From The Woods Hole Oceanographic Institution Via “phys.org” : “The ocean twilight zone could eventually store vast amounts of carbon captured from the atmosphere”
From The Woods Hole Oceanographic Institution
Via
2.2.23
A large robot, loaded with sensors and cameras, designed to explore the ocean twilight zone. Credit: Marine Imaging Technologies, LLC, Woods Hole Oceanographic Institution.
Deep below the ocean surface, the light fades into a twilight zone where whales and fish migrate and dead algae and zooplankton rain down from above. This is the heart of the ocean’s carbon pump, part of the natural ocean processes that capture about a third of all human-produced carbon dioxide and sink it into the deep sea, where it remains for hundreds of years.
There may be ways to enhance these processes so the ocean pulls more carbon out of the atmosphere to help slow climate change. Yet little is known about the consequences.
Peter de Menocal, a marine paleoclimatologist and director of Woods Hole Oceanographic Institution, discussed ocean carbon dioxide removal at a recent TEDxBoston: Planetary Stewardship event. In this interview, he dives deeper into the risks and benefits of human intervention and describes an ambitious plan to build a vast monitoring network of autonomous sensors in the ocean to help humanity understand the impact.
First, what is ocean carbon dioxide removal, and how does it work in nature?
The ocean is like a big carbonated beverage. Although it doesn’t fizz, it has about 50 times more carbon than the atmosphere. So, for taking carbon out of the atmosphere and storing it someplace where it won’t continue to warm the planet, the ocean is the single biggest place it can go.
Ocean carbon dioxide removal, or ocean CDR uses the ocean’s natural ability to take up carbon on a large scale and amplifies it.
Methods of ocean carbon storage. Credit: Natalie Renier/Woods Hole Oceanographic Institution.
Carbon gets into the ocean from the atmosphere in two ways.
In the first, air dissolves into the ocean surface. Winds and crashing waves mix it into the upper half-mile or so, and because seawater is slightly alkaline, the carbon dioxide is absorbed into the ocean.
The second involves the biologic pump. The ocean is a living medium—it has algae and fish and whales, and when that organic material is eaten or dies, it gets recycled. It rains down through the ocean and makes its way to the ocean twilight zone, a level around 650 to 3,300 feet (roughly 200 to 1,000 meters) deep.
The ocean twilight zone sustains biologic activity in the oceans. It is the “soil” of the ocean where organic carbon and nutrients accumulate and are recycled by microbes. It is also home to the largest animal migration on the planet. Each day trillions of fish and other organisms migrate from the depths to the surface to feed on plankton and one another, and go back down, acting like a large carbon pump that captures carbon from the surface and shunts it down into the deep oceans where it is stored away from the atmosphere.
Credit: The Conversation.
Why is ocean CDR drawing so much attention right now?
The single most shocking sentence I have read in my career was in the Intergovernmental Panel on Climate Change’s Sixth Assessment Report, released in 2021. It said that we have delayed action on climate change for so long that removing carbon dioxide from the atmosphere is now necessary for all pathways to keep global warming under 1.5 degrees Celsius (2.7 F). Beyond that, climate change’s impacts become increasingly dangerous and unpredictable.
Because of its volume and carbon storage potential, the ocean is really the only arrow in our quiver that has the ability to take up and store carbon at the scale and urgency required.
A 2022 report by the national academies outlined a research strategy for ocean carbon dioxide removal. The three most promising methods all explore ways to enhance the ocean’s natural ability to take up more carbon.
The first is ocean alkalinity enhancement. The oceans are salty—they’re naturally alkaline, with a pH of about 8.1. Increasing alkalinity by dissolving certain powdered rocks and minerals makes the ocean a chemical sponge for atmospheric CO2.
A second method adds micronutrients to the surface ocean, particularly soluble iron. Very small amounts of soluble iron can stimulate greater productivity, or algae growth, which drives a more vigorous biologic pump. Over a dozen of these experiments have been done, so we know it works.
Third is perhaps the easiest to understand—grow kelp in the ocean, which captures carbon at the surface through photosynthesis, then bale it and sink it to the deep ocean.
But all of these methods have drawbacks for large-scale use, including cost and unanticipated consequences.
I’m not advocating for any one of these, or for ocean CDR more generally. But I do believe accelerating research to understand the impacts of these methods is essential. The ocean is essential for everything humans depend on—food, water, shelter, crops, climate stability. It’s the lungs of the planet. So we need to know if these ocean-based technologies to reduce carbon dioxide and climate risk are viable, safe and scalable.
You’ve talked about building an ‘internet of the ocean’ to monitor changes there. What would that involve?
The ocean is changing rapidly, and it is the single biggest cog in Earth’s climate engine, yet we have almost no observations of the subsurface ocean to understand how these changes are affecting the things we care about. We’re basically flying blind at a time when we most need observations. Moreover, if we were to try any of these carbon removal technologies at any scale right now, we wouldn’t be able to measure or verify their effectiveness or assess impacts on ocean health and ecosystems.
Top predators such as whales, tuna, swordfish and sharks rely on the twilight zone for food, diving down hundreds or even thousands of feet to catch their prey. Credit: Eric S. Taylor/Woods Hole Oceanographic Institution.
So, we are leading an initiative at Woods Hole Oceanographic Institution to build the world’s first internet for the ocean, called the Ocean Vital Signs Network. It’s a large network of moorings and sensors that provides 4D eyes on the oceans—the fourth dimension being time—that are always on, always connected to monitor these carbon cycling processes and ocean health.
Right now, there is about one ocean sensor in the global Argo program for every patch of ocean the size of Texas. These go up and down like pogo sticks, mostly measuring temperature and salinity.
We envision a central hub in the middle of an ocean basin where a dense network of intelligent gliders and autonomous vehicles measure ocean properties including carbon and other vital signs of ocean and planetary health. These vehicles can dock, repower, upload data they’ve collected and go out to collect more. The vehicles would be sharing information and making intelligent sampling decisions as they measure the chemistry, biology and environmental DNA for a volume of the ocean that’s really representative of how the ocean works.
Having that kind of network of autonomous vehicles, able to come back in and power up in the middle of the ocean from wave or solar or wind energy at the mooring site and send data to a satellite, could launch a new era of ocean observing and discovery.
Does the technology needed for this level of monitoring exist?
Mesobot starts its descent toward the ocean twilight zone. Credit: Marine Imaging Technologies, LLC, Woods Hole Oceanographic Institution.
We’re already doing much of this engineering and technology development. What we haven’t done yet is stitch it all together.
For example, we have a team that works with blue light lasers for communicating in the ocean. Underwater, you can’t use electromagnetic radiation as cellphones do, because seawater is conductive. Instead, you have to use sound or light to communicate underwater.
We also have an acoustics communications group that works on swarming technologies and communications between nearby vehicles. Another group works on how to dock vehicles into moorings in the middle of the ocean. Another specializes in mooring design. Another is building chemical sensors and physical sensors that measure ocean properties and environmental DNA.
This summer, 2023, an experiment in the North Atlantic called the Ocean Twilight Zone Project will image the larger functioning of the ocean over a big piece of real estate at the scale at which ocean processes actually work.
We’ll have acoustic transceivers that can create a 4D image over time of these dark, hidden regions, along with gliders, new sensors we call “minions” that will be looking at ocean carbon flow, nutrients and oxygen changes. “Minions” are basically sensors the size of a soda bottle that go down to a fixed depth, say 1,000 meters (0.6 miles), and use essentially an iPhone camera pointing up to take pictures of all the material floating down through the water column. That lets us quantify how much organic carbon is making its way into this old, cold deep water, where it can remain for centuries.
The Ocean Twilight Zone: Earth’s Final Frontier.
Premiered Mar 11, 2020
The mysteries of the ocean twilight zone are waiting to be explored. What was once thought to be desert-like isn’t a desert at all. Where the deep sea creatures lurk there are incredible biomass and biodiversity. The ocean twilight zone is a huge habitat that is very difficult to explore. Woods Hole Oceanographic Institution is poised to change this because we have the engineers that can help us overcome these challenges. Making new discoveries in ocean exploration is more important now than ever.
For the first time we’ll be able to see just how patchy productivity is in the ocean, how carbon gets into the ocean and if we can quantify those carbon flows.
That’s a game-changer. The results can help establish the effectiveness and ground rules for using CDR. It’s a Wild West out there—nobody is watching the oceans or paying attention. This network makes observation possible for making decisions that will affect future generations.
Do you believe ocean CDR is the right answer?
Humanity doesn’t have a lot of time to reduce carbon emissions and to lower carbon dioxide concentrations in the atmosphere.
The reason scientists are working so diligently on this is not because we’re big fans of CDR, but because we know the oceans may be able to help. With an ocean internet of sensors, we can really understand how the ocean works including the risks and benefits of ocean CDR.
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Mission Statement
The Woods Hole Oceanographic Institution is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.
Vision & Mission
The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.
The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation and other government agencies, augmented by foundations and private donations.
WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology. WHOI is accredited by the New England Association of Schools and Colleges . WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.
On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.
History
In 1927, a National Academy of Sciences committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution.
A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.
WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.
In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.
On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.
On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.
In March 2017 the institution effected an open-access policy to make its research publicly accessible online.
The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.
In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.
Reply