Tagged: Caltech Palomar 200 inch Hale Telescope Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:44 pm on March 13, 2021 Permalink | Reply
    Tags: "The Shape of Star Explosions", "WIRC+Pol" instrument, , , , , Caltech Palomar 200 inch Hale Telescope, , We believe all supernovae explode asymmetrically but we need an instrument like this to confirm that theory and to teach us more about how stars explode as well as the environments they explode into.   

    From Caltech: “The Shape of Star Explosions” 

    Caltech Logo

    From Caltech

    March 11, 2021
    Whitney Clavin
    (626) 395‑1944

    Caltech Palomar 200 inch Hale Telescope, Altitude 1,713 m (5,620 ft), located in San Diego County, California, U.S.A.

    New polarization instrument at Palomar Observatory delivers first results.

    When massive stars end their lives in fiery explosions called supernovae, their ashes fly outward to form expanding clouds of debris. While these clouds may look roughly spherical, astronomers think that star explosions are in fact lopsided events in which different amounts of material shoot outward in different directions.

    Three-Dimensional Core-Collapse Supernova (highest resolution).

    Now, astronomers have a new tool to better understand the asymmetrical shapes of supernova explosions, and thus how stars explode in the first place. An instrument called “WIRC+Pol,” located at Caltech’s 200-inch Hale Telescope at Palomar Observatory, has delivered its first science results, which show that a supernova called SN 2018hna exploded in a shape more like an ellipse than a sphere, similar to the well-studied supernova remnant called SN 1987A.

    The WIRC+Pol instrument in the 200-inch Hale dome at Palomar. Credit: K. Tinyanont/Caltech.

    “We believe all supernovae explode asymmetrically but we need an instrument like this to confirm that theory and to teach us more about how stars explode as well as the environments they explode into,” says Samaporn (Kaew) Tinyanont (MS ’17, PhD ’20), lead author of a new study reporting the findings in the journal Nature Astronomy. Tinyanont helped commission the WIRC+Pol instrument as part of his PhD thesis. His advisors were Caltech astronomy professors Mansi Kasliwal (MS ’07, PhD ’11) and Dimitri Mawet; Mawet is also affiliated with NASA-JPL/Caltech(US), which is managed by Caltech for the National Aeronautics and Space Administration(US).

    WIRC+Pol, which was designed to study brown dwarfs and supernovae, is an adaptation of a previous instrument that operated at Palomar called the Wide-Field Infrared Camera. With these modifications, WIRC+Pol now has the ability to capture spectra of polarized light, hence its name. When light from a supernova explosion scatters off the supernova’s debris clouds, that light can become polarized, which means that some of the light waves become oriented in the same direction. The more asymmetrical the explosion, the more the light will be polarized. Thus, the degree of the light’s polarization, as measured from Earth, can be used to determine the shape of the explosion.

    WIRC+Pol employs a thin sheet of liquid crystal polymer called polarization grating to split infrared light from an object into different polarization signals. Infrared light works better than optical light in polarization instruments because infrared light is not blocked by dust that causes contaminating polarization signatures. The infrared light beams with different polarization signals are simultaneously further split into different wavelengths to create the spectra. The efficiency of the new polarization grating is much higher compared with traditional gratings used previously. WIRC+Pol is the first instrument that employs a polarization grating on a large telescope, and the first with the sensitivity to observe supernovae.

    “The vast majority of supernovae that are not in our own Milky Way and the nearby Magellanic Clouds are so far away that they appear as a point in our images even with the highest power telescopes. Polarization allows us to infer the shape of these supernovae.”

    See the full article here.

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology(US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.


    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

    Caltech campus

  • richardmitnick 12:40 pm on January 4, 2018 Permalink | Reply
    Tags: , , , , Caltech Palomar 1.5 meter 60 inch telescope, Caltech Palomar 200 inch Hale Telescope, ,   

    From Hubble: “Astronomers Announce First Clear Evidence of a Brown Dwarf” 1995 but Important 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Nov 29, 1995 [Just found this. It is important.]

    Don Savage
    NASA Headquarters, Washington, DC

    Jim Sahli
    Goddard Space Flight Center, Greenbelt, MD

    Ray Villard
    Space Telescope Science Institute, Baltimore, MD

    S. Kulkarni (Caltech), D.Golimowski (JHU) and NASA

    Astronomers have made the first unambiguous detection and image of an elusive type of object known as a brown dwarf.

    The evidence consists of an image from the 60-inch observatory on Mt. Palomar, a spectrum from the 200-inch Hale telescope on Mt. Palomar and a confirmatory image from NASA’s Hubble Space Telescope. The collaborative effort involved astronomers at the California Institute of Technology, Pasadena, CA, and the Johns Hopkins University, Baltimore, MD.

    Caltech Palomar 1.5 meter 60 inch telescope, Altitude 1,712 m (5,617 ft)

    Caltech Palomar 200 inch Hale Telescope, at Mt Wilson, CA, USA, Altitude 1,712 m (5,617 ft)

    The brown dwarf, called Gliese 229B (GL229B), is a small companion to the cool red star Gliese 229, located 19 light-years from Earth in the constellation Lepus.

    Gliese 229. SolStation.com

    Estimated to be 20 to 50 times the mass of Jupiter, GL229B is too massive and hot to be classified as a planet as we know it, but too small and cool to shine like a star. At least 100,000 times dimmer than Earth’s Sun, the brown dwarf is the faintest object ever seen orbiting another star.

    “This is the first time we have ever observed an object beyond our solar system which possesses a spectrum that is astonishingly just like that of a gas giant planet,” said Shrinivas Kulkarni, a member of the team from Caltech.

    Kulkarni added, however, that “it looks like Jupiter, but that’s what you’d expect for a brown dwarf.” The infrared spectroscopic observations of GL229B, made with the 200-inch Hale telescope at Palomar, show that the dwarf has the spectral fingerprint of the planet Jupiter – an abundance of methane. Methane is not seen in ordinary stars, but it is present in Jupiter and other giant gaseous planets in our solar system.

    The Hubble data obtained and analyzed so far already show the object is far dimmer, cooler (no more than 1,300 degrees Fahrenheit) and less massive than previously reported brown dwarf candidates, which are all near the theoretical limit (eight percent the mass of our Sun) where a star has enough mass to sustain nuclear fusion.

    Brown dwarfs are a mysterious class of long-sought object that forms the same way stars do, that is, by condensing out of a cloud of hydrogen gas. However, they do not accumulate enough mass to generate the high temperatures needed to sustain nuclear fusion at their core, which is the mechanism that makes stars shine. Instead brown dwarfs shine the same way that gas giant planets like Jupiter radiate energy, that is, through gravitational contraction. In fact, the chemical composition of GL229B’s atmosphere looks remarkably like that of Jupiter.

    The discovery is an important first step in the search for planetary systems beyond the Solar System because it will help astronomers distinguish between massive Jupiter-like planets and brown dwarfs orbiting other stars. Advances in ground- and space-based astronomy are allowing astronomers to further probe the “twilight zone” between larger planets and small stars as they search for substellar objects, and eventually, planetary systems.

    Caltech astronomers Kulkarni, Tadashi Nakajima, Keith Matthews, and Ben Oppenheimer, and Johns Hopkins scientists Sam Durrance and David Golimowski first discovered the object in October 1994. Follow-up observations a year later were needed to confirm it is actually a companion to Gliese 229. The discovery was made with a 60-inch reflecting telescope at Palomar Observatory in southern California, using an image-sharpening device called the Adaptive Optics Coronagraph, designed and built at the Johns Hopkins University.

    The same scientists teamed up with Chris Burrows of the Space Telescope Science Institute to use Hubble’s Wide Field Planetary Camera-2 for follow-up observations on November 17.

    NASA/Hubble WFPC2. No longer in service.

    Another Hubble observation six months from now will yield an exact distance to GL229B.

    The astronomers suspect that the brown dwarf developed during the normal star-formation process as one of two members of a binary system. “All our observations are consistent with brown dwarf theory,” Durrance said. However, the astronomers say they cannot yet fully rule out the possibility that the object formed out of dust and gas in a circumstellar disk as a “super-planet.”

    Astronomers say the difference between planets and brown dwarfs is based on how they formed. Planets in the Solar System are believed to have formed out of a primeval disk of dust around the newborn Sun because all the planets’ orbits are nearly circular and lie almost in the same plane. Brown dwarfs, like full-fledged stars, would have fragmented and gravitationally collapsed out of a large cloud of hydrogen but were not massive enough to sustain fusion reactions at their cores.

    The orbit of GL229B could eventually provide clues to its origin. If the orbit is nearly circular then it may have formed out of a dust disk, where viscous forces in the dense disk would keep objects at about the same distance from their parent star. If the dwarf formed as a binary companion, its orbit probably would be far more elliptical, as seen on most binary stars. The initial Hubble observations will begin providing valuable data for eventually calculating the brown dwarf’s orbit. However, the orbital motion is so slow, it will take many decades of telescopic observations before a true orbit can be calculated. GL229B is at least four billion miles from its companion star, which is roughly the separation between the planet Pluto and our Sun.

    Astronomers have been trying to detect brown dwarfs for three decades. Their lack of success is partly due to the fact that as brown dwarfs age they become cooler, fainter, and more difficult to see. An important strategy used by the researchers to search for brown dwarfs was to view stars no older than a billion years. Caltech’s Nakajima reasoned that, although brown dwarfs of that age would be much fainter than any known star, they would still be bright enough to be spotted.

    “Another reason brown dwarfs were not detected years ago is that imaging technology really wasn’t up to the task,” Golimowski said. With the advent of sophisticated light sensors and adaptive optics, astronomers now have the powerful tools they need to resolve smaller and dimmer objects near stars.

    Hubble was used to look for the presence of other companion objects as bright as the brown dwarf which might be as close to the star as one billion miles. No additional objects were found, though it doesn’t rule out the possibility of Jupiter-sized or smaller planets around the star, said the researchers.

    The Palomar results will also appear in the November 30 issue of the journal Nature and the December 1 issue of the journal Science.


    “Twinkle little star, how I wonder what you are . . .”

    Today, you might just as easily find astronomers humming this nursery rhyme as well as children. Rapid advances in telescope technology – adaptive optics, space observatories, interferometry, image processing techniques – are allowing astronomers to see ever fainter and smaller companions to normal stars. As telescopic capabilities sharpen, conventional definitions for planets and stars may seem to be getting blurry. In the search for other planetary systems, astronomers are turning up objects that straddle the dim twilight zone between planets and stars, and others that seem to contradict conventional wisdom, such as a planetary system accompanying a burned-out compacted star called a neutron star.


    Stars are large gaseous bodies that generate energy through nuclear fusion processes at their cores –where temperatures and pressures are high enough for hydrogen nuclei to collide and fuse into helium nuclei, converting matter to energy in the process. Stars are born out of clouds of hydrogen, that collapse under gravity to form dense knots of gas. This collapse continues until enough pressure builds up to heat the gas and trigger nuclear fusion. The energy released by this “fusion-engine” halts the collapse, and the star is in equilibrium.

    A star’s brightness, temperature, color and lifetime are all determined by its initial mass. Our Sun is a typical middle-aged star halfway through its ten billion-year life. Stars can be 100 times more massive than our Sun, or less that 1/10 its mass. A Hubble Space Telescope search for dim stars suggests that most stars in the galaxy are about 1/5 the mass of our Sun.

    Following a fiery birth, stars lead tranquil lives as inhabitants of the galaxy. Late in a star’s life, fireworks can begin anew as changes in the core heat the stars further, eject its outer layers, and cause it to pulsate. All stars eventually burn out. Most collapse to white dwarf stars – dim planet-sized objects that are extraordinarily dense because they retain most of their initial mass. Extremely massive stars undergo catastrophic core collapse and explode as supernovae – the most energetic events in the universe. Black holes and neutron stars – ultra dense stellar remnants with intense gravitational fields – can be created in supernova blasts.

    At least half of the stars in the galaxy have companion stars. These binary star systems can undergo complicated evolutionary changes as one star ages more rapidly than the companion and dies out. If the two stars are close enough together, gas will flow between them and this can trigger nova outbursts. Supernovae and novae are key forces in a grand cycle of stellar rebirth and renewal. Heavier elements cooked up in the fusion furnaces of stars are ejected back into space, serving as raw material for building new generations of stars and planets.


    Though the universe contains billions upon billions of stars, until recently only nine planets were known – those of our solar system. The Solar System provides a fundamental model for what we might expect to find around other stars, but it’s difficult to form generalities from just one example. It may turn out that nature is more varied and imaginative when it comes to building and distributing planets throughout the Galaxy.

    In it simplest definition, a planet is a nonluminous body that orbits a star, and is typically a small fraction of the parent star’s mass. Planets form out of a disk of dust and gas that encircles a newborn star. These embryonic disks have been observed around young stars, both in infrared and visible light. The planets’ orbits in our solar system trace out the skeleton of just such a disk that encircled the newborn Sun.

    Planets agglomerate from the collision of dust particles in the disk, and then snowball in size to solid bodies that continue gobbling up debris like cosmic Pac-Men. In the case of our solar system this led to eight major bodies, thousands to tens of thousands of miles across. (The ninth planet, Pluto, is probably a survivor of an early subclass of solar system inhabitants called icy dwarfs). A planet’s mass and composition are determined by where it formed in the disk. In the case of our solar system the more massive planets are found far from the Sun, though not too far where material didn’t have time to agglomerate (because orbital periods were so slow that chances for collisions were minimal).

    Unlike asteroids which are cold chunks of solar system debris, a planet must be massive enough to have at least once had a molten core that differentiated the planet’s interior. This is a process where heavier elements sank to the center and lighter elements float to the surface. According to this idea, planets should have dense rocky/metallic cores. Depending how far they formed from their parent star, they may retain a dense mantle of primordial hydrogen and helium. In the case of our solar system this establishes two families of planets: the inner rocky or terrestrial planets such as Earth and Mars, which have solid surfaces, and the outer gas giant planets Jupiter and Saturn that are mostly gaseous and liquid. Massive planet like Jupiter are still gravitationally contracting and shine in infrared light.

    Ironically, the first bonafide planetary system ever detected beyond our Sun exists around a neutron star – a collapsed stellar core left over from the star’s self-detonation as a supernova. Resembling our inner solar system in terms of size and distribution, these three planets orbiting the crushed star probably formed after the star exploded. Apparently a disk must have formed after the stellar death, from which the planets agglomerated. Other suspected extrasolar planets also seem to defy conventional wisdom. An object orbiting the star 51 Pegasus may have the mass of Jupiter, but is 20 times closer to the star than Earth is from the Sun.

    Brown Dwarfs

    Brown dwarfs are the galaxy’s underachievers. They never quite made it as stars. Like stars, brown dwarfs collapse out of a cloud of hydrogen. Like a planet they are too small to shine by nuclear fusion, and radiate energy only through gravitational contraction. (More massive brown dwarfs might have initiated fusion, but could not sustain it.) Their predicted masses range from several times the mass of Jupiter to a few percent the mass of our Sun. Spectroscopically, the cool dwarfs may resemble gas giant planets in terms of chemical composition.

    A Color-Guide to Dwarfs

    The different type of so-called “dwarfs” in the Galaxy would even befuddle the storybook character, Snow White:

    • White dwarfs – Burned-out stars that no longer shine through nuclear fusion, and have collapsed to Earth-sized objects. Ironically, their surface temperature rises as they collapse and so the star is white-hot.
    • Yellow dwarfs – Normal stars with our Sun’s temperature and mass.
    • Red dwarfs – Stars that are small, cooler and hence, dimmer than our Sun. The cooler a star the redder it is, just as a dying ember fades from yellow-orange to cherry-red.
    • Brown dwarfs – Substellar objects that have formed like a star, but are not massive enough to sustain nuclear fusion processes.
    • Black dwarfs – White dwarfs that cool to nearly absolute zero. The universe isn’t old enough yet for black dwarfs to exist.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

  • richardmitnick 5:41 am on October 19, 2017 Permalink | Reply
    Tags: , , , Bringing robotic and human spaceflight closer together is critical for humankind's space future, Caltech Palomar 200 inch Hale Telescope, , DSOC-Deep Space Optical Communications, FLT-Flight Laser Transceiver, JPL's Table Mountain Facility, , , School of Earth and Space Exploration at ASU, STMD-NASA's Space Technology Mission Directorate, The mission plans launch in 2022 and arrival at Psyche between the orbits of Mars and Jupiter in 2026,   

    From JPL-Caltech: “Deep Space Communications via Faraway Photons” 

    NASA JPL Banner


    October 18, 2017
    Gina Anderson
    NASA Headquarters, Washington

    Andrew Good
    Jet Propulsion Laboratory, Pasadena, Calif.

    Written by Leonard(?)

    May 23, 2017
    Artist’s Concept of Psyche Spacecraft with Five-Panel Array
    This artist’s-concept illustration depicts the spacecraft of NASA’s Psyche mission near the mission’s target, the metal asteroid Psyche. The artwork was created in May 2017 to show the five-panel solar arrays planned for the spacecraft.
    The spacecraft’s structure will include power and propulsion systems to travel to, and orbit, the asteroid. These systems will combine solar power with electric propulsion to carry the scientific instruments used to study the asteroid through space.
    The mission plans launch in 2022 and arrival at Psyche, between the orbits of Mars and Jupiter, in 2026. This selected asteroid is made almost entirely of nickel-iron metal. It offers evidence about violent collisions that created Earth and other terrestrial planets.
    Mission: Psyche. Image credit: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin

    Deep Space Communications via Faraway Photons
    The Deep Space Optical Communication (DSOC) device will beam high data rates to a telescope at Palomar Mountain, California. Image Credit: NASA/JPL-Caltech

    Caltech Palomar 200 inch Hale Telescope, at Mt Wilson, CA, USA

    A spacecraft destined to explore a unique asteroid will also test new communication hardware that uses lasers instead of radio waves.

    The Deep Space Optical Communications (DSOC) package aboard NASA’s Psyche mission utilizes photons — the fundamental particle of visible light — to transmit more data in a given amount of time. The DSOC goal is to increase spacecraft communications performance and efficiency by 10 to 100 times over conventional means, all without increasing the mission burden in mass, volume, power and/or spectrum.

    Tapping the advantages offered by laser communications is expected to revolutionize future space endeavors – a major objective of NASA’s Space Technology Mission Directorate (STMD).

    The DSOC project is developing key technologies that are being integrated into a deep space-worthy Flight Laser Transceiver (FLT), high-tech work that will advance this mode of communications to Technology Readiness Level (TRL) 6. Reaching a TRL 6 level equates to having technology that is a fully functional prototype or representational model.

    As a “game changing” technology demonstration, DSOC is exactly that. NASA STMD’s Game Changing Development Program funded the technology development phase of DSOC. The flight demonstration is jointly funded by STMD, the Technology Demonstration Mission (TDM) Program and NASA/ HEOMD/Space Communication and Navigation (SCaN).

    Work on the laser package is based at NASA’s Jet Propulsion Laboratory in Pasadena, California.

    “Things are shaping up reasonably and we have a considerable amount of test activity going on,” says Abhijit Biswas, DSOC Project Technologist in Flight Communications Systems at JPL. Delivery of DSOC for integration within the Psyche mission is expected in 2021 with the spacecraft launch to occur in the summer of 2022, he explains.

    “Think of the DSOC flight laser transceiver onboard Psyche as a telescope,” Biswas explains, able to receive and transmit laser light in precisely timed photon bursts.

    DSOC architecture is based on transmitting a laser beacon from Earth to assist line­ of ­sight stabilization to make possible the pointing back of a downlink laser beam. The laser onboard the Psyche spacecraft, Biswas says, is based on a master-oscillator power amplifier that uses optical fibers.

    The laser beacon to DSOC will be transmitted from JPL’s Table Mountain Facility located near the town of Wrightwood, California, in the Angeles National Forest. DSOC’s beaming of data from space will be received at a large aperture ground telescope at Palomar Mountain Observatory in California, near San Diego.

    Biswas anticipates operating DSOC perhaps 60 days after launch, given checkout of the Psyche spacecraft post-liftoff. The test-runs of the laser equipment will occur over distances of 0.1 to 2.5 astronomical units (AU) on the outward-bound probe. One AU is approximately 150 million kilometers-or the distance between the Earth and Sun.

    “I am very excited to be on the mission,” says Biswas, who has been working on the laser communications technology since the late 1990s. “It’s a unique privilege to be working on DSOC.”

    The Psyche mission was selected for flight in early 2017 under NASA’s Discovery Program, a series of lower-cost, highly focused robotic space missions that are exploring the solar system.

    The spacecraft will be launched in the summer of 2022 to 16 Psyche, a distinctive metal asteroid about three times farther away from the sun than Earth. The planned arrival of the probe at the main belt asteroid will take place in 2026.

    Lindy Elkins-Tanton is Director of the School of Earth and Space Exploration at Arizona State University in Tempe. She is the principal investigator for the Psyche mission.

    “I am thrilled that Psyche is getting to fly the Deep Space Optical Communications package,” Elkins-Tanton says. “First of all, the technology is mind-blowing and it brings out all my inner geek. Who doesn’t want to communicate using lasers, and multiply the amount of data we can send back and forth?”

    Elkins-Tanton adds that bringing robotic and human spaceflight closer together is critical for humankind’s space future. “Having our robotic mission test technology that we hope will help us eventually communicate with people in deep space is excellent integration of NASA missions and all of our goals,” she says.

    In designing a simple, high-heritage spacecraft to do the exciting exploration of the metal world Psyche, “I find both the solar electric propulsion and the Deep Space Optical Communications to feel futuristic in the extreme. I’m proud of NASA and of our technical community for making this possible,” Elkins-Tanton concludes.

    Biswas explains that DSOC is a pathfinder experiment. The future is indeed bright for the technology, he suggests, such as setting up capable telecommunications infrastructure around Mars.

    “Doing so would allow the support of astronauts going to and eventually landing on Mars,” Biswas said. “Laser communications will augment that capability tremendously. The ability to send back from Mars to Earth lots of information, including the streaming of high definition imagery, is going to be very enabling.”

    As a “game changing” technology demonstration, DSOC is exactly that. NASA STMD’s Game Changing Development program funded the technology development phase of DSOC. The flight demonstration is jointly funded by STMD, the Technology Demonstration Missions (TDM) program and NASA/ HEOMD/Space Communication and Navigation (SCaN). Work on the laser package is based at the Jet Propulsion Laboratory in Pasadena, California.

    For more information about NASA’s Technology Demonstration Missions program, visit:


    For more information about NASA’s Space Technology Mission Directorate, visit:


    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: