Tagged: Caltech/MIT aLIGO Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:13 am on September 3, 2017 Permalink | Reply
    Tags: , , , Caltech/MIT aLIGO, , , Neutron star mergers are the largest hadron colliders ever conceived, , What the Rumored Neutron Star Merger Might Teach Us   

    From Nautilus: “What the Rumored Neutron Star Merger Might Teach Us” 

    Nautilus

    Nautilus

    Aug 29, 2017
    Dan Garisto

    1
    In a sense, neutron star mergers are the largest hadron colliders ever conceived. Image by NASA Goddard Space Flight Center / Flickr

    This month, before LIGO, the Laser Interferometer Gravitational Wave Observatory, and its European counterpart Virgo, were going to close down for a year to undergo upgrades, they jointly surveyed the skies.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    It was a small observational window—the 1st to the 25th—but that may have been enough: A rumor that LIGO has detected another gravitational wave—the fourth in two years—is making the rounds. But this time, there’s a twist: The signal might have been caused by the merger of two neutron stars instead of black holes.

    If the rumor holds true, it would be an astonishingly lucky detection. To get a sense of the moment, Nautilus spoke to David Radice, a postdoctoral researcher at Princeton who simulates neutron star mergers, “one of LIGO’s main targets,” he says.

    This potential binary neutron star merger sighting reminds me of when biologists think they’ve discovered a new species. How would you describe it?

    I do agree that this is the first time something like this has been seen.

    For me, a nice analogy is one of particle colliders. In a sense, neutron star mergers are the largest hadron colliders ever conceived. Instead of smashing a few nucleons, it’s like smashing 1060 of them. So by looking at the aftermath, we can learn a lot about fundamental physics. There is a lot that can happen when these stars collide and I don’t think we have a full knowledge of all the possibilities. I think we’ll learn a lot and see new things.

    What it would it mean if they were detecting a neutron star binary merger?

    I expected this neutron star merger to be detected further in the future—the possibility that this merger has been detected earlier suggests that that rate of these events is higher than we thought. There is maybe also a counterpart—an electromagnetic wave. There are many things that you can only really do with an electromagnetic counterpart. For example, even when we have, in the far future, five detectors worldwide, we will not be able to pinpoint the exact location to the source with the precision to say: “OK, this is the host galaxy.”

    Well, if you have an electromagnetic counterpart, especially in the optical region, you can really pinpoint a galaxy and say, “This merger happened in this galaxy that has these properties.”

    What makes a neutron star binary merger different from a black hole binary merger?

    One of the main things is that in a black hole binary merger, you’re just looking at the space-time effects. In this case we are looking at this extremely dense matter. There are a lot of things that you can hope to learn about neutron star mergers. We’re looking at them for a source of gamma ray bursts, or as the origin of heavy elements, or as a way to learn about physics of very high density matter.

    One idea that has been around now for a few years is that many of the heavy elements—elements, for example, like platinum or gold—may actually be produced in neutron star mergers. Material is ejected, and because of nuclear processes, it will produce these heavy elements that are otherwise difficult to produce in normal stars.

    You’ve created visual simulations of neutron star mergers, like the one below. How much power is required to run them?

    It’s publicly available—anyone can download the code and do simulations similar to those…but you need to run them on a supercomputer. It typically takes weeks on thousands of processors, but it can tell you a lot about these mergers. Now the two detectors both LIGO and Virgo are expected to shut down and go through a series of upgrades. When they come back online, their sensitivity will be significantly boosted so we can see much farther out and learn more about each event.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

    Advertisements
     
  • richardmitnick 1:11 pm on August 31, 2017 Permalink | Reply
    Tags: , , , , Caltech/MIT aLIGO, , Could Dark Matter be Black Holes?   

    From astrobites: “Could Dark Matter be Black Holes?” 

    Astrobites bloc

    Astrobites

    Aug 31, 2017
    Nora Shipp

    Title: Did LIGO Detect Dark Matter?
    Authors: Simeon Bird, Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, Adam G. Riess
    First Author’s Institution: Department of Physics and Astronomy, Johns Hopkins University

    Status: Published in Physical Review Letters, Open Access

    The mystery of the nature of dark matter is deepening. Dark matter particles have evaded our detection again and again, bringing into question the most popular theories (like WIMPS), and thereby opening the door to more exotic and unexpected dark matter models. In the midst of this growing uncertainty, a new possibility has arisen. LIGO has detected gravitational waves resulting from the merging of two black holes. This may seem irrelevant to dark matter, but black holes are really not unreasonable dark matter candidates. They don’t emit light, and they definitely do interact via gravity, and those are basically the only two things we know about dark matter.

    The LIGO black holes have revived the idea of larger-than-particle dark matter, called MACHOs (Massive Astrophysical Compact Halo Objects). MACHOs are large, dark objects that are not made up of smaller fundamental dark matter particles, but actually act as the dark matter “particles” themselves. (Read more about them in this astrobite.) In the past, this kind of dark matter was a popular alternative to particle dark matter, but many years of work revealed that most sizes of these larger dark matter objects would disrupt the Universe in some way, leaving it different than the true Universe that we observe.

    For example, black holes with masses around that of an individual star would have given themselves away in searches for the bending of starlight in their gravitational field (an effect called microlensing – read more about it in this astrobite).

    Gravitational microlensing, S. Liebes, Physical Review B, 133 (1964): 835

    More massive black holes would have left an imprint on the early Universe that would show up in the Cosmic Microwave Background.

    CMB per ESA/Planck

    ESA/Planck

    These are only two examples of the many ways in which astrophysical observations tell us which masses are not possible for MACHOs (Figure 1). One mass that could be possible, is about 30 times the mass of the sun. It just so happens that LIGO has detected black holes of this mass!

    2
    Figure 1. The ruled out black hole MACHO masses from astrophysical observations. The x-axis is the mass of the black hole (in units of solar masses), and the y-axis is the fraction of dark matter that is made up of black holes. Each colored line surrounds a range of masses that has been ruled out (with more masses ruled out when black holes make up a larger fraction of dark matter). The black dashed line labeled PBH (Primordial Black Hole) is the allowed region in which the LIGO black holes fall. Source: Clesse et al, 2015.

    The question then, is whether black hole dark matter is really consistent with the black hole mergers observed by LIGO. The first step – confirming that LIGO has detected black holes with the correct mass – is all set. The next step is not so simple. LIGO must detect black hole collisions that correspond to the known properties of dark matter.

    We know that dark matter was an important part of the evolution of the early Universe, meaning that dark matter black holes must have existed at this time, and therefore cannot be typical stellar black holes that form in the death of massive stars. They must be a type of black hole that forms much earlier, referred to as “primordial black holes.”

    So how do we tell whether LIGO is detecting stellar black holes or primordial black holes? The primary difference between them (apart from their origin) is their location. Stellar black holes should exist in regions with lots of stars, while primordial black holes should exist in regions with lots of dark matter. There is overlap between these regions, but they are not identical.

    Primordial black holes, if they really are dark matter, have an additional constraint. They do not only need to exist in the known locations of dark matter, they must also exist in known quantities. We know quite a bit about the mass of dark matter halos around galaxies and galaxy clusters (Figure 2), so if we want primordial black holes to explain all of that dark matter, we have a pretty good idea of how many primordial black holes there must be.

    Currently, it’s pretty difficult to tell exactly where a gravitational wave is coming from, so it’s not possible to say whether the black hole collisions happen in regions with lots of stars or lots of dark matter. The way to tell whether LIGO black holes could possibly be primordial black hole dark matter is to see whether the rate of LIGO observations matches up with the expected rate of primordial black hole collisions.

    This is exactly the topic of today’s paper. The authors predict the rate of primordial black hole collisions and compare it to the LIGO observations. The predicted collision rate depends on the quantity of primordial black holes and their spatial distribution (regions of higher density have higher collision rates). Since this requires a precise knowledge of the spatial distribution of invisible matter, the prediction is quite approximate, but the authors do their best to use observations and simulations to make realistic assumptions about the shape and mass of dark matter halos. They find that the expected rate of primordial black hole mergers (Figure 3) is in fact consistent with the rate inferred from LIGO observations.

    4
    Figure 3. The rate of primordial black hole mergers per dark matter halo, as a function of halo mass (in units of solar masses). The two lines use different theories of dark matter halo structure. Source: Figure 2 in the paper.

    Although this result is very approximate and certainly doesn’t rule out stellar black holes, it means that primordial black hole dark matter is a possibility!

    As LIGO continues to detect more and more gravitational wave signals, we will be able to learn more about the rate of black hole collisions and the possibility of dark matter black holes.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    Additionally, as more gravitational wave detectors start collecting data, we will have more precise information on the location of each black hole merger. This will allow for a comparison between the spatial distribution of black holes and the relative spatial distributions of dark matter and stars. Even though all this sounds extremely complicated, and maybe a bit unlikely, it’s awesome that the seemingly unrelated detection of gravitational waves has opened the door to discussions of new theories of dark matter.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 6:42 am on August 29, 2017 Permalink | Reply
    Tags: , , , , Caltech/MIT aLIGO, , , Rumors swirl that LIGO snagged gravitational waves from a neutron star collision,   

    From Science News: “Rumors swirl that LIGO snagged gravitational waves from a neutron star collision” 

    ScienceNews bloc

    ScienceNews

    August 25, 2017
    Emily Conover

    1
    CRASH AND FLASH Rumors suggest that LIGO may have detected gravitational waves from a new source: colliding neutron stars (illustrated). Such cataclysms are expected to generate a high-energy flash of light, called a gamma-ray burst (yellow jets). Several telescopes made observations seemingly in search of light from such events.

    Speculation is running rampant about potential new discoveries of gravitational waves, just as the latest search wound down August 25.

    Publicly available logs from astronomical observatories indicate that several telescopes have been zeroing in on one particular region of the sky, potentially in response to a detection of ripples in spacetime by the Advanced Laser Interferometer Gravitational-Wave Observatory, LIGO.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    These records have raised hopes that, for the first time, scientists may have glimpsed electromagnetic radiation — light — produced in tandem with gravitational waves. That light would allow scientists to glean more information about the waves’ source. Several tweets from astronomers reporting rumors of a new LIGO detection have fanned the flames of anticipation and amplified hopes that the source may be a cosmic convulsion unlike any LIGO has seen before.

    “There is a lot of excitement,” says astrophysicist Rosalba Perna of Stony Brook University in New York, who is not involved with the LIGO collaboration. “We are all very anxious to actually see the announcement.”

    An Aug. 25 post on the LIGO collaboration’s website announced the end of the current round of data taking, which began November 30, 2016. Virgo, a gravitational wave detector in Italy, had joined forces with LIGO’s two on August 1 (SN Online: 8/1/17).


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    The three detectors will now undergo upgrades to improve their sensitivity. The update noted that “some promising gravitational-wave candidates have been identified in data from both LIGO and Virgo during our preliminary analysis, and we have shared what we currently know with astronomical observing partners.”

    When LIGO detects gravitational waves, the collaboration alerts astronomers to the approximate location the waves seemed to originate from. The hope is that a telescope could pick up light from the aftermath of the cosmic catastrophe that created the gravitational waves — although no light has been found in previous detections.


    SPIRAL IN Two neutron stars orbit one another and spiral inward until they merge in this animation. The collision emits gravitational waves and a burst of light.

    Since mid-August, seemingly in response to a LIGO alert, several telescopes have observed a section of sky around the galaxy NGC 4993, located 134 million light-years away in the constellation Hydra. The Hubble Space Telescope has made at least three sets of observations in that vicinity, including one on August 22 seeking “observations of the first electromagnetic counterparts to gravitational wave sources.”

    NASA/ESA Hubble Telescope

    Likewise, the Chandra X-ray Observatory targeted the same region of sky on August 19.

    NASA/Chandra Telescope

    And records from the Gemini Observatory’s telescope in Chile indicate several potentially related observations, including one referencing “an exceptional LIGO/Virgo event.”


    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

    “I think it’s very, very likely that LIGO has seen something,” says astrophysicist David Radice of Princeton University, who is not affiliated with LIGO. But, he says, he doesn’t know whether its source has been confirmed as merging neutron stars.

    LIGO scientists haven’t commented directly on the veracity of the rumor. “We have some substantial work to do before we will be able to share with confidence any quantitative results. We are working as fast as we can,” LIGO spokesperson David Shoemaker of MIT wrote in an e-mail.

    See the full article here .

    Science News is edited for an educated readership of professionals, scientists and other science enthusiasts. Written by a staff of experienced science journalists, it treats science as news, reporting accurately and placing findings in perspective. Science News and its writers have won many awards for their work; here’s a list of many of them.

    Published since 1922, the biweekly print publication reaches about 90,000 dedicated subscribers and is available via the Science News app on Android, Apple and Kindle Fire devices. Updated continuously online, the Science News website attracted over 12 million unique online viewers in 2016.

    Science News is published by the Society for Science & the Public, a nonprofit 501(c) (3) organization dedicated to the public engagement in scientific research and education.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:26 pm on August 26, 2017 Permalink | Reply
    Tags: , , , Caltech/MIT aLIGO, , , , Neutron star mergers, Rumours swell over new kind of gravitational-wave sighting,   

    From Nature: “Rumours swell over new kind of gravitational-wave sighting” 

    Nature Mag
    Nature

    24 August 2017
    Davide Castelvecchi

    Gossip over potential detection of colliding neutron stars has astronomers in a tizzy.

    1
    The galaxy NGC 4993 (fuzzy bright spot) in the constellation Hydra, where detectors are rumoured to have spotted gravitational waves from a neutron star merger. Digitized Sky Survey

    Astrophysicists may have detected gravitational waves last week from the collision of two neutron stars in a distant galaxy — and telescopes trained on the same region might also have spotted the event.

    Rumours to that effect are spreading fast online, much to researchers’ excitement. Such a detection could mark a new era of astronomy: one in which phenomena are both seen by conventional telescopes and ‘heard’ as vibrations in the fabric of space-time. “It would be an incredible advance in our understanding,” says Stuart Shapiro, an astrophysicist at the University of Illinois at Urbana–Champaign.

    Scientists who work with gravitational-wave detectors won’t comment on the gossip because the data is still under analysis. Public records show that telescopes around the world have been looking at the same galaxy since last week, but astronomers caution that they could have been picking up signals from an unrelated source.

    As researchers hunt for signals in their data, Nature explains what is known so far, and the possible implications of any discovery.

    What is the gossip?

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) in Louisiana and Washington state has three times detected gravitational waves — ripples in the fabric of space-time — emerging from colliding black holes.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    But scientists have been hoping to detect ripples from another cosmic cataclysm, such as the merger of neutron stars, remnants of large stars that exploded but were not massive enough to collapse into a black hole. Such an event should also emit radiation across the electromagnetic spectrum — from radio waves to γ-rays — which telescopes might be able to pick up.

    On 18 August, astronomer J. Craig Wheeler of the University of Texas at Austin began the public rumour mill when he tweeted, “New LIGO. Source with optical counterpart. Blow your sox off!” An hour later, astronomer Peter Yoachim of the University of Washington in Seattle tweeted that LIGO had seen a signal with an optical counterpart (that is, something that telescopes could see) from a galaxy called NGC 4993, which is around 40 million parsecs (130 million light years) away in the southern constellation Hydra. “Merging neutron-neutron star is the initial call”, he followed up. Some astronomers who do not want to be identified say that rumours had been privately circulating before Wheeler’s and Yoachim’s tweets.

    If gravitational-wave researchers saw a signal, it is plausible that they could know very quickly whether it emerged from colliding black holes or neutron stars, because each type of event has its own signature, even though data must be studied carefully to be more precise about an event’s origin.

    It’s also possible that LIGO’s sister observatory Virgo in Pisa, Italy, which has been helping LIGO to hunt for gravitational waves since August, after taking a break for an upgrade, might have spotted the event.

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    That would give researchers more confidence about its source. (Virgo has an average sensitivity for neutron-star mergers of only 25 million to 27 million parsecs, but in some regions of the sky, it can see farther, up to 60 million parsecs away, says physicist Giovanni Losurdo, who led the detector’s upgrade work.)

    Both Wheeler and Yoachim declined to comment, and Wheeler later apologized on Twitter. “Right or wrong, I should not have sent that tweet. LIGO deserves to announce when they deem appropriate. Mea culpa,” he wrote.

    What about the telescope observations?

    Public records show that NASA’s Fermi Gamma-ray Space Telescope has spotted γ-rays emerging from the same region of sky as the potential gravitational-wave source.

    NASA/Fermi Telescope

    A senior Fermi member declined to comment on the observation, but it would be consistent with expectations that neutron-star collisions may be behind the enigmatic phenomena known as short γ-ray bursts (GRBs), which typically last a couple of seconds and are usually followed by an afterglow of visible light and sometimes, radio waves and x-rays, lasting up to a few days.

    But although the Fermi telescope has seen a GRB, it may not be able to pinpoint its origin with high precision, astronomers caution.

    2
    A simulation of the merger of a binary neutron star: magnetic field lines are in white. Simulations by M. Ruiz, R. N. Lang, V. Paschalidis and S. L.Shapiro at the University of Illinois at Urbana-Champaign, with visualization assistance from the Illinois Relativity REU team.

    Other telescopes were also turned to look at NGC 4993 after an alert about a potential gravitational wave sighting. On 22 August, a Twitter feed called Space Telescope Live, which provides live updates of what the Hubble Space Telescope is looking at, suggested that a team of astronomers was looking at a binary neutron-star merger using the probe’s on-board spectrograph, which is what astronomers would normally use to look at the afterglow of a short GRB. The Hubble tweet has since been deleted. Public records also confirm that multiple teams have used the Hubble Space Telescope over the last week to examine NGC 4993, and state as their reason that they are trying to follow up on a candidate observation of gravitational waves.

    On 23 August, a commenter on the blog of astrophysicist Peter Coles, of Cardiff University in the UK, noted that NASA’s Chandra X-ray observatory had jumped into the action, too.

    The Chandra website contains a public record of an observation made on 19 August.

    NASA/Chandra Telescope

    The telescope pointed at celestial coordinates in the galaxy NGC 4993 and observed an event called SGRB170817A — indicating ‘short GRB of 2017-August-17’. The most revealing part of the report is the “trigger criteria” section, which explains the reason for over-riding any previously scheduled observation to turn the telescope in that direction. It says: “Gravitational wave source detected by aLIGO, VIRGO, or both.”

    Publicly available records from other major astronomy facilities — including the European Southern Observatory’s Very Large Telescope and the world’s premiere radio observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), both in Chile — show that those also targeted NGC 4993 on 18 and 19 August.

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    What could we learn from a neutron-star merger?

    Gravitational-wave signals from black-hole mergers are brief, typically lasting a second or less. But a neutron-star merger could yield a signal that lasts up to a minute: neutron stars are less massive than black holes and emit less-powerful gravitational waves, so it takes longer for their orbits to decay and for the stars to spiral into each other. Longer events enable much more precise tests of Albert Einstein’s general theory of relativity, which predicts gravitational waves — perhaps giving more clues to the origins of neutron stars.

    The short GRB that telescopes might have observed would be significant, too — not least because if it is associated with gravitational waves, it would validate decades of astrophysical theorizing that GRBs are associated with neutron-star collisions. “Only gravitational waves could give us the smoking gun,” says Eleonora Troja, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    Still, a short GRB would be an important discovery on its own. Most such events are seen in the distant Universe, billions of parsecs away. NGC 4993, at 40 million parsecs away, would probably be the closest short GRB ever detected, says astrophysicist Derek Fox of Pennsylvania State University in University Park.

    Details of the gravitational waves at the time of the collision and in the following instances could also reveal information about the structure of neutron stars — which is largely unknown — and whether their merger resulted again in a neutron star or in the formation of a new black hole.

    When will we know?

    On 25 August, LIGO and Virgo will end their current data-collecting run. After that, researchers will post only a “top-level update”, meaning a brief note indicating whether the observatories have picked up potential ‘candidate events’ that need further analysis, says David Shoemaker, a physicist at the Massachusetts Institute of Technology who is LIGO’s spokesperson.

    “It will take time to do justice to the data, and ensure that we publish things in which we have very high confidence,” he says.

    Update 25 August: The LIGO–Virgo collaboration posted its top-level update, saying: “Some promising gravitational-wave candidates have been identified in data from both LIGO and Virgo during our preliminary analysis, and we have shared what we currently know with astronomical observing partners. We are working hard to assure that the candidates are valid gravitational-wave events, and it will require time to establish the level of confidence needed to bring any results to the scientific community and the greater public. We will let you know as soon we have information ready to share.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.

     
  • richardmitnick 8:10 pm on August 24, 2017 Permalink | Reply
    Tags: , , , Caltech/MIT aLIGO, , Gravitational wave research may tell us how black holes are formed, , , U Birmingham   

    STFC: “Gravitational wave research may tell us how black holes are formed” 


    STFC

    24 August 2017

    1

    The new field of gravitational wave astronomy, which started with the first gravitational wave detection two years ago, is already offering possible explanations of how black holes form.

    A team of physicists from the UK and the United States has studied the landmark observations of gravitational waves by the LIGO gravitational wave detector in 2015 and again in 2017.

    1

    The UK’s Science and Technology Facilities Council provides grant funding to enable UK researchers, including those at the University of Birmingham, to be involved in the LIGO scientific collaboration.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    In the paper published in Nature today, the team says the evidence gathered from these detections limit the possible explanations for the formation of black holes outside of our galaxy; either they are spinning more slowly than black holes in our own galaxy or they spin rapidly but are ‘tumbled around’ with spins randomly oriented to their orbit.

    By ruling out other explanations and narrowing it down to two, researchers will now be able to carry out more specific research and get closer to a definite answer.

    Professor Ilya Mandel, also from the University of Birmingham, said: “We will know which explanation is right within the next few years. This is something that has only been made possible by the recent LIGO detections of gravitational waves.

    “This field is in its infancy; I’m confident that in the near future we will look back on these first few detections and rudimentary models with nostalgia and a much better understanding of how these exotic binary systems form.”

    More information is available on the University of Birmingham website.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 11:12 am on August 2, 2017 Permalink | Reply
    Tags: , , , Caltech/MIT aLIGO, , ,   

    From ScienceNews: “Virgo detector joins LIGO in the search for gravitational waves” 

    ScienceNews bloc

    ScienceNews

    August 1, 2017
    Emily Conover

    1
    THIRD WAVE The Virgo detector, shown above, has begun searching for gravitational waves. Located in Pisa, Italy, Virgo joins the two LIGO detectors in the quest.

    A third gravitational wave detector is now hunting for subtle ripples in the fabric of spacetime.

    The Virgo detector, located near Pisa, Italy, officially joined the two detectors of the Laser Interferometer Gravitational-Wave Observatory, LIGO, on August 1.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    Together the three detectors will be able to better pinpoint the source of detected gravitational waves.

    LIGO has so far detected three sets of gravitational waves from colliding black holes. In the future, observations with all three detectors could allow telescopes to zero in on the sources and look for light from the cosmic cataclysms that generate the waves.

    The Virgo detector consists of two arms, each 3 kilometers long. Laser light bounces back and forth in the arms, acting like a measuring stick for distortions of spacetime. The design is similar to LIGO’s two detectors in Hanford, Wash., and Livingston, La., which each boast a pair of 4-kilometer-long arms.

    All three detectors will collect data until August 25, when scientists will shift to working on improving the trio’s detection capabilities. The next round of data-taking will begin in fall 2018.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:06 pm on July 18, 2017 Permalink | Reply
    Tags: Caltech/MIT aLIGO, , ,   

    From COSMOS: “How giant atoms may help catch gravitational waves from the Big Bang” 

    Cosmos Magazine bloc

    COSMOS

    7.18.17
    Diego A. Quiñones, U Leeds

    Huge, highly excited atoms may give off flashes of light when hit by a gravitational wave.

    1
    Some of the earliest known galaxies in the universe, seen by the Hubble Space Telescope. NASA/ESA

    NASA/ESA Hubble Telescope

    There was a lot of excitement last year when the LIGO collaboration detected gravitational waves, which are ripples in the fabric of space itself.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    And it’s no wonder – it was one of the most important discoveries of the century. By measuring gravitational waves from intense astrophysical processes like merging black holes, the experiment opens up a completely new way of observing and understanding the universe.

    But there are limits to what LIGO can do. While gravitational waves exist with a big variety of frequencies, LIGO can only detect those within a certain range. In particular, there’s no way of measuring the type of high frequency gravitational waves that were generated in the Big Bang itself. Catching such waves would revolutionise cosmology, giving us crucial information about how the universe came to be. Our research presents a model that may one day enable this.

    In the theory of general relativity developed by Einstein, the mass of an object curves space and time – the more mass, the more curvature. This is similar to how a person stretches the fabric of a trampoline when stepping on it. If the person starts moving up and down, this would generate undulations in the fabric that will move outwards from the position of the person. The speed at which the person is jumping will determine the frequency of the generated ripples in the fabric.

    An important trace of the Big Bang is the Cosmic Microwave Background.

    CMB per ESA/Planck

    ESA/Planck

    This is the radiation left over from the birth of the universe, created about 300,000 years after the Big Bang. But the birth of our universe also created gravitational waves – and these would have originated just a fraction of a second after the event. Because these gravitational waves contain invaluable information about the origin of the universe, there is a lot of interest in detecting them. The waves with the highest frequencies may have originated during phase transitions of the primitive universe or by vibrations and snapping of cosmic strings.

    An instant flash of brightness

    Our research team, from the universities of Aberdeen and Leeds, think that atoms may have an edge in detecting elusive, high-frequency gravitational waves. We have calculated that a group of “highly excited” atoms (called Rydberg atoms – in which the electrons have been pushed out far away from the atom’s nucleus, making it huge – will emit a bright pulse of light when hit by a gravitational wave.

    To make the atoms excited, we shine a light on them. Each of these enlarged atoms is usually very fragile and the slightest perturbation will make them collapse, releasing the absorbed light. However, the interaction with a gravitational wave may be too weak, and its effect will be masked by the many interactions such as collisions with other atoms or particles.

    Rather than analysing the interaction with individual atoms, we model the collective behaviour of a big group of atoms packed together. If the group of atoms is exposed to a common field, like our oscillating gravitational field, this will induce the excited atoms to decay all at the same time. The atoms will then release a large number of photons (light particles), generating an intense pulse of light, dubbed “superradiance”.

    As Rydberg atoms subjected to a gravitational wave will superradiate as a result of the interaction, we can guess that a gravitational wave has passed through the atomic ensemble whenever we see a light pulse.

    By changing the size of the atoms, we can make them radiate to different frequencies of the gravitational wave. This can be this useful for detection in different ranges. Using the proper kind of atoms, and under ideal conditions, it could be possible to use this technique to measure relic gravitational waves from the birth of the universe. By analysing the signal of the atoms it is possible to determine the properties, and therefore the origin, of the gravitational waves.

    There may be some challenges for this experimental technique: the main one is getting the atoms in an highly excited state. Another one is to have enough atoms, as they are so big that they become very hard to contain.

    A theory of everything?

    Beyond the possibility of studying gravitational waves from the birth of the universe, the ultimate goal of the research is to detect gravitational fluctuations of empty space itself – the vacuum. These are extremely faint gravitational variations that occur spontaneously at the smallest scale, popping up out of

    Discovering such waves could lead to the unification of general relativity and quantum mechanics, one of the greatest challenges in modern physics. General relativity is unparalleled when it comes to describing the world on a large scale, such as planets and galaxies, while quantum mechanics perfectly describes physics on the smallest scale, such as the atom or even parts of the atom. But working out the gravitational impact of the tiniest of particles will therefore help bridge this divide.

    But discovering the waves associated with such quantum fluctuations would require a great number of atoms prepared with an enormous amount of energy, which may not be possible to do in the laboratory. Rather than doing this, it might be possible to use Rydberg atoms in outer space. Enormous clouds of these atoms exist around white dwarfs – stars which have run out of fuel – and inside nebulas with sizes more than four times larger than anything that can be created on Earth. Radiation coming from these sources could contain the signature of the vacuum gravitational fluctuations, waiting to be unveiled.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:58 pm on June 28, 2017 Permalink | Reply
    Tags: , , , Caltech/MIT aLIGO, , , NRAO VLBA, ,   

    From Stanford and Kavli: “Stanford Research Reveals Extremely Fine Measurements of Motion in Orbiting Supermassive Black Holes” 

    Stanford University Name
    Stanford University

    KavliFoundation

    The Kavli Foundation

    1
    Observations from radio telescopes like this one appear to indicate that two black holes are orbiting each other, 750 million light years from Earth. (Credit: National Radio Astronomy Observatory)

    Approximately 750 million light years from Earth lies a gigantic, bulging galaxy with two supermassive black holes at its center. These are among the largest black holes ever found, with a combined mass 15 billion times that of the sun. New research from Stanford University, published today (June 27) in Astrophysical Journal, has used long-term observation to show that one of the black holes seems to be orbiting around the other.

    If confirmed, this is the first duo of black holes ever shown to be moving in relation to each other. It is also, potentially, the smallest ever recorded movement of an object across the sky, also known as angular motion.

    “If you imagine a snail on the recently discovered Earth-like planet orbiting Proxima Centauri – a bit over four light years away – moving at one centimeter a second, that’s the angular motion we’re resolving here,” said co-author of the paper, Roger W. Romani, professor of physics at Stanford and a member of the Kavli Insititute for Particle Astrophysics and Cosmology. The team also included researchers from the University of New Mexico, the National Radio Observatory and the United States Naval Observatory.

    The technical achievements of this measurement alone are reason for celebration. But the researchers also hope this impressive finding will offer insight into how black holes merge, how these mergers affect the evolution of the galaxies around them and ways to find other binary black-hole systems.

    Miniscule movement

    Over the past 12 years, scientists, led by Greg Taylor, a professor of physics and astronomy at the University of New Mexico, have taken snapshots of the galaxy containing these black holes – called radio galaxy 0402+379 – with a system of ten radio telescopes that stretch from the U.S. Virgin Islands to Hawaii and New Mexico to Alaska.

    NRAO VLBA


    NRAO VLBA

    The galaxy was officially discovered back in 1995. In 2006, scientists confirmed it as a supermassive black-hole binary system with an unusual configuration.

    “The black holes are at a separation of about seven parsecs, which is the closest together that two supermassive black holes have ever been seen before,” said Karishma Bansal, a graduate student in Taylor’s lab and lead author of the paper.

    With this most recent paper, the team reports that one of the black holes moved at a rate of just over one micro-arcsecond per year, an angle about 1 billion times smaller than the smallest thing visible with the naked eye. Based on this movement, the researchers hypothesize that one black hole may be orbiting around the other over a period of 30,000 years.
    Two holes in ancient galaxy

    Although directly measuring the black hole’s orbital motion may be a first, this is not the only supermassive black-hole binary ever found. Still, the researchers believe that 0402+379 likely has a special history.

    “We’ve argued it’s a fossil cluster,” Romani said. “It’s as though several galaxies coalesced to become one giant elliptical galaxy with an enormous halo of X-rays around it.”

    Researchers believe that large galaxies often have large black holes at their centers and, if large galaxies combine, their black holes eventually follow suit. It’s possible that the apparent orbit of the black hole in 0402+379 is an intermediary stage in this process.

    “For a long time, we’ve been looking into space to try and find a pair of these supermassive black holes orbiting as a result of two galaxies merging,” Taylor said. “Even though we’ve theorized that this should be happening, nobody had ever seen it, until now.”

    A combination of the two black holes in 0402+379 would create a burst of gravitational radiation, like the famous bursts recently discovered by the Laser Interferometer Gravitational-Wave Observatory, but scaled up by a factor of a billion.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    It would be the most powerful gravitational burst in the universe, Romani said. This kind of radiation burst happens to be what he wrote his first-ever paper on when he was an undergraduate.

    Very slow dance

    This theorized convergence between the black holes of 0402+379, however, may never occur. Given how slowly the pair is orbiting, the scientists think the black holes are too far apart to come together within the estimated remaining age of the universe, unless there is an added source of friction. By studying what makes this stalled pair unique, the scientists said they may be able to better understand the conditions under which black holes normally merge.

    Romani hopes this work could be just the beginning of heightening interest in unusual black-hole systems.

    “My personal hope is that this discovery inspires people to go out and find other systems that are even closer together and, hence, maybe do their motion on a more human timescale,” Romani said. “I would sure be happy if we could find a system that completed orbit within a few decades so you could really see the details of the black holes’ trajectories.”

    Additional co-authors on this paper are A.B. Peck, Gemini Observatory (formerly of the National Radio Astronomy Observatory); and R.T. Zavala, U.S. Naval Observatory.

    This work was funded by NASA and the National Radio Astronomical Observatory.

    See the full Stanford article here .
    See the Full Kavli Foundation article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

    The Foundation’s mission is implemented through an international program of research institutes, professorships, and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics as well as prizes in the fields of astrophysics, nanoscience, and neuroscience.

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 4:39 pm on June 23, 2017 Permalink | Reply
    Tags: Caltech/MIT aLIGO, , , ,   

    From Goddard: “ESA to Develop Gravitational Wave Space Mission with NASA Support” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    June 22, 2017
    Francis Reddy
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    ESA (the European Space Agency) has selected the Laser Interferometer Space Antenna (LISA) for its third large-class mission in the agency’s Cosmic Vision science program. The three-spacecraft constellation is designed to study gravitational waves in space and is a concept long studied by both ESA and NASA.

    ESA’s Science Program Committee announced the selection at a meeting on June 20. The mission will now be designed, budgeted and proposed for adoption before construction begins. LISA is expected to launch in 2034. NASA will be a partner with ESA in the design, development, operations and data analysis of the mission.

    ESA/eLISA the future of gravitational wave research

    Gravitational radiation was predicted a century ago by Albert Einstein’s general theory of relativity. Massive accelerating objects such as merging black holes produce waves of energy that ripple through the fabric of space and time. Indirect proof of the existence of these waves came in 1978, when subtle changes observed in the motion of a pair of orbiting neutron stars showed energy was leaving the system in an amount matching predictions of energy carried away by gravitational waves.

    In September 2015, these waves were first directly detected by the National Science Foundation’s ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO).


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    The signal arose from the merger of two stellar-mass black holes located some 1.3 billion light-years away. Similar signals from other black hole mergers have since been detected.

    Seismic, thermal and other noise sources limit LIGO to higher-frequency gravitational waves around 100 cycles per second (hertz). But finding signals from more powerful events, such as mergers of supermassive black holes in colliding galaxies, requires the ability to detect frequencies much lower than 1 hertz, a sensitivity level only possible from space.

    LISA consists of three spacecraft separated by 1.6 million miles (2.5 million kilometers) in a triangular formation that follows Earth in its orbit around the sun. Each spacecraft carries test masses that are shielded in such a way that the only force they respond to is gravity. Lasers measure the distances to test masses in all three spacecraft. Tiny changes in the lengths of each two-spacecraft arm signals the passage of gravitational waves through the formation.

    For example, LISA will be sensitive to gravitational waves produced by mergers of supermassive black holes, each with millions or more times the mass of the sun. It will also be able to detect gravitational waves emanating from binary systems containing neutron stars or black holes, causing their orbits to shrink. And LISA may detect a background of gravitational waves produced during the universe’s earliest moments.

    For decades, NASA has worked to develop many technologies needed for LISA, including measurement, micropropulsion and control systems, as well as support for the development of data analysis techniques.

    For instance, the GRACE Follow-On mission, a U.S. and German collaboration to replace the aging GRACE satellites scheduled for launch late this year, will carry a laser measuring system that inherits some of the technologies originally developed for LISA.

    NASA/DLR Grace

    The mission’s Laser Ranging Interferometer will track distance changes between the two satellites with unprecedented precision, providing the first demonstration of the technology in space.

    In 2016, ESA’s LISA Pathfinder successfully demonstrated key technologies needed to build LISA.

    ESA/LISA Pathfinder

    Each of LISA’s three spacecraft must gently fly around its test masses without disturbing them, a process called drag-free flight. In its first two months of operations, LISA Pathfinder demonstrated this process with a precision some five times better than its mission requirements and later reached the sensitivity needed for the full multi-spacecraft observatory. U.S. researchers collaborated on aspects of LISA Pathfinder for years, and the mission carries a NASA-supplied experiment called the ST7 Disturbance Reduction System, which is managed by NASA’s Jet Propulsion Laboratory in Pasadena, California.

    For more information about the LISA project, visit:

    https://lisa.nasa.gov

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 4:13 pm on June 15, 2017 Permalink | Reply
    Tags: Barry Barish, , Caltech/MIT aLIGO, Kip S. Thorne, LIGO Team Wins Princess of Asturias Award, The late Caltech professor of physics Ronald W. P. Drever   

    From Caltech: “LIGO Team Wins Princess of Asturias Award” 

    Caltech Logo

    Caltech

    Whitney Clavin
    (626) 395-1856
    wclavin@caltech.edu

    1
    Barry Barish and Kip Thorne of Caltech

    2
    Rainer Weiss of MIT

    Caltech scientists Barry Barish, the Ronald and Maxine Linde Professor of Physics, Emeritus, and Kip S. Thorne (BS ’62), the Richard P. Feynman Professor of Theoretical Physics, Emeritus, have been awarded the 2017 Princess of Asturias Award for Technical and Scientific Research, along with Rainer Weiss of MIT and the entire LIGO Scientific Collaboration (LSC), a body of more than 1,000 international scientists who perform LIGO research. Past winners of the award in this category include Peter Higgs, François Englert and CERN (the European Organization for Nuclear Research), and Stephen Hawking. The prize consists a Joan Miró sculpture symbolizing the award and a cash prize of 50,000 euros (about 56,000 U.S. dollars).

    Thorne and Weiss, together with the late Caltech professor of physics Ronald W. P. Drever,

    4
    Ronald W. P. Drever

    are the founders of LIGO, the Laser Interferometer Gravitational-wave Observatory, which made history in 2016 when the LIGO team announced the first direct observation of gravitational waves—ripples in space and time predicted by Einstein 100 years earlier.

    Barish was the principal investigator for LIGO from 1994 to 2005, and director of the LIGO Laboratory from 1997 until 2006. He led LIGO through its final design stages and, under his leadership, the project was funded by the National Science Foundation and construction of the interferometers was completed. In 1997, he established the LSC, which continues to detect gravitational waves with LIGO.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project


    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    The Princess of Asturias Awards have been presented every year since 1981 by H. M. King Felipe of Spain. They come in eight different categories, from arts to international cooperation. Past recipients in all categories include Nelson Mandela, Arthur Miller, Susan Sontag, Doris Lessing, David Attenborough, Francis Ford Coppola, the Gates Foundation, and many more.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: