Tagged: Caltech Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:20 pm on November 20, 2018 Permalink | Reply
    Tags: , , , , Caltech, , Exoplanet Stepping Stones, , HR 8799 c—a young giant gas planet   

    From Caltech: “Exoplanet Stepping Stones” 

    Caltech Logo

    From Caltech

    11/20/2018

    Whitney Clavin
    (626) 395-1856
    wclavin@caltech.edu

    Researchers are perfecting technology to one day look for signs of alien life.

    1
    Artwork of exoplanet HR 8799 c
    Credit: W. M. Keck Observatory/Adam Makarenko


    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level,

    Astronomers have gleaned some of the best data yet on the composition of a planet known as HR 8799 c—a young giant gas planet about seven times the mass of Jupiter that orbits its star every 200 years. The team used state-of-the-art instrumentation at the W. M. Keck Observatory to confirm the existence of water in the planet’s atmosphere as well as a lack of methane. While other researchers had previously made similar measurements of this planet, these new, more robust data demonstrate the power of combining high-resolution spectroscopy with a technique known as adaptive optics, which corrects for the blurring effect of Earth’s atmosphere.

    Keck Adaptive Optics

    “This type of technology is exactly what we want to use in the future to look for signs of life on an Earth-like planet. We aren’t there yet, but we are marching ahead,” says Dimitri Mawet, an associate professor of astronomy at Caltech and a research scientist at JPL, which Caltech manages for NASA. He is co-author of a new paper on the findings accepted for publication in The Astronomical Journal [link is below]. The lead author is Ji Wang, formerly a postdoctoral scholar at Caltech and now an assistant professor at The Ohio State University.

    Taking pictures of planets that orbit other stars—exoplanets—is a formidable task. Light from the host stars far outshines the planets, making them difficult to see. More than a dozen exoplanets have been directly imaged so far, including HR 8799 c and three of its planetary companions. In fact, HR 8799 is the only multiple-planet system to have its picture taken. Once an image is obtained, astronomers can use instruments, called spectrometers, to break apart the planet’s light, like a prism turning sunlight into a rainbow, thereby revealing the fingerprints of chemicals. So far, this strategy has been used to learn about the atmospheres of several giant exoplanets.

    The next step is to do the same thing but for smaller planets that are closer to their stars (the closer a planet is to its star and the smaller its size, the harder is it to see). The ultimate goal is to look for chemicals in the atmospheres of Earth-like planets that orbit in the star’s “habitable zone,” including any biosignatures that might indicate life, such as water, oxygen, and methane. Mawet’s group hopes to do just this with an instrument on the upcoming Thirty Meter Telescope, a giant telescope being planned for the late 2020s by several national and international partners, including Caltech.

    But for now, the scientists are perfecting their technique using Keck—and, in the process, learning about the compositions and dynamics of giant planets.

    “Right now, with Keck, we can already learn about the physics and dynamics of these giant exotic planets, which are nothing like our own solar system planets,” says Wang.

    In the new study, the researchers used an instrument on Keck called NIRSPEC (near-infrared cryogenic echelle spectrograph), a high-resolution spectrometer that works in infrared light.

    Keck Nirspec on Keck 2

    They coupled the instrument with adaptive optics, a method for creating crisper pictures using a guide star in the sky as a means to measure and correct the blurring turbulence of Earth’s atmosphere.

    This is the first time the technique has been demonstrated on directly imaged planets using what is known as the L-band, a type of infrared light with a wavelength of around 3.5 micrometers. This region of the electromagnetic spectrum contains many detailed chemical fingerprints.

    “The L-band has gone largely overlooked before because the sky is brighter at this wavelength,” says Mawet. “If you were an alien with eyes tuned to the L-band, you’d see an extremely bright sky. It’s hard to see exoplanets through this veil.”

    The researchers say that the addition of adaptive optics made the L-band more accessible for the study of the planet HR 8799 c. In their study, they made the most precise measurements yet of the atmospheric constituents of the planet, confirming it has water and lacks methane as previously thought.

    “We are now more certain about the lack of methane in this planet,” says Wang. “This may be due to mixing in the planet’s atmosphere. The methane, which we would expect to be there on the surface, could be diluted if the process of convection is bringing up deeper layers of the planet that don’t have methane.”

    The L-band is also good for making measurements of a planet’s carbon-to-oxygen ratio—a tracer of where and how a planet forms. Planets form out of swirling disks of material around stars, specifically from a mix of hydrogen-, oxygen-, and carbon-rich molecules, such as water, carbon monoxide, and methane. These molecules freeze out of the planet-forming disks at different distances from the star—at boundaries called snowlines. By measuring a planet’s carbon-to-oxygen ratio, astronomers can thus learn about its origins.

    Mawet’s team is now gearing up to turn on their newest instrument at Keck, called the Keck Planet Imager and Characterizer (KPIC). The team will also use adaptive optics-aided high-resolution spectroscopy that can see planets that are fainter than HR 8799 c and closer to their stars.

    “KPIC is a springboard to our future Thirty Meter Telescope instrument,” says Mawet.

    TMT-Thirty Meter Telescope, proposed and now approved for Mauna Kea, Hawaii, USA4,207 m (13,802 ft) above sea level

    “For now, we are learning a great deal about the myriad ways in which planets in our universe form.”

    The Astronomical Journal study, titled, “Detecting Water in the Atmosphere of HR 8799 c with L-band High Dispersion Spectroscopy Aided By Adaptive Optics,” was funded by Caltech. Other authors include Jonathan Fortney and Callie Hood of UC Santa Cruz; Caroline Morley of Harvard University; and Björn Benneke of University of Montreal.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus


    Caltech campus

    Advertisements
     
  • richardmitnick 5:53 pm on November 12, 2018 Permalink | Reply
    Tags: , Caltech, , MicroED-micro-electron diffraction, , NMR-nuclear magnetic resonance, , , ,   

    From Caltech: “From Beaker to Solved 3-D Structure in Minutes” 

    Caltech Logo

    From Caltech

    11/12/2018

    Whitney Clavin
    (626) 395-1856
    wclavin@caltech.edu

    1
    Graduate student Tyler Fulton prepares samples of small molecules in a lab at Caltech. Credit: Caltech

    2
    Close-up of a powder containing small molecules like those that gave rise to 3-D structures in the new study. (The copper piece is a sample holder used with microscopes.) Credit: Caltech/Stoltz Lab

    3
    Brian Stoltz and Tyler Fulton. Credit: Caltech

    UCLA/Caltech team uncovers a new and simple way to learn the structures of small molecules.

    In a new study that one scientist called jaw-dropping, a joint UCLA/Caltech team has shown that it is possible to obtain the structures of small molecules, such as certain hormones and medications, in as little as 30 minutes. That’s hours and even days less than was possible before.

    The team used a technique called micro-electron diffraction (MicroED), which had been used in the past to learn the 3-D structures of larger molecules, specifically proteins. In this new study, the researchers show that the technique can be applied to small molecules, and that the process requires much less preparation time than expected. Unlike related techniques—some of which involve growing crystals the size of salt grains—this method, as the new study demonstrates, can work with run-of-the-mill starting samples, sometimes even powders scraped from the side of a beaker.

    “We took the lowest-brow samples you can get and obtained the highest-quality structures in barely any time,” says Caltech professor of chemistry Brian Stoltz, who is a co-author on the new study, published in the journal ACS Central Science. “When I first saw the results, my jaw hit the floor.” Initially released on the pre-print server Chemrxiv in mid-October, the article has been viewed more than 35,000 times.

    The reason the method works so well on small-molecule samples is that while the samples may appear to be simple powders, they actually contain tiny crystals, each roughly a billion times smaller than a speck of dust. Researchers knew about these hidden microcrystals before, but did not realize they could readily reveal the crystals’ molecular structures using MicroED. “I don’t think people realized how common these microcrystals are in the powdery samples,” says Stoltz. “This is like science fiction. I didn’t think this would happen in my lifetime—that you could see structures from powders.”

    4
    This movie [animated in the full article] is an example of electron diffraction (MicroED) data collection, in which electrons are fired at a nanocrystal while being continuously rotated. Data from the movie are ultimately converted to a 3-D chemical structure. Credit: UCLA/Caltech

    The results have implications for chemists wishing to determine the structures of small molecules, which are defined as those weighing less than about 900 daltons. (A dalton is about the weight of a hydrogen atom.) These tiny compounds include certain chemicals found in nature, some biological substances like hormones, and a number of therapeutic drugs. Possible applications of the MicroED structure-finding methodology include drug discovery, crime lab analysis, medical testing, and more. For instance, Stoltz says, the method might be of use in testing for the latest performance-enhancing drugs in athletes, where only trace amounts of a chemical may be present.

    “The slowest step in making new molecules is determining the structure of the product. That may no longer be the case, as this technique promises to revolutionize organic chemistry,” says Robert Grubbs, Caltech’s Victor and Elizabeth Atkins Professor of Chemistry and a winner of the 2005 Nobel Prize in Chemistry, who was not involved in the research. “The last big break in structure determination before this was nuclear magnetic resonance spectroscopy, which was introduced by Jack Roberts at Caltech in the late ’60s.”

    Like other synthetic chemists, Stoltz and his team spend their time trying to figure out how to assemble chemicals in the lab from basic starting materials. Their lab focuses on such natural small molecules as the fungus-derived beta-lactam family of compounds, which are related to penicillins. To build these chemicals, they need to determine the structures of the molecules in their reactions—both the intermediate molecules and the final products—to see if they are on the right track.

    One technique for doing so is X-ray crystallography, in which a chemical sample is hit with X-rays that diffract off its atoms; the pattern of those diffracting X-rays reveals the 3-D structure of the targeted chemical. Often, this method is used to solve the structures of really big molecules, such as complex membrane proteins, but it can also be applied to small molecules. The challenge is that to perform this method a chemist must create good-sized chunks of crystal from a sample, which isn’t always easy. “I spent months once trying to get the right crystals for one of my samples,” says Stoltz.

    Another reliable method is NMR (nuclear magnetic resonance), which doesn’t require crystals but does require a relatively large amount of a sample, which can be hard to amass. Also, NMR provides only indirect structural information.

    Before now, MicroED—which is similar to X-ray crystallography but uses electrons instead of X-rays—was mainly used on crystallized proteins and not on small molecules. Co-author Tamir Gonen, an electron crystallography expert at UCLA who began developing the MicroED technique for proteins while at the Howard Hughes Medical Institute in Virginia, said that he only started thinking about using the method on small molecules after moving to UCLA and teaming up with Caltech.

    “Tamir had been using this technique on proteins, and just happened to mention that they can sometimes get it to work using only powdery samples of proteins,” says Hosea Nelson (PhD ’13), an assistant professor of chemistry and biochemistry at UCLA. “My mind was blown by this, that you didn’t have to grow crystals, and that’s around the time that the team started to realize that we could apply this method to a whole new class of molecules with wide-reaching implications for all types of chemistry.”

    The team tested several samples of varying qualities, without ever attempting to crystallize them, and were able to determine their structures thanks to the samples’ ample microcrystals. They succeeded in getting structures for ground-up samples of the brand-name drugs Tylenol and Advil, and they were able to identify distinct structures from a powdered mixture of four chemicals.

    The UCLA/Caltech team says it hopes this method will become routine in chemistry labs in the future.

    “In our labs, we have students and postdocs making totally new and unique molecular entities every day,” says Stoltz. “Now we have the power to rapidly figure out what they are. This is going to change synthetic chemistry.”

    The study was funded by the National Science Foundation, the National Institutes of Health, the Department of Energy, a Beckman Young Investigators award, a Searle Scholars award, a Pew Scholars award, the Packard Foundation, the Sloan Foundation, the Pew Charitable Trusts, and the Howard Hughes Medical Institute. Other co-authors include Christopher Jones,Michael Martynowycz, Johan Hattne, and Jose Rodriguez of UCLA; and Tyler Fulton of Caltech.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus


    Caltech campus

     
  • richardmitnick 4:03 pm on November 5, 2018 Permalink | Reply
    Tags: 'Folded' Optical Devices Manipulate Light in a New Way, Caltech, Compact spectrometer, Metasurface optics,   

    From Caltech: “‘Folded’ Optical Devices Manipulate Light in a New Way” 

    Caltech Logo

    From Caltech

    10/30/2018

    Robert Perkins
    (626) 395-1862
    rperkins@caltech.edu

    1
    An array of 11 metasurface-based optical spectrometers, pictured here before the final fabrication step. Each spectrometer is composed of three metasurfaces that disperse and focus light with different wavelengths to different points. Credit: Faraon Lab/Caltech

    The future of optics

    The next generation of electronic devices, ranging from personal health monitors and augmented reality headsets to sensitive scientific instruments that would only be found in a laboratory, will likely incorporate components that use metasurface optics, according to Andrei Faraon, professor of applied physics in Caltech’s Division of Engineering and Applied Science. Metasurface optics manipulate light similarly to how a lens might—bending, focusing, or reflecting it—but do so in a finely controllable way using carefully designed microscopic structures on an otherwise flat surface. That makes them both compact and finely tunable, attractive qualities for electronic devices. However, engineers will need to overcome several challenges to make them widespread.

    The problem

    Most optical systems require more than a single metasurface to function properly. In metasurface-based optical systems, most of the total volume inside the device is just free space through which light propagates between different elements. The need for this free space makes the overall device difficult to scale down, while integrating and aligning multiple metasurfaces into a single device can be complicated and expensive.

    The invention

    To overcome this limitation, the Faraon group has introduced a technology called “folded metasurface optics,” which is a way of printing multiple types of metasurfaces onto either side of a substrate, like glass. In this way, the substrate itself becomes the propagation space for the light. As a proof of concept, the team used the technique to build a spectrometer, which is a scientific instrument for splitting light into different colors, or wavelengths, and measuring their corresponding intensities. (Spectrometers are used in a variety of fields; for example, in astronomy they are used to determine the chemical makeup of stars based on the light they emit.) The spectrometer built by Faraon’s team is 1 millimeter thick and is composed of three reflective metasurfaces placed next to each other that split and reflect light, and ultimately focus it onto a detector array. It was fabricated at the Kavli Nanoscience Institute, and its design is described in a paper published by Nature Communications on October 10.

    What it could be used for

    A compact spectrometer like the one developed by Faraon’s group has a variety of uses, including as a noninvasive blood-glucose measuring system that could be invaluable for diabetes patients. The platform uses multiple metasurface elements that are fabricated in a single step, so, in general, it provides a potential path toward complex but inexpensive optical systems.

    The details

    The paper is titled “Compact folded metasurface spectrometer.” Co-authors include Caltech graduate students MohammadSadegh Faraji-Dana (MS ’18), Ehsan Arbabi (MS ’17), Seyedeh Mahsa Kamali (MS ’17), and Hyounghan Kwon (MS ’18), and Amir Arbabi of the University of Massachusetts Amherst. This research was supported by Samsung Electronics, the National Sciences and Engineering Research Council of Canada, and the U.S. Department of Energy.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
  • richardmitnick 8:17 pm on October 18, 2018 Permalink | Reply
    Tags: Caltech,   

    From Caltech: “ShakeAlert No Longer Just a Prototype” 

    Caltech Logo

    From Caltech

    Robert Perkins
    (626) 395-1862
    rperkins@caltech.edu

    1

    Government officials and Caltech scientists gathered at the Caltech Seismological Laboratory on October 17 to declare ShakeAlert—an earthquake early warning system for the three states along the West Coast—”open for business.”

    Caltech president Thomas Rosenbaum, Sonja and William Davidow Presidential Chair and professor of physics, led the midmorning press conference, which included U.S. Representative Adam Schiff; U.S. Representative Judy Chu; Tom Heaton, professor of engineering seismology; Lucy Jones, research associate in geophysics at Caltech and founder of the Dr. Lucy Jones Center for Science and Society; Doug Given, earthquake early warning coordinator for the United States Geological Survey (USGS); and Ryan Arba, seismic hazards branch chief at the California Office of Emergency Services.

    “Caltech has worked for nearly 100 years with colleagues in government and other academic institutions to leverage the insights and tools of seismology against the risks of earthquakes,” Rosenbaum said, announcing a new stage in the development of an earthquake early warning system for the West Coast. “Partner institutions can now use ShakeAlert to automatically slow trains; warn industrial sites to shut off gas lines; and warn personnel to drop, cover, and hold on.”

    Given added: “Today is important because we’re making a large change from a production prototype in pilot mode to an open-for-business operational mode. Now, the system is not yet finished, it’s not yet complete; there is a lot of work to be done. However, there is a lot of capability in the system as it exists today to the point that it can definitely be used.”

    Earthquake early warning systems like ShakeAlert consist of a network of sensors near faults that transmit signals to data-processing centers when shaking occurs. These data-processing centers use algorithms to rapidly determine the earthquake’s location, magnitude, and the fault rupture length—determining the intensity of an earthquake and sending out an alert that can provide seconds or even minutes of warning. Paired with automated responses that will shut off gas before shaking starts, ShakeAlert could be instrumental in preventing the fires that typically damage cities after a major earthquake, Jones said.

    Earthquake early warning systems do not predict earthquakes before they happen. Rather, they transmit a heads-up that an earthquake is happening; a heads-up that can arrive ahead of the seismic waves generated in the quake, potentially providing crucial time to allow individuals to take cover and for infrastructure to prepare for the quake (for example, for trains to halt operation). These warnings operate on the principle that seismic waves travel at just a few miles per second, but messages can be transmitted almost instantly. During an earthquake, several types of seismic waves radiate out from the quake’s epicenter, including compressional waves (or P-waves), transverse waves (or S-waves), and surface waves. The weak P-waves move faster than the damaging S-waves and surface waves. With an earthquake early warning system in place, those P-waves will trigger sensors that can send out a warning ahead of the arrival of the S-waves and surface waves.

    Though only half of the sensor network that ShakeAlert will need has been built out so far—primarily around major metropolitan areas—the state of California and the federal government have allocated funding that should allow the rest of California’s portion of the network to be constructed over the next two years, Given said. In addition, an upgrade to the software that processes data from the sensor networks was deployed on September 28. This new software should reduce the number of mistakes and missed alerts, making ShakeAlert more reliable, Given said.

    A key step now is for companies and institutions to help find ways to take advantage of these alerts to save lives, he said.

    “This is a wonderful milestone,” Schiff said. “We can now see the end, I hope, in two or three years where the system is fully built out and funded and in operation. And once people come to see the benefit, then the future of the system will be even brighter. Getting that kind of advance notice is going to be so meaningful in terms of making sure people get to a safe place.”

    Future iterations of the system will be able to send warnings to cell phones as well, Schiff said. Such alerts will need to be rolled out with public education to explain to individuals what to do when they receive such alerts—not to panic—and know that there could be false alarms.

    Chu, whose district includes Caltech, said, “One of the reasons that I am so proud to be a representative from this area is our science. In our district, amazing advances are happening every day that will take us to Mars or bring us a better understanding of our environment. And the ShakeAlert that we are announcing today belongs in that pantheon of history-making innovations to come out of Caltech.”

    For Heaton, one of the fathers of ShakeAlert and a scientist who has been interested in earthquake early warning since 1979, this is a day that was a long time in coming.

    “In those days, I could see that we could technically do it. But what I didn’t really understand was what was involved to get 40 million people on the West Coast to get together to try and make this system a reality. What it really takes is leadership to do that,” Heaton said.

    Earthquake early warning systems already exist in Mexico and Japan, which have experienced recent and devastating earthquakes. But it has been difficult to find the political will to spend millions of dollars developing a system for the U.S. West Coast, which is long overdue for a serious earthquake.

    ShakeAlert has been in development since 2006. In 2011, Caltech, along with UC Berkeley and the University of Washington received $6 million from the Gordon and Betty Moore Foundation for the research and development of the system; and in 2015, the USGS announced approximately $4 million in awards to Caltech, UC Berkeley, the University of Washington, and the University of Oregon for ShakeAlert’s expansion and improvement.

    Currently, ShakeAlert’s infrastructures consist of the California Integrated Seismic Network (400 ground-motion sensors operated by Caltech in partnership with UC Berkeley, the USGS, and the State of California), and the Pacific Northwest Seismic Network (a similar regional network operated by the USGS, University of Washington, and the University of Oregon).

    Over the past few years, ShakeAlert has detected thousands of earthquakes, including two that caused damage. It began sending alerts within four seconds of the beginning of the magnitude 5.1 La Habra earthquake in 2014, and gave users in Berkeley five seconds of warning before seismological waves arrived during the magnitude 6.0 South Napa earthquake, also in 2014. Beta-test users received these alerts as a pop-up on their computers; the pop-up displayed a map of the affected region as well as the amount of time until shaking would begin, the estimated magnitude of the quake, and other data.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
  • richardmitnick 12:08 pm on October 18, 2018 Permalink | Reply
    Tags: , , , , Caltech, , Unveiling the dynamic infrared sky with Gattini-IR   

    From Caltech/ANU: “Gattini IR” 

    Caltech Logo

    From Caltech

    10.18.2018

    The new Gattini-IR telescope, now moving into full operation. Credit ANU-Caltech

    Gattini-IR is a near-IR survey telescope newly-commissioned at Palomar Observatory in September 2018. Though it only has an aperture of 30 cm, it boasts a 25 sq deg field of view — 40 times larger than any other existing infrared telescope. Palomar Gattini-IR is designed to survey the entire accessible sky (20,000 sq deg) to 16.4 AB mag (J band) every night. We anticipate this facility will be a powerful tool for monitoring the variability of nearby brown dwarfs and asymptotic giant branch stars, detecting electromagnetic counterparts to gravitational wave detections, and discovering stellar mergers and Galactic novae. Gattini-IR is a pathfinder for more advanced systems to eventually be constructed at the polar sites of the South Pole, Antarctica and near Eureka on Ellesmere Island, Canada, which will enable observations out to K band. For more details see Moore et al. (2016)

    Unveiling the dynamic infrared sky with Gattini-IR

    While optical and radio transient surveys have enjoyed a renaissance over the past decade, the dynamic infrared sky remains virtually unexplored. The infrared is a powerful tool for probing transient events in dusty regions that have high optical extinction, and for detecting the coolest of stars that are bright only at these wavelengths. The fundamental roadblocks in studying the infrared time-domain have been the overwhelmingly bright sky background (250 times brighter than optical) and the narrow field-of-view of infrared cameras (largest is 0.6 sq deg). To begin to address these challenges and open a new observational window in the infrared, we present Palomar Gattini-IR: a 25 sq degree, 300mm aperture, infrared telescope at Palomar Observatory that surveys the entire accessible sky (20,000 sq deg) to a depth of 16.4 AB mag (J band, 1.25μm) every night. Palomar Gattini-IR is wider in area than every existing infrared camera by more than a factor of 40 and is able to survey large areas of sky multiple times. We anticipate the potential for otherwise infeasible discoveries, including, for example, the elusive electromagnetic counterparts to gravitational wave detections. With dedicated hardware in hand, and a F/1.44 telescope available commercially and cost-effectively, Palomar Gattini-IR will be on-sky in early 2017 and will survey the entire accessible sky every night for two years. We present an overview of the pathfinder Palomar Gattini-IR project, including the ambitious goal of sub-pixel imaging and ramifications of this goal on the opto-mechanical design and data reduction software. Palomar Gattini-IR will pave the way for a dual hemisphere, infrared-optimized, ultra-wide field high cadence machine called Turbo Gattini-IR. To take advantage of the low sky background at 2.5 μm, two identical systems will be located at the polar sites of the South Pole, Antarctica and near Eureka on Ellesmere Island, Canada. Turbo Gattini-IR will survey 15,000 sq. degrees to a depth of 20AB, the same depth of the VISTA VHS survey, every 2 hours with a survey efficiency of 97%.

    Proceedings of the SPIE, Volume 9906, id. 99062C 12 pp. (2016).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
  • richardmitnick 11:33 am on October 15, 2018 Permalink | Reply
    Tags: , AO-Adaptive Optics, Caltech, , , University of California   

    From Keck Observatory: “W. M. Keck Observatory Awarded NSF Grant To Develop Next-Generation Adaptive Optics System” 

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft) above sea level, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland


    From Keck Observatory

    1
    Adaptive optics (AO) measures and then corrects the atmospheric turbulence using a deformable mirror that changes shape 1,000 times per second. Initially, AO relied on the light of a star that was both bright and close to the target celestial object. But there are only enough bright stars to allow AO correction in about one percent of the sky. In response, astronomers developed Laser Guide Star Adaptive Optics using a special-purpose laser to excite sodium atoms that sit in an atmospheric layer 60 miles above Earth. Exciting the atoms in the sodium layers creates an artificial “star” for measuring atmospheric distortions, which allows the AO to produce sharp images of celestial objects positioned nearly anywhere in the sky. CREDIT: W. M. Keck Observatory/Andrew Richard Hara.

    Nearly two decades after pioneering the technology on large telescopes, W. M. Keck Observatory is once again pushing the boundaries in the field of adaptive optics (AO) after receiving a powerful boost of support.

    The National Science Foundation (NSF) has awarded the Observatory funding through their Mid-Scale Innovations Program to build a next-generation AO system on the Keck I telescope. Called Keck All-Sky Precision Adaptive Optics (KAPA), this futuristic technology will deliver significantly sharper images of the universe over nearly 100 percent of the night sky.

    “This is an exciting leap forward in our quest to overcome the blurring effects of the Earth’s atmosphere,” said Principal Investigator Peter Wizinowich, chief of technical development at Keck Observatory. “Having worked toward this project for over a decade, I am pleased to see this funding come to fruition, thanks to the NSF and also to our community’s commitment to maintaining Keck Observatory’s leadership in the cutting-edge science enabled by adaptive optics.”

    KAPA is designed to investigate some of modern astronomy’s greatest mysteries, including the following KAPA key science projects:

    1.Constrain theories of dark matter, dark energy, and cosmology using gravitational lensing of distant galaxies and quasars – Project Lead Tommaso Treu, UCLA Professor of Physics and Astronomy
    2.Test General Relativity and understanding supermassive black hole interactions in the extreme environment of the Galactic Center – Project Leads Andrea Ghez, UCLA Professor of Physics and Astronomy and director of the UCLA Galactic Center Group, and Mark Morris, UCLA Professor of Physics and Astronomy and member of the UCLA Galactic Center Group
    3.Study the evolution of galaxies’ metal-content and dynamics over cosmic time using rare, highly magnified galaxies – Project Leads Shelley Wright, UC San Diego Assistant Professor of Physics, and Claire Max, director of the University of California Observatories
    4.Find and study newly formed planets around nearby young stars via direct imaging and spectroscopy – Project Leads Michael Liu, Astronomer at University of Hawaii Institute of Astronomy, and Dimitri Mawet, Caltech Associate Professor of Astronomy

    The KAPA leadership team also includes UC Berkeley Assistant Professor Jessica Lu as Project Scientist and Keck Observatory Senior Engineer Jason Chin as Project Manager.

    In keeping with Keck Observatory’s guiding principle of sharing important new knowledge, all scientific data will be publicly released to ensure the U.S. community is provided with a valuable scientific legacy.

    “This revolutionary system will significantly expand Keck Observatory’s scientific reach,” said Co-Principal Investigator Andrea Ghez, director of the UCLA Galactic Center Group.

    Andrea Ghez, UCLA Galactic Center Group

    SO-2 Image UCLA Galactic Center Groupe via S. Sakai and Andrea Ghez at Keck Observatory


    “KAPA will also serve as an intellectual springboard for the coming generation of extremely large telescopes. We are developing KAPA in partnership with the Thirty Meter Telescope, Giant Magellan Telescope, and European Extremely Large Telescope (ELT) so they can be well-prepared when the time comes to build their own AO instrumentation.”

    TMT-Thirty Meter Telescope, proposed and now approved for Mauna Kea, Hawaii, USA4,207 m (13,802 ft) above sea level

    Giant Magellan Telescope, to be at the Carnegie Institution for Science’s Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    Next-generation technology like KAPA will require next-generation expertise. As such, the KAPA team is also placing a priority on the broader impact goals of education and workforce development.

    Young scientists and engineers will be recruited to help develop KAPA and the KAPA science programs. The project will engage:

    four Hawaii college student interns from the Akamai Workforce Initiative program
    four graduate and post-doctoral students from the Keck Visiting Scholars Program
    four KAPA post-doctoral scholars

    All students and young researchers will receive mentoring and hands-on work experience. The KAPA team will also launch a new summer school focused on astronomy technology and instrumentation for about 25 undergraduate and graduate students every summer over the course of the five-year project.

    “We need more people trained in instrumentation, in particular women and other groups underrepresented in the field,” said Lisa Hunter, director of the Institute for Scientist & Engineer Educators at UC Santa Cruz and a member of the KAPA team. “This project will launch an innovative new effort to build a more diverse instrumentation workforce.”

    “We are excited by this opportunity to keep Keck Observatory at the forefront of high angular resolution science and to continue to advance the state-of-the-art in adaptive optics,” said Hilton Lewis, director of Keck Observatory. “Sharing our knowledge with the next generation of scientists and engineers is very important to us, for it is they who will continue the vital work of utilizing and continuing to develop the most scientifically-productive AO system in the world.”

    AO is a technique used to correct the distortion of astronomical images caused by the turbulence in the Earth’s atmosphere. This is done using lasers to create an artificial star anywhere in the sky, fast sensors to measure the atmospheric blurring, and a deformable mirror to correct for it – all done about 1000 times per second. The goal is to study the finest detail possible by largely removing the blurring effect of the atmosphere. It allows ground-based telescopes to match and even exceed the performance of space-based telescopes at much more modest costs.

    To further improve the clarity of these images, the KAPA project will upgrade the current system by replacing key components: the Keck I laser, the computer that calculates the real-time corrections, and the camera that measures the atmospheric turbulence. The laser beam will be divided into three laser guide stars to fully sample the atmosphere above the telescope using a technique called laser tomography.

    The project also includes upgrades to a near-infrared tip-tilt sensor to improve sky coverage and a technique called point spread function reconstruction that will optimize the value of the science data obtained with the accompanying science instrument (an integral field spectrograph and imager called OSIRIS).

    The KAPA project launched in September and is expected to be completed in 2023.

    _______________________________________________________
    ABOUT ADAPTIVE OPTICS

    W. M. Keck Observatory is a distinguished leader in the field of adaptive optics (AO), a breakthrough technology that removes the distortions caused by the turbulence in the Earth’s atmosphere. Keck Observatory pioneered the astronomical use of both natural guide star (NGS) and laser guide star adaptive optics (LGS AO) on large telescopes and current systems now deliver images three to four times sharper than the Hubble Space Telescope. Keck AO has imaged the four massive planets orbiting the star HR8799, measured the mass of the giant black hole at the center of our Milky Way Galaxy, discovered new supernovae in distant galaxies, and identified the specific stars that were their progenitors. Support for this technology was generously provided by the Bob and Renee Parsons Foundation, Change Happens Foundation, Gordon and Betty Moore Foundation, Heising-Simons Foundation, Mt. Cuba Astronomical Foundation, NASA, NSF, and W. M. Keck Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 1:02 pm on October 14, 2018 Permalink | Reply
    Tags: Caltech, , , The World's Fastest Camera Can 'Freeze Time' Show Beams of Light in Slow Motion, University of Quebec   

    From Science Alert: “The World’s Fastest Camera Can ‘Freeze Time’, Show Beams of Light in Slow Motion” 

    ScienceAlert

    From Science Alert

    14 OCT 2018
    JON CHRISTIAN

    1
    (Adobe Stock)

    When you push the button on a laser pointer, its entire beam seems to appear instantaneously. In reality, though, the photons shoot out like water from a hose, just at a speed too fast to see.

    Too fast for the human eye to see, anyways.

    Researchers at Caltech and the University of Quebec have invented what is now the world’s fastest camera, and it takes a mind-boggling 10 trillion shots per second —enough to record footage of a pulse of light as it travels through space.

    The extraordinary camera, which the researchers describe in a paper published Monday in the journal Light: Science & Applications, builds on a technology called compressed ultrafast photography (CUP).

    2
    Figure 1. The trillion-frame-per-second compressed ultrafast photography system. INRS

    CUP can lock down an impressive 100 billion frames per second, but by simultaneously recording a static image and performing some tricky math, the researchers were able to reconstruct 10 trillion frames.

    They call the new technique T-CUP, and while they don’t say what the “T” stands for, our money is on “trillion.”

    Ludicrous Speed

    The camera more than doubles the speed record set in 2015 by a camera that took 4.4 trillion shots per second. Its inventors hope it’ll be useful in biomedical and materials research.

    But they’ve already turned their attention to smashing their newly set record.

    “It’s an achievement in itself,” said lead author Jinyang Liang in a press release, “but we already see possibilities for increasing the speed to up to one quadrillion frames per second!”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:26 pm on October 11, 2018 Permalink | Reply
    Tags: , , , Caltech, , , , iPTF=intermediate Palomar Transient Factory, Massive star’s unusual death heralds the birth of compact neutron star binary,   

    From Carnegie Institution for Science: “Massive star’s unusual death heralds the birth of compact neutron star binary” 

    Carnegie Institution for Science
    From Carnegie Institution for Science

    October 11, 2018

    1

    Carnegie’s Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive star that exploded in a surprisingly faint and rapidly fading supernova, possibly creating a compact neutron star binary system. Piro’s theoretical work provided crucial context for the discovery. Their findings are published by Science.

    Observations made by the Caltech team—including lead author Kishalay De and project principal investigator Mansi Kasliwal (herself a former-Carnegie postdoc)—suggest that the dying star had an unseen companion, which gravitationally siphoned away most of the star’s mass before it exploded as a supernova. The explosion is believed to have resulted in a neutron star binary, suggesting that, for the first time, scientists have witnessed the birth of a binary system like the one first observed to collide by Piro and a team of Carnegie and UC Santa Cruz astronomers in August 2017.

    A supernova occurs when a massive star—at least eight times the mass of the Sun—exhausts its nuclear fuel, causing the core to collapse and then rebound outward in a powerful explosion. After the star’s outer layers have been blasted away, all that remains is a dense neutron star—an exotic star about the size of a city but containing more mass than the Sun.

    Usually, a lot of material—many times the mass of the Sun—is observed to be blasted away in a supernova. However, the event that Kasliwal and her colleagues observed, dubbed iPTF 14gqr, ejected matter only one fifth of the Sun’s mass.

    “We saw this massive star’s core collapse, but we saw remarkably little mass ejected,” Kasliwal says. “We call this an ultra-stripped envelope supernova and it has long been predicted that they exist. This is the first time we have convincingly seen core collapse of a massive star that is so devoid of matter.”

    Piro’s theoretical modeling guided the interpretation of these observations. This allowed the observers to infer the presence of dense material surrounding the explosion.

    “Discoveries like this demonstrate why it has been so important to build a theoretical astrophysics group at Carnegie,” Piro said. “By combining observations and theory together, we can learn so much more about these amazing events.”

    The fact that the star exploded at all implies that it must have previously had a lot of material, or its core would never have grown large enough to collapse. But where was the missing mass hiding? The researchers inferred that the mass must have been stolen by a compact companion star, such as a white dwarf, neutron star, or black hole.

    The neutron star that was left behind from the supernova must have then been born into orbit with this compact companion. Because this new neutron star and its companion are so close together, they will eventually merge in a collision. In fact, the merger of two neutron stars was first observed in August 2017 by Piro and a team of Carnegie and UC Santa Cruz astronomers, and such events are thought to produce the heavy elements in our universe, such as gold, platinum, and uranium.

    The event was first seen at Palomar Observatory as part of the intermediate Palomar Transient Factory (iPTF), a nightly survey of the sky to look for transient, or short-lived, cosmic events like supernovae.

    Caltech Palomar Observatory, located in San Diego County, California, US, at 1,712 m (5,617 ft)

    Caltech Palomar Intermediate Palomar Transient Factory telescope at the Samuel Oschin Telescope at Palomar Observatory,located in San Diego County, California, United States

    Because the iPTF survey keeps such a close eye on the sky, iPTF 14gqr was observed in the very first hours after it had exploded. As the earth rotated and the Palomar telescope moved out of range, astronomers around the world collaborated to monitor iPTF 14gqr, continuously observing its evolution with a number of telescopes that today form the Global Relay of Observatories Watching Transients Happen (GROWTH) network of observatories.

    GROWTH map

    3
    The three panels represent moments before, when and after the faint supernova iPTF14gqr, visible in the middle panel, appeared in the outskirts of a spiral galaxy located 920 million light years away from us. The massive star that died in the supernova left behind a neutron star in a very tight binary system. These dense stellar remnants will ultimately spiral into each other and merge in a spectacular explosion, giving off gravitational and electromagnetic waves. Image credit: SDSS/Caltech/Keck

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft)


    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level, showing also NASA’s IRTF and NAOJ Subaru

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Institution of Washington Bldg

    Andrew Carnegie established a unique organization dedicated to scientific discovery “to encourage, in the broadest and most liberal manner, investigation, research, and discovery and the application of knowledge to the improvement of mankind…” The philosophy was and is to devote the institution’s resources to “exceptional” individuals so that they can explore the most intriguing scientific questions in an atmosphere of complete freedom. Carnegie and his trustees realized that flexibility and freedom were essential to the institution’s success and that tradition is the foundation of the institution today as it supports research in the Earth, space, and life sciences.

    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile.
    6.5 meter Magellan Telescopes located at Carnegie’s Las Campanas Observatory, Chile

     
  • richardmitnick 3:16 pm on October 4, 2018 Permalink | Reply
    Tags: "Directed evolution has transformed how we make proteins and how we think about new protein catalysts" says Jacqueline K. Barton Caltech's John G. Kirkwood and Arthur A. Noyes Professor of Chemistry a, "I am absolutely floored. I have to wrap my head around this. It's not something I was expecting.", 2018 Nobel Prize in Chemistry for "the directed evolution of enzymes", Caltech, Directed evolution pioneered by Arnold in the early 1990s, Frances Arnold Wins 2018 Nobel Prize in Chemistry,   

    From Caltech: Women in STEM-“Frances Arnold Wins 2018 Nobel Prize in Chemistry” 

    Caltech Logo

    From Caltech

    10/03/2018

    Whitney Clavin
    (626) 395-1856
    wclavin@caltech.edu

    1
    Frances Arnold. Credit: Caltech.

    Frances H. Arnold, the Linus Pauling Professor of Chemical Engineering, Bioengineering and Biochemistry, has won the 2018 Nobel Prize in Chemistry for “the directed evolution of enzymes,” according to the award citation. Directed evolution, pioneered by Arnold in the early 1990s, is a bioengineering method for creating new and better enzymes in the laboratory using the principles of evolution. Today, the method is used in hundreds of laboratories and companies that make everything from laundry detergents to biofuels to medicines. Enzymes created with the technique have replaced toxic chemicals in many industrial processes.

    Arnold shares the prize with George P. Smith of the University of Missouri in Columbia, who developed a “phage display” method for evolving proteins, and Sir Gregory P. Winter of the MRC Laboratory of Molecular Biology in Cambridge, United Kingdom, who used phage display for evolving antibodies. One half of the prize, which comes with an award of 9 million Swedish krona (about $1 million), goes to Arnold, with the other half shared by Smith and Winter.

    Arnold received the call at a hotel in Dallas, Texas, at around 4 a.m. local time; she was scheduled to give a lecture today at UT Southwestern, but had to reschedule to fly back to California. She says she was in a “deep, deep sleep” when awakened by the call. “I am absolutely floored. I have to wrap my head around this. It’s not something I was expecting.”

    “Frances’s work on directed evolution is a beautiful example of an enterprise that has both deep scientific significance and enormous practical consequences,” says David A. Tirrell, Caltech’s provost, the Carl and Shirley Larson Provostial Chair, and the Ross McCollum-William H. Corcoran Professor of Chemistry and Chemical Engineering. “Through decades of commitment to exploring a powerful idea, Frances has transformed the fields of protein chemistry, catalysis, and biotechnology. She has changed the way we think about things and the way we do things.”

    “Directed evolution has transformed how we make proteins and how we think about new protein catalysts,” says Jacqueline K. Barton, Caltech’s John G. Kirkwood and Arthur A. Noyes Professor of Chemistry and the Norman Davidson Leadership Chair of the Division of Chemistry and Chemical Engineering. “Through this work, she has broadened the repertoire of nature’s catalysts.”

    “Life—the biological world—is the greatest chemist, and evolution is her design process,” says Arnold. “I may not be the best chemist but I do appreciate evolution.”

    Arnold was born on July 25, 1956, in Pittsburgh, Pennsylvania. She received her undergraduate degree in mechanical and aerospace engineering from Princeton University in 1979 and her graduate degree in chemical engineering from UC Berkeley in 1985. She arrived at Caltech as a visiting associate in 1986 and was named assistant professor in 1987, associate professor in 1992, and professor in 1996. In 2000, she was named the Dick and Barbara Dickinson Professor of Chemical Engineering, Bioengineering and Biochemistry; she became the Linus Pauling Professor in 2017. She became the director of the Donna and Benjamin M. Rosen Bioengineering Center at Caltech in 2013.

    Directed evolution works in the same way that breeders mate cats or dogs to bring out desired traits. To perform the method, scientists begin by inducing mutations to the DNA, or gene, that encodes a particular enzyme (a molecule that catalyzes, or facilitates, chemical reactions). An array of thousands of mutated enzymes is produced and then tested for a desired trait. The top-performing enzymes are selected and the process is repeated to further enhance the enzymes’ performances. For instance, in 2009, Arnold and her team engineered enzymes that break down cellulose, the main component of plant cell walls, creating better catalysts for turning agricultural wastes into fuels and chemicals.

    A number of additional enzymes produced through directed evolution are now used for a host of products, including biofuels, agricultural chemicals, paper products, and pharmaceuticals. For example, the method led to a better way to produce a drug for treating type 2 diabetes.

    More recently, Arnold and her colleagues used directed evolution to persuade bacteria to make chemicals not found in nature, including molecules containing silicon-carbon or boron-carbon bonds, or bicyclobutanes, which contain energy-packed carbon rings. By using bacteria, researchers can potentially make these chemical compounds in “greener” ways that are more economical and produce less toxic waste.

    “My entire career I have been concerned about the damage we are doing to the planet and each other,” said Arnold when she won the 2016 Millennium Technology Prize, granted by the Technology Academy Finland. “Science and technology can play a major role in mitigating our negative influences on the environment. Changing behavior is even more important. However, I feel that change is easier when there are good, economically viable alternatives to harmful habits.”

    Arnold was the first woman to receive the 2011 Charles Stark Draper Prize from the National Academy of Engineering (NAE). She is among the small number of individuals, and the first woman, elected to all three branches of the National Academies: the NAE (2000), the National Academy of Medicine (2004; it was then called the Institute of Medicine), and the National Academy of Sciences (NAS; 2008). She received the 2011 National Medal of Technology and Innovation and was inducted into the National Inventors Hall of Fame in 2014. She has won numerous other awards, including the 2017 Sackler Prize in Convergence Research from the NAS and the Society of Women Engineers’ 2017 Achievement Award.

    She is a member of the American Academy of Arts and Sciences and the American Philosophical Society, and is a fellow of the American Association for the Advancement of Science and the Royal Academy of Engineering.

    “Frances’s methods have been adopted by scientists and engineers around the world, and many more have been inspired by her vision and her impact on chemical science and technology,” says Tirrell. “Her extraordinary accomplishments reflect the unconventional research environment at Caltech, where scholars are encouraged to dream, to take risks, and to venture beyond the constraints of disciplinary boundaries.”

    The 2018 Nobel Prize in Chemistry is the 39th Nobel Prize awarded to Caltech faculty and alumni. Other Caltech faculty with Nobel Prizes include: Kip S. Thorne (BS ’62) and Barry C. Barish, winners of the 2017 Nobel Prize in Physics with Rainer Weiss; Robert Grubbs, winner of the 2005 Nobel Prize in Chemistry with Yves Chauvin and Richard R. Schrock; David Politzer, recipient of the 2004 Nobel Prize in Physics with David J. Gross and Frank Wilczek; Rudy Marcus, sole winner of the 1992 Nobel Prize in Chemistry; and David Baltimore, winner of the 1975 Nobel Prize in Physiology or Medicine with Renato Dulbecco and Howard M. Temin.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
  • richardmitnick 9:25 am on September 27, 2018 Permalink | Reply
    Tags: Caltech, Photonic bandgap, , , Superconducting Metamaterial Traps Quantum Light, Superconducting metamaterials   

    From Caltech: “Superconducting Metamaterial Traps Quantum Light” 

    Caltech Logo

    From Caltech

    09/26/2018

    Robert Perkins
    (626) 395-1862
    rperkins@caltech.edu

    1
    A superconducting metamaterial chip mounted into a microwave test package. The purplish-violet reflection in the center is an optical effect that can seen by the naked eye, and is the result of the diffaction of light by the periodic patterning of the microwave metamaterial. Credit: Oskar Painter/Caltech

    Newly developed material may be key to scaling up quantum circuits.

    Conventional computers store information in a bit, a fundamental unit of logic that can take a value of 0 or 1. Quantum computers rely on quantum bits, also known as a “qubits,” as their fundamental building blocks. Bits in traditional computers encode a single value, either a 0 or a 1. The state of a qubit, by contrast, can simultaneously have a value of both 0 and 1. This peculiar property, a consequence of the fundamental laws of quantum physics, results in the dramatic complexity in quantum systems.

    Quantum computing is a nascent and rapidly developing field that promises to use this complexity to solve problems that are difficult to tackle with conventional computers. A key challenge for quantum computing, however, is that it requires making large numbers of qubits work together—which is difficult to accomplish while avoiding interactions with the outside environment that would rob the qubits of their quantum properties.

    New research from the lab of Oskar Painter, John G Braun Professor of Applied Physics and Physics in the Division of Engineering and Applied Science, explores the use of superconducting metamaterials to overcome this challenge.

    Metamaterials are specially engineered by combining multiple component materials at a scale smaller than the wavelength of light, giving them the ability to manipulate how particles of light, or photons, behave. Metamaterials can be used to reflect, turn, or focus beams of light in nearly any desired manner. A metamaterial can also create a frequency band where the propagation of photons becomes entirely forbidden, a so-called “photonic bandgap.”

    The Caltech team used a photonic bandgap to trap microwave photons in a superconducting quantum circuit, creating a promising technology for building future quantum computers.

    “In principle, this is a scalable and flexible substrate on which to build complex circuits for interconnecting certain types of qubits,” says Painter, leader of the group that conducted the research, which was published in Nature Communications on September 12. “Not only can one play with the spatial arrangement of the connectivity between qubits, but one can also design the connectivity to occur only at certain desired frequencies.”

    Painter and his team created a quantum circuit consisting of thin films of a superconductor—a material that transmits electric current with little to no loss of energy—traced onto a silicon microchip. These superconducting patterns transport microwaves from one part of the microchip to another. What makes the system operate in a quantum regime, however, is the use of a so-called Josephson junction, which consists of an atomically thin non-conductive layer sandwiched between two superconducting electrodes. The Josephson junction creates a source of microwave photons with two distinct and isolated states, like an atom’s ground and excited electronic states, that are involved in the emission of light, or, in the language of quantum computing, a qubit.

    “Superconducting quantum circuits allow one to perform fundamental quantum electrodynamics experiments using a microwave electrical circuit that looks like it could have been yanked directly from your cell phone,” Painter says. “We believe that augmenting these circuits with superconducting metamaterials may enable future quantum computing technologies and further the study of more complex quantum systems that lie beyond our capability to model using even the most powerful classical computer simulations.”

    The paper is titled “Superconducting metamaterials for waveguide quantum electrodynamics,” The team of authors was led by Mohammad Mirhosseini, a Kavli Nanoscience Institute Postdoctoral Scholar at Caltech. Co-authors include postdoctoral scholars Andrew Keller and Alp Sipahigil of the Institute for Quantum Information and Matter (IQIM); and graduate students Eun Jong Kim, Vinicius Ferreira, and Mahmoud Kalaee. The work was performed as part of a pair of Multidisciplinary University Research Initiatives from the Air Force Office of Scientific Research (“Quantum Photonic Matter” and “Wiring Quantum Networks with Mechanical Transducers”), and in conjunction with IQIM, a National Science Foundation Physics Frontiers Center supported by the Gordon and Betty Moore Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: