Tagged: Carnegie Institution For Science Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:59 pm on February 15, 2021 Permalink | Reply
    Tags: "Large proto-cluster of galaxies discovered in the midst of clearing the cosmic fog", , , , Carnegie Institution For Science, , It is the most distant protocluster so far confirmed with spectroscopy., It would be a massive cluster of galaxies similar to the famous Coma cluster in the nearby universe., LAGER consortium (Lyman Alpha Galaxies in the Epoch of Reionization), This research is important because it establishes the conditions of matter in the universe at the time of reionization when galaxies formed., We have found a protocluster observed when the universe was less than 6 percent of its present age near the end of the reionization period.   

    From Carnegie Institution for Science: “Large proto-cluster of galaxies discovered in the midst of clearing the cosmic fog” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    1
    Credit: Carnegie Institution for Science.

    When the universe was about 350 million years old it was dark: there were no stars or galaxies, only neutral gas—mainly hydrogen—the residue of the Big Bang. That foggy period began to clear as atoms clumped together to form the first stars and the first quasars, causing the gas to ionize and high-energy photons to travel freely through space.

    This epoch, called the “reionization” epoch, lasted about 370 million years and the first large structures in the universe appear as groups or clusters of galaxies.

    Epoch of Reionization and first stars. Credit: Caltech.

    An international team of astronomers grouped in the LAGER consortium (Lyman Alpha Galaxies in the Epoch of Reionization), integrated by Leopoldo Infante, Director of Carnegie’s Las Campanas Observatory, and postdoctoral researcher Jorge González-López, discovered the most-distant high-density cluster of galaxies, or protocluster, ever observed. This study, published in Nature, opens new avenues for understanding the evolution of high-density regions in the universe and the galaxies of which they are composed.

    Carnegie Las Campanas Observatory in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena,near the southern end and over 2,500 m (8,200 ft) high.

    “We have found a protocluster observed when the universe was less than 6 percent of its present age, near the end of the reionization period. It is the most distant protocluster so far confirmed with spectroscopy. An estimate of the mass involved suggests that for the present epoch, it would be a massive cluster of galaxies similar to the famous Coma cluster in the nearby universe,” Infante explained.

    The Dark Energy Camera (DECam), mounted on the 4-meter Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory (CTIO), which is a program of NSF’s NOIRLab and is located in Chile, was used to carry out the research.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL.


    NOIRLab NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Timeline of the Inflationary Universe WMAP

    The Dark Energy Survey (DES) is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. DES began searching the Southern skies on August 31, 2013.

    According to Einstein’s theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up. To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called dark energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    DES is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the DES collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.

    Confirmation of the candidate galaxies was then achieved with spectra obtained with the 6.5-meter Magellan telescopes at Las Campanas Observatory, along with careful data reduction and analysis.

    NOIRLab Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.

    The sky conditions at Las Campanas Observatory, Infante emphasized, allow for deep, high-resolution observations of very faint objects.

    “The Magellan telescopes, with their active optics and extremely sensitive spectrographs, allow us to observe galaxies whose light was emitted as early as 750 million years after the Big Bang,” Infante stressed.

    The LAGER survey seeks to understand physics at the time of reionization, but in the context of galaxy formation and evolution.

    “This research is important because it establishes the conditions of matter in the universe at the time of reionization, when galaxies formed. The discovery of the protocluster makes it possible not only to study individual galaxies, but also to understand how clusters and structures form in the universe. At the same time, it reveals the initial conditions for the formation of structures,” Infante added.

    So far, the LAGER study has discovered dozens of galaxies whose light was emitted when the universe was about 750 million years old. To understand the physical conditions of matter in the universe at those ages, researchers need to multiply the number of galaxies observed by a factor of at least 10.

    “We will continue to examine more of these galaxies using the Blanco 4-meter and Magellan 6.5-meter telescopes until we reach the necessary statistical precision. We are confident that in the process we will find many other interesting objects like the protocluster discovered in this work,” concluded the LCO director.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 12:45 pm on February 10, 2021 Permalink | Reply
    Tags: "Can super-Earth interior dynamics set the table for habitability?", Carnegie Institution For Science, Interior dynamics on Earth generate the geodynamo that powers our magnetic field and shields us from dangerous ionizing particles and cosmic rays., Many aspects of a planet’s surface habitability are influenced by what’s happening beneath the planet’s surface., New research led by Carnegie’s Yingwei Fei provides a framework for understanding the interiors of super-Earths—rocky exoplanets between 1.5 and 2 times the size of our home planet., Observations of an exoplanet’s atmospheric composition will be the first way to search for signatures of life beyond Earth., On Earth the interior dynamics and structure of the silicate mantle and metallic core drive plate tectonics., , Sandia’s Z machine   

    From Carnegie Institution for Science: “Can super-Earth interior dynamics set the table for habitability?” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    February 09, 2021

    New research led by Carnegie’s Yingwei Fei provides a framework for understanding the interiors of super-Earths—rocky exoplanets between 1.5 and 2 times the size of our home planet—which is a prerequisite to assess their potential for habitability. Planets of this size are among the most abundant in exoplanetary systems. The paper is published in Nature Communications.

    “Although observations of an exoplanet’s atmospheric composition will be the first way to search for signatures of life beyond Earth, many aspects of a planet’s surface habitability are influenced by what’s happening beneath the planet’s surface, and that’s where Carnegie researcher’s longstanding expertise in the properties of rocky materials under extreme temperatures and pressures comes in,” explained Earth and Planets Laboratory Director Richard Carlson.

    On Earth, the interior dynamics and structure of the silicate mantle and metallic core drive plate tectonics, and generate the geodynamo that powers our magnetic field and shields us from dangerous ionizing particles and cosmic rays. Life as we know it would be impossible without this protection. Similarly, the interior dynamics and structure of super-Earths will shape the surface conditions of the planet.

    With exciting discoveries of a diversity of rocky exoplanets in recent decades, are much-more-massive super-Earths capable of creating conditions that are hospitable for life to arise and thrive?

    Knowledge of what’s occurring beneath a super-Earth’s surface is crucial for determining whether or not a distant world is capable of hosting life. But the extreme conditions of super-Earth-mass planetary interiors challenge researchers’ ability to probe the material properties of the minerals likely to exist there.

    That’s where lab-based mimicry comes in.

    For decades, Carnegie researchers have been leaders at recreating the conditions of planetary interiors by putting small samples of material under immense pressures and high temperatures. But sometimes even these techniques reach their limitations.

    “In order to build models that allow us to understand the interior dynamics and structure of super-Earths, we need to be able to take data from samples that approximate the conditions that would be found there, which could exceed 14 million times atmospheric pressure,” Fei explained. “However, we kept running up against limitations when it came to creating these conditions in the lab.”

    2
    An illustration showing how a combination of static high-pressure synthesis techniques and dynamic methods enabled the researchers to probe the magnesium silicate bridgmanite, believed to be predominate in the mantles of rocky planets, under extreme conditions mimicking the interior of a super-Earth. Credit: Yingwei Fei. Sandia Z Machine photograph by Randy Montoya, Credit: Sandia National Laboratories.

    A breakthrough occurred when the team—including Carnegie’s Asmaa Boujibar and Peter Driscoll, along with Christopher Seagle, Joshua Townsend, Chad McCoy, Luke Shulenburger, and Michael Furnish of Sandia National Laboratories—was granted access to the world’s most powerful, magnetically-driven pulsed power machine (Sandia’s Z Pulsed Power Facility) to directly shock a high-density sample of bridgmanite—a high-pressure magnesium silicate that is believed to be predominant in the mantles of rocky planets—in order to expose it to the extreme conditions relevant to the interior of super-Earths.

    Sandia Z machine.

    A series of hypervelocity shockwave experiments on representative super-Earth mantle material provided density and melting temperature measurements that will be fundamental for interpreting the observed masses and radii of super-Earths.

    The researchers found that under pressures representative of super-Earth interiors, bridgmanite has a very high melting point, which would have important implications for interior dynamics. Under certain thermal evolutionary scenarios, they say, massive rocky planets might have a thermally driven geodynamo early in their evolution, then lose it for billions of years when cooling slows down. A sustained geodynamo could eventually be re-started by the movement of lighter elements through inner core crystallization.

    “The ability to make these measurements is crucial to developing reliable models of the internal structure of super-Earths up to eight times our planet’s mass,” Fei added. “These results will make a profound impact on our ability to interpret observational data.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 6:14 pm on February 1, 2021 Permalink | Reply
    Tags: "Dwarf galaxy’s 'suburban' sprawl confirms ancient galaxies formed in dark matter halos", A dwarf galaxy like Tucana II., , , , Carnegie Institution For Science,   

    From Carnegie Institution for Science: “Dwarf galaxy’s ‘suburban’ sprawl confirms ancient galaxies formed in dark matter halos” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    February 01, 2021

    1
    A model of a dwarf galaxy like Tucana II showing the expected dark matter as the shaded background, and the stars in the galaxy as little bright dots. Before now, astronomers have only been able to see the denser clump of stars in the galaxy’s center. But thanks to the technique developed by MIT’s Anirudh Chiti, the researchers were able to detect the spray of stars on the edge of the simulation—the farthest out that they could expect to directly measure dark matter. Image from research published in the MNRAS.

    An MIT-led team of astronomers that includes Carnegie’s Joshua Simon, Lina Necib, and Alexander Ji has discovered an unexpected outer suburb of stars on the distant fringes of the dwarf galaxy Tucana II. Their detection, published by Nature Astronomy, confirms that the cosmos’ oldest galaxies formed inside massive clumps of dark matter—what astronomers refer to as a “dark matter halo.”

    Our own Milky Way is surrounded by a cadre of orbiting dwarf galaxies—relics of the ancient universe. A new technique developed by lead author Anirudh Chiti of MIT extended the astronomers’ reach and revealed never-before-seen stars on the outskirts of Tucana II. Their discovery opens up new questions about the origin of these galactic outskirts.

    The stars of Tucana II were already among the most primitive known.

    “Stars manufacture elements throughout their lifetimes, which they spread into the surrounding gas when they explode as powerful supernovae,” explained Simon. “These raw materials are then incorporated into new stars, making each successive stellar generation more chemically complex than its predecessors. As a result, we know that stars containing very small amounts of most elements are incredibly old.”

    The newly discovered stars on Tucana II’s fringes are even more ancient than the ones close to its center—a phenomenon never previously observed in such a small dwarf galaxy. In larger galaxies, this type of distribution can be the remnant of a collision between two galaxies made up of stars of different ages. If a galactic merger is the source of this arrangement, these would be the smallest galaxies yet known to merge.

    “We may be seeing the first signature of galactic cannibalism,” said MIT’s Anna Frebel in a statement. “One galaxy may have eaten one of its slightly smaller, more primitive neighbors, that then spilled all its stars into the outskirts.”

    The spatial distribution of Tucana II’s stars is highly unusual for a dwarf galaxy, which are usually denser. The motions of the fringe stars show that all of them are gravitationally bound to the galaxy’s center, allowing researchers to make a much better estimate of the galaxy’s total mass than would usually be possible.

    “The mass of all the stars in Tucana II is considerably less than the total mass of the galaxy, which is predominantly supplied by dark matter,” Ji explained. “Dark matter comprises about a quarter of the universe’s mass and its gravity holds galaxies together.”

    A galaxy’s dark matter extends far beyond its center, where most of its stars are located. This means that ordinarily, astronomers measure the mass of a galaxy’s center and extrapolate to estimate its total mass. Discovering these stars on the outer edges of Tucana II meant that less extrapolation was necessary.

    The technique Chiti developed will hopefully be able to identify other dwarf galaxies with sprawling suburbs of stars on their fringes.

    See the full article here .

    See the original MIT article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 12:34 pm on December 24, 2020 Permalink | Reply
    Tags: "The 'workspace of the future'- Carnegie’s VizLab will unlock the secrets of the universe", , , , Carnegie Institution For Science,   

    From Carnegie Institution for Science: “The ‘workspace of the future’- Carnegie’s VizLab will unlock the secrets of the universe” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    November 18, 2020 [Just now in social media]

    In a refurbished Southern California garage, Carnegie astrophysicists are creating the virtual reality-enabled scientific workspace of the future where they will unlock the mysteries of the cosmos.

    Imagine standing in front of a wave of data and probing the mysteries of the universe’s most-ancient galaxies side-by-side with swirling, colorful simulations of galaxy formation—seeing what aligns with expectations and what needs further interrogation. A portal to fake universes may sound like science fiction, but it is now a reality at the Carnegie Observatories.

    The campus has just undertaken its new experiential installation for visualizing data—a “VizLab”—which will enable bleeding-edge discoveries that reveal how our universe works.

    1
    CTAC Director Juna Kollmeier standing behind the framework of the VizLab while it was under construction in a former garage at the Carnegie Observatories’ campus. Kollmeier worked directly with Mechdyne to bring her vision for a virtual reality enabled workspace to fruition. Credit: Juna Kollmeier.

    “Science is collaborative and multi-disciplinary,” said Juna Kollmeier, Director of the Carnegie Theoretical Astrophysics Center. “But our workspaces are often solitary and siloed. I envisioned a space where teams could work together as they synthesize an unprecedented amount of data. 21st century data require 21st century laboratories.”

    The Observatories’ former garage is now a sleek, modern space filled with glass, metal, polished concrete, and custom-designed, first-of-its-kind technology. Custom designed by Mechdyne Corporation, the lab includes an immersive visualization display system with 35 2D- and 3D-capable flat panels in the shape of a cresting wave—a useful configuration and an artful representation of the tsunami of data rushing into the astronomical field.

    “This new ultra-high-resolution virtual reality lab will give Juna and her team an advantage in harnessing massive amounts of both simulated and observed data,” said Carnegie President Eric D. Isaacs. “The VizLab will be an extraordinary facility that will enable them to lead the next great leap forward in astronomy.”

    Added Kollmeier: “I wanted to capture the collaborating that is often done together in front of blackboards, but with the capability of interrogating huge simulations and datasets like a Holodeck on Star Trek. Maybe we’ll also fight the Borg. There are lots of possibilities.”

    “It has been an honor to work with Dr. Kollmeier and the brilliant team at the Carnegie Observatories,” said Chad Kickbush, General Manager of Mechdyne’s AV and Virtual Reality Business Unit. “We knew that we could deliver the pixel density needed for these detailed datasets to be explored, but it was only through a very collaborative process that we designed this unique configuration that allows the user to look up into immensity of the universe. That is our goal at Mechdyne, to enable discovery by removing obstacles to insight and understanding.”

    2
    Not just for analyzing data and simulations, the VizLab can also allow for “tours” of space imagery during outreach activities. It is shown here under construction at Mechdyne’s facility in Iowa. Credit: Tyler O’Donnell, Mechdyne.

    “Mechdyne has been an incredible partner to Juna and her team from this project’s conception,” said Observatories Director John Mulchaey. “Their collaborative approach at every level enabled Carnegie to make our vision for this groundbreaking apparatus a reality.”

    More data is available now than at any time in history, thanks to advances in instrumentation and to the next generation of astronomical surveys, including the Sloan Digital Sky Survey’s fifth generation, of which Kollmeier is the director. But astronomy is more than just cataloging of celestial objects and events. All of this documentation needs to be interrogated and interpreted in order to build a new understanding of the clockwork governing our universe.

    “As the field advances, our VizLab will also provide an excellent training ground for our postdocs and graduate students, who will go on to join a network of Carnegie alumni driving discoveries at institutions around the world,” said Anthony Piro, a senior member of CTAC.

    The VizLab grows directly from the computational infrastructure that Carnegie theorists have been building over the past decade at the Observatories, thanks to the generous support of NASA and The Ahmanson Foundation, the latter of which was also a major funder of the Viz Lab.

    The VizLab’s potential is so exciting that it would be a wasted opportunity not to let the public get a peek at its wonders, too. Early next year, the theory group will throw a virtual launch party to introduce Carnegie fans and friends to their breakthrough machine.

    “The VizLab will allow us to bring the telescopes of Carnegie’s Las Campanas Observatory [below] to Pasadena,” concluded Andrew Benson, another CTAC senior member. “In a normal year, thousands of visitors pass through the Observatories’ halls for school visits, group tours, and our annual open house event. Now we can bend the rules of time and space, allowing them to visit the farthest reaches of the cosmos.”


    Carnegie Observatories VizLab Construction.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 12:11 pm on December 24, 2020 Permalink | Reply
    Tags: , , , , , Carnegie Institution For Science, , , SDSS Black Hole Mapper, SDSS Local Volume Mapper, SDSS Milky Way Mapper, SDSS-V operates out of Apache Point Observatory in New Mexico- home of the survey’s original 2.5-meter telescope- and Carnegie’s Las Campanas Observatory’s 2.5-meter du Pont telescope., SDSS-V will continue to transform astronomy by building on a 20-year legacy of path-breaking science., The Sloan Digital Sky Survey’s fifth generation collected its very first observations of the cosmos at 1:47 a.m. MDT on October 24 2020.   

    From Carnegie Institution for Science: “Next-gen astronomical survey makes its first observations toward a new understanding of the cosmos” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    November 02, 2020 [Just now in social media]

    The Sloan Digital Sky Survey’s fifth generation collected its very first observations of the cosmos at 1:47 a.m. MDT on October 24, 2020. This groundbreaking all-sky survey will bolster our understanding of the formation and evolution of galaxies—including our own Milky Way—and the supermassive black holes that lurk at their centers.

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).

    The newly-launched SDSS-V will continue the path-breaking tradition set by the survey’s previous generations, with a focus on the ever-changing night sky and the physical processes that drive these changes, from flickers and flares of supermassive black holes to the back-and-forth shifts of stars being orbited by distant worlds.

    2
    SDSS-V: Pioneering Panoptic Spectroscopy.Credit: Juna A. Kollmeier and Hans-Walter Rix.

    SDSS-V will provide the spectroscopic backbone needed to achieve the full science potential of satellites like NASA’s TESS, ESA’s Gaia, and the latest all-sky X-ray mission, eROSITA.

    NASA/MIT TESS replaced Kepler in search for exoplanets.

    ESA (EU)/GAIA satellite .

    eRosita DLR MPG, on Russian German space telescope The Russian-German space probe Spektrum-Roentgen-Gamma (SRG) .


    After about ten years of development and integration the eROSITA X-ray telescope is complete: with 7 mirror modules and 54 mirror shells each combined with 7 specially built X-ray cameras. You see the telescope here after final integration at MPE, shortly before transport to further testing. Credit: MPE

    “In a year when humanity has been challenged across the globe, I am so proud of the worldwide SDSS team for demonstrating—every day—the very best of human creativity, ingenuity, improvisation, and resilience. It has been a challenging period for the team, but I’m happy to say that the pandemic may have slowed us, but it has not stopped us,” said SDSS-V Director Juna Kollmeier.

    As an international consortium, SDSS has always relied heavily on phone and digital communication. But adapting to exclusively virtual communication tactics was a challenge, as was tracking global supply chains and laboratory availability at various university partners while they shifted in and out of lockdown during the final ramp-up to the survey’s start. Particularly inspiring were the project’s expert observing staff, who worked in even-greater-than-usual isolation to shut down, and then reopen, operations at the survey’s mountain-top observatories.

    Funded primarily by member institutions, along with grants from the Alfred P. Sloan Foundation, the U.S. National Science Foundation, and the Heising-Simons Foundation, SDSS-V will focus on three primary areas of investigation, each exploring different aspects of the cosmos using different spectroscopic tools. Together these three project pillars—called “Mappers”—will observe more than six million objects in the sky, and monitor changes in more than a million of those objects over time.

    The survey’s Local Volume Mapper will enhance our understanding of galaxy formation and evolution by probing the interactions between the stars that make up galaxies and the interstellar gas and dust that is dispersed between them.

    4
    SDSS Local Volume Mapper.

    The Milky Way Mapper will reveal the physics of stars in our Milky Way, the diverse architectures of its star and planetary systems, and the chemical enrichment of our galaxy since the early universe.

    5
    SDSS Milky Way Mapper.

    The Black Hole Mapper will measure masses and growth over cosmic time of the supermassive black holes that reside in the hearts of galaxies as well as the smaller black holes left behind when stars die.

    6
    SDSS Black Hole Mapper.

    “We are thrilled to start taking the first data for two of our three Mappers,” added SDSS-V Spokesperson Gail Zasowski of the University of Utah. “These early observations are already important for a wide range of science goals. Even these first targets cover goals from mapping the inner regions of supermassive black holes and searching for exotic multiple-black hole systems, to studying nearby stars and their dead cores, to tracing the chemistry of potential planet-hosting stars across the Milky Way.”

    “SDSS-V will continue to transform astronomy by building on a 20-year legacy of path-breaking science, shedding light on the most fundamental questions about the origins and nature of the universe. It demonstrates all the hallmark characteristics that have made SDSS so successful in the past: open sharing of data, inclusion of diverse scientists, and collaboration across numerous institutions,” said Evan Michelson, program director at the Sloan Foundation. “We are so pleased to support Juna Kollmeier and the entire SDSS team, and we are excited for this next phase of discovery.”

    7
    The Sloan Digital Sky Survey’s fifth generation made its first observations earlier this month. This image shows a sampling of data from those first SDSS-V data. The central sky image is a single field of SDSS-V observations. The purple circle indicates the telescope’s field-of-view on the sky, with the full Moon shown as a size comparison. SDSS-V simultaneously observes 500 targets at a time within a circle of this size. The left panel shows the optical-light spectrum of a quasar–a supermassive black hole at the center of a distant galaxy, which is surrounded by a disk of hot, glowing gas. The purple blob is an SDSS image of the light from this disk, which in this dataset spans about 1 arcsecond on the sky, or the width of a human hair as seen from about 21 meters (63 feet) away. The right panel shows the image and spectrum of a white dwarf –the left-behind core of a low-mass star (like the Sun) after the end of its life. Image Credit: Hector Ibarra Medel, Jon Trump, Yue Shen, Gail Zasowski, and the SDSS-V Collaboration. Central background image: unWISE / NASA/JPL-Caltech / D.Lang (Perimeter Institute).

    SDSS-V will operate out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses the 2.5-meter du Pont telescope [below].

    “SDSS V is one of the most important astronomical projects of the decade. It will set new standards not only in astrophysics but also in robotics and big data,” said the observatory’s Director Leopoldo Infante. “Consequently, to ensure its success, the Las Campanas Observatory is prepared to carry out the project with all the human and technical resources available on the mountain.”

    SDSS-V’s first observations were gathered in New Mexico with existing SDSS instruments, as a necessary change of plans due to the pandemic. As laboratories and workshops around the world navigate safe reopening, SDSS-V’s own suite of new innovative hardware is on the horizon—in particular, systems of automated robots to aim the fiber optic cables used to collect the light from the night sky. These will be installed at both observatories over the next year. New spectrographs and telescopes are also being constructed to enable the Local Volume Mapper observations.

    “Carnegie has enabled SDSS to expand its reach to the Southern Hemisphere. I’m so pleased to see our role in this foundational effort expand with this next generation,” concluded Carnegie Observatories Director John Mulchaey.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 2:07 pm on November 2, 2020 Permalink | Reply
    Tags: , , , , , Black Hole Mapper (BHM), Carnegie Institution For Science, , , Milky Way Mapper (MWM), MWM will make use of both the BOSS and APOGEE spectrographs in both hemispheres.   

    From Carnegie Institution for Science: “Next-gen astronomical survey makes its first observations toward a new understanding of the cosmos” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    The Sloan Digital Sky Survey’s fifth generation collected its very first observations of the cosmos at 1:47 a.m. MDT on October 24, 2020. This groundbreaking all-sky survey will bolster our understanding of the formation and evolution of galaxies—including our own Milky Way—and the supermassive black holes that lurk at their centers.

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).

    1
    The Sloan Digital Sky Survey’s fifth generation made its first observations earlier this month. This image shows a sampling of data from those first SDSS-V data. The central sky image is a single field of SDSS-V observations. The purple circle indicates the telescope’s field-of-view on the sky, with the full Moon shown as a size comparison. SDSS-V simultaneously observes 500 targets at a time within a circle of this size. The left panel shows the optical-light spectrum of a quasar–a supermassive black hole at the center of a distant galaxy, which is surrounded by a disk of hot, glowing gas. The purple blob is an SDSS image of the light from this disk, which in this dataset spans about 1 arcsecond on the sky, or the width of a human hair as seen from about 21 meters (63 feet) away. The right panel shows the image and spectrum of a white dwarf –the left-behind core of a low-mass star (like the sun) after the end of its life. Credit: Hector Ibarra Medel, Jon Trump, Yue Shen, Gail Zasowski, and the SDSS-V Collaboration. Central background image: unWISE / NASA/JPL-Caltech / D.Lang (Perimeter Institute).

    The newly-launched SDSS-V will continue the path-breaking tradition set by the survey’s previous generations, with a focus on the ever-changing night sky and the physical processes that drive these changes, from flickers and flares of supermassive black holes to the back-and-forth shifts of stars being orbited by distant worlds. SDSS-V will provide the spectroscopic backbone needed to achieve the full science potential of satellites like NASA’s TESS, ESA’s Gaia, and the latest all-sky X-ray mission, eROSITA.

    NASA/MIT TESS replaced Kepler in search for exoplanets.

    ESA (EU)/GAIA satellite .

    eRosita DLR MPG, on Russian German space telescope The Russian-German space probe Spektrum-Roentgen-Gamma (SRG) .

    “In a year when humanity has been challenged across the globe, I am so proud of the worldwide SDSS team for demonstrating—every day—the very best of human creativity, ingenuity, improvisation, and resilience. It has been a challenging period for the team, but I’m happy to say that the pandemic may have slowed us, but it has not stopped us” said SDSS-V Director Juna Kollmeier.

    As an international consortium, SDSS has always relied heavily on phone and digital communication. But adapting to exclusively virtual communication tactics was a challenge, as was tracking global supply chains and laboratory availability at various university partners while they shifted in and out of lockdown during the final ramp-up to the survey’s start. Particularly inspiring were the project’s expert observing staff, who worked in even-greater-than-usual isolation to shut down, and then reopen, operations at the survey’s mountain-top observatories.

    Funded primarily by member institutions, along with grants from the Alfred P. Sloan Foundation, the U.S. National Science Foundation, and the Heising-Simons Foundation, SDSS-V will focus on three primary areas of investigation, each exploring different aspects of the cosmos using different spectroscopic tools. Together these three project pillars—called “Mappers”—will observe more than six million objects in the sky, and monitor changes in more than a million of those objects over time.

    The survey’s Local Volume Mapper will enhance our understanding of galaxy formation and evolution by probing the interactions between the stars that make up galaxies and the interstellar gas and dust that is dispersed between them.

    3
    Broad-band (optical) and narrow-band ([O III], H, [S II]) imaging of the LMC (Smith et al. 2000). The left-hand column demonstrates sampling at a spatial resolution of 100 pc, typically achieved by the best IFU data available today for external galaxies. The resolution increases to the right, ending with the ~1 pc resolution that LVM will achieve in the Milky Way. Note the qualitative change in appearance around 25 pc, when networks of shocks and ionization fronts become visible and then resolved at less than 10 pc.

    The Local Volume Mapper (LVM) is an optical, integral-field spectroscopic survey that will target the Milky Way, Small and Large Magellanic Clouds, and other Local Volume galaxies. LVM will make use of new small telescopes and newly built spectrographs that cover a wavelength range of 3600-10000 Å, with spectral resolution R~4000 (based on the DESI spectrograph design). It will collect roughly 20 million contiguous spectra over 2,500 square degrees of sky.

    The Milky Way Mapper will reveal the physics of stars in our Milky Way, the diverse architectures of its star and planetary systems, and the chemical enrichment of our galaxy since the early universe.

    4
    The Milky Way Mapper (MWM) is a multi-object spectroscopic survey to obtain near-infrared and/or optical spectra of more than 4 million stars throughout the Milky Way and Local Group. The stellar parameters and elemental abundances derived from these data will enable a unique global map of the Milky Way’s fossil records that survive in its stars and interstellar material. The entire hierarchy of structure and chemo-dynamical patterns will be sampled throughout the disk- and bulge-dominated regions of the Milky Way. These data will allow us to quantitatively test models of the most uncertain galaxy formation physics (e.g., Rix & Bovy 2013; Bland-Hawthorn & Gerhard 2016).

    MWM will make use of both the BOSS and APOGEE spectrographs in both hemispheres, taking advantage of their different spectral resolutions (R~2,000 and R~22,500) and wavelength sensitivities (3600-10,400 Å and 1.51–1.70 μm) to explore different types of stars.

    The Black Hole Mapper will measure masses and growth over cosmic time of the supermassive black holes that reside in the hearts of galaxies as well as the smaller black holes left behind when stars die.

    4
    Black Hole Mapper

    The Black Hole Mapper (BHM) in SDSS-V is a multi-object spectroscopic survey that will emphasize optical spectra (often also with multiple epochs of spectrosopy) for well more than 300,000 quasars to jointly understand the masses, accretion physics, and growth and evolution over cosmic time of supermassive black holes. BHM will make use of the existing BOSS spectrographs, which provide wide optical spectral coverage with a spectral resolution of R~2000. BHM will operate on the 2.5m telescopes at both Apache Point and Las Campanas Observatories.

    Schematic overview of the innermost regions around a quasar’s central supermassive black hole, showing the X-ray corona, accretion disk, and broad line region. BHM will adopt several parallel approaches to explore the physics of supermassive black holes, including reverberation mapping to measure BH masses (top left; image from Pei et al. 2017), eROSITA follow-up (top center) for cosmic demographics and evolution, and multi-epoch spectroscopy to understand dynamics and physics of accretion and outflows (top right; image from Liu et al. 2014).

    “We are thrilled to start taking the first data for two of our three Mappers,” added SDSS-V Spokesperson Gail Zasowski of the University of Utah. “These early observations are already important for a wide range of science goals. Even these first targets cover goals from mapping the inner regions of supermassive black holes and searching for exotic multiple-black hole systems, to studying nearby stars and their dead cores, to tracing the chemistry of potential planet-hosting stars across the Milky Way.”

    “SDSS-V will continue to transform astronomy by building on a 20-year legacy of path-breaking science, shedding light on the most fundamental questions about the origins and nature of the universe. It demonstrates all the hallmark characteristics that have made SDSS so successful in the past: open sharing of data, inclusion of diverse scientists, and collaboration across numerous institutions,” said Evan Michelson, program director at the Sloan Foundation. “We are so pleased to support Juna Kollmeier and the entire SDSS team, and we are excited for this next phase of discovery.”

    SDSS-V will operate out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses the 2.5-meter du Pont telescope.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Las Campanas Observatory in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena,near the southern end and over 2,500 m (8,200 ft) high

    “SDSS V is one of the most important astronomical projects of the decade. It will set new standards not only in astrophysics but also in robotics and big data,” said the observatory’s Director Leopoldo Infante. “Consequently, to ensure its success, the Las Campanas Observatory is prepared to carry out the project with all the human and technical resources available on the mountain.”

    SDSS-V’s first observations were gathered in New Mexico with existing SDSS instruments, as a necessary change of plans due to the pandemic. As laboratories and workshops around the world navigate safe reopening, SDSS-V’s own suite of new innovative hardware is on the horizon—in particular, systems of automated robots to aim the fiber optic cables used to collect the light from the night sky. These will be installed at both observatories over the next year. New spectrographs and telescopes are also being constructed to enable the Local Volume Mapper observations.

    “Carnegie has enabled SDSS to expand its reach to the Southern Hemisphere. I’m so pleased to see our role in this foundational effort expand with this next generation,” concluded Carnegie Observatories Director John Mulchaey.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 12:24 pm on October 29, 2020 Permalink | Reply
    Tags: "Where were Jupiter and Saturn born?", , Carnegie Institution For Science,   

    From Carnegie Institution for Science: “Where were Jupiter and Saturn born?” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    October 29, 2020

    New work led by Carnegie’s Matt Clement reveals the likely original locations of Saturn and Jupiter. These findings refine our understanding of the forces that determined our Solar System’s unusual architecture, including the ejection of an additional planet between Saturn and Uranus, ensuring that only small, rocky planets, like Earth, formed inward of Jupiter.

    1
    New work led by Carnegie’s Matt Clement reveals the likely original locations of Saturn and Jupiter. Credit: NASA/JPL-Caltech/Space Science Institute.

    2
    Jupiter in its infancy was thought to orbit the Sun three times for every two orbits that Saturn completed. But this arrangement is not able to satisfactorily explain the configuration of the giant planets that we see today. Matt Clement and his co-authors showed that a ratio of two Jupiter orbits to one Saturnian orbit more consistently produced results that look like our familiar planetary architecture. Credit: NASA.

    In its youth, our Sun was surrounded by a rotating disk of gas and dust from which the planets were born. The orbits of early formed planets were thought to be initially close-packed and circular, but gravitational interactions between the larger objects perturbed the arrangement and caused the baby giant planets to rapidly reshuffle, creating the configuration we see today. “We now know that there are thousands of planetary systems in our Milky Way galaxy alone,” Clement said. “But it turns out that the arrangement of planets in our own Solar System is highly unusual, so we are using models to reverse engineer and replicate its formative processes. This is a bit like trying to figure out what happened in a car crash after the fact—how fast were the cars going, in what directions, and so on.”

    Clement and his co-authors—Carnegie’s John Chambers, Sean Raymond of the University of Bordeaux (FR), Nathan Kaib of University of Oklahoma, Rogerio Deienno of the Southwest Research Institute, and André Izidoro of Rice University—conducted 6,000 simulations of our Solar System’s evolution, revealing an unexpected detail about Jupiter and Saturn’s original relationship.

    Jupiter in its infancy was thought to orbit the Sun three times for every two orbits that Saturn completed. But this arrangement is not able to satisfactorily explain the configuration of the giant planets that we see today. The team’s models showed that a ratio of two Jupiter orbits to one Saturnian orbit more consistently produced results that look like our familiar planetary architecture.

    “This indicates that while our Solar System is a bit of an oddball, it wasn’t always the case,” explained Clement, who is presenting the team’s work [Icarus paper below] at the American Astronomical Society’s Division for Planetary Sciences virtual meeting today. “What’s more, now that we’ve established the effectiveness of this model, we can use it to help us look at the formation of the terrestrial planets, including our own, and to perhaps inform our ability to look for similar systems elsewhere that could have the potential to host life.”

    The model also showed that the positions of Uranus and Neptune were shaped by the mass of the Kuiper belt—an icy region on the Solar System’s edges composed of dwarf planets and planetoids of which Pluto is the largest member—and by an ice giant planet that was kicked out in the Solar System’s infancy.

    The majority of computing for this project was performed at the OU Supercomputing Center for Education and Research at the University of Oklahoma. Some of the computing for this project was performed on Carnegie’s Memex cluster. The authors thank Carnegie Institution for Science and the Carnegie Sci-Comp Committee for providing computational resources and support that contributed to these research results. The authors acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing HPC, visualization, database, or grid resources that have contributed to the research results reported within this paper.

    Science paper:
    Born eccentric:Constraints on Jupiter and Saturn’s pre-instability orbits
    Icarus

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 10:35 am on September 15, 2020 Permalink | Reply
    Tags: "Meteorite strikes may create unexpected form of silica", , , Carnegie Institution For Science, , ,   

    From Carnegie Institution for Science: “Meteorite strikes may create unexpected form of silica” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    August 26, 2020

    1
    A photograph of a meteorite strike site in Coconino County, Arizona. New work from Carnegie’s Sally June Tracy and collaborators Stefan Turneaure of Washington State University and Thomas Duffy of Princeton University reveals an unexpected new form of silica created in the type of extreme conditions caused by an impact. Image is courtesy of Shutterstock.

    2
    X-ray diffraction images showing the new form of silica created by sending an intense shock wave through a sample of quartz using a specialized gas gun. When the x-rays bounce off repeating planes of a crystalline structure, they scatter. This creates a distinctive ring pattern. Each ring is associated with a different plane and together this data can tell researchers about the material’s atomic-level architecture. Image is courtesy of Sally June Tracy, Stefan Turneaure, and Thomas Duffy.

    When a meteorite hurtles through the atmosphere and crashes to Earth, how does its violent impact alter the minerals found at the landing site? What can the short-lived chemical phases created by these extreme impacts teach scientists about the minerals existing at the high-temperature and pressure conditions found deep inside the planet?

    New work led by Carnegie’s Sally June Tracy examined the crystal structure of the silica mineral quartz under shock compression and is challenging longstanding assumptions about how this ubiquitous material behaves under such intense conditions. The results are published in Science Advances.

    “Quartz is one of the most abundant minerals in Earth’s crust, found in a multitude of different rock types,” Tracy explained. “In the lab, we can mimic a meteorite impact and see what happens.”

    Tracy and her colleagues—Washington State University’s (WSU) Stefan Turneaure and Princeton University’s Thomas Duffy, a former Carnegie Fellow—used specialized impact facilities to accelerate projectiles into quartz samples at extremely high speeds—several times faster than a bullet fired from a rifle. Special x-ray instruments were used to discern the crystal structure of the material that forms less than one-millionth of a second after impact. Experiments were carried out at the Dynamic Compression Sector (DCS), which is operated by WSU and located at the Advanced Photon Source, Argonne National Laboratory.

    Quartz is made up of one silicon atom and two oxygen atoms arranged in a tetrahedral lattice structure. Because these elements are also common in the silicate-rich mantle of the Earth, discovering the changes quartz undergoes at high-pressure and -temperature conditions, like those found in the Earth’s interior, could also reveal details about the planet’s geologic history.

    When a material is subjected to extreme pressures and temperatures, its internal atomic structure can be re-shaped, causing its properties to shift. For example, both graphite and diamond are made from carbon. But graphite, which forms at low pressure, is soft and opaque, and diamond, which forms at high pressure, is super-hard and transparent. The different arrangements of carbon atoms determine their structures and their properties, and that in turn affects how we engage with and use them.

    Despite decades of research, there has been a long-standing debate in the scientific community about what form silica would take during an impact event, or under dynamic compression conditions such as those deployed by Tracy and her collaborators. Under shock loading, silica is often assumed to transform to a dense crystalline form known as stishovite—a structure believed to exist in the deep Earth. Others have argued that because of the fast timescale of the shock the material will instead adopt a dense, glassy structure.

    Tracy and her team were able to demonstrate that counter to expectations, when subjected to a dynamic shock of greater than 300,000 times normal atmospheric pressure, quartz undergoes a transition to a novel disordered crystalline phase, whose structure is intermediate between fully crystalline stishovite and a fully disordered glass. However, the new structure cannot last once the burst of intense pressure has subsided.

    “Dynamic compression experiments allowed us to put this longstanding debate to bed,” Tracy concluded. “What’s more, impact events are an important part of understanding planetary formation and evolution and continued investigations can reveal new information about these processes.”

    This work is based on experiments performed at the Dynamic Compression Sector, operated by WSU under a DOE/ NNSA award. This research used the resources of the Advanced Photon Source, a Department of Energy Office of Science User Facility operated for the DOE Office of Science by the Argonne National Laboratory.


    ANL Advanced Photon Source.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 9:51 am on September 15, 2020 Permalink | Reply
    Tags: , A star’s makeup mirrors that of the cloud of galactic gas from which it is born., , , , Carnegie Institution For Science, , , Phoenix constellation stream, The researchers proposed that these no-longer-with-us globular clusters were steadily depleted by the Milky Way’s gravitational forces which tore them to pieces.   

    From Carnegie Institution for Science: “‘Stellar archaeology’ reveals remnant of ancient globular cluster that’s ‘the last of its kind'” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    July 29, 2020

    A team of astronomers including Carnegie’s Ting Li and Alexander Ji discovered a stellar stream composed of the remnants of an ancient globular cluster that was torn apart by the Milky Way’s gravity 2 billion years ago, when Earth’s most-complex lifeforms were single-celled organisms. This surprising finding, published in Nature, upends conventional wisdom about how these celestial objects form.

    1
    Above image: An artist’s impression of the thin stream of stars torn from the Phoenix globular cluster, wrapping around our Milky Way (left). For the study, the astronomers targeted bright Red Giant stars, to measure the chemical composition of the disrupted Phoenix globular cluster (right). Illustration is courtesy of James Josephides (Swinburne Astronomy Productions) and the S5 Collaboration.

    Imagine a sphere made up of a million stars bound by gravity and orbiting a galactic core. That’s a globular cluster. The Milky Way is home to about 150 of them, which form a tenuous halo that envelops our galaxy.

    But the globular cluster that spawned this newly discovered stellar stream had a lifecycle that was very different from the globular clusters we see today.

    “This is stellar archaeology, uncovering the remnants of something ancient, swept along in a more-recent phenomenon,” explained Ji.

    Using the Anglo Australian Telescope, the stream was revealed by S5, the Southern Stellar Stream Spectroscopic Survey Collaboration. Led by Li, the initiative aims to map the motion and chemistry of stellar streams in the Southern Hemisphere.

    Anglo Australian Telescope Interior.


    AAO Anglo Australian Telescope, at Siding Spring Observatory, near Coonabarabran, New South Wales, Australia, at an altitude of 1,165 m (3,822 ft).

    In this study, the collaborative focused on a stream of stars in the Phoenix constellation.

    “The globular cluster remnants that make up the Phoenix Stream were disrupted many years ago, but luckily retain the memory of its formation in the very early universe, which we can read from the chemical composition of its stars,” said Li

    The team measured the abundances of heavier elements—what astronomers call a star’s metallicity.

    A star’s makeup mirrors that of the cloud of galactic gas from which it is born. The more prior generations of stars have seeded this material with heavy elements that they produced during their lifetimes, the more enriched, or metallic, the stars are said to be. Therefore, a very ancient, primitive star, will have almost no heavy elements.

    “We were really surprised to find that the Phoenix Stream is distinctly different to all of the other globular clusters in the Milky Way,” explained lead author Zhen Wan of the University of Sydney. “Even though the cluster was destroyed billions of years ago, we can still tell it formed in the early universe.”

    Because other known globular clusters are enriched by the presence of heavy elements forged by stellar earlier generations, it was theorized that there was a minimum abundance of heavier elements required for a globular cluster to form.

    But the Phoenix Stream progenitor is well below this predicted minimum metallicity, posing a significant problem for previous ideas about how globular clusters are born.

    “One possible explanation is that the Phoenix Stream represents the last of its kind, the remnant of a population of globular clusters that was born in radically different environments to those we see today,” Li said.

    The researchers proposed that these no-longer-with-us globular clusters were steadily depleted by the Milky Way’s gravitational forces, which tore them to pieces. The remnants of other ancient globular clusters may also live on as faint streams that can still be discovered before they dissipate over time.

    “There is plenty of theoretical work left to do, and there are now many new questions for us to explore about how galaxies and globular clusters form,” said co-author Geraint Lewis, also of the University of Sydney.

    This study was part of the Southern Stellar Streams Spectroscopic Survey, or just S5 for short, an international collaboration using the 2dF/AAOmega instrument on the Anglo-Australian Telescope at Coonabarabran, NSW, to survey streams of stars uncovered during the Dark Energy Survey (DES).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high.

    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile.

    Carnegie Institution 1-meter Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena, near the north end of a 7 km (4.3 mi) long mountain ridge, Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile.

     
  • richardmitnick 4:13 pm on September 1, 2020 Permalink | Reply
    Tags: "Probing the origin of the mantle’s chemically distinct 'scars'", , Carnegie Institution For Science, During its evolution our planet separated into distinct layers—core; mantle; and crust., , , Plate tectonic processes allow for continuous evolution of the crust and play a key role in our planet’s habitability., Some of the elements found in crustal rocks don’t play nicely with the mantle’s minerals., The composition of Earth’s mantle was more shaped by interactions with the oceanic crust than previously thought., When continental crust formation draws minerals out of the mantle they leave behind a depleted residue.   

    From Carnegie Institution for Science: “Probing the origin of the mantle’s chemically distinct ‘scars'” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    August 31, 2020

    The composition of Earth’s mantle was more shaped by interactions with the oceanic crust than previously thought, according to work from Carnegie’s Jonathan Tucker and Peter van Keken along with colleagues from Oxford that was recently published in Geochemistry, Geophysics, Geosystems.

    1
    Basalt, the most-common rock on Earth’s surface, encases green crystals–a geologic “nesting doll” phenomenon called a xenolith. Basalts such as this one derive from a section of the mantle that has been depleted in incompatible trace elements, which is usually attributed to continental crust formation. In their work, Tucker and his collaborators propose another mechanism that would impart this signature.

    2

    During its evolution, our planet separated into distinct layers—core, mantle, and crust. Each has its own composition and the dynamic processes through which these layers interact with their neighbors can teach us about Earth’s geologic history.

    Plate tectonic processes allow for continuous evolution of the crust and play a key role in our planet’s habitability. Earth has two kinds of tectonic plates: those that host continents, which have survived for billions of years, and those that are mostly covered by oceans. Oceanic plates are created by the upward motion of mantle material that occurs when plates spread apart. They are destroyed by sliding under continental plates and back into the mantle, a process that also forms new continental crust.

    “The chemical composition of the mantle is influenced by continent formation and geoscientists can read chemical markers left behind by this process,” Tucker explained.

    For example, some of the elements found in crustal rocks don’t play nicely with the mantle’s minerals. When continental crust formation draws these elements out of the mantle, they leave behind a depleted residue, like sucking the juice out of a Sno-Cone and leaving just ice. This is referred to as crust extraction and is usually thought to create “scars” that are easy to spot and identify in rocks. It also leaves behind distinct zones in the mantle that are depleted of these particular elements.

    “It’s long been thought that these chemical scars are the product of crust formation,” Tucker explained. “But mantle’s inaccessibility means that it’s difficult to know for sure using rock and mineral samples alone.”

    To probe the question of the origin of these depleted reservoirs in the mantle, Tucker, van Keken, and their Oxford colleagues Rosemary Jones and Chris Ballentine developed a new model, which showed that the “scar-forming” process of sequestering of incompatible elements from the rest of the mantle is occurring not just in the crust but independently in the deep mantle thanks to old oceanic plates that were drawn all the way down.

    “Our work demonstrates that the processes determining the mantle’s composition are more complicated than we previously thought,” Tucker concluded.

    This work was supported by the U.S. NSF and the J NERC Deep Mantle Volatiles consortium.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Carnegie Institution for Science

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high


    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile


    Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile


    Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: