

    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.

    John S. Knight Fellowship for Professional Journalists

    Center for Ocean Solutions

    Together with University of California-Berkeley and University of California-San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet. Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISC [Reduced Instruction Set Computer microprocessor architecture] – DARPA funded VLSI project of microprocessor design. Stanford and The University of California-Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, the PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.

    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco Systems, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California-Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.

    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.

    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.

    Big Game events: The events in the week leading up to the Big Game vs.The University of California-Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).

    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.

    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.

    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.

    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.

    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 9:26 pm on May 30, 2023 Permalink | Reply
    Tags: "Artificial leaves", "Driving on sunshine - clean usable liquid fuels made from solar power", , Catalysis, , Ethanol and propanol have a high energy density and can be easily stored or transported., Researchers have developed a solar-powered technology converting carbon dioxide and water into liquid fuels to add directly to a car’s engine as fuel., , These fuels do not divert any agricultural land away from food production., These solar fuels produce net-zero carbon emissions and are completely renewable.   

    From The University of Cambridge (UK): “Driving on sunshine – clean usable liquid fuels made from solar power” 

    U Cambridge bloc

    From The University of Cambridge (UK)

    5.18.23
    Sarah Collins
    sarah.collins@admin.cam.ac.uk

    1
    A photoreactor with an artificial leaf working under solar irradiation. Credit: Motiar Rahaman.

    Researchers have developed a solar-powered technology that converts carbon dioxide and water into liquid fuels that can be added directly to a car’s engine as drop-in fuel.

    The researchers, from the University of Cambridge, harnessed the power of photosynthesis to convert CO2, water and sunlight into multicarbon fuels – ethanol and propanol – in a single step. These fuels have a high energy density and can be easily stored or transported.

    Unlike fossil fuels, these solar fuels produce net-zero carbon emissions and are completely renewable, and unlike most bioethanol, they do not divert any agricultural land away from food production.

    While the technology is still at laboratory scale, the researchers say their ‘artificial leaves’ are an important step in the transition away from a fossil fuel-based economy. The results are reported in the journal Nature Energy [below].

    Bioethanol is touted as a cleaner alternative to petrol, since it is made from plants instead of fossil fuels. Most cars and trucks on the road today run on petrol containing up to 10% ethanol (E10 fuel). The United States is the world’s largest bioethanol producer: according to the U.S. Department of Agriculture, almost 45% of all corn grown in the US is used for ethanol production.

    “Biofuels like ethanol are a controversial technology, not least because they take up agricultural land that could be used to grow food instead,” said Professor Erwin Reisner, who led the research.

    For several years, Reisner’s research group, based in the Yusuf Hamied Department of Chemistry, has been developing sustainable, zero-carbon fuels inspired by photosynthesis – the process by which plants convert sunlight into food – using “artificial leaves”.

    To date, these artificial leaves have only been able to make simple chemicals, such as syngas, a mixture of hydrogen and carbon monoxide that is used to produce fuels, pharmaceuticals, plastics and fertilisers. But to make the technology more practical, it would need to be able to produce more complex chemicals directly in a single solar-powered step.

    Now, the artificial leaf can directly produce clean ethanol and propanol without the need for the intermediary step of producing syngas.

    The researchers developed a copper and palladium-based catalyst. The catalyst was optimized in a way that allowed the artificial leaf to produce more complex chemicals, specifically the multicarbon alcohols ethanol and n-propanol. Both alcohols are high energy density fuels that can be easily transported and stored.

    Other scientists have been able to produce similar chemicals using electrical power, but this is the first time that such complex chemicals have been produced with an artificial leaf using only the energy from the Sun.

    “Shining sunlight on the artificial leaves and getting liquid fuel from carbon dioxide and water is an amazing bit of chemistry,” said Dr Motiar Rahaman, the paper’s first author. “Normally, when you try to convert CO2 into another chemical product using an artificial leaf device, you almost always get carbon monoxide or syngas, but here, we’ve been able to produce a practical liquid fuel just using the power of the Sun. It’s an exciting advance that opens up whole new avenues in our work.”

    At present, the device is a proof of concept and shows only modest efficiency. The researchers are working to optimize the light absorbers so that they can better absorb sunlight and optimizing the catalyst so it can convert more sunlight into fuel. Further work will also be required to make the device scalable so that it can produce large volumes of fuel.

    “Even though there’s still work to be done, we’ve shown what these artificial leaves are capable of doing,” said Reisner. “It’s important to show that we can go beyond the simplest molecules and make things that are directly useful as we transition away from fossil fuels.”

    The research was supported in part by the European Commission Marie Skłodowska-Curie Fellowship, the Cambridge Trust, and the Winton Programme for the Physics of Sustainability. Erwin Reisner is a Fellow and Motiar Rahaman is a Research Associate of St John’s College, Cambridge.

    Nature Energy

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford (UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organized into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organized around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020, 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.

    History

    By the late 12th century, the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However, it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence, it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However, Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalized the organizational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence, the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

     
  • richardmitnick 9:02 am on May 19, 2023 Permalink | Reply
    Tags: "Chemists Unravel Reaction Mechanism for Clean Energy Catalyst", "Pulse radiolysis", , Catalysis, , , Hydrogen-the simplest element on Earth-is a clean fuel that could revolutionize the energy industry., Metal complexes—molecules that contain a metal center surrounded by an organic scaffold—are important for their ability to catalyze otherwise difficult reactions., Pure hydrogen is extremely rare in nature., The "Pulse radiolysis" experiments at Brookhaven Lab revealed rapid reactivity that has never been observed before., , The University of Kansas   

    From The DOE’s Brookhaven National Laboratory: “Chemists Unravel Reaction Mechanism for Clean Energy Catalyst” 

    From The DOE’s Brookhaven National Laboratory

    5.15.23
    Stephanie Kossman
    skossman@bnl.gov
    (631) 344-8671

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    “Pulse radiolysis” experiments at Brookhaven Lab revealed rapid reactivity that has never been observed before.

    1
    Dmitry Polyansky (left) and David Grills in the “Pulse radiolysis” lab where the research was conducted. Here, Grills programs a syringe pump that delivers the catalyst to the radiolysis cell. Polyansky adjusts the radiolysis cell inside a white insulated compartment. BNL.

    Hydrogen, the simplest element on Earth, is a clean fuel that could revolutionize the energy industry. Accessing hydrogen, however, is not a simple or clean process at all. Pure hydrogen is extremely rare in nature, and practical methods to produce it currently rely on fossil fuels. But if scientists find the right chemical catalyst, one that can split the hydrogen and oxygen in water molecules apart, pure hydrogen could be produced from renewable energy sources such as solar power.

    Now, scientists are one step closer to finding that catalyst. Chemists at the University of Kansas and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have unraveled the entire reaction mechanism for a key class of water-splitting catalysts. Their work was published today in PNAS [below].

    “It’s very rare that you can get a complete understanding of a full catalytic cycle,” said Brookhaven chemist Dmitry Polyansky, a co-author of the paper. “These reactions go through many steps, some of which are very fast and cannot be easily observed.”

    2
    Scientists use this “probe” light from a xenon lamp to monitor their catalyst solution for chemical changes initiated by pulses of electrons. BNL.

    Rapid intermediate steps make it difficult for scientists to decipher exactly where, when, and how the most important parts of a catalytic reaction occur—and therefore, if the catalyst is suitable for large-scale applications.

    At the University of Kansas, associate professor James Blakemore was researching possible candidates when he noticed something unusual about one catalyst in particular. This catalyst, called a pentamethylcyclopentadienyl rhodium complex, or Cp*Rh complex, was demonstrating reactivity in an area where molecules are usually stable.

    “Metal complexes—molecules that contain a metal center surrounded by an organic scaffold—are important for their ability to catalyze otherwise difficult reactions,” said Blakemore, who is also a co-author of the paper. “Typically, reactivity happens directly at the metal center, but in our system of interest, the ligand scaffold appeared to directly take part in the chemistry.”

    So, what exactly was reacting with the ligand? Was the team really observing an active step in the reaction mechanism or just an undesirable side reaction? How stable were the intermediate products that were produced? To answer questions like these, Blakemore collaborated with chemists at Brookhaven Lab to use a specialized research technique called “Pulse radiolysis”.

    “Pulse radiolysis” harnesses the power of particle accelerators to isolate rapid, hard-to-observe steps within a catalytic cycle. Brookhaven’s Accelerator Center for Energy Research (ACER) is one of only two locations in the United States where this technique can be conducted, thanks to the Lab’s advanced particle accelerator complex [below].

    “We accelerate electrons, which carry significant energy, to very high velocities,” said Brookhaven chemist David Grills, another co-author of the paper. “When these electrons pass through the chemical solution we’re studying, they ionize the solvent molecules, generating charged species that are intercepted by the catalyst molecules, which rapidly alter in structure. We then use time-resolved spectroscopy tools to monitor the chemical reactivity after this rapid change occurs.”

    Spectroscopic studies provide spectral data, which can be thought of as the fingerprints of a molecule’s structure. By comparing these signatures to known structures, scientists can decipher physical and electronic changes within the short-lived intermediate products of catalytic reactions.

    “’Pulse radiolysis’ allows us to single out one step and look at it on a very short timescale,” Polyansky said. “The instrumentation we used can resolve events at one millionth to one billionth of a second.”

    By combining “Pulse radiolysis” and time-resolved spectroscopy with more common electrochemistry and stopped-flow techniques, the team was able to decipher every step of the complex catalytic cycle, including the details of the unusual reactivity occurring at the ligand scaffold.

    “One of the most remarkable features of this catalytic cycle was direct involvement of the ligands,” Grills said. “Often, this area of the molecule is just a spectator, but we observed reactivity within the ligands that had not yet been proven for this class of compounds. We were able to show that a hydride group, an intermediate product of the reaction, jumped onto the Cp* ligand. This proved that the Cp* ligand was an active part of the reaction mechanism.”

    Capturing these precise chemical details will make it significantly easier for scientists to design more efficient, stable, and cost-effective catalysts for producing pure hydrogen.

    The researchers also hope their findings will provide clues for deciphering reaction mechanisms for other classes of catalysts.

    “In chemistry, findings like ours can often be generalized and applied to optimize other systems, but obtaining critical details on rapid reactivity, like we have done here, is a key step,” Blakemore said. “We hope other research groups will take our insights and build on them, perhaps by using ligand-promoted reactivity to build better catalysts.”

    This study is just one set of experiments among a large body of clean energy work that scientists at the University of Kansas and Brookhaven Lab are conducting.

    “We’re building the fundamental chemical knowledge that will, one day, help scientists design the optimal catalyst for producing pure hydrogen,” Polyansky said.

    This work was supported by the National Science Foundation and the DOE Office of Science.

    PNAS

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC). Credit: CERN.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map. Credit: CERN.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .

     
  • richardmitnick 8:56 am on May 18, 2023 Permalink | Reply
    Tags: "HR-AFM": high-resolution non-contact atomic force microscopy, "Seeing Electron Orbital Signatures", , , , By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we can gain a better understanding of the behavior of individual atoms and molecules., By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we might learn how to design and engineer new materials with specific properties., Catalysis, , , Despite Fe and Co being adjacent atoms on the periodic table which implies similarity the corresponding force spectra and their measured images show reproducible experimental differences., , , , , , , Scientists using supercomputers and atomic resolution microscopes have imaged the signatures of electron orbitals which are defined by mathematical equations of quantum mechanics., , Supercomputing simulations on TACC's Stampede2 system spot electronic differences in adjacent transition-metal atoms.,   

    From The Texas Advanced Computing Center: “Seeing Electron Orbital Signatures” 

    From The Texas Advanced Computing Center

    At

    The University of Texas-Austin

    5.15.23
    Jorge Salazar

    Supercomputing simulations on TACC’s Stampede2 system [below] spot electronic differences in adjacent transition-metal atoms.

    1
    Supercomputer simulations and atomic resolution microscopes were used to directly observe the signatures of electron orbitals in two different transition-metal atoms, iron (Fe) and cobalt (Co). This new knowledge can help make advancements in fields such as materials science, nanotechnology, and catalysis. Credit: Chen, P., Fan, D., Selloni, A. et al.

    No one will ever be able to see a purely mathematical construct such as a perfect sphere. But now, scientists using supercomputer simulations and atomic resolution microscopes have imaged the signatures of electron orbitals, which are defined by mathematical equations of quantum mechanics and predict where an atom’s electron is most likely to be.

    Scientists at UT Austin, Princeton University, and ExxonMobil have directly observed the signatures of electron orbitals in two different transition-metal atoms, iron (Fe) and cobalt (Co) present in metal-phthalocyanines. Those signatures are apparent in the forces measured by atomic force microscopes, which often reflect the underlying orbitals and can be so interpreted.

    Their study was published in March 2023 as an Editors’ Highlight in the journal Nature Communications [below].

    3
    (a) Low-magnification STM image of FePc and CoPc molecules using a CO tip. Schematic side (b) and top (c) views of the relaxed FePc molecule adsorbed on a Cu(111) substrate. Blue: Fe, yellow: C, pink: N, white: H, dark purple: Cu. Credit: Chen, P., Fan, D., Selloni, A. et al.

    “Our collaborators at Princeton University found that despite Fe and Co being adjacent atoms on the periodic table, which implies similarity, the corresponding force spectra and their measured images show reproducible experimental differences,” said study co-author James R. Chelikowsky, the W.A. “Tex” Moncrief, Jr. Chair of Computational Materials and professor in the Departments of Physics, Chemical Engineering, and Chemistry in the College of Natural Sciences at UT Austin. Chelikowsky also serves as the director of the Center for Computational Materials at the Oden Institute for Computational Engineering and Sciences.

    Without a theoretical analysis, the Princeton scientists could not determine the source of the differences they spotted using high-resolution non-contact atomic force microscopy (HR-AFM) and spectroscopy that measured molecular-scale forces on the order of piconewtons (pN), one-trillionth of a Newton.

    “When we first observed the experimental images, our initial reaction was to marvel at how experiment could capture such subtle differences. These are very small forces,” Chelikowsky added.

    “By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we can gain a better understanding of the behavior of individual atoms and molecules, and potentially even how to design and engineer new materials with specific properties. This is especially important in fields such as materials science, nanotechnology, and catalysis,” Chelikowsky said.

    The required electronic structure calculations are based on density functional theory (DFT), which starts from basic quantum mechanical equations and serves as a practical approach for predicting the behavior of materials.

    “Our main contribution is that we validated through our real-space DFT calculations that the observed experimental differences primarily stem from the different electronic configurations in 3d electrons of Fe and Co near the Fermi level, the highest energy state an electron can occupy in the atom,” said study co-first author Dingxin Fan, a former graduate student working with Chelikowsky. Fan is now a postdoctoral research associate at the Princeton Materials Institute.

    4
    Dingxin Fan (L) of Princeton University; James R. Chelikowsky (R) of UT Austin.

    The DFT calculations included the copper substrate for the Fe and Co atoms, adding a few hundred atoms to the mix and calling for intense computation, for which they were awarded an allocation on the Stampede2 supercomputer at the Texas Advanced Computing Center (TACC), funded by the National Science Foundation.

    “In terms of our model, at a certain height, we moved the carbon monoxide tip of the AFM over the sample and computed the quantum forces at every single grid point in real space,” Fan said. “This entails hundreds of different computations. The built-in software packages on TACC’s Stampede2 helped us to perform data analysis much more easily. For example, the Visual Molecular Dynamics software expedites an analysis of our computational results.”

    “Stampede2 has provided excellent computational power and storage capacity to support various research projects we have,” Chelikowsky added.

    By demonstrating that the electron orbital signatures are indeed observable using AFM, the scientists assert that this new knowledge can extend the applicability of AFM into different areas.

    5
    AFM images of FePc and CoPc on a Cu(111) surface (a) Experimental constant-height AFM frequency-shift images. (b) Glow-edges filtered experimental AFM image (based on a). (c) Simulated AFM images. (d) Estimated width (in pm) of the central part of the spin-polarized DFT calculations. Credit: Chen, P., Fan, D., Selloni, A. et al.

    What’s more, their study, used an inert molecular probe tip to approach another molecule and accurately measured the interactions between the two molecules. This allowed the science team to study specific surface chemical reactions.

    For example, suppose that a catalyst can accelerate a certain chemical reaction, but it is unknown which molecular site is responsible for the catalysis. In this case, an AFM tip prepared with the reactant molecule can be used to measure the interactions at different sites, ultimately determining the chemically active site or sites.

    Moreover, since the orbital level information can be obtained, scientists can gain a much deeper understanding of what will happen when a chemical reaction occurs. As a result, other scientists could design more efficient catalysts based on this information.

    Said Chelikowsky: “Supercomputers, in many ways, allow us to control how atoms interact without having to go into the lab. Such work can guide the discovery of new materials without a laborious ‘trial and error’ procedure.”

    Nature Communications

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Texas Advanced Computing Center at The University of Texas-Austin is an advanced computing research center that provides comprehensive advanced computing resources and support services to researchers in Texas and across the USA. The mission of TACC is to enable discoveries that advance science and society through the application of advanced computing technologies. Specializing in high performance computing, scientific visualization, data analysis & storage systems, software, research & development and portal interfaces, TACC deploys and operates advanced computational infrastructure to enable computational research activities of faculty, staff, and students of UT Austin. TACC also provides consulting, technical documentation, and training to support researchers who use these resources. TACC staff members conduct research and development in applications and algorithms, computing systems design/architecture, and programming tools and environments.

    Founded in 2001, TACC is one of the centers of computational excellence in the United States. Through the National Science Foundation Extreme Science and Engineering Discovery Environment project, TACC’s resources and services are made available to the national academic research community. TACC is located on The University of Texas-Austin’s J. J. Pickle Research Campus.

    TACC collaborators include researchers in other University of Texas-Austin departments and centers, at Texas universities in the High Performance Computing Across Texas Consortium, and at other U.S. universities and government laboratories.

    TACC Maverick HP NVIDIA supercomputer

    TACC Lonestar Cray XC40 supercomputer

    Dell Poweredge U Texas Austin Stampede Supercomputer. Texas Advanced Computer Center 9.6 PF

    TACC HPE Apollo 8000 Hikari supercomputer

    TACC Ranch long-term mass data storage system

    TACC DELL EMC Stampede2 supercomputer


    Stampede2 Arrives!

    TACC Frontera Dell EMC supercomputer fastest at any university

    University Texas at Austin

    U Texas Austin campus

    The University of Texas-Austin is a public research university in Austin, Texas and the flagship institution of the University of Texas System. Founded in 1883, the University of Texas was inducted into the Association of American Universities in 1929, becoming only the third university in the American South to be elected. The institution has the nation’s seventh-largest single-campus enrollment, with over 50,000 undergraduate and graduate students and over 24,000 faculty and staff.

    A Public Ivy, it is a major center for academic research. The university houses seven museums and seventeen libraries, including the LBJ Presidential Library and the Blanton Museum of Art, and operates various auxiliary research facilities, such as the J. J. Pickle Research Campus and the McDonald Observatory. As of November 2020, 13 Nobel Prize winners, four Pulitzer Prize winners, two Turing Award winners, two Fields medalists, two Wolf Prize winners, and two Abel prize winners have been affiliated with the school as alumni, faculty members or researchers. The university has also been affiliated with three Primetime Emmy Award winners, and has produced a total of 143 Olympic medalists.

    Student-athletes compete as the Texas Longhorns and are members of the Big 12 Conference. Its Longhorn Network is the only sports network featuring the college sports of a single university. The Longhorns have won four NCAA Division I National Football Championships, six NCAA Division I National Baseball Championships, thirteen NCAA Division I National Men’s Swimming and Diving Championships, and has claimed more titles in men’s and women’s sports than any other school in the Big 12 since the league was founded in 1996.

    Establishment

    The first mention of a public university in Texas can be traced to the 1827 constitution for the Mexican state of Coahuila y Tejas. Although Title 6, Article 217 of the Constitution promised to establish public education in the arts and sciences, no action was taken by the Mexican government. After Texas obtained its independence from Mexico in 1836, the Texas Congress adopted the Constitution of the Republic, which, under Section 5 of its General Provisions, stated “It shall be the duty of Congress, as soon as circumstances will permit, to provide, by law, a general system of education.”

    On April 18, 1838, “An Act to Establish the University of Texas” was referred to a special committee of the Texas Congress, but was not reported back for further action. On January 26, 1839, the Texas Congress agreed to set aside fifty leagues of land—approximately 288,000 acres (117,000 ha)—towards the establishment of a publicly funded university. In addition, 40 acres (16 ha) in the new capital of Austin were reserved and designated “College Hill”. (The term “Forty Acres” is colloquially used to refer to the University as a whole. The original 40 acres is the area from Guadalupe to Speedway and 21st Street to 24th Street.)

    In 1845, Texas was annexed into the United States. The state’s Constitution of 1845 failed to mention higher education. On February 11, 1858, the Seventh Texas Legislature approved O.B. 102, an act to establish the University of Texas, which set aside $100,000 in United States bonds toward construction of the state’s first publicly funded university (the $100,000 was an allocation from the $10 million the state received pursuant to the Compromise of 1850 and Texas’s relinquishing claims to lands outside its present boundaries). The legislature also designated land reserved for the encouragement of railroad construction toward the university’s endowment. On January 31, 1860, the state legislature, wanting to avoid raising taxes, passed an act authorizing the money set aside for the University of Texas to be used for frontier defense in west Texas to protect settlers from Indian attacks.

    Texas’s secession from the Union and the American Civil War delayed repayment of the borrowed monies. At the end of the Civil War in 1865, The University of Texas’s endowment was just over $16,000 in warrants and nothing substantive had been done to organize the university’s operations. This effort to establish a University was again mandated by Article 7, Section 10 of the Texas Constitution of 1876 which directed the legislature to “establish, organize and provide for the maintenance, support and direction of a university of the first class, to be located by a vote of the people of this State, and styled “The University of Texas”.

    Additionally, Article 7, Section 11 of the 1876 Constitution established the Permanent University Fund, a sovereign wealth fund managed by the Board of Regents of the University of Texas and dedicated to the maintenance of the university. Because some state legislators perceived an extravagance in the construction of academic buildings of other universities, Article 7, Section 14 of the Constitution expressly prohibited the legislature from using the state’s general revenue to fund construction of university buildings. Funds for constructing university buildings had to come from the university’s endowment or from private gifts to the university, but the university’s operating expenses could come from the state’s general revenues.

    The 1876 Constitution also revoked the endowment of the railroad lands of the Act of 1858, but dedicated 1,000,000 acres (400,000 ha) of land, along with other property appropriated for the university, to the Permanent University Fund. This was greatly to the detriment of the university as the lands the Constitution of 1876 granted the university represented less than 5% of the value of the lands granted to the university under the Act of 1858 (the lands close to the railroads were quite valuable, while the lands granted the university were in far west Texas, distant from sources of transportation and water). The more valuable lands reverted to the fund to support general education in the state (the Special School Fund).

    On April 10, 1883, the legislature supplemented the Permanent University Fund with another 1,000,000 acres (400,000 ha) of land in west Texas granted to the Texas and Pacific Railroad but returned to the state as seemingly too worthless to even survey. The legislature additionally appropriated $256,272.57 to repay the funds taken from the university in 1860 to pay for frontier defense and for transfers to the state’s General Fund in 1861 and 1862. The 1883 grant of land increased the land in the Permanent University Fund to almost 2.2 million acres. Under the Act of 1858, the university was entitled to just over 1,000 acres (400 ha) of land for every mile of railroad built in the state. Had the 1876 Constitution not revoked the original 1858 grant of land, by 1883, the university lands would have totaled 3.2 million acres, so the 1883 grant was to restore lands taken from the university by the 1876 Constitution, not an act of munificence.

    On March 30, 1881, the legislature set forth the university’s structure and organization and called for an election to establish its location. By popular election on September 6, 1881, Austin (with 30,913 votes) was chosen as the site. Galveston, having come in second in the election (with 20,741 votes), was designated the location of the medical department (Houston was third with 12,586 votes). On November 17, 1882, on the original “College Hill,” an official ceremony commemorated the laying of the cornerstone of the Old Main building. University President Ashbel Smith, presiding over the ceremony, prophetically proclaimed “Texas holds embedded in its earth rocks and minerals which now lie idle because unknown, resources of incalculable industrial utility, of wealth and power. Smite the earth, smite the rocks with the rod of knowledge and fountains of unstinted wealth will gush forth.” The University of Texas officially opened its doors on September 15, 1883.

    Expansion and growth

    In 1890, George Washington Brackenridge donated $18,000 for the construction of a three-story brick mess hall known as Brackenridge Hall (affectionately known as “B.Hall”), one of the university’s most storied buildings and one that played an important place in university life until its demolition in 1952.

    The old Victorian-Gothic Main Building served as the central point of the campus’s 40-acre (16 ha) site, and was used for nearly all purposes. But by the 1930s, discussions arose about the need for new library space, and the Main Building was razed in 1934 over the objections of many students and faculty. The modern-day tower and Main Building were constructed in its place.

    In 1910, George Washington Brackenridge again displayed his philanthropy, this time donating 500 acres (200 ha) on the Colorado River to the university. A vote by the regents to move the campus to the donated land was met with outrage, and the land has only been used for auxiliary purposes such as graduate student housing. Part of the tract was sold in the late-1990s for luxury housing, and there are controversial proposals to sell the remainder of the tract. The Brackenridge Field Laboratory was established on 82 acres (33 ha) of the land in 1967.

    In 1916, Gov. James E. Ferguson became involved in a serious quarrel with the University of Texas. The controversy grew out of the board of regents’ refusal to remove certain faculty members whom the governor found objectionable. When Ferguson found he could not have his way, he vetoed practically the entire appropriation for the university. Without sufficient funding, the university would have been forced to close its doors. In the middle of the controversy, Ferguson’s critics brought to light a number of irregularities on the part of the governor. Eventually, the Texas House of Representatives prepared 21 charges against Ferguson, and the Senate convicted him on 10 of them, including misapplication of public funds and receiving $156,000 from an unnamed source. The Texas Senate removed Ferguson as governor and declared him ineligible to hold office.

    In 1921, the legislature appropriated $1.35 million for the purchase of land next to the main campus. However, expansion was hampered by the restriction against using state revenues to fund construction of university buildings as set forth in Article 7, Section 14 of the Constitution. With the completion of Santa Rita No. 1 well and the discovery of oil on university-owned lands in 1923, the university added significantly to its Permanent University Fund. The additional income from Permanent University Fund investments allowed for bond issues in 1931 and 1947, which allowed the legislature to address funding for the university along with the Agricultural and Mechanical College (now known as Texas A&M University). With sufficient funds to finance construction on both campuses, on April 8, 1931, the Forty Second Legislature passed H.B. 368. which dedicated the Agricultural and Mechanical College a 1/3 interest in the Available University Fund, the annual income from Permanent University Fund investments.

    The University of Texas was inducted into The Association of American Universities in 1929. During World War II, the University of Texas was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission.

    In 1950, following Sweatt v. Painter, the University of Texas was the first major university in the South to accept an African-American student. John S. Chase went on to become the first licensed African-American architect in Texas.

    In the fall of 1956, the first black students entered the university’s undergraduate class. Black students were permitted to live in campus dorms, but were barred from campus cafeterias. The University of Texas integrated its facilities and desegregated its dorms in 1965. UT, which had had an open admissions policy, adopted standardized testing for admissions in the mid-1950s at least in part as a conscious strategy to minimize the number of Black undergraduates, given that they were no longer able to simply bar their entry after the Brown decision.

    Following growth in enrollment after World War II, the university unveiled an ambitious master plan in 1960 designed for “10 years of growth” that was intended to “boost the University of Texas into the ranks of the top state universities in the nation.” In 1965, the Texas Legislature granted the university Board of Regents to use eminent domain to purchase additional properties surrounding the original 40 acres (160,000 m^2). The university began buying parcels of land to the north, south, and east of the existing campus, particularly in the Blackland neighborhood to the east and the Brackenridge tract to the southeast, in hopes of using the land to relocate the university’s intramural fields, baseball field, tennis courts, and parking lots.

    On March 6, 1967, the Sixtieth Texas Legislature changed the university’s official name from “The University of Texas” to “The University of Texas at Austin” to reflect the growth of the University of Texas System.

    Recent history

    The first presidential library on a university campus was dedicated on May 22, 1971, with former President Johnson, Lady Bird Johnson and then-President Richard Nixon in attendance. Constructed on the eastern side of the main campus, the Lyndon Baines Johnson Library and Museum is one of 13 presidential libraries administered by the National Archives and Records Administration.

    A statue of Martin Luther King Jr. was unveiled on campus in 1999 and subsequently vandalized. By 2004, John Butler, a professor at the McCombs School of Business suggested moving it to Morehouse College, a historically black college, “a place where he is loved”.

    The University of Texas at Austin has experienced a wave of new construction recently with several significant buildings. On April 30, 2006, the school opened the Blanton Museum of Art. In August 2008, the AT&T Executive Education and Conference Center opened, with the hotel and conference center forming part of a new gateway to the university. Also in 2008, Darrell K Royal-Texas Memorial Stadium was expanded to a seating capacity of 100,119, making it the largest stadium (by capacity) in the state of Texas at the time.

    On January 19, 2011, the university announced the creation of a 24-hour television network in partnership with ESPN, dubbed the Longhorn Network. ESPN agreed to pay a $300 million guaranteed rights fee over 20 years to the university and to IMG College, the school’s multimedia rights partner. The network covers the university’s intercollegiate athletics, music, cultural arts, and academics programs. The channel first aired in September 2011.

     
  • richardmitnick 10:23 am on May 8, 2023 Permalink | Reply
    Tags: "Study - New catalyst could increase the value of captured carbon by transforming it into acetic acid", , Catalysis, , , , For every kilogram of acetic acid produced from methanol the process releases 1.6 kg of CO2., ,   

    From The Faculty of Applied Science & Engineering At The University of Toronto (CA): “Study – New catalyst could increase the value of captured carbon by transforming it into acetic acid” 

    From The Faculty of Applied Science & Engineering

    At

    The University of Toronto (CA)

    5.5.23
    Tyler Irving

    1
    Huazhong University of Science and Technology researchers gather around an electrolyzer to test a new catalyst that can convert CO from captured carbon into acetic acid (Photo by Jiayang Song)

    An international team of collaborators – including researchers from the University of Toronto and Huazhong University of Science and Technology – has created a catalyst that efficiently transforms carbon monoxide derived from captured carbon into acetic acid.

    By unlocking a new path to manufacture this key industrial chemical, which has a global market size of more than US$10 billion per year, the innovation could spur new investments into carbon capture and storage.

    “Carbon capture is feasible today from a technical point of view, but not yet from an economic point of view,” says Professor Ted Sargent, who recently joined the department of chemistry and the department of electrical and computer engineering at Northwestern University but maintains a lab at U of T’s Faculty of Applied Science & Engineering.

    “By using electrochemistry to convert captured carbon into products with established markets, we provide new pathways to improving these economics, as well as a more sustainable source for the industrial chemicals that we still need.”

    2
    A sample of the new prototype catalyst, which measures 2 cm by 2 cm (Photo by Jian Jin)

    Sargent and his collaborators have a track record of using electrolyzers – devices in which electricity drives a desired chemical reaction forward – to convert captured carbon into key industrial chemicals, including ethylene and propylene.

    In a paper published in Nature [below], they have now added acetic acid to the list.

    Though acetic acid may be most familiar as the key component in household vinegar, Josh Wicks, a recent PhD graduate from the Edward S. Rogers Sr. department of electrical and computer engineering and one of the paper’s four co-lead authors, says that this use accounts for only a small proportion of its global market.

    “The acetic acid in vinegar often needs to come from biological sources, via fermentation, because it’s consumed by humans,” Wicks says.

    “But about 90 per cent of the acetic acid market is for use as a feedstock in the manufacture of paints, coatings, adhesives and other products. Production at this scale is primarily derived from methanol, which in turn is derived from fossil fuels.”

    Wicks and the team consulted with life cycle assessment databases to show that for every kilogram of acetic acid produced from methanol, the process releases 1.6 kg of CO2.

    Their alternative method takes place via a two-step process: captured gaseous CO2 is first passed through an electrolyzer, where it reacts with water and electrons to form carbon monoxide (CO). Gaseous CO is then passed through a second electrolyzer, where another catalyst transforms it into various molecules containing two or more carbon atoms.

    “A major challenge that we face is selectivity,” says Wicks. “Most of the catalysts used for this second step facilitate multiple simultaneous reactions, which leads to a mix of different two-carbon products that can be hard to separate and purify. What we tried to do here was set up conditions that favour one product above all others.”

    The team carried out detailed atomistic modelling to predict how changing the composition of the catalyst would influence which products were formed. They also looked at the impact of other factors, such as the pressure at which the reaction takes place.

    Their analysis showed that using a much lower proportion of copper (approximately one per cent) compared with previous catalysts would favour the production of acetic acid. It also showed that elevating the pressure to 10 atmospheres would be beneficial.

    “Using room temperature and one atmosphere of pressure is a major advantage of electrochemistry compared to industrial thermochemical processes. However, we found that by increasing the pressure just a little bit in combination with electrochemistry – 10 atmospheres isn’t a big step compared to some industrial processes, which can be in the 60-100 atmospheres range – we could achieve record-breaking selectivity.

    “For example, catalysts targeting ethylene typically max out around 70 per cent to 80 per cent, so we’re significantly higher than that.”

    The new catalyst also appears to be relatively stable. While the Faradaic efficiency of some catalysts tends to degrade over time, the team showed that it remained at a high level of 85 per cent even after 820 hours of operation.

    Wicks hopes that the elements that led to the team’s success – including a novel target product, a slightly increased reaction pressure and a lower proportion of copper in the catalyst – inspire other teams to think outside the box.

    “Some of these approaches go against the conventional wisdom in this field, but we showed that they can work really well,” he says.

    “At some point, we’re going to have to decarbonize all the elements of chemical industry, so the more different pathways we have to useful products – whether it’s ethanol, propylene or acetic acid – the better.”

    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Faculty of Applied Science and Engineering is an academic division of the University of Toronto devoted to study and research in engineering. Founded in 1873 as the School of Practical Science, it is still known today by the longtime nickname of Skule. The faculty is based primarily across 16 buildings on the southern side of the university campus in Downtown Toronto, in addition to operating the Institute for Aerospace Studies facility. The faculty administers undergraduate, master’s and doctoral degree programs, as well as a dual-degree program with the Rotman School of Management.

    Departments

    Department of Chemical Engineering & Applied Chemistry (Chem)
    Department of Civil and Mineral Engineering (Civ/Min)
    The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE)
    Department of Materials Science & Engineering (MSE)
    Department of Mechanical & Industrial Engineering (MIE)

    Divisions

    Division of Engineering Science (EngSci)
    Division of Environmental Engineering & Energy Systems (DEEES)

    Specialized institutes

    University of Toronto Institute for Aerospace Studies (UTIAS)
    Institute of Biomedical Engineering (BME)

    Affiliated research institutes and centres

    BioZone
    Centre for Advanced Coating Technologies (CACT)
    Centre for Advanced Diffusion-Wave Technologies (CADIFT)
    Centre for Advanced Nanotechnology Centre for Global Engineering (CGEN)
    Centre for Maintenance Optimization & Reliability Engineering (C-MORE)
    Centre for Management of Technology & Entrepreneurship (CMTE)
    Centre for Research in Healthcare Engineering (CRHE)
    Centre for the Resilience of Critical Infrastructure (RCI)
    Centre for Technology & Social Development Emerging Communications Technology Institute (ECTI)
    Identity, Privacy & Security Institute (IPSI)
    Institute for Leadership Education in Engineering (ILead)
    Institute for Multidisciplinary Design & Innovation (UT-IMDI)
    Institute for Optical Sciences Institute for Robotics & Mechatronics (IRM)
    Institute for Sustainable Energy (ISE)
    Intelligent Transportation Systems (ITS) Centre & Test Bed
    Lassonde Institute of Mining
    Pulp & Paper Centre
    Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR)
    Terrence Donnelly Centre for Cellular & Biomolecular Research
    Ontario Centre for the Characterization of Advanced Materials (OCCAM)

    The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities outside the United States, the other being McGill(CA).

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.

    Research

    Since 1926 the University of Toronto has been a member of the Association of American Universities a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

     
  • richardmitnick 4:15 pm on May 2, 2023 Permalink | Reply
    Tags: "Self-folding origami machines powered by chemical reaction", , A Cornell-led collaboration harnessed chemical reactions to make microscale origami machines self-fold., , Catalysis, , , , If one looks for direct chemical to mechanical transductions there are very few options.,   

    From The College of Engineering At Cornell University Via “The Chronicle”: “Self-folding origami machines powered by chemical reaction” 

    2

    From The College of Engineering

    At

    Cornell University

    Via

    “The Chronicle”

    5.2.23
    David Nutt
    dn234@cornell.edu

    1
    An SEM image shows an origami tetrahedra microstructure that self-folded after it was exposed to hydrogen. Provided.

    A Cornell-led collaboration harnessed chemical reactions to make microscale origami machines self-fold – freeing them from the liquids in which they usually function, so they can operate in dry environments and at room temperature.

    The approach could one day lead to the creation of a new fleet of tiny autonomous devices that can rapidly respond to their chemical environment.

    The group’s paper is published May 1 in PNAS [below]. The paper’s co-lead authors are Nanqi Bao, Ph.D. ’22, and former postdoctoral researcher Qingkun Liu, Ph.D. ’22.

    The project was led by senior author Nicholas Abbott, a Tisch University Professor in the Robert F. Smith School of Chemical and Biomolecular Engineering in Cornell Engineering, along with Itai Cohen, professor of physics, and Paul McEuen, the John A. Newman Professor of Physical Science, both in the College of Arts and Sciences; and David Muller, the Samuel B. Eckert Professor of Engineering in Cornell Engineering.

    “There are quite good technologies for electrical to mechanical energy transduction, such as the electric motor, and the McEuen and Cohen groups have shown a strategy for doing that on the microscale, with their robots,” Abbott said. “But if you look for direct chemical to mechanical transductions, actually there are very few options.”

    Prior efforts depended on chemical reactions that could only occur in extreme conditions, such as at high temperatures of several 100 degrees Celsius, and the reactions were often tediously slow – sometimes as long as 10 minutes – making the approach impractical for everyday technological applications.

    However, Abbott’s group found a loophole of sorts while reviewing data from a catalysis experiment: a small section of the chemical reaction pathway contained both slow and fast steps.

    “If you look at the response of the chemical actuator, it’s not that it goes from one state directly to the other state. It actually goes through an excursion into a bent state, a curvature, which is more extreme than either of the two end states,” Abbott said. “If you understand the elementary reaction steps in a catalytic pathway, you can go in and sort of surgically extract out the rapid steps. You can operate your chemical actuator around those rapid steps, and just ignore the rest of it.”

    The researchers needed the right material platform to leverage that rapid kinetic moment, so they turned to McEuen and Cohen, who had worked with Muller to develop ultrathin platinum sheets capped with titanium.

    The group also collaborated with theorists, led by professor Manos Mavrikakis at the University of Wisconsin-Madison, who used electronic structure calculations to dissect the chemical reaction that occurs when hydrogen – adsorbed to the material – is exposed to oxygen.

    The researchers were then able to exploit the crucial moment that the oxygen quickly strips the hydrogen, causing the atomically thin material to deform and bend, like a hinge.

    The system actuates at 600 milliseconds per cycle and can operate at 20 degrees Celsius – i.e., room temperature – in dry environments.

    “The result is quite generalizable,” Abbott said. “There are a lot of catalytic reactions which have been developed based on all sorts of species. So carbon monoxide, nitrogen oxides, ammonia: they’re all candidates to use as fuels for chemically driven actuators.”

    The team anticipates applying the technique to other catalytic metals, such as palladium and palladium gold alloys. Eventually this work could lead to autonomous material systems in which the controlling circuitry and onboard computation are handled by the material’s response – for example, an autonomous chemical system that regulates flows based on chemical composition.

    “We are really excited because this work paves the way to microscale origami machines that work in gaseous environments,” Cohen said.

    Co-authors include postdoctoral researcher Michael Reynolds, M.S. ‘17, Ph.D. ‘21; doctoral student Wei Wang; Michael Cao ’14; and researchers at the University of Wisconsin-Madison.

    The research was supported by the Cornell Center for Materials Research, which is supported by the National Science Foundation’s MRSEC program, the Army Research Office, the NSF, the Air Force Office of Scientific Research and the Kavli Institute at Cornell for Nanoscale Science.

    6
    Kavli Institute at Cornell for Nanoscale Science

    The researchers made use of the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the NSF; and National Energy Research Scientific Computing Center (NERSC) resources, which is supported by the U.S. Department of Energy’s Office of Science.

    The project is part of the Nanoscale Science and Microsystems Engineering (NEXT Nano) program, which is designed to push nanoscale science and microsystems engineering to the next level of design, function and integration.

    5

    PNAS
    Abstract:
    Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; Ptotal = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.
    2

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Cornell University College of Engineering is a division of Cornell University that was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. It is one of four private undergraduate colleges at Cornell that are not statutory colleges.

    It currently grants bachelors, masters, and doctoral degrees in a variety of engineering and applied science fields, and is the third largest undergraduate college at Cornell by student enrollment. The college offers over 450 engineering courses, and has an annual research budget exceeding US$112 million.

    The College of Engineering was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. The program was housed in Sibley Hall on what has since become the Arts Quad, both of which are named for Hiram Sibley, the original benefactor whose contributions were used to establish the program. The college took its current name in 1919 when the Sibley College merged with the College of Civil Engineering. It was housed in Sibley, Lincoln, Franklin, Rand, and Morse Halls. In the 1950s the college moved to the southern end of Cornell’s campus.

    The college is known for a number of firsts. In 1889, the college took over electrical engineering from the Department of Physics, establishing the first department in the United States in this field. The college awarded the nation’s first doctorates in both electrical engineering and industrial engineering. The Department of Computer Science, established in 1965 jointly under the College of Engineering and the College of Arts and Sciences, is also one of the oldest in the country.

    For many years, the college offered a five-year undergraduate degree program. However, in the 1960s, the course was shortened to four years for a B.S. degree with an optional fifth year leading to a masters of engineering degree. From the 1950s to the 1970s, Cornell offered a Master of Nuclear Engineering program, with graduates gaining employment in the nuclear industry. However, after the 1979 accident at Three Mile Island, employment opportunities in that field dimmed and the program was dropped. Cornell continued to operate its on-campus nuclear reactor as a research facility following the close of the program. For most of Cornell’s history, Geology was taught in the College of Arts and Sciences. However, in the 1970s, the department was shifted to the engineering college and Snee Hall was built to house the program. After World War II, the Graduate School of Aerospace Engineering was founded as a separate academic unit, but later merged into the engineering college.

    Cornell Engineering is home to many teams that compete in student design competitions and other engineering competitions. Presently, there are teams that compete in the Baja SAE, Automotive X-Prize (see Cornell 100+ MPG Team), UNP Satellite Program, DARPA Grand Challenge, AUVSI Unmanned Aerial Systems and Underwater Vehicle Competition, Formula SAE, RoboCup, Solar Decathlon, Genetically Engineered Machines, and others.

    Cornell’s College of Engineering is currently ranked 12th nationally by U.S. News and World Report, making it ranked 1st among engineering schools/programs in the Ivy League. The engineering physics program at Cornell was ranked as being No. 1 by U.S. News and World Report in 2008. Cornell’s operations research and industrial engineering program ranked fourth in nation, along with the master’s program in financial engineering. Cornell’s computer science program ranks among the top five in the world, and it ranks fourth in the quality of graduate education.

    The college is a leader in nanotechnology. In a survey done by a nanotechnology magazine Cornell University was ranked as being the best at nanotechnology commercialization, 2nd best in terms of nanotechnology facilities, the 4th best at nanotechnology research and the 10th best at nanotechnology industrial outreach.

    Departments and schools

    With about 3,000 undergraduates and 1,300 graduate students, the college is the third-largest undergraduate college at Cornell by student enrollment. It is divided into twelve departments and schools:

    School of Applied and Engineering Physics
    Department of Biological and Environmental Engineering
    Meinig School of Biomedical Engineering
    Smith School of Chemical and Biomolecular Engineering
    School of Civil & Environmental Engineering
    Department of Computer Science
    Department of Earth & Atmospheric Sciences
    School of Electrical and Computer Engineering
    Department of Materials Science and Engineering
    Sibley School of Mechanical and Aerospace Engineering
    School of Operations Research and Information Engineering
    Department of Theoretical and Applied Mechanics
    Department of Systems Engineering

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institutein New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land-grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States.
    Cornell is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration’s JPL-Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 8:35 pm on April 10, 2023 Permalink | Reply
    Tags: "New atomic-scale understanding of catalysis could unlock massive energy savings", 90% of the products we encounter in our lives are produced-at least partially-via catalysis., , , Catalysis, , , Could the energy to break bonds in reactants be of similar amounts to the energy needed to disrupt bonds within the catalyst? According to Mavrikakis’s modeling the answer is yes., It is currently impossible to directly observe catalytic reactions at the extreme temperatures and pressures often involved., Manos Mavrikakis and postdoctoral researchers Lang Xu and Konstantinos G. Papanikolaou along with graduate student Lisa Je carried out the research., Mavrikakis says the new framework is challenging the foundation of how researchers understand catalysis and how it takes place., , ,   

    From The College of Engineering At The University of Wisconsin-Madison : “New atomic-scale understanding of catalysis could unlock massive energy savings” 

    From The College of Engineering

    At

    The University of Wisconsin-Madison

    4.6.23
    Jason Daley
    jgdaley@wisc.edu

    1
    Catalyst materials are critical for refining petroleum products and for manufacturing pharmaceuticals, plastics, food additives, fertilizers, green fuels, industrial chemicals and much more. iStock photo.

    In an advance they consider a breakthrough in computational chemistry research, University of Wisconsin–Madison chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes — potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.

    Catalyst materials accelerate chemical reactions without undergoing changes themselves. They are critical for refining petroleum products and for manufacturing pharmaceuticals, plastics, food additives, fertilizers, green fuels, industrial chemicals and much more.

    Scientists and engineers have spent decades fine-tuning catalytic reactions — yet because it is currently impossible to directly observe those reactions at the extreme temperatures and pressures often involved in industrial-scale catalysis, they haven’t known exactly what is taking place on the nano and atomic scales. This new research helps unravel that mystery with potentially major ramifications for industry.

    Just three catalytic reactions — steam-methane reforming to produce hydrogen, ammonia synthesis to produce fertilizer, and methanol synthesis — use close to 10% of the world’s energy.

    “If you decrease the temperatures at which you have to run these reactions by only a few degrees, there will be an enormous decrease in the energy demand that we face as humanity today,” says Manos Mavrikakis, a professor of chemical and biological engineering at UW–Madison who led the research.

    3
    Manos Mavrikakis.

    “By decreasing the energy needs to run all these processes, you are also decreasing their environmental footprint.”

    Mavrikakis and postdoctoral researchers Lang Xu and Konstantinos G. Papanikolaou along with graduate student Lisa Je published news of their advance in the April 7, 2023 issue of the journal Science [below].

    In their research, the UW–Madison engineers develop and use powerful modeling techniques to simulate catalytic reactions at the atomic scale. For this study, they looked at reactions involving transition metal catalysts in nanoparticle form, which include elements like platinum, palladium, rhodium, copper, nickel, and others important in industry and green energy.

    According to the current rigid-surface model of catalysis, the tightly packed atoms of transition metal catalysts provide a 2D surface that chemical reactants adhere to and participate in reactions. When enough pressure and heat or electricity is applied, the bonds between atoms in the chemical reactants break, allowing the fragments to recombine into new chemical products.

    “The prevailing assumption is that these metal atoms are strongly bonded to each other and simply provide ‘landing spots’ for reactants. What everybody has assumed is that metal-metal bonds remain intact during the reactions they catalyze,” says Mavrikakis. “So here, for the first time, we asked the question, ‘Could the energy to break bonds in reactants be of similar amounts to the energy needed to disrupt bonds within the catalyst?’”

    According to Mavrikakis’s modeling, the answer is yes. The energy provided for many catalytic processes to take place is enough to break bonds and allow single metal atoms (known as adatoms) to pop loose and start traveling on the surface of the catalyst. These adatoms combine into clusters, which serve as sites on the catalyst where chemical reactions can take place much easier than the original rigid surface of the catalyst.

    Using a set of special calculations, the team looked at industrially important interactions of eight transition metal catalysts and 18 reactants, identifying energy levels and temperatures likely to form such small metal clusters, as well as the number of atoms in each cluster, which can also dramatically affect reaction rates.

    Their experimental collaborators at the University of California-Berkeley, used atomically-resolved scanning tunneling microscopy to look at carbon monoxide adsorption on nickel (111), a stable, crystalline form of nickel useful in catalysis. Their experiments confirmed models that showed various defects in the structure of the catalyst can also influence how single metal atoms pop loose, as well as how reaction sites form.

    Mavrikakis says the new framework is challenging the foundation of how researchers understand catalysis and how it takes place. It may apply to other non-metal catalysts as well, which he will investigate in future work. It is also relevant to understanding other important phenomena, including corrosion and tribology, or the interaction of surfaces in motion.

    “We’re revisiting some very well-established assumptions in understanding how catalysts work and, more generally, how molecules interact with solids,” Mavrikakis says.

    Science

    Other authors include Barbara A.J. Lechner of the Technical University of Munich, and Gabor A. Somorjai and Miquel Salmeron of the DOE’s Lawrence Berkeley National Laboratory and the University of California-Berkeley.

    Part of the computational work was carried out using supercomputing resources at the Center for Nanoscale Materials, a DOE Office of Science User Facility located at the DOE’s Argonne National Laboratory.

    The team also used facilities at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The College of Engineering is a thriving, top-ranked college in Madison, Wisconsin—one of the most fantastic cities in the country. We think boldly and act confidently, not only as engineers, but as engaged citizens. As an engineering community, we value unique perspectives, we foster respect and inclusivity, and we work together to bring new ideas to life. Building on a heritage of impact, we develop the leaders, knowledge and technologies that improve lives now and create a better future. Underlying all of our efforts is the strength of one of the top research universities in the world.

    Our engineering disciplines reflect not only our history, but also a tremendous opportunity: Where others see obstacles, we see the potential for innovation and an ability to make a difference with solutions that matter.

    The University of Wisconsin–Madison is a public land-grant research university in Madison, Wisconsin. Founded when Wisconsin achieved statehood in 1848, UW–Madison is the official state university of Wisconsin and the flagship campus of the University of Wisconsin System. It was the first public university established in Wisconsin and remains the oldest and largest public university in the state. It became a land-grant institution in 1866. The 933-acre (378 ha) main campus, located on the shores of Lake Mendota, includes four National Historic Landmarks. The university also owns and operates the 1,200-acre (486 ha) University of Wisconsin–Madison Arboretum, located 4 miles (6.4 km) south of the main campus, which is also a National Historic Landmark.

    UW–Madison is organized into 20 schools and colleges, which enrolled 33,506 undergraduate, 9,772 graduate, 1,968 special, and 2,686 professional students in 2021. Its academic programs include 136 undergraduate majors, 148 master’s degree programs, and 120 doctoral programs. A major contributor to Wisconsin’s economy, the university is the largest employer in the state, with over 24,232 faculty and staff.

    Wisconsin is one of the twelve founding members of the Association of American Universities, a selective group of major research universities in North America. It is considered a Public Ivy, and is classified as an R1 University, meaning that it engages in a very high level of research activity. In 2018, it had research and development expenditures of $1.2 billion, the eighth-highest among universities in the U.S. As of March 2023, 20 Nobel laureates, 41 Pulitzer Prize winners, 2 Fields medalists and 1 Turing Award winner have been associated with UW–Madison as alumni, faculty, or researchers. Additionally, as of November 2018, the current CEOs of 14 Fortune 500 companies have attended UW–Madison, the most of any university in the United States.

    Among the scientific advances made at UW–Madison are the single-grain experiment, the discovery of vitamins A and B by Elmer McCollum and Marguerite Davis, the development of the anticoagulant medication warfarin by Karl Paul Link, the first chemical synthesis of a gene by Har Gobind Khorana, the discovery of the retroviral enzyme reverse transcriptase by Howard Temin, and the first synthesis of human embryonic stem cells by James Thomson. UW–Madison was also the home of both the prominent “Wisconsin School” of economics and of diplomatic history. UW–Madison professor Aldo Leopold played an important role in the development of modern environmental science and conservationism, while UW–Madison professor Gloria Ladson-Billings formulated the framework of culturally relevant pedagogy.

    The Wisconsin Badgers compete in 25 intercollegiate sports in the NCAA Division I Big Ten Conference and have won 31 national championships. Wisconsin students and alumni have won 50 Olympic medals (including 13 gold medals).

    Research, teaching, and service at the UW is influenced by a tradition known as “the Wisconsin Idea“, first articulated by UW–Madison President Charles Van Hise in 1904, when he declared “I shall never be content until the beneficent influence of the University reaches every home in the state.” The Wisconsin Idea holds that the boundaries of the university should be the boundaries of the state, and that the research conducted at UW–Madison should be applied to solve problems and improve health, quality of life, the environment, and agriculture for all citizens of the state. The Wisconsin Idea permeates the university’s work and helps forge close working relationships among university faculty and students, and the state’s industries and government. Based in Wisconsin’s populist history, the Wisconsin Idea continues to inspire the work of the faculty, staff, and students who aim to solve real-world problems by working together across disciplines and demographics.

    The University of Wisconsin–Madison, the flagship campus of the University of Wisconsin System, is a large, four-year research university comprising twenty associated colleges and schools. In addition to undergraduate and graduate divisions in agriculture and life sciences, business, education, engineering, human ecology, journalism and mass communication, letters and science, music, nursing, pharmacy, and social welfare, the university also maintains graduate and professional schools in environmental studies, law, library and information studies, medicine and public health (School of Medicine and Public Health), public affairs, and veterinary medicine.

    The four year, full-time undergraduate instructional program is classified by the Carnegie Foundation for the Advancement of Teaching as “arts and science plus professions” with a high graduate coexistence. The largest university college, the College of Letters and Science, enrolls approximately half of the undergraduate student body and is made up of 38 departments and five professional schools that instruct students and carry out research in a wide variety of fields, such as astronomy, economics, geography, history, linguistics, and zoology. The graduate instructional program is classified by Carnegie as “comprehensive with medical/veterinary.” In 2008, it granted the third largest number of doctorates in the nation.

    In the 2021 QS World University Rankings, UW–Madison was ranked 65th in the world. The 2021 Times Higher Education World University Rankings placed UW–Madison 58th worldwide, based primarily on surveys administered to students, faculty, and recruiters. For 2021, UW–Madison was ranked tied for 41st by U.S. News & World Report among global universities. UW–Madison was ranked 31st among world universities in 2021 by the Academic Ranking of World Universities, which assesses academic and research performance.

    UW–Madison’s undergraduate program was ranked tied for 38th among national universities by U.S. News & World Report for 2022 and tied for 10th among public colleges and universities. The same publication ranked UW’s graduate Wisconsin School of Business tied for 42nd. Other graduate schools ranked by USNWR for 2022 include the School of Medicine and Public Health, which was 33rd in research and 12th in primary care, the University of Wisconsin–Madison School of Education tied for fourth, the University of Wisconsin–Madison College of Engineering tied for 26th, the University of Wisconsin Law School tied for 29th, and the Robert M. La Follette School of Public Affairs tied for 25th.

    The Wall Street Journal/Times Higher Education College Rankings 2021 ranked UW–Madison 65th among 801 U.S. colleges and universities based upon 15 individual performance indicators. UW–Madison was ranked fourth in the nation by the Washington Monthly 2021 National University Rankings.

    In 2022, Money.com positioned the University of Wisconsin–Madison 17th out of 600 four-year colleges universities in their Best Colleges in America list.

    UW–Madison was a founding member of the Association of American Universities. In fiscal year 2018 the school received $1.206 billion in research and development (R&D) funding, placing it eighth in the U.S. among institutions of higher education. Its research programs were fourth in the number of patents issued in 2010.

    The University of Wisconsin–Madison is one of 33 sea grant colleges in the United States. These colleges are involved in scientific research, education, training, and extension projects geared toward the conservation and practical use of U.S. coasts, the Great Lakes and other marine areas.

    The university maintains almost 100 research centers and programs, ranging from agriculture to arts, from education to engineering. It has been considered a major academic center for embryonic stem cell research ever since UW–Madison professor James Thomson became the first scientist to isolate human embryonic stem cells. This has brought significant attention and respect for the university’s research programs from around the world. The university continues to be a leader in stem cell research, helped in part by the funding of the Wisconsin Alumni Research Foundation and promotion of WiCell.

    Its center for research on internal combustion engines, called the Engine Research Center, has a five-year collaboration agreement with General Motors. It has also been the recipient of multimillion-dollar funding from the federal government.

    In June 2013, it is reported that the United States National Institutes of Health would fund an $18.13 million study at the University of Wisconsin. The study will research lethal qualities of viruses such as Ebola, West Nile and influenza. The goal of the study is to help find new drugs to fight off the most lethal pathogens.

    In 2012, UW–Madison experiments on cats came under fire from People for the Ethical Treatment of Animals who claimed the animals were abused. In 2013, the NIH briefly suspended the research’s funding pending an agency investigation. The following year the university was fined more than $35,000 for several violations of the Animal Welfare Act. Bill Maher, James Cromwell and others spoke out against the experiments that ended in 2014. The university defended the research and the care the animals received claiming that PETA’s objections were merely a “stunt” by the organization.

     
  • richardmitnick 1:11 pm on April 7, 2023 Permalink | Reply
    Tags: "Redox": a combination of reduction and oxidation, "Scientists Use Peroxide to Peer into Metal Oxide Reactions", , (IR) spectroscopy, , Catalysis, , Corrosion Science, How peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, Studying this reaction in situ was important to the team since peroxides are very reactive and these changes happen fast., , Using advanced in-situ spectroscopy techniques scientists at Binghamton University and Brookhaven Lab gain new insights into catalytic oxidation.   

    From The DOE’s Brookhaven National Laboratory And From Binghampton University-SUNY: “Scientists Use Peroxide to Peer into Metal Oxide Reactions” 

    From The DOE’s Brookhaven National Laboratory

    And

    From Binghampton University-SUNY

    4.7.23
    Written by Denise Yazak
    Contact:
    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Using advanced in-situ spectroscopy techniques scientists at Binghamton University and Brookhaven Lab gain new insights into catalytic oxidation.

    1
    Lab Based Ambient Pressure X-ray Photoelectron Spectroscopy (XPS) Instrument at CFN.

    Researchers at Binghamton University led research partnering with the Center for Functional Nanomaterials (CFN) [below]—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions. They were able to observe these quick changes with two complimentary spectroscopy methods that have not been used in this way. The results of this work have been published in the journal PNAS [below].

    “Copper is one of the most studied and relevant surfaces, both in catalysis and in corrosion science,” explained Anibal Boscoboinik, materials scientist at CFN. “So many mechanical parts that are used in industry are made of copper, so trying to understand this element of the corrosion processes is very important.”

    “I’ve always liked looking at copper systems,” said Ashley Head also a materials scientist at CFN. “They have such interesting properties and reactions, some of which are really striking.”

    Gaining a better understanding of oxide catalysts gives researchers more control of the chemical reactions they produce, including solutions for clean energy. Copper, for example, can catalytically form and convert methanol into valuable fuels, so being able to control the amount of oxygen and number of electrons on copper is a key step to efficient chemical reactions.

    Peroxide as a Proxy

    Peroxides are chemical compounds that contain two oxygen atoms linked by shared electrons. The bond in peroxides is fairly weak, allowing other chemicals to alter its structure, which makes them very reactive. In this experiment, scientists were able to alter the redox steps of catalytic oxidation reactions on an oxidized copper surface (CuO) by identifying the makeup of peroxide species formed with different gases: ­O2 (oxygen), H2 (hydrogen), and CO (carbon monoxide).

    2
    Binding energy and location of peroxide (OO) formation on Copper Oxide (CuO)

    Redox is a combination of reduction and oxidation. In this process, the oxidizing agent gains an electron and the reducing agent loses an electron. When comparing these different peroxide species and how these steps played out, researchers found that a surface layer of peroxide significantly enhanced CuO reducibility in favor of H2 oxidation. They also found that, on the other hand, it acted as an inhibitor to suppress CuO reduction against CO (carbon monoxide) oxidation. They found that this opposite effect of the peroxide on the two oxidation reactions stems from the modification of the surface sites where the reaction takes place.

    By finding these bonding sites and learning how they promote or inhibit oxidation, scientists can use these gases to gain more control of how these reactions play out. In order to tune these reactions though, scientists had to get a clear look at what was happening.

    The Right Tools for the Job

    Studying this reaction in situ was important to the team, since peroxides are very reactive and these changes happen fast. Without the right tools or environment, it’s hard to catch such a limited moment on the surface.

    Peroxide species on copper surfaces were never observed using in-situ infrared (IR) spectroscopy in the past. With this technique, researchers use infrared radiation to get a better understanding of a material’s chemical properties by looking at the way the radiation is absorbed or reflected under reaction conditions. In this experiment, scientists were able to differentiate “species” of peroxide, with very slight variations in the oxygen they were carrying, which would have otherwise been very hard to identify on a metal oxide surface.

    “I got really excited when I was looking up the infrared spectra of these peroxide species on a surface and seeing that there weren’t many publications. It was exciting that we could see these differences using a technique that’s not widely applied to these kind of species,” recalled Head.

    IR spectroscopy on its own wasn’t enough to be sure though, which is why the team also used another spectroscopy technique called ambient pressure X-ray Photoelectron Spectroscopy (XPS). XPS uses lower energy x-rays to kick electrons out of the sample. The energy of these electrons gives scientists clues about the chemical properties of atoms in the sample. Having both techniques available through the CFN User Program was key to making this research possible.

    “One of the things that we pride ourselves in is the instruments that we have and modified here,” said Boscoboinik. “Our instruments are connected, so users can move the sample in a controlled environment between these two techniques and study them in situ to get complementary information. In most other circumstances, a user would have to take the sample out to go to a different instrument, and that change of environment could alter its surface.”

    “A nice feature of CFN lies not only in its state-of-the-art facilities for science, but also the opportunities it provides to train young researchers,” said Guangwen Zhou professor at the Thomas J. Watson College of Engineering and Applied Science’s Department of Mechanical Engineering and the Materials Science program at Binghamton University. ”Each of the students involved have benefited from extensive, hands-on experience in the microscopy and spectroscopy tools available at CFN.”

    This work was accomplished with the contributions of four PhD students in Zhou’s group: Yaguang Zhu and Jianyu Wang, the first co-authors of this paper, and Shyam Patel and Chaoran Li. All of these students are early in their career, having just earned their PhDs in 2022.

    Future Findings

    The results of this study may apply to other types of reactions and other catalysts besides copper. These findings and the processes and techniques that led scientists there could find their ways into related research. Metal oxides are widely used as catalysts themselves or components in catalysts. Tuning peroxide formation on other oxides could be a way to block or enhance surface reactions during other catalytic processes.

    “I’m involved in some other projects related to copper and copper oxides, including transforming carbon dioxide to methanol to use as a fuel for clean energy,” said Head. “Looking at these peroxides on the same surface that I use has the potential to make an impact on other projects using copper and other metal oxides.”

    PNAS

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The State University of New York at Binghamton (Binghamton University or SUNY- Binghamton) is a public research university with campuses in Binghamton, Vestal, and Johnson City, New York. It is one of the four university centers in the State University of New York (SUNY) system.

    As of Fall 2020, 18,128 undergraduate and graduate students attend the university. The 4-year graduation rate is 72%.

    Since its establishment in 1946, the school has evolved from a small liberal arts college to a large research university. It is classified among “R1: Doctoral Universities – Very high research activity”.

    Binghamton’s athletic teams are the Bearcats and they compete in Division I of the National Collegiate Athletic Association (NCAA). The Bearcats are members of the America East Conference.

    Binghamton University was established in 1946 in Endicott, New York, as Triple Cities College to serve the needs of local veterans returning from World War II. Thomas J. Watson, a founding member of IBM in Broome County, viewed the Triple Cities region as an area of great potential. In the early 1940s he collaborated with local leaders to begin establishing Triple Cities College as a two-year junior college operating as a satellite of private Syracuse University. Watson also donated land that would become the school’s early home.

    Originally, Triple Cities College students finished their bachelor’s degrees at Syracuse. By the 1948–1949 academic year, the degrees could be completed entirely in Binghamton. In 1950, it split from Syracuse and became incorporated into the public State University of New York-SUNY system as Harpur College, named in honor of Robert Harpur, a colonial teacher and pioneer who settled in the Binghamton area. At that time, Harpur and Champlain College in Plattsburgh were the only two liberal arts schools in the New York state system. When Champlain closed in 1952 to make way for the Plattsburgh Air Force Base, the records and some students and faculty were transferred to Harpur College in Binghamton. Harpur also received 16,000 non-duplicate volumes and the complete contents of the Champlain College library.

    In 1955, Harpur began to plan its current location in Vestal, a town next to Binghamton. A site large enough to anticipate future growth was purchased, with the school’s move to its new 387-acre (1.57 km^2) campus being completed by 1961. Colonial Hall, Triple Cities College’s original building in Endicott, stands today as the village’s Visitor’s Center.

    In 1965, Harpur College was selected to join New York state schools at SUNY Stony Brook University, Albany, and Buffalo as one of the four new SUNY university centers. Redesignated the State University of New York at Binghamton, the school’s new name reflected its status as an advanced degree granting institution. In a nod to tradition, its undergraduate college of arts and sciences remained “Harpur College”. With more than 60% of undergraduate and graduate students enrolled in Harpur’s degree programs, it is the largest of Binghamton’s constituent schools. In 1967, the School of Advanced Technology was established, the precursor to the Thomas J. Watson School of Engineering and Applied Science, which was founded in 1983. In 2020, the school became the Thomas J. Watson College of Engineering and Applied Science.

    Since 1992, the school has made an effort to distinguish itself from the SUNY system, rebranding itself as “Binghamton University,” or “Binghamton University-SUNY”. Both names are accepted as first reference in news stories. While the school’s legal and official name, “The State University of New York at Binghamton”, still appears on official documents such as diplomas, the administration discourages using the full name unless absolutely necessary.

    Colleges and schools

    Binghamton is composed of the following colleges and schools:

    Harpur College of Arts and Sciences is the oldest and largest of Binghamton’s schools. It has more than 9,400 undergraduates and more than 1,100 graduate students in 26 departments and 14 interdisciplinary degree programs in the fine arts, humanities, natural and social sciences, and mathematics.
    The College of Community and Public Affairs offers an undergraduate major in human development as well as graduate programs in social work; public administration; student affairs administration; human rights; and teaching, learning and educational leadership. It was formed in July 2006, after a reorganization of its predecessor, the School of Education and Human Development, when it was split off along with the Graduate School of Education. In 2017, the Graduate School of Education merged back into the College of Community and Public Affairs as the Department of Teaching, Learning and Educational Leadership. The department continues to offer master’s of science and doctoral degrees.
    The Decker College of Nursing and Health Sciences was established in 1969. The school offers undergraduate, master’s and doctoral degrees in nursing. The school is accredited by the Commission of Collegiate Nursing Education (CCNE).
    The School of Management was established in 1970. It offers bachelor’s, master’s and doctoral degrees in management, finance, information science, marketing, accounting, and operations and business analytics. It is accredited by the American Assembly of Collegiate Schools of Business (AACSB).
    The Thomas J. Watson College of Engineering and Applied Science offers undergraduate and graduate degrees in mechanical engineering, electrical engineering, computer engineering, biomedical engineering, systems science and industrial engineering, materials science and engineering, and computer science. All of the school’s departments have been accredited by the Accreditation Board for Engineering and Technology.
    The Graduate School administers advanced-degree programs and awards degrees through the seven component colleges above. Graduate students will find almost 70 areas of study. Undergraduate and graduate students are taught and advised by a single faculty.

    Rankings and reputation

    Binghamton is ranked tied for 83rd among national universities, tied for 33rd among public schools, ranked as the best SUNY school, and tied for 877th among global universities for 2022 by U.S. News & World Report.
    In 2021, Forbes magazine rated Binghamton No. 77 out of the 600 best private and public colleges, universities and service academies in America.
    Money magazine ranked Binghamton 73rd in the country out of 739 schools evaluated for its 2020 Best Colleges for Your Money edition, and 48th in its list of the 50 best public schools in the U.S.
    The university is ranked 653rd in the world, 162nd in the nation in the 2021-22 Center for University World Rankings.
    Binghamton University is ranked the 18th best public college in the U.S. by The Business Journals in 2015.
    In 2016 Binghamton was ranked as the 10th best public college in the United States by Business Insider.
    In 2018, the university was ranked 401-500 by Times Higher Education World Ranking.
    In its inaugural college rankings, based upon “… the economic value of a university…,” The Economist ranked Binghamton University 74th overall in the nation.
    The university was called a Public Ivy by Howard and Matthew Greene in a book titled The Public Ivies: America’s Flagship Public Universities (2001). It was a runner-up for the original Public Ivy list in 1985.
    Binghamton was ranked 93rd in the 2020 National Universities category of the Washington Monthly college rankings in the U.S., based on its contribution to the public good, as measured by social mobility, research, and promoting public service.
    According to the 2014 BusinessWeek rankings, the undergraduate business school was ranked 57th among Public Schools in the nation. In 2010 it was ranked as having the second-best accounting program.
    Binghamton’s QS World University Rankings have decreased annually from 501 in 2008, to 601 in 2012 and 701+ in 2013 with higher numbers reflecting worse performance.

    Research

    The university is designated as an advanced research institution, with a division of research, an independent research foundation, several research centers including a New York State Center of Excellence, and partnerships with other institutions. Binghamton University was ranked 163rd nationally in research and development expenditures by the National Science Foundation. In fiscal year 2013, the university had research expenditures of $76 million.

    Division of Research

    The office of the vice president for research is in charge of the university’s Division of Research. The Office of Sponsored Programs supports the Binghamton University community in its efforts to seek and obtain external awards to support research, training, and other scholarly and creative activities. It provides support to faculty and staff in all aspects of proposal preparation, submission and grant administration. The Office of Research Compliance ensures the protection of human subjects, the welfare of animals, safe use of select agents pathogens and toxins, and to enhance the ethical conduct in research programs. The Office of Research Advancement facilitates the growth of research and scholarship, and helps build awareness of the work being done on campus. The Office of Entrepreneurship and Innovation Partnerships supports entrepreneurship, commercialization of technologies, start-ups and business incubation, and facilitates partnerships with the community and industry.

    SUNY Research Foundation

    The Research Foundation for the State University of New York is a private, nonprofit educational corporation that administers externally funded contracts and grants for and on behalf of SUNY. The foundation carries out its responsibilities pursuant to a 1977 agreement with the university. It is separate from the university and does not receive services provided to New York State agencies or state appropriation to support corporate functions. Sponsored program functions delegated to the campuses are conducted under the supervision of foundation operations managers. The Office of Sponsored Funds Administration, often referred to as “post-award administration,” is the fiscal and operational office for the foundation. It provides sponsored project personnel with comprehensive financial, project accounting, human resources, procurement, accounts payable and reporting services, as well as support for projects administered through the Research Foundation.

    Centers and institutes

    33 organized research centers and institutes for advanced studies facilitate interdisciplinary and specialized research at the university. The university is home to the New York State Center of Excellence in Small Scale Systems Integration and Packaging (S3IP). S3IP conducts research in areas such as microelectronics manufacturing and packaging, data center energy management, and solar energy. Other research centers and institutes include the Center for Development and Behavioural Neuroscience (CDBN), Center for Interdisciplinary Studies in Philosophy, Interpretation, and Culture (CPIC), Institute for Materials Research (IMR), and the Fernand Braudel Center for the Study of Economies, Historical Systems, and Civilizations (FBC).[81]
    Partnerships

    The university’s Office of Entrepreneurship and Innovation Partnerships can connect people to resources available through programs such as STARTUP NY, the Small Business Development Center, the region’s Trade Adjustment Assistance Center, campus Start-Up Suites and the Koffman Southern Tier Incubator.

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC). Credit: CERN.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map. Credit: CERN.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .

     
  • richardmitnick 1:25 pm on April 4, 2023 Permalink | Reply
    Tags: "The Flightpath from a Groundbreaking Catalyst to Jets that Soar on Renewable Fuel from Waste", A clean and sustainable alcohol-to-jet-fuel catalytic process which holds promise for helping the nation achieve net-zero emissions by 2050., , Catalysis, , , , Upgrading ethanol to fuel approved for commercial aviation.   

    From The DOE’s Pacific Northwest National Laboratory: “The Flightpath from a Groundbreaking Catalyst to Jets that Soar on Renewable Fuel from Waste” 

    From The DOE’s Pacific Northwest National Laboratory

    4.3.23
    Jodi Hamm

    1
    PNNL’s Rich Hallen holds a sample of jet fuel upgraded from ethanol made from industrial waste gases. (Photo by Andrea Starr | Pacific Northwest National Laboratory)

    In March, a team of researchers from Pacific Northwest National Laboratory (PNNL) and LanzaTech was awarded the 2023 American Chemical Society’s (ACS) Award for Affordable Clean Chemistry at the ACS Spring meeting for development of a clean and sustainable alcohol-to-jet-fuel catalytic process, which holds promise for helping the nation achieve net-zero emissions by 2050.

    The ACS award recognizes outstanding scientific discoveries that lay the foundation for environmentally friendly products or manufacturing processes.

    This discovery was made possible due to industry partner LanzaTech’s carbon recycling process that first converts gas to ethanol, then undergoes an innovative catalytic process developed at PNNL to upgrade the ethanol to fuel approved for commercial aviation.

    “It’s amazing that you can take these carbon emissions from a steel mill plant and turn it into a fuel—instead of emitting the gases into the atmosphere. It almost seems like magic, but it’s not. It’s good scientific principles and thinking about the thermodynamics of the process to really do something fundamentally different that hadn’t been done before,” said John Holladay a former PNNL senior leader who joined LanzaTech in 2021.

    Journey toward liftoff begins with basic research

    PNNL’s sustainable jet fuel journey was decades in the making. Early fundamental research, sponsored by DOE’s Office of Basic Energy Sciences (BES), laid the general groundwork for understanding the chemistry functions.

    The Laboratory began building its catalysis capability in the 1980s through basic research projects. “I was a young scientist at this time, and this important research was a vital continuation of my education,” recalled chemist Rich Hallen, who today is a scientist emeritus at PNNL. Hallen would rely on that foundational knowledge throughout his career on a variety of catalysis-related research projects, including the renewable aviation fuel discovery.

    In the 2000s, PNNL established the Institute for Interfacial Catalysis, which grew to become the largest non-industrial catalysis research and development effort in the U.S. In 2011, it was renamed the Institute for Integrated Catalysis (IIC), focusing on developing catalysts that can efficiently make fuels from alternative feedstocks, store electrical energy in chemical bonds, and increase fuel efficiency and cut emissions at the same time.

    The IIC provides insights, synthetic tools, and engineering concepts to enable catalyzed chemical and chemical-electrical energy interconversions to minimize the carbon footprint. A key strategy to achieve this goal is to develop experimental and theoretical tools to better understand the structure and properties of working catalysts that can be used as guidelines for novel catalysts and reaction routes.

    “These insights gained collaboratively in the IIC allow us to make decisive progress in solving key challenges in the energy transition,” said Johannes Lercher, director of the IIC.

    The fundamental understanding gained by PNNL researchers is translated into new catalytic technology. It also strengthened PNNL’s overarching scientific capability in chemistry, readying them for future partnerships with industry and government.

    Science in action

    PNNL’s first partnership with industry to study renewable jet fuel was formed in 2010 with Honeywell UOP and Boeing to explore chemistries that produce the aromatic portion of jet fuel. Researchers upgraded pyrolysis oil, used in combination with synthetic paraffinic kerosene, to produce the world’s first 100-percent-biomass-derived jet fuel that was demonstrated in a hydroplane at Seattle’s Seafair race. But the challenge with jet fuel made from vegetable oil or animal fat is that there just isn’t enough feedstock to meet aviation needs.

    This challenge led to an exploratory project between PNNL and Seattle-based Imperium Renewables to produce jet fuel that is rich in the isoalkanes that burn clean, pack a lot of energy, and stay liquid at low temperatures. The team identified the importance of finding an inexpensive alcohol that wasn’t produced from food crops.

    They found one approach with industrial partner LanzaTech, headquartered in Skokie, Illinois. LanzaTech captures carbon monoxide produced during steel production and, rather than letting it escape into the air, feeds it to microbes that consume the gas and produce ethanol.

    With the partnership between PNNL and LanzaTech and funding from DOE’s Bioenergy Technologies Office, which was distinct from but built upon knowledge from fundamental studies funded through BES, researchers began working on the process to convert ethanol into an aviation-approved jet fuel.

    “Understanding the broader phenomena is made possible through fundamental science. This knowledge can be applied to later solve a problem, in this case how to convert ethanol into a sustainable jet fuel,” Hallen said.

    The PNNL team ran their catalyst experiments with ethanol, verified the critical fuel properties, and provided data to support scale-up to commercial production. “It was maybe not trial and error but attempted failure and then back to the drawing board, until we got a catalyst that was more like what we were looking for,” Hallen said.

    Meanwhile, LanzaTech prepared their plant in Freedom Pines, Georgia, to start producing ethanol-derived diesel and jet fuel at industrial scale. They also took on the costly and lengthy fuel-approval process. More than 2,500 tests were used to evaluate 100 properties that would show how the new fuel would function in a jet engine.

    “Working closely with industry partners—early and often—was a key factor in determining the critical science questions and achieving advances at various scales,” Hallen said.

    The next hurdle step was getting the fuel approved for commercial use. This required LanzaTech to produce nearly 5,000 gallons of jet fuel and diesel fuel used for ASTM International standard approvals for the ethanol-to-jet fuel blend.

    With the fuel approved for commercial use, in 2018, Virgin Atlantic Airlines stepped up to the plate and flew the first transcontinental commercial flight from Florida to England powered by the synthetic paraffinic kerosene (SPK) jet fuel blend. In late 2019, a new plane purchased by All Nippon Airways flew from Seattle to Tokyo on the renewable aviation fuel. Other flights, in collaboration with the National Research Council Canada, showed that jets flying on this fuel produce 95 percent less soot and contrails than aircraft operating on petroleum jet fuel.

    “Aromatics, particularly multicyclic aromatics, cause soot. The soot causes wear on the engine. In the atmosphere, soot seeds ice growth, forming contrails,” explained Holladay. “The fuel in the test run had 8 percent synthesized aromatics added, but they were small by carbon number, such as C8 and C9, which have less sooting propensity when blended with sustainable aviation fuel.”

    In 2020, LanzaJet was formed to bring sustainable aviation fuel to the commercial market. Today, the company is building a plant adjacent to LanzaTech’s Freedom Pines biorefinery that will be the world’s first alcohol-to-jet sustainable aviation fuel commercial plant.

    “We were working on a problem that, in retrospect, I didn’t even fully appreciate, which is how difficult it would be to decarbonize the aviation sector. Today, everyone is trying to develop sustainable aviation fuel,” said Holladay, who is now the vice president of Government Programs at LanzaTech. “Ten years ago, few people saw the value.”

    The speed and success of these advances were a result of expanding fundamental science in chemistry and catalysis, along with the commitment of industry partners and federal sponsors who saw the promise of—and need for—sustainable bioenergy technologies.

    The PNNL and LanzaTech research partnership earned a 2019 Federal Laboratory Consortium Award for moving inventions into the marketplace and the 2020 Innovation Research Interchange Award for its contribution to the development of industry and to the benefit of society.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Pacific Northwest National Laboratory (PNNL) is one of the United States Department of Energy National Laboratories, managed by the Department of Energy’s Office of Science. The main campus of the laboratory is in Richland, Washington.

    PNNL scientists conduct basic and applied research and development to strengthen U.S. scientific foundations for fundamental research and innovation; prevent and counter acts of terrorism through applied research in information analysis, cyber security, and the nonproliferation of weapons of mass destruction; increase the U.S. energy capacity and reduce dependence on imported oil; and reduce the effects of human activity on the environment. PNNL has been operated by Battelle Memorial Institute since 1965.

     
  • richardmitnick 9:39 am on March 31, 2023 Permalink | Reply
    Tags: "Structure of 'Oil-Eating' Enzyme Opens Door to Bioengineered Catalysts", AlkB was discovered 50 years ago in a machine shop where bacteria were digesting cooling oil making it smell rancid., , Atomic level details reveal how enzyme selectively breaks hydrocarbon bonds suggesting bioengineering strategies for making useful chemicals., Biocatalysts, , Catalysis, , , Most industrial catalytic processes used for alkane conversions produce unwanted byproducts and heat-trapping carbon dioxide (CO2) gas., , Structure reveals how enzyme works., The biological enzyme known as AlkB, , The first atomic-level structure of an enzyme that selectively cuts carbon-hydrogen bonds, The scientists used cryo-EM-which does not require a crystallized sample-to take pictures of a few million individual frozen protein molecules from many different angles., Turning simple hydrocarbons into more useful chemicals   

    From The DOE’s Brookhaven National Laboratory: “Structure of ‘Oil-Eating’ Enzyme Opens Door to Bioengineered Catalysts” 

    From The DOE’s Brookhaven National Laboratory

    3.30.23
    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Atomic level details reveal how enzyme selectively breaks hydrocarbon bonds suggesting bioengineering strategies for making useful chemicals.

    1
    Long-sought structure of oil-eating enzyme complex: A high-resolution cryo-EM map of the transmembrane two-protein complex (left) allows researchers to determine the locations of individual amino acids that make up the two proteins (right). AlkG (gray) serves and an electron carrier, transporting electrons from its single iron atom (red sphere) to the two iron atoms (red spheres) at the active site of the AlkB enzyme (colorful ribbon structure). The magenta structure below the active site is the substrate (see close-up views). Credit: BNL.

    Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have produced the first atomic-level structure of an enzyme that selectively cuts carbon-hydrogen bonds—the first and most challenging step in turning simple hydrocarbons into more useful chemicals. As described in a paper just published in Nature Structural & Molecular Biology [below], the detailed atomic level “blueprint” suggests ways to engineer the enzyme to produce desired products.

    “We want to create a diverse pool of biocatalysts where you can specifically select the desired substrate to produce wanted and unique products from abundant hydrocarbons,” said study co-lead Qun Liu, a Brookhaven Lab structural biologist. “The approach would give us a controllable way to convert cheap and abundant alkanes—simple carbon-hydrogen compounds that make up 20-50 percent of crude oil—into more valuable bioproducts or chemical precursors, including alcohols, aldehydes, carboxylates, and epoxides.”

    The idea is particularly attractive because most industrial catalytic processes used for alkane conversions produce unwanted byproducts and heat-trapping carbon dioxide (CO2) gas. They also contain costly materials and require high temperatures and pressure. The biological enzyme, known as AlkB, operates under more ordinary conditions and with very high specificity. It uses inexpensive earth-abundant iron to initiate the chemistry while producing few unwanted byproducts.

    “Nature has figured out how to do this kind of chemistry with an inexpensive abundant metal and at ambient temperature and pressures,” said John Shanklin, chair of Brookhaven Lab’s Biology Department and a senior author on the paper. “As a result, there’s been massive interest in this enzyme, but a complete lack of understanding of its architecture and how it works—which is necessary to re-engineer it for new purposes. With this structure, we have now overcome this obstacle.”

    From rancid oil to sweet success

    2
    Research team: Brookhaven Lab scientists Jin Chai, Qun Liu, John Shanklin, and Sean McSweeney stand in front of the cryo-electron microscope (cryo-EM) used to decipher the long-sought structure of an enzyme that selectively cleaves hydrocarbon bonds. Credit: BNL.

    AlkB was discovered 50 years ago in a machine shop where bacteria were digesting cooling oil making it smell rancid. Biochemists discovered the bacterial enzyme AlkB as the factor enabling the microbes’ unusual appetite. Scientists have been interested in harnessing AlkB’s hydrocarbon-chomping ability ever since.

    Over the years, studies revealed that the enzyme sits partially embedded in the bacteria’s membranes, and that it operates in conjunction with two other proteins. Shanklin and Liu—and scientists elsewhere—tried solving the enzyme’s structure using x-ray crystallography. That method bounces high-intensity x-rays off a crystallized version of a protein to identify where the atoms are. But membrane proteins like AlkB are notoriously difficult to crystallize—especially when they are part of a multi-protein complex.

    “We couldn’t get high enough resolution,” Liu said.

    Then in early 2021, Brookhaven opened its new cryo-electron microscope (cryo-EM) facility, the Laboratory for BioMolecular Structure (LBMS). The scientists used a cryo-EM, which does not require a crystallized sample, to take pictures of a few million individual frozen protein molecules from many different angles. Computational tools then sorted through the images, identified and averaged the common features—and ultimately generated a high-resolution, three-dimensional map of the enzyme complex. Using this map, the scientists then pieced together the known atomic-level structures of the individual amino acids that make up the protein complex to fill in the details in three dimensions.

    Identifying the right conditions to stabilize the transmembrane region of the enzyme and maintain the structural details was a challenge that required a good deal of trial and error. Shanklin credits Jin Chai, one of the researchers in his lab, “for his commitment and determination to solving this puzzle.”

    Structure reveals how enzyme works

    The detailed structure shows exactly how AlkB and one of the two associated proteins (AlkG) work together to cleave carbon-hydrogen bonds. In fact, the solved structure contained an unexpected bonus: a substrate alkane molecule that was trapped in the enzyme’s active site cavity.

    2
    Active site: These closeups of the AlkB active site show how nine histidine amino acids (denoted as “H” in the left image) form a cavity (gray shaded region, right). This cavity guides the substrate (magenta) to the active site (near the two iron, Fe, atoms) in a single orientation, where only the terminal carbon-hydrogen bond can be cleaved. Modifying the enzyme to change the shape of this cavity could allow the enzyme to attack different C-H bonds. Credit: BNL.

    “Our structure shows how the amino acids that make up this enzyme form a cavity that orients the hydrocarbon substrate so that just one specific carbon-hydrogen bond can approach the active site,” Liu said. “It also shows how electrons move from the carrier protein (AlkG) to the di-iron center at the enzyme’s active site, allowing it to activate a molecule of oxygen to attack this bond.”

    Shanklin suggests thinking of the enzyme as a bond-cutting machine like a circular saw: “How you hold the alkane with respect to the enzyme’s di-iron center determines how the activated oxygen interacts with the hydrocarbon. If you guide the end of the alkane against the activated oxygen, it’s going to initiate some chemistry on that last carbon.

    “The engineering we want to do is to change the shape of the active site cavity so we can have the substrate (or a different substrate) approach the activated oxygen at different angles and in different C-H bond locations to perform different reactions.”

    In nature, the scientists noted, a third protein not included in this structure (AlkT) provides the electrons to AlkG, the carrier protein. The carrier protein then transports the electrons to the two iron atoms that activate oxygen at AlkB’s active site. Replacing that electron donating protein with an electrode to supply electrons would be simpler and less costly than using the biological electron donor, they suggest.

    DOE just funded the team’s proposal to develop such ‘Transformative Biohybrid Diiron Catalysts for C-H Bond Functionalization,’ based in part on this preliminary structural work.

    “This structure and our knowledge of how the AlkG/AlkB complex works, puts us in a great position to bioengineer this enzyme to select which carbon-hydrogen bond gets activated in a variety of substrates and to control the electrons and oxygen to re-engineer its selectivity,” Liu said.

    This work was supported by the DOE Office of Science (BES) and by Laboratory Directed Research and Development funds at Brookhaven Lab. LBMS is supported by the DOE Office of Science (BER). This research also used resources of Brookhaven Lab’s Center for Functional Nanomaterials (CFN), which is a U.S. Department of Energy Office of Science (BES) User Facility.

    Nature Structural & Molecular Biology
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC). Credit: CERN.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map. Credit: CERN.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: