Tagged: Carnegie Institution For Science Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:12 pm on March 21, 2018 Permalink | Reply
    Tags: Are you rocky or are you gassy? Carnegie astronomers help unlock the mysteries of super-Earths, , , , Carnegie Institution For Science, Chile at 8200ft, , Magellan Clay and Baade telescopes at Las Campanas, Planet Finder Spectrograph on the Magellan Clay telescope   

    From Carnegie: “Are you rocky or are you gassy? Carnegie astronomers help unlock the mysteries of super-Earths” 

    Carnegie Institution for Science
    Carnegie Institution for Science

    February 08, 2018
    Spring Letter

    1
    An artist’s conception of a system with three super-Earth exoplanets, courtesy of ESO.

    A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new research led by Carnegie’s Johanna Teske. This new information [In press inAJ] provides evidence to help astronomers better understand the process by which such planets form.

    The GJ 9827 star actually hosts a trio of planets, discovered by NASA’s exoplanet-hunting Kepler/K2 mission, and all three are slightly larger than Earth. This is the size that the Kepler mission determined to be most common in the galaxy with periods between a few and several-hundred-days.

    Intriguingly, no planets of this size exist in our Solar System. This makes scientists curious about the conditions under which they form and evolve.

    One important key to understanding a planet’s history is to determine its composition. Are these super-Earths rocky like our own planet? Or do they have solid cores surrounded by large, gassy atmospheres?

    To try to understand what an exoplanet is made of, scientists need to measure both its mass and its radius, which allows them to determine its bulk density.

    When quantifying planets in this way, astronomers have noticed a trend. It turns out that planets with radii greater than about 1.7 times that of Earth are have a gassy envelope, like Neptune, and those with radii smaller than this are rocky, like our home planet.

    Some researchers have proposed that this difference is caused by photoevaporation, which strips planets of their surrounding envelope of so-called volatiles—substances like water and carbon dioxide that have low boiling points—creating smaller-radius planets. But more information is needed to truly test this theory.

    This is why GJ 9827’s three planets are special—with radii of 1.64 (planet b), 1.29 (planet c) and 2.08 (planet d), they span this dividing line between super-Earth (rocky) and sub-Neptune (somewhat gassy) planets.

    Luckily, teams of Carnegie scientists including co-authors Steve Shectman, Sharon Wang, Paul Butler, Jeff Crane, and Ian Thompson, have been monitoring GJ 9827 with their Planet Finding Spectrograph (PFS), so they were able to constrain the masses of the three planets with data in hand, rather than having to scramble to get many new observations of GJ 9827.

    Carnegie Planet Finder Spectrograph on the Magellan Clay telescope at Las Campanas, Chile, Altitude 2,380 m (7,810 ft)

    “Usually, if a transiting planet is detected, it takes months if not a year or more to gather enough observations to measure its mass,” Teske explained. “Because GJ 9827 is a bright star, we happened to have it in the catalog of stars that Carnegie astronomers been monitoring for planets since 2010. This was unique to PFS.”

    The spectrograph was developed by Carnegie scientists and mounted on the Magellan Clay Telescopes at Carnegie’s Las Campanas Observatory.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high

    The PFS observations indicate that planet b is roughly eight times the mass of Earth, which would make it one of the most-massive and dense super-Earths yet discovered. The masses for planet c and planet d are estimated to be about two and a half and four times that of Earth respectively, although the uncertainty in these two determinations is very high.

    This information suggests that planet d has a significant volatile envelope, and leaves open the question of whether planet c has a volatile envelope or not. But the better constraint on the mass of planet b suggests that that it is roughly 50 percent iron.

    “More observations are needed to pin down the compositions of these three planets,” Wang said. “But they do seem like some of the best candidates to test our ideas about how super-Earths form and evolve, potentially using NASA’s upcoming James Webb Space Telescope.”

    Angie Wolfgang, an NSF Postdoctoral Fellow from Penn State University, is also a co-author on the paper.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

    Advertisements
     
  • richardmitnick 4:06 pm on February 28, 2018 Permalink | Reply
    Tags: , Carnegie Institution For Science, ,   

    From Carnegie Institution for Science: “Modern volcanism tied to events occurring soon after Earth’s birth” 

    Carnegie Institution for Science
    Carnegie Institution for Science

    February 27, 2018

    Plumes of hot magma from the volcanic hotspot that formed Réunion Island in the Indian Ocean rise from an unusually primitive source deep beneath the Earth’s surface, according to new work in Nature from Carnegie’s Bradley Peters, Richard Carlson, and Mary Horan along with James Day of the Scripps Institution of Oceanography.

    Réunion marks the present-day location of the hotspot that 66 million years ago erupted the Deccan Traps flood basalts, which cover most of India and may have contributed to the extinction of the dinosaurs. Flood basalts and other hotspot lavas are thought to originate from different portions of Earth’s deep interior than most volcanoes at Earth’s surface and studying this material may help scientists understand our home planet’s evolution.

    1
    A fieldwork photo from Réunion Island shows the flank of the Cirque de Cilaos, looking out towards the Indian Ocean courtesy of Bradley Peters.

    3
    Looking into down into a volcanic crater of Piton de la Fournaise on Réunion Island with dormant volcanic cones in the background. Photo is courtesy of Bradley Peters.

    The heat from Earth’s formation process caused extensive melting of the planet, leading Earth to separate into two layers when the denser iron metal sank inward toward the center, creating the core and leaving the silicate-rich mantle floating above.

    Over the subsequent 4.5 billion years of Earth’s evolution, deep portions of the mantle would rise upwards, melt, and then separate once again by density, creating Earth’s crust and changing the chemical composition of Earth’s interior in the process. As crust sinks back into Earth’s interior—a phenomenon that’s occurring today along the boundary of the Pacific Ocean—the slow motion of Earth’s mantle works to stir these materials, along with their distinct chemistry, back into the deep Earth.

    But not all of the mantle is as well-blended as this process would indicate. Some older patches still exist—like powdery pockets in a poorly mixed bowl of cake batter. Analysis of the chemical compositions of Réunion Island volcanic rocks indicate that their source material is different from other, better-mixed parts of the modern mantle.

    Using new isotope data, the research team revealed that Réunion lavas originate from regions of the mantle that were isolated from the broader, well-blended mantle. These isolated pockets were formed within the first ten percent of Earth’s history.

    Isotopes are elements that have the same number of protons, but a different number of neutrons. Sometimes, the number of neutrons present in the nucleus make an isotope unstable; to gain stability, the isotope will release energetic particles in the process of radioactive decay. This process alters its number of protons and neutrons and transforms it into a different element. This new study harnesses this process to provide a fingerprint for the age and history of distinct mantle pockets.

    Samarium-146 is one such unstable, or radioactive, isotope with a half-life of only 103 million years. It decays to the isotope neodymium-142. Although samarium-146 was present when Earth formed, it became extinct very early in Earth’s infancy, meaning neodymium-142 provides a good record of Earth’s earliest history, but no record of the Earth from the period after all the samarium-146 transformed into neodymium-142. Differences in the abundances of neodymium-142 in comparison to other isotopes of neodymium could only have been generated by changes in the chemical composition of the mantle that occurred in the first 500 million years of Earth’s 4.5 billion-year history.

    The ratio of neodymium-142 to neodymium-144 in Réunion volcanic rocks, together with the results of lab-based mimicry and modeling studies, indicate that despite billions of years of mantle mixing, Réunion plume magma likely originates from a preserved pocket of the mantle that experienced a compositional change caused by large-scale melting of the Earth’s earliest mantle.

    The team’s findings could also help explain the origin of dense regions right at the boundary of the core and mantle called large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs), reflecting the unusually slow speed of seismic waves as they travel through these regions of the deep mantle. Such regions may be relics of early melting events.

    “The mantle differentiation event preserved in these hotspot plumes can both teach us about early Earth geochemical processes and explain the mysterious seismic signatures created by these dense deep-mantle zones,” said lead author Peters.

    Funding for fieldwork for this study was provided by the National Geographic Society (NGS 8330-07), the Geological Society of America (GSA 10539-14), and by a generous personal donation from Dr. R. Rex. Support for laboratory work was provided by Carnegie Institution for Science.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
  • richardmitnick 12:06 pm on February 27, 2018 Permalink | Reply
    Tags: 2MASS J13243553+6358281, , , , , Carnegie Institution For Science,   

    From Carnegie Institution for Science: “When do aging brown dwarfs sweep the clouds away? “ 

    Carnegie Institution for Science
    Carnegie Institution for Science

    February 26, 2018
    No writer credit

    1
    An artist’s conception of a brown dwarf. Image is courtesy of NASA/JPL, slightly modified by Jonathan Gagné.

    Brown dwarfs, the larger cousins of giant planets, undergo atmospheric changes from cloudy to cloudless as they age and cool. A team of astronomers led by Carnegie’s Jonathan Gagné measured for the first time the temperature at which this shift happens in young brown dwarfs. Their findings, published by The Astrophysical Journal Letters, may help them better understand how gas giant planets like our own Solar System’s Jupiter evolved.

    Brown dwarfs are too small to sustain the hydrogen fusion process that fuels stars and allows them to remain hot and bright for a long time. After formation, brown dwarfs slowly cool down and contract over time—at some point shifting from heavily cloud covered to having completely clear skies.

    Because they are freely floating in space, the atmospheric properties of brown dwarfs are much easier to study than the atmospheres of exoplanets, where the light of a central star can be completely overwhelming.

    In this paper, Gagné and his colleagues—Katelyn Allers of Bucknell University; Christopher Theissen of University of California San Diego; Jacqueline Faherty and Daniella Bardalez Gagliuffi of the American Museum of Natural History, and Etienne Artigau of Institute for Research on Exoplanets, Université de Montréal—focused on an unusually red brown dwarf called 2MASS J13243553+6358281, which they were able to determine is one of the nearest known planetary mass objects to our Solar System.

    The redness of this object had previously been suggested to indicate that it was actually a binary system, but the research team’s findings indicate that it is a single free floating planetary mass object.

    They confirmed that it is part of a group of roughly 80 stars of similar ages and compositions drifting together through space, called the AB Doradus moving group, which revealed that it is about 150 million years old.

    By knowing the object’s age and measuring its luminosity and distance, the team could determine its likely radius, mass, and, most-importantly its temperature.

    They could then compare its temperature to that of another previously studied brown dwarf in the same moving group—one that was still cloudy while 2MASS J1324+6358 was already cloudless. This allowed them to figure out the temperature at which the cloudy to cloudless transition happens.

    “We were able to constrain the point in the cool-down process at which brown dwarfs like J1324transition from cloudy to cloud-free,” explained Gagné

    The shift occurs about 1,150 degrees kelvin, or 1,600 degrees Fahrenheit, for planetary-mass objects that are 150 million years old like 2MASS J1324+6358 and other members of the AB Doradus moving group.

    “Because brown dwarfs like this one are so analogous to gas giant planets, this information could help us understand some of the evolutionary processes that occurred right here in our own Solar System’s history,” Gagné added.

    This research made use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC)/California Institute of Technology (Caltech), funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation; and data products from the Wide-field Infrared Survey Explorer (WISE), which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL)/Caltech, funded by NASA. Based on observations obtained at the Gemini Observatory (science program number GN2017B-FT-21) acquired through the Gemini Observatory Archive, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), and Ministerio da Ciencia, Tecnologia e Inova¸cao (Brazil).


    Caltech 2MASS Telescopes, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC) at Caltech, at the Whipple Observatory on Mt. Hopkins south of Tucson, AZ, and at the Cerro Tololo Inter-American Observatory near La Serena, Chile.

    NASA/WISE Telescope

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
  • richardmitnick 10:57 am on February 12, 2018 Permalink | Reply
    Tags: , , , Carnegie Institution For Science, Chilean Astronomy, , , , , LSST telescope   

    From Forbes: “Chile’s Pristine Skies Are Key To Astronomy’s Next Generation Of Telescopes” 

    ForbesMag

    Forbes Magazine

    Jan 31, 2018
    Bruce Dorminey

    Long known for its copper, sea bass and merlot wine, Chile’s most profound export may be data that its astronomical observatories mine nightly from its pristine skies.

    1
    Exoplanet hunters at ESO’s La Silla Observatory in Chile. ESO.

    Because Chile’s ground-based window onto our Milky Way’s galactic center is arguably unmatched, the European Southern Observatory (ESO) first set up shop here more than a half century ago. Today, their 15 member states enjoy facilities at three major observatories.

    “ESO spends 80 million euros [$100 million] a year for its operations in Chile and is the biggest astronomical operation here,” astrophysicist Fernando Comeron, ESO’s Representative in Chile, told me during a recent visit to ESO’s offices in Vitacura, a tony enclave of Santiago.

    To its credit, ESO never rests on its laurels. When I first arrived here two decades ago during research for my book Distant Wanderers, I was amazed that even before ESO’s Very Large Telescope (VLT) was finished, there was already talk of the next big thing.

    ESO VLT Platform at Cerro Paranal elevation 2,635 m (8,645 ft)

    Initially, that next big thing was to be a 100-meter Overwhelming Large Telescope (OWL). But after several years of study, ESO put that concept in stasis and instead pursued a project that it felt was more practical and technologically feasible. Thus, in 2014, ESO broke ground for its European-Extremely Large Telescope (E-ELT) at Paranal Observatory in northern Chile’s Atacama desert.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile, at an altitude 3,046 m (9,993 ft)

    Due for scientific first light in November 2024, once completed it will be the world’s largest optical/infrared telescope. That is, a $1.4 billion behemoth with a 39.3-meter primary mirror; itself a composition of 798 individual 1.4-meter segments.

    The best telescopes in the world are now in the Southern hemisphere says Comeron, noting that the Chilean government takes its responsibility in preserving observing conditions very seriously. In fact, he says, even through the country’s turbulent political history, ESO continued to function here.

    “We have 50 years of dealing with the Chilean government and it’s been a very fruitful relationship and is not subjected to changes of government or politics,” said Comeron.

    And more are coming. The E-ELT and other new telescopes being built in Chile, like the Large Synoptic Survey Telescope (LSST) and the Giant Magellan Telescope (GMT), are forever changing the Chilean astronomical landscape.


    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    Giant Magellan Telescope, to be at the Carnegie Institution for Science’s Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high

    “The Chilean astronomy community is growing; universities are opening undergraduate and graduate programs in astronomy and attracting international researchers to be part of their institutions,” Barbara Rojas-Ayala, an astronomer at the Universidad Andrés Bello in Santiago, told me.

    What makes Chile so astronomically special?

    Very dry northern deserts which border a lengthy coastline and the Humboldt Current.

    The Humboldt Current, sometimes referred to as the Peru Current, is a 550-mile-wide cold ocean current that originates in Antarctica and runs north along the South American coastline. Its temperatures help keep Chile’s northern desert air even drier. Cloud cover is confined to altitudes of about 3000 feet, says Comeron.

    As a result, he says you find very dry conditions at much lower altitudes in Chile. But it’s also why despite Chile’s thousands of miles of extraordinarily beautiful coastline, the country is not known for beach-life.

    “The water is even freezing in summer,” said Comeron.

    What will the E-ELT bring to the table?

    The ability to see earth-like planets at one Earth-Sun distance from their star to look for the spectroscopic signatures of life.

    And Comeron predicts the E-ELT will give astronomers at least some spectra that will be debated as containing biosignatures.

    In terms of cosmology, the new telescope should also shed light on:

    — Whether the laws of nature are truly universal;

    — Individual stellar populations within galaxies out to distances of tens of millions of light-years; and,

    — Observe back in cosmic time to before the onset of the first stars which will help astronomers determine how galaxies formed and evolved across the breadth of the cosmos.

    And as for the burgeoning Chilean astronomy community?

    “Chile is on the way to becoming a net producer of astronomers with more going abroad than staying here,” said Comeron. “For ESO, we have about 600 astronomers coming here per year.”

    However, Comeron says a few thousand astronomers per year use all of Chile’s facilities.

    Considering all the data that will be acquired with observatories within our country, there is a lack of funding for local researchers who could data-mine these large astronomical projects, says Rojas-Ayala.

    In central Santiago, Rojas-Ayala says it’s impossible to distinguish the Milky Way and the Magellan Clouds. As a result, she says there are now initiatives to restrict blue light emissions and luminous LED/plasma signs in an effort to protect northern Chile’s precious night skies.

    As for the E-ELT’s ultimate legacy?

    It has a nominal operating lifetime of at least 30 years. But Comeron expects it will still be operational well into the 22nd century and although astronomers have some ideas about what this new behemoth will observe in its first few years, beyond that it’s anyone’s guess.

    “It’s almost science fiction as to what we will be observing,” said Comeron. “I haven’t a clue but it’s going to be exciting.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:57 pm on February 8, 2018 Permalink | Reply
    Tags: , , , Carnegie Institution For Science, , GJ 9827, Planet Finding Spectrograph   

    From Carnegie: “Are you rocky or are you gassy? Carnegie astronomers help unlock the mysteries of super-Earths “ 

    Carnegie Institution for Science
    Carnegie Institution for Science

    February 08, 2018

    1
    An artist’s conception of a system with three super-Earth exoplanets, courtesy of ESO.

    A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date according to new research led by Carnegie’s Johanna Teske. This new information [AJ] provides evidence to help astronomers better understand the process by which such planets form.

    The GJ 9827 star actually hosts a trio of planets, discovered by NASA’s exoplanet-hunting Kepler/K2 mission, and all three are slightly larger than Earth. This is the size that the Kepler mission determined to be most common in the galaxy with periods between a few and several-hundred-days.

    Intriguingly, no planets of this size exist in our Solar System. This makes scientists curious about the conditions under which they form and evolve.

    One important key to understanding a planet’s history is to determine its composition. Are these super-Earths rocky like our own planet? Or do they have solid cores surrounded by large, gassy atmospheres?

    To try to understand what an exoplanet is made of, scientists need to measure both its mass and its radius, which allows them to determine its bulk density.

    When quantifying planets in this way, astronomers have noticed a trend. It turns out that planets with radii greater than about 1.7 times that of Earth are have a gassy envelope, like Neptune, and those with radii smaller than this are rocky, like our home planet.

    Some researchers have proposed that this difference is caused by photoevaporation, which strips planets of their surrounding envelope of so-called volatiles—substances like water and carbon dioxide that have low boiling points—creating smaller-radius planets. But more information is needed to truly test this theory.

    This is why GJ 9827’s three planets are special—with radii of 1.64 (planet b), 1.29 (planet c) and 2.08 (planet d), they span this dividing line between super-Earth (rocky) and sub-Neptune (somewhat gassy) planets.

    Luckily, teams of Carnegie scientists including co-authors Steve Shectman, Sharon Wang, Paul Butler, Jeff Crane, and Ian Thompson, have been monitoring GJ 9827 with their Planet Finding Spectrograph (PFS), so they were able to constrain the masses of the three planets with data in hand, rather than having to scramble to get many new observations of GJ 9827.

    2
    Planet Finding Spectrograph (PFS) on the 6.5 meter on the Magellan Clay telescope at Las Campanas, Chile

    “Usually, if a transiting planet is detected, it takes months if not a year or more to gather enough observations to measure its mass,” Teske explained. “Because GJ 9827 is a bright star, we happened to have it in the catalog of stars that Carnegie astronomers been monitoring for planets since 2010. This was unique to PFS.”

    The spectrograph was developed by Carnegie scientists and mounted on the Magellan Clay Telescopes at Carnegie’s Las Campanas Observatory.

    The PFS observations indicate that planet b is roughly eight times the mass of Earth, which would make it one of the most-massive and dense super-Earths yet discovered. The masses for planet c and planet d are estimated to be about two and a half and four times that of Earth respectively, although the uncertainty in these two determinations is very high.

    This information suggests that planet d has a significant volatile envelope, and leaves open the question of whether planet c has a volatile envelope or not. But the better constraint on the mass of planet b suggests that that it is roughly 50 percent iron.

    “More observations are needed to pin down the compositions of these three planets,” Wang said. “But they do seem like some of the best candidates to test our ideas about how super-Earths form and evolve, potentially using NASA’s upcoming James Webb Space Telescope.”

    Angie Wolfgang, an NSF Postdoctoral Fellow from Penn State University, is also a co-author on the paper.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
  • richardmitnick 12:41 pm on January 20, 2018 Permalink | Reply
    Tags: , , , Carnegie Institution For Science, , , Meteoritic stardust unlocks timing of supernova dust formation, Type II supernovae   

    From Carnegie Institution for Science: “Meteoritic stardust unlocks timing of supernova dust formation” 

    Carnegie Institution for Science
    Carnegie Institution for Science

    January 18, 2018
    Conel Alexander
    Larry Nittler

    Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, galaxy, and Solar System.

    For example, astronomers have been trying to explain why some recently discovered distant, but young, galaxies contain massive amounts of dust. These observations indicate that type II supernovae—explosions of stars more than ten times as massive as the Sun—produce copious amounts of dust, but how and when they do so is not well understood.

    1
    An electron microscope image of a micron-sized supernova silicon carbide, SiC, stardust grain (lower right) extracted from a primitive meteorite. Such grains originated more than 4.6 billion years ago in the ashes of Type II supernovae, typified here by a Hubble Space Telescope image of the Crab Nebula, the remnant of a supernova explosion in 1054. Laboratory analysis of such tiny dust grains provides unique information on these massive stellar explosions. (1 μm is one millionth of a meter.) Image credits: NASA and Larry Nittler.

    New work from a team of Carnegie cosmochemists published by Science Advances reports analyses of carbon-rich dust grains extracted from meteorites that show that these grains formed in the outflows from one or more type II supernovae more than two years after the progenitor stars exploded. This dust was then blown into space to be eventually incorporated into new stellar systems, including in this case, our own.

    The researchers—led by former-postdoctoral fellow Nan Liu, along with Larry Nittler, Conel Alexander, and Jianhua Wang of Carnegie’s Department of Terrestrial Magnetism—came to their conclusion not by studying supernovae with telescopes. Rather, they analyzed microscopic silicon carbide, SiC, dust grains that formed in supernovae more than 4.6 billion years ago and were trapped in meteorites as our Solar System formed from the ashes of the galaxy’s previous generations of stars.

    Some meteorites have been known for decades to contain a record of the original building blocks of the Solar System, including stardust grains that formed in prior generations of stars.

    “Because these presolar grains are literally stardust that can be studied in detail in the laboratory,” explained Nittler, “they are excellent probes of a range of astrophysical processes.”

    For this study, the team set out to investigate the timing of supernova dust formation by measuring isotopes—versions of elements with the same number of protons but different numbers of neutrons—in rare presolar silicon carbide grains with compositions indicating that they formed in type II supernovae.

    Certain isotopes enable scientists to establish a time frame for cosmic events because they are radioactive. In these instances, the number of neutrons present in the isotope make it unstable. To gain stability, it releases energetic particles in a way that alters the number of protons and neutrons, transmuting it into a different element.

    The Carnegie team focused on a rare isotope of titanium, titanium-49, because this isotope is the product of radioactive decay of vanadium-49 which is produced during supernova explosions and transmutes into titanium-49 with a half-life of 330 days. How much titanium-49 gets incorporated into a supernova dust grain thus depends on when the grain forms after the explosion.

    Using a state-of-the-art mass spectrometer to measure the titanium isotopes in supernova SiC grains with much better precision than could be accomplished by previous studies, the team found that the grains must have formed at least two years after their massive parent stars exploded.

    Because presolar supernova graphite grains are isotopically similar in many ways to the SiC grains, the team also argues that the delayed formation timing applies generally to carbon-rich supernova dust, in line with some recent theoretical calculations.

    “This dust-formation process can occur continuously for years, with the dust slowly building up over time, which aligns with astronomer’s observations of varying amounts of dust surrounding the sites of stellar explosions,” added lead author Liu. “As we learn more about the sources for dust, we can gain additional knowledge about the history of the universe and how various stellar objects within it evolve.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
  • richardmitnick 1:57 pm on December 6, 2017 Permalink | Reply
    Tags: , , , Carnegie Institution For Science, , The most-distant supermassive black hole ever observed   

    From Carnegie Institution for Science: “Found: The most-distant supermassive black hole ever observed” 

    Carnegie Institution for Science
    Carnegie Institution for Science

    December 06, 2017
    No writer credit

    1
    Robin Dienel/Carnegie Institution for Science

    A team of astronomers led by Carnegie’s Eduardo Bañados used Carnegie’s Magellan telescopes to discover the most-distant supermassive black hole ever observed. It resides in a luminous quasar and its light reaches us from when the universe was only 5 percent of its current age—just 690 million years after the Big Bang. Their findings are published by Nature.

    Quasars are tremendously bright objects comprised of enormous black holes accreting matter at the centers of massive galaxies. This newly discovered black hole has a mass that is 800 million times the mass of our Sun.

    “Gathering all this mass in fewer than 690 million years is an enormous challenge for theories of supermassive black hole growth,” Bañados explained.

    To grow black holes that big so soon after the Big Bang, astronomers have speculated that the very early universe might have had conditions allowing the creation of very large black holes with masses reaching 100,000 times the mass of the Sun. This is very unlike the black holes that form in the present-day universe, which rarely exceed a few dozen solar masses.

    Added Bram Venemans of the Max Planck Institute for Astronomy in Germany: “Quasars are among the brightest and most-distant known celestial objects and are crucial to understanding the early universe.”

    The Bañados quasar is especially interesting, because it is from the time known as the epoch of reionization, when the universe emerged from its dark ages.

    Reionization era and first stars, Caltech

    The Big Bang started the universe as a hot, murky soup of extremely energetic particles that was rapidly expanding. As it expanded, it cooled. About 400,000 years later (very quickly on a cosmic scale), these particles cooled and coalesced into neutral hydrogen gas. The universe stayed dark, without any luminous sources, until gravity condensed matter into the first stars and galaxies. The energy released by these ancient galaxies caused the neutral hydrogen strewn throughout the universe to get excited and ionize, or lose an electron, a state that the gas has remained in since that time. Once the universe became reionzed, photons could travel freely throughout space, thus the universe became transparent to light.

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Analysis of the newly found quasar shows that a large fraction of the hydrogen in its immediate surroundings is neutral, indicating that the astronomers have identified a source in the epoch of reionization, before enough of the first stars and galaxies have turned on to fully re-ionize the universe.

    “It was the universe’s last major transition and one of the current frontiers of astrophysics,” Bañados said.

    The quasar’s distance is determined by what’s called its redshift, which is a measurement of how much the wavelength of its light is stretched by the expansion of the universe before reaching Earth. The higher the redshift, the greater the distance, and the further back astronomers are looking in time when they observe the object. This newly discovered quasar has a redshift of 7.54, based on the detection of ionized carbon emissions from the galaxy that hosts the massive black hole. It took more than 13 billion years for the light from the quasar to reach us. The characterization of the quasar host galaxy was carried out with the IRAM/NOEMA and JVLA interferometers and the findings are reported in a companion article published in The Astrophysical Journal Letters led by Bram Venemans.

    “This great distance makes such objects extremely faint when viewed from Earth. Early quasars are also very rare on the sky. Only one quasar was known to exist at a redshift greater than seven before now, despite extensive searching,” said Xiaohui Fan of the University of Arizona’s Steward Observatory.

    Between 20 and 100 quasars as bright and as distant as the quasar discovered by Bañados and his team are predicted to exist over the whole sky, so this is a major discovery that will provide fundamental information of the young universe, when it was only 5 percent its current age.

    “This is a very exciting discovery, found by scouring the new generation of wide-area, sensitive surveys astronomers are conducting using NASA’s Wide-field Infrared Survey Explorer in orbit and ground-based telescopes in Chile and Hawaii,” said Daniel Stern of NASA’s Jet Propulsion Laboratory in Pasadena.

    NASA/WISE Telescope

    “With several next-generation, even-more-sensitive facilities currently being built, we can expect many exciting discoveries in the very early universe in the coming years.”

    The team used two Magellan telescope instruments to observe the supermassive black hole: FIRE, which made the discovery, and Fourstar, which was used for additional images.

    “This important discovery—together with the detection of distant galaxies—is elucidating the conditions of the universe during the reionization epoch. While we wait for the construction of the new generation of giant telescopes, such as the GMT, telescopes such as the Magellans at Las Campanas Observatory in Chile will continue to play a crucial role in the study of the early universe,” added Las Campanas Director Leopoldo Infante.

    This work is based on data collected with the Magellan Baade telescope, the Gemini North telescope (program GN-2017A-DD-4), the Large Binocular Telescope, and the IRAM/NOEMA interferometer.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high


    Gemini/North telescope at Maunakea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    U Arizona Large Binocular Telescope, Mount Graham, Arizona, USA, Altitude 3,221 m (10,568 ft)

    IRAM NOEMA interferometer, Located in the French Alpes on the wide and isolated Plateau de Bure at an elevation of 2550 meters

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
  • richardmitnick 3:19 pm on November 16, 2017 Permalink | Reply
    Tags: , , , Carnegie du Pont telescope, Carnegie Institution For Science, ,   

    From SDSS: “Next Generation Astronomical Survey to Map the Entire Sky” 

    SDSS Telescope at Apache Point Observatory, NM, USA, Altitude 2,788 meters (9,147 ft)

    Sloan Digital Sky Survey

    November 16, 2017

    Juna Kollmeier,
    SDSS-V Survey Director,
    Carnegie Institution for Science
    jak@carnegiescience.edu,
    +1 626 304 0220

    Gail Zasowski
    SDSS-V Scientific Spokesperson, University of Utah
    gail.zasowski@gmail.com,
    +1 801 581 6901

    Jordan Raddick,
    SDSS Public Information Officer, Johns Hopkins University
    raddick@jhu.edu,
    +1 443 570 7105

    1
    This artist’s impression shows a cutaway view of the parts of the Universe that SDSS-V will study.
    SDSS-V will study millions of stars to create a map of the entire Milky Way. Farther out, the survey will get the most detailed view yet of the largest nearby galaxies like Andromeda in the Northern Hemisphere and the Large Magellanic Cloud in the Southern hemisphere. Even farther out, the survey will measure quasars, bright points of light powered by matter falling into giant black holes. Image Credit: Artist’s Conception of SDSS-V: Image by Robin Dienel/Carnegie Institution for Science/SDSS

    The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Juna Kollmeier of the Carnegie Institution for Science, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

    The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

    “For more than 20 years, the Sloan Digital Sky Survey has defined excellence in astronomy,” says Paul L. Joskow, President of the Alfred P. Sloan Foundation. “SDSS-V continues that august tradition by combining cutting-edge research, international collaboration, technological innovation, and cost-effective grassroots governance. The Sloan Foundation is proud to be a core supporter of SDSS-V.”

    Under Kollmeier’s leadership, the survey’s fifth generation will build off the earlier SDSS incarnations, but will break new ground by pioneering all-sky observations, and by monitoring over time the changes in a million objects.

    “With observations in both hemispheres, no part of the sky will be hidden from SDSS-V,” she said.

    In the tradition of previous Sloan Surveys, SDSS-V is committed to making its data publicly available in a format that is helpful to a broad range of users, from the youngest students to both amateur and professional astronomers.

    “SDSS-V is proof that great science knows no borders and stands out for its commitment to diversity,” says Dr. Evan S. Michelson, Program Director at the Sloan Foundation. “It will create unparalleled opportunities for all scientists to participate in answering some of the most exciting questions in astronomy. We are thrilled to be supporting Juna Kollmeier, her team at the Carnegie Institution for Science, and the entire SDSS Collaboration.”

    “SDSS has long been a great example of hundreds of astronomers of all ages, from many continents, working together on a big project. We’re excited to continue that tradition!” adds Gail Zasowski, a professor at the University of Utah and the SDSS-V Spokesperson.

    The survey operates out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses Carnegie’s du Pont telescope.

    Carnegie Las Campanas Dupont telescope interior,


    Carnegie Las Campanas Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile

    “I am delighted to see SDSS-V move forward and to see Carnegie’s collaboration with the survey expand,” said Carnegie Observatories Director John Mulchaey.

    SDSS-V will make use of both optical and infrared spectroscopy, to observe not only in two hemispheres, but also at two wavelengths of light.

    It will take advantage of the recently installed second APOGEE spectrograph on Carnegie’s du Pont telescope. Both it and its twin on Apache Point penetrate the dust in our galaxy that confounds optical spectrographs to obtain high-resolution spectra for hundreds of stars at infrared wavelengths. In the optical wavelengths, the survey’s twin BOSS spectrographs can each obtain simultaneous spectra for 500 stars and quasars. What’s more, a newly envisioned pair of Integral Field Unit spectrographs can each obtain nearly 2,000 spectra contiguously across objects in the sky.

    SDSS-V will consist of three projects, each mapping different components of the universe: The Milky Way Mapper, the Black Hole Mapper and the Local Volume Mapper. The first Mapper focuses on the formation of the Milky Way and its stars and planets. The second will study the formation, growth, and ultimate sizes of the supermassive black holes that lurk at the centers of galaxies. The Local Volume Mapper will create the first complete spectroscopic maps of the most-iconic nearby galaxies.

    “These data will enable scientists to study the chemical composition of galaxies and the interactions between stars, gas, and supernova explosions in unprecedented detail,” explained D. Michael Crenshaw, Chair of ARC’s Board of Governors and Georgia State University’s Department of Physics and Astronomy.

    “By surveying the sky rapidly and repeatedly like no spectroscopic survey has done before, SDSS-V will not only vastly improve the data to answer known unknown questions, but it can—perhaps more importantly—venture into astrophysical terra incognita.” said Hans-Walter Rix, the SDSS-V project scientist and director at the Max Planck Institute of Astronomy.

    The project’s fifth generation is building its consortium, but already has support from 18 institutions including the Carnegie Institution for Science, the Max Planck Institute for Astronomy, Max-Planck-Institute for Extraterrestrial Physics, University of Utah, the Israeli Centers of Research Excellence, the Kavli Institute for Astronomy and Astrophysics at Peking University, Harvard University, Ohio State University, Penn State University, Georgia State University, University of Wisconsin, Caltech, New Mexico State University, the Space Telescope Science Institute, University Washington, Vanderbilt University, University of Warwick, Leibniz Institut für Astrophysik Potsdam, KULeuven, Monash University, and Yale University, with additional partnership agreements underway.

    “It’s wonderful to see the scope and breadth of the next phase of this amazing survey take shape,” said Mike Blanton of New York University, the current SDSS Director and chair of the SDSS-V Steering Committee.

    See the full article here.

    See also the blog post and Carnegie Institution full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Sloan Digital Sky Survey has created the most detailed three-dimensional maps of the Universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects. Learn and explore all phases and surveys—past, present, and future—of the SDSS.

    The SDSS began regular survey operations in 2000, after a decade of design and construction. It has progressed through several phases, SDSS-I (2000-2005), SDSS-II (2005-2008), SDSS-III (2008-2014), and SDSS-IV (2014-). Each of these phases has involved multiple surveys with interlocking science goals. The three surveys that comprise SDSS-IV are eBOSS, APOGEE-2, and MaNGA, described at the links below. You can find more about the surveys of SDSS I-III by following the Prior Surveys link.

    Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS- IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is http://www.sdss.org.

    SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

     
  • richardmitnick 2:55 pm on November 16, 2017 Permalink | Reply
    Tags: , , , Carnegie Institution For Science, Carnegie Las Campanas Dupont telescope, ,   

    From Carnegie: “Next Generation Astronomical Survey To Map the Entire Sky” 

    Carnegie Institution for Science
    Carnegie Institution for Science

    November 16, 2017
    No writer credit found

    The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

    2
    This artist’s impression shows a cutaway view of the parts of the Universe that SDSS-V will study. SDSS-V will study millions of stars to create a map of the entire Milky Way. Farther out, the survey will get the most detailed view yet of the largest nearby galaxies like Andromeda in the Northern hemisphere and the Large Magellanic Cloud in the Southern hemisphere. Even farther out, the survey will measure quasars, bright points of light powered by matter falling into giant black holes.Artist’s Conception of SDSS-V by Robin Dienel/Carnegie Institution for Science/SDSS

    The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

    “For more than 20 years, the Sloan Digital Sky Survey has defined excellence in astronomy,” says Paul L. Joskow, President of the Alfred P. Sloan Foundation.

    SDSS Telescope at Apache Point Observatory, NM, USA, Altitude2,788 meters (9,147 ft)

    “SDSS-V continues that august tradition by combining cutting-edge research, international collaboration, technological innovation, and cost-effective grassroots governance. The Sloan Foundation is proud to be a core supporter of SDSS-V.”

    Under Kollmeier’s leadership, the survey’s fifth generation will build off the earlier SDSS incarnations, but will break new ground by pioneering all-sky observations, and by monitoring over time the changes in a million objects.

    “With observations in both hemispheres, no part of the sky will be hidden from SDSS-V,” she said. In the tradition of previous Sloan Surveys, SDSS-V is committed to making its data publicly available in a format that is helpful to a broad range of users, from the youngest students to both amateur and professional astronomers. “SDSS-V is proof that great science knows no borders and stands out for its commitment to diversity,” says Dr. Evan S. Michelson, Program Director at the Sloan Foundation. “It will create unparalleled opportunities for all scientists to participate in answering some of the most-exciting questions in astronomy. We are thrilled to be supporting Juna Kollmeier, her team at the Carnegie Institution for Science, and the entire SDSS Collaboration.”

    “SDSS has long been a great example of hundreds of astronomers of all ages, from many continents, working together on a big project. We’re excited to continue that tradition!” adds Gail Zasowski, a professor at the University of Utah and the SDSS-V Spokesperson.

    The survey operates out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses Carnegie’s du Pont telescope.

    “I am delighted to see SDSS-V move forward and to see Carnegie’s collaboration with the survey expand,” said Carnegie Observatories Director John Mulchaey.

    “Las Campanas Observatory will channel its best resources to enable outstanding science from SDSS-V,” added the observatory’s Director Leopoldo Infante.

    SDSS-V will make use of both optical and infrared spectroscopy, to observe not only in two hemispheres, but also at two wavelengths of light. It will take advantage of the recently installed second APOGEE spectrograph on Carnegie’s du Pont telescope.

    Carnegie Las Campanas Dupont telescope interior[caption id="attachment_37385" align="alignnone" width="513"] Carnegie Las Campanas Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile

    , [/caption]

    Both it and its twin on Apache Point penetrate the dust in our galaxy that confounds optical spectrographs to obtain high-resolution spectra for hundreds of stars at infrared wavelengths. In the optical wavelengths, the survey’s twin BOSS spectrographs can each obtain simultaneous spectra for 500 stars and quasars. What’s more, a newly envisioned pair of Integral Field Unit spectrographs can each obtain nearly 2,000 spectra contiguously across objects in the sky.

    SDSS-V will consist of three projects, each mapping different components of the universe: The Milky Way Mapper, the Black Hole Mapper and the Local Volume Mapper. The first Mapper focuses on the formation of the Milky Way and its stars and planets. The second will study the formation, growth, and ultimate sizes of the supermassive black holes that lurk at the centers of galaxies. The Local Volume Mapper will create the first complete spectroscopic maps of the most-iconic nearby galaxies.

    “These data will enable scientists to study the chemical composition of galaxies and the interactions between stars, gas, and supernova explosions in unprecedented detail,” explained D. Michael Crenshaw, Chair of ARC’s Board of Governors and Georgia State University’s Department of Physics and Astronomy.

    “By surveying the sky rapidly and repeatedly like no spectroscopic survey has done before, SDSS-V will not only vastly improve the data to answer known unknown questions, but it can—perhaps more importantly—venture into astrophysical terra incognita.” said Hans-Walter Rix, the SDSS-V project scientist and director at the Max Planck Institute of Astronomy.

    The project’s fifth generation is building its consortium, but already has support from 18 institutions including the Carnegie Institution for Science, the Max Planck Institute for Astronomy, Max-Planck-Institute for Extraterrestrial Physics, University of Utah, the Israeli Centers of Research Excellence, the Kavli Institute for Astronomy and Astrophysics at Peking University, Harvard University, Ohio State University, Penn State University, Georgia State University, University of Wisconsin, Caltech, New Mexico State University, the Space Telescope Science Institute, University Washington, Vanderbilt University, University of Warwick, Leibniz Institut für Astrophysik Potsdam, KULeuven, Monash University, and Yale University, with additional partnership agreements underway.

    “It’s wonderful to see the scope and breadth of the next phase of this amazing survey take shape,” said Mike Blanton of New York University, the current SDSS Director and chair of the SDSS-V Steering Committee.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
  • richardmitnick 12:45 pm on November 3, 2017 Permalink | Reply
    Tags: , , , Carnegie Institution For Science, , , Giant Magellan Telescope Organization Casts Fifth Mirror, , University of Arizona's Richard F. Caris Mirror Laboratory the facility known for creating the world’s largest mirrors for astronomy   

    From Giant Magellan Telescope via CfA: “Giant Magellan Telescope Organization Casts Fifth Mirror” 

    Giant Magellan Telescope, to be at the Carnegie Institution for Science’s Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high

    Giant Magellan Telescope

    Harvard Smithsonian Center for Astrophysics


    Center For Astrophysics

    1
    The last piece of glass is placed into the mold for GMT mirror 5. No image credit.

    “The Giant Magellan Telescope Organization (GMTO) today announced that it has initiated the casting of the fifth of seven mirrors that will form the heart of the Giant Magellan Telescope (GMT). The mirror is being cast at the University of Arizona’s Richard F. Caris Mirror Laboratory, the facility known for creating the world’s largest mirrors for astronomy. The nearly 25-meter diameter GMT will be sited in the Chilean Andes and will be used to study planets around other stars and to look back to the time when the first galaxies formed. The process of “casting” the giant mirror involves melting nearly 20 tons of glass in a spinning furnace. Once cooled, the glass disk will be polished to its final shape using state-of-the-art technology.

    The GMT will combine the light from seven of these 8.4-meter mirrors to create a telescope with an effective aperture 24.5 meters in diameter (80 feet). With its unique design, the GMT will produce images that are 10 times sharper than those from the Hubble Space Telescope in the infrared region of the spectrum.

    Harvard University and the Smithsonian Institution are both members of the GMT project. Other members include Astronomy Australia Ltd., the Australian National University, the Carnegie Institution for Science, the Korea Astronomy and Space Science Institute, the São Paulo Research Foundation, the University of Texas at Austin, Texas A&M University, the University of Arizona, and the University of Chicago. The GMT primary mirrors are made at the University of Arizona’s (UA) Steward Observatory Mirror Lab in Tucson.

    ‘We are thrilled to be casting the Giant Magellan Telescope’s fifth mirror,’ said Dr. Robert N. Shelton, President of GMTO. ‘The Giant Magellan Telescope project will enable breakthrough discoveries in astronomy, and perhaps entirely new fields of study.’ ”

    Each of GMT’s light-weighted mirrors is a marvel of engineering. The mirrors begin as pristine blocks of custom manufactured low-expansion E6 glass from the Ohara Corporation of Japan. Precisely 17,481 kg of these glass blocks have been placed by hand into a custom-built furnace pre-loaded with a hexagonal mold. At the peak of the lengthy casting process, in which the giant furnace spins at up to five revolutions per minute, the glass is heated to 1165°C (2129°F) for about four hours until it liquefies and flows into the mold. The casting process continues as the glass is carefully cooled for three months while the furnace spins at a slower rate. The glass then undergoes an extended period of shaping and polishing. The result of this high-precision process is a mirror that is polished to an accuracy of one twentieth of a wavelength of light, or less than one thousandth of the width of a human hair.

    “Casting the mirrors for the Giant Magellan Telescope is a huge undertaking, and we are very proud of the UA’s leading role creating this new resource for scientific discovery. The GMT partnership and Caris Mirror Lab are outstanding examples of how we can tackle complex challenges with innovative solutions,” said UA President Robert C. Robbins. “The University of Arizona has such an amazing tradition of excellence in space exploration, and I have been constantly impressed by the things our faculty, staff, and students in astronomy and space sciences can accomplish.”

    With its casting this weekend, the fifth GMT mirror joins three additional GMT mirrors at various stages of production in the Mirror Lab. Polishing of mirror 2’s front surface is well underway; coarse grinding will begin on the front of the third mirror shortly and mirror number 4, the central mirror, will soon be ready for coarse grinding following mirror 3. The first GMT mirror was completed several years ago and was moved to a storage location in Tucson this September, awaiting the next stage of its journey to Chile. The glass for mirror 6 has been delivered to Tucson and mirror seven’s glass is on order from the Ohara factory in Japan.

    In time, the giant mirrors will be transported to GMT’s future home in the Chilean Andes at the Carnegie Institution for Science’s Las Campanas Observatory. This site is known for being one of the best astronomical sites on the planet with its clear, dark skies and stable airflow producing exceptionally sharp images. GMTO has broken ground in Chile and has developed the infrastructure on the site needed to support construction activities.

    “Creating the largest telescope in history is a monumental endeavor, and the GMT will be among the largest privately-funded scientific initiatives to date,” said Taft Armandroff, Professor of Astronomy and Director of the McDonald Observatory at The University of Texas at Austin, and Vice-Chair of the GMTO Corporation Board of Directors. “With this next milestone, and with the leadership, technical, financial and scientific prowess of the members of the GMTO partnership, we continue on the path to the completion of this great observatory.”

    Received via email from CfA.

    See the full article from GMT here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

    The Giant Magellan Telescope will be one of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be operational in about 10 years and will be located in Chile.

    The Giant Magellan Telescope (GMT) is a ground-based extremely large telescope under construction, planned for completion in 2025.
    The location of the telescope is Las Campanas Observatory.

    Organizations

    The project is US-led in partnership with Australia, Brazil, and Korea, with Chile as the host country.[4] The following organizations are members of the consortium developing the telescope.[27]

    Observatories of the Carnegie Institution of Washington
    University of Chicago
    Harvard University
    Smithsonian Astrophysical Observatory
    Texas A&M University
    University of Arizona
    University of Texas at Austin
    Australian National University
    Astronomy Australia Limited
    Korea Astronomy and Space Science Institute (한국천문연구원)
    University of São Paulo

    The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface with an aperture of 24.5 meters, or 80 feet in diameter. The GMT will have a resolving power 10 times greater than the Hubble Space Telescope. The GMT project is the work of a distinguished international consortium of leading universities and science institutions.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: