Tagged: Catalysis Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:34 am on July 29, 2015 Permalink | Reply
    Tags: , Catalysis, ,   

    From Princeton: “New chemistry makes strong bonds weak” 

    Princeton University
    Princeton University

    July 28 2015
    Tien Nguyen

    Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive intermediates.

    1
    Catalytic alkene carboamination enabled by oxidative proton-coupled electron transfer

    Published on July 13 in the Journal of the American Chemical Society, the non-conventional reaction is a proof of concept that will allow chemists to access compounds that are normally off-limits to this pathway. The team used a two-component catalyst system that works in tandem to selectively activate the strongest bond in the molecule, a nitrogen-hydrogen (N-H) bond, through a process known as proton-coupled electron transfer (PCET).

    “This PCET chemistry was really interesting to us. In particular, the idea that you can use catalysts to modulate an intrinsic property of a molecule allows you to access chemical space that you couldn’t otherwise,” said Robert Knowles, an assistant professor of chemistry who led the research.

    Using PCET as a way to break strong bonds is seen in many essential biological systems, including photosynthesis and respiration, he said. Though this phenomenon is known in biological and inorganic chemistry settings, it hasn’t been widely applied to making new molecules—something Knowles hopes to change.

    Given the unexplored state of PCET catalysis, Knowles decided to turn to theory instead of the trial and error approach usually taken by synthetic chemists in the initial stages of reaction development. Using a simple mathematical formula, the researchers calculated, for any pair of catalysts, the pair’s combined “effective bond strength,” which is the strength of the strongest bond they could break. Because both molecules independently contribute to this value, the research team had a high degree of flexibility in designing the catalyst system.

    When they tested the catalyst pairs in the lab, the researchers observed a striking correlation between the “effective bond strength” and the reaction efficiency. While effective bond strengths that were lower or higher than the target N-H bond strength gave low reaction yields, the researchers found that matching the strengths promoted the reaction in very high yield.

    “To see this formula actually working was really inspiring,” said Gilbert Choi, a graduate student in the Knowles lab and lead author on the work. Once he identified a successful catalyst system, he explored the scope of the reaction and its mechanism.

    2
    Proposed catalytic cycle

    The researchers think that the reaction starts with one of the catalysts, a compound called dibutylphosphate, tugging on a hydrogen atom, which lengthens and weakens the N-H bond. At the same time, the other catalyst, known as a light-activated iridium complex, targets the weakened bond and plucks off one electron from the two-electron bond, slicing it down the middle.

    Once the bond is split, the reactive nitrogen intermediate goes on to form a new carbon-nitrogen bond, giving rise to structurally complex products. This finding builds on work the Knowles lab published earlier this year also in the Journal of the American Chemical Society on a similar reaction that used a more sensitive catalyst system.

    Their research has laid a solid foundation for PCET catalysis as a platform for developing new reactions. “My sincere view is that ideas are a lot more valuable than reactions,” Knowles said. “I’m optimistic that people can use these ideas and do things that we hadn’t even considered.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Princeton University Campus

    About Princeton: Overview

    Princeton University is a vibrant community of scholarship and learning that stands in the nation’s service and in the service of all nations. Chartered in 1746, Princeton is the fourth-oldest college in the United States. Princeton is an independent, coeducational, nondenominational institution that provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences and engineering.

    As a world-renowned research university, Princeton seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

    Today, more than 1,100 faculty members instruct approximately 5,200 undergraduate students and 2,600 graduate students. The University’s generous financial aid program ensures that talented students from all economic backgrounds can afford a Princeton education.

    Princeton Shield

     
  • richardmitnick 5:32 pm on February 13, 2015 Permalink | Reply
    Tags: , Catalysis, , , , ,   

    From SLAC: “Scientists Get First Glimpse of a Chemical Bond Being Born” 


    SLAC Lab

    February 12, 2015

    Scientists have used an X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory to get the first glimpse of the transition state where two atoms begin to form a weak bond on the way to becoming a molecule.

    1
    This illustration shows atoms forming a tentative bond, a moment captured for the first time in experiments with an X-ray laser at SLAC National Accelerator Laboratory. The reactants are a carbon monoxide molecule, left, made of a carbon atom (black) and an oxygen atom (red), and a single atom of oxygen, just to the right of it. They are attached to the surface of a ruthenium catalyst, which holds them close to each other so they can react more easily. When hit with an optical laser pulse, the reactants vibrate and bump into each other, and the carbon atom forms a transitional bond with the lone oxygen, center. The resulting carbon dioxide molecule detaches and floats away, upper right. The Linac Coherent Light Source (LCLS) X-ray laser probed the reaction as it proceeded and allowed the movie to be created. (SLAC National Accelerator Laboratory)

    This fundamental advance, reported Feb. 12 in Science Express and long thought impossible, will have a profound impact on the understanding of how chemical reactions take place and on efforts to design reactions that generate energy, create new products and fertilize crops more efficiently.

    “This is the very core of all chemistry. It’s what we consider a Holy Grail, because it controls chemical reactivity,” said Anders Nilsson, a professor at the SLAC/Stanford SUNCAT Center for Interface Science and Catalysis and at Stockholm University who led the research. “But because so few molecules inhabit this transition state at any given moment, no one thought we’d ever be able to see it.”


    Anders Nilsson, a professor at SLAC and at Stockholm University, explains how scientists used an X-ray laser to watch atoms form a tentative bond, and why that’s important.

    The experiments took place at SLAC’s Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility. Its brilliant, strobe-like X-ray laser pulses are short enough to illuminate atoms and molecules and fast enough to watch chemical reactions unfold in a way never possible before.

    Researchers used LCLS to study the same reaction that neutralizes carbon monoxide (CO) from car exhaust in a catalytic converter. The reaction takes place on the surface of a catalyst, which grabs CO and oxygen atoms and holds them next to each other so they pair up more easily to form carbon dioxide.

    In the SLAC experiments, researchers attached CO and oxygen atoms to the surface of a ruthenium catalyst and got reactions going with a pulse from an optical laser. The pulse heated the catalyst to 2,000 kelvins – more than 3,000 degrees Fahrenheit – and set the attached chemicals vibrating, greatly increasing the chance that they would knock into each other and connect.

    The team was able to observe this process with X-ray laser pulses from LCLS, which detected changes in the arrangement of the atoms’ electrons – subtle signs of bond formation – that occurred in mere femtoseconds, or quadrillionths of a second.

    “First the oxygen atoms get activated, and a little later the carbon monoxide gets activated,” Nilsson said. “They start to vibrate, move around a little bit. Then, after about a trillionth of a second, they start to collide and form these transition states.”

    ‘Rolling Marbles Uphill’

    The researchers were surprised to see so many of the reactants enter the transition state – and equally surprised to discover that only a small fraction of them go on to form stable carbon dioxide. The rest break apart again.

    “It’s as if you are rolling marbles up a hill, and most of the marbles that make it to the top roll back down again,” Nilsson said. “What we are seeing is that many attempts are made, but very few reactions continue to the final product. We have a lot to do to understand in detail what we have seen here.”

    Theory played a key role in the experiments, allowing the team to predict what would happen and get a good idea of what to look for. “This is a super-interesting avenue for theoretical chemists. It’s going to open up a completely new field,” said report co-author Frank Abild-Pedersen of SLAC and SUNCAT.

    A team led by Associate Professor Henrik Öström at Stockholm University did initial studies of how to trigger the reactions with the optical laser. Theoretical spectra were computed under the leadership of Stockholm Professor Lars G.M. Pettersson, a longtime collaborator with Nilsson.

    Preliminary experiments at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), another DOE Office of Science User Facility, also proved crucial. Led by SSRL’s Hirohito Ogasawara and SUNCAT’s Jerry LaRue, they measured the characteristics of the chemical reactants with an intense X-ray beam so researchers would be sure to identify everything correctly at the LCLS, where beam time is much more scarce. “Without SSRL this would not have worked,” Nilsson said.

    The team is already starting to measure transition states in other catalytic reactions that generate chemicals important to industry.

    “This is extremely important, as it provides insight into the scientific basis for rules that allow us to design new catalysts,” said SUNCAT Director and co-author Jens Nørskov.

    Researchers from LCLS, Helmholtz-Zentrum Berlin for Materials and Energy, University of Hamburg, Center for Free Electron Laser Science, University of Potsdam, Fritz-Haber Institute of the Max Planck Society, DESY and University of Liverpool also contributed to the research. The research was funded by the DOE Office of Science, the Swedish National Research Council, the Knut and Alice Wallenberg Foundation, the Volkswagen Foundation and the German Research Foundation (DFG) Center for Ultrafast Imaging.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 5:14 pm on April 10, 2013 Permalink | Reply
    Tags: , Catalysis, ,   

    From Berkeley Lab: “…Black Nanoparticles Could Play Key Role in Clean Energy Photocatalysis” 


    Berkeley Lab

    “A unique atomic-scale engineering technique for turning low-efficiency photocatalytic “white” nanoparticles of titanium dioxide into high-efficiency “black” nanoparticles could be the key to clean energy technologies based on hydrogen.

    Samuel Mao, a scientist who holds joint appointments with Berkeley Lab’s Environmental Energy Technologies Division and the University of California at Berkeley, leads the development of a technique for engineering disorder into the nanocrystalline structure of the semiconductor titanium dioxide. This turns the naturally white crystals black in color, a sign that the crystals are now able to absorb infrared as well as visible and ultraviolet light. The expanded absorption spectrum substantially improves the efficiency with which black titanium dioxide can use sunlight to split water molecules for the production of hydrogen.

    swm
    Berkeley Lab’s Samuel Mao used disorder engineering to transform titanium nanocrystals into highly efficient solar hydrogen photocatalysts, a transformation marked by turning the crystals from white to black. (Photo by Roy Kaltschmidt)

    ‘We have demonstrated that black titanium dioxide nanoparticles are capable of generating hydrogen through solar-driven photocatalytic reactions with a record-high efficiency,’ Mao said in a talk at the American Chemical Society (ACS)’s national meeting in New Orleans.

    ‘The synthesis of black titanium dioxide nanoparticles was based on a hydrogenation process in which white titanium dioxide nanocrystals were subjected to high pressure hydrogen gas,’ said Mao. ‘The unique disordered structure creates a photocatalyst that is both durable and efficient, and gives titanium dioxide, one of the most-studied of all oxide materials, a renewed potential.’”

    See the full article here.

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:08 pm on March 18, 2012 Permalink | Reply
    Tags: , Catalysis, ,   

    From Brookhaven Lab: “New Catalyst for Safe, Reversible Hydrogen Storage” 

    Room-temperature reaction takes place in water; can switch from hydrogen storage to release by changing pH

    Karen McNulty Walsh
    March 18, 2012

    “Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators have developed a new catalyst that reversibly converts hydrogen gas and carbon dioxide to a liquid under very mild conditions. The work — described in a paper published online March 18, 2012, in Nature Chemistry — could lead to efficient ways to safely store and transport hydrogen for use as an alternative fuel.

    i1
    This diagram shows the new catalyst in its protonated and deprotonated states as it reversibly converts hydrogen and CO2 gas to and from liquid formate or formic acid at ambient temperature and pressure. The gases can thereby be stored and transported as a liquid, and used later in carbon-neutral energy applications, simply by adjusting the pH. NO image credit.

    Interested? See the full article here.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 462 other followers

%d bloggers like this: