Tagged: Caltech MIT Advanced aLIGO Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:49 am on October 26, 2021 Permalink | Reply
    Tags: "Putting the Universe under the telescope", , , , , , Caltech MIT Advanced aLIGO, ,   

    From The University of Melbourne (AU): “Putting the Universe under the telescope” 

    u-melbourne-bloc

    From The University of Melbourne (AU)

    1

    15 January 2020 [Re-presented 10.26.21]
    Clare Kenyon

    We humans are a curious, questing lot, and the 2020s will see us continue to observe the Universe around us, trying to understand more about fundamental particles, forces, objects and relationships from both ground and space-based instruments.

    At the same time, our interest and technological capacity to push the boundaries of space exploration in the physical sense through manned and unmanned missions is beginning to boom.

    National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope

    Somewhat paradoxically, one of the most interesting observatories to keep an eye on over the 2020s does not ‘look’ at the universe at all.

    EVOLUTION OF THE UNIVERSE

    The Laser Interferometer Gravitational-Wave Observatory (Caltech/ MIT Advanced aLIGO (US)) is a huge, international, multi-billion-dollar collaborative effort which seeks to detect ripples in spacetime caused by the interactions of very massive objects by measuring changes in distances smaller than 1/10,000th the width of a proton.

    _____________________________________________________________________________________
    Caltech /MIT Advanced aLigo

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation.

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA.

    SXS – Simulating eXtreme Spacetimes

    Gravitational waves. Credit: MPG Institute for Gravitational Physics [Max-Planck-Institut für Gravitationsphysik] (Albert Einstein Institute) (DE)/W.Benger-Zib

    Gravity is talking. Lisa will listen. Dialogos of Eide.

    European Space Agency(EU)/National Aeronautics and Space Administration (US) eLISA space based, the future of gravitational wave research.
    _____________________________________________________________________________________

    After enduring silence in the first decade of the 2000s, LIGO detected its first of several inspiralling black hole events and also a neutron star collision.

    Although these detections are a solid nod to Einsteinian physics, they also represent major advances in instrumentation, modelling, engineering, collaboration and our understanding of the evolution of the Universe.

    In the past three weeks, another detection has been announced, with signals seeming to suggest a merger of two unexpectedly massive neutron stars – potentially a new class of neutron star object. Planned upgrades and expansions to LIGO should give us an exciting decade of more discoveries with a much higher quality of data.

    UNDERSTANDING DARK MATTER

    In keeping with the theme of ‘non-visible’ astronomy, astronomers will push forward into the 2020s, trying to address some of the most fundamental questions about our Universe which have so far evaded answers.

    In particular, the nature of dark matter – thought to comprise up to 85 per cent of the matter of the Universe, yet still evades satisfactory categorisation (for example cold, warm or hot), despite it having been somewhat vaguely proposed in the late 1800s.

    2
    Starburst in a Dwarf Irregular Galaxy. Picture: NASA, ESA, Hubble Heritage (The Space Telescope Science Institute (US)/The Association of Universities for Research in Astronomy (AURA)(US))

    This field combines cosmology and particle physics in experiments that are either focussed on direct or indirect detection.

    In the past week, evidence from a recent project using the Hubble Space Telescope suggests that dark matter can form in much smaller clumps than previously expected, providing strong evidence for the cold (or slow-moving) dark matter scenario.

    Closer to home, in a collaborative initiative of which the University of Melbourne is a part, the Stawell Underground Physics Laboratory (SUPL) is a planned one kilometre-deep laboratory intended to detect seasonal variations in dark matter signals.

    Searching for Dark Matter. Video:The Swinburne University of Technology (AU)

    SPACE TRAVEL

    This coming decade will likely see the beginnings of the true commercialisation of space travel.

    For example, private companies, such as Boeing and SpaceX, have formed partnerships with government space agencies and organisations such as via NASA’s Commercial Crew programme with the aim of developing safe, reliable and economically-viable options for reaching low earth orbit.

    This will enable NASA to end its reliance on the Russian Soyuz rockets and in turn allows for private enterprise to begin selling seats on their vehicles such as Boeing’s Starliner and SpaceX’s Crew Dragon, coupled with accommodation in the ISS to privately paying customers.

    Both have experienced teething problems and are undergoing improvements, but one can reasonably expect to see them operational over the next few years.

    Although difficult to get a clear idea of progress, other countries such as China, India and Russia are pursuing their own human spaceflight programmes, whilst NASA continues to also work on its own vehicles to be launched from US soil, in addition to the partnerships with private enterprises, aiming to get men and women back to the Moon by 2024.

    The early 2020s will see other companies such as Virgin Galactic and Blue Origin effectively ignite the space tourism market by enabling paying customers to purchase trips to suborbital space.

    The successful floating of Virgin Galactic on the New York Stock Exchange in October 2019 hints at the commercial interest in point-to-point transportation on Earth via suborbital space.

    LIFE OUTSIDE EARTH

    As our technological capabilities increase, so too does our obsession with the search for life outside of Earth.

    NASA’s Transiting Exoplanet Survey Satellite (TESS) has already kicked off 2020 with the discovery of its first Earth-size planet in a star’s ‘habitable zone’, which is the range of distances from a planet’s host star where the temperature potentially allows liquid water to exist on the planet’s surface.

    The National Aeronautics Space Agency (US)/Massachusetts Institute of Technology (US) TESS

    Massachusetts Institute of Technology(US) TESS – Transiting Exoplanet Survey Satellite replaced the Kepler Space Telescope in search for exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by Massachusetts Institute of Technology (US), and managed by NASA’s Goddard Space Flight Center (US).

    NASA/MIT Tess in the building

    The National Aeronautics Space Agency (US)/ The Massachusetts Institute of Technology(US) TESS – Transiting Exoplanet Survey Satellite replaced the Kepler Space Telescope in search for exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by The Massachusetts Institute of Technology (US), and managed by NASA’s Goddard Space Flight Center (US).

    Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; The Center for Astrophysics – Harvard and Smithsonian; The MIT Lincoln Laboratory; and The STScI(US) in Baltimore.

    _________________________________

    Scientists are already producing different 3D atmospheric and climate models for the planet in question, known as TOI 700 d, waiting for new data to emerge over the coming decade to help narrow down important modelling parameters.

    At least six missions are already at work or planned to launch, mostly by NASA and ESA like Cheops, the James Webb Telescope and Ariel, which will add to the over 4,000 confirmed exoplanets and will also give us more accurate and detailed information on sizes, compositions and conditions of the planets and their host stars.

    European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/CHEOPS

    National Aeronautics Space Agency(USA)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope(US) James Webb Space Telescope annotated. Scheduled for launch in October 2021 delayed to December 2021.

    UK-led ESA mission ARIEL -Atmospheric Remote-sensing Infrared Exoplanet Large-survey

    PROBING OUR SOLAR SYSTEM

    While we whet our voracious appetites for detecting planets around star systems far beyond our own via a vast number of surveys and programmes, missions involving physical probes for life on other planets and moons within our Solar System are being planned and implemented.

    NASA’s Perseverance Rover, is set to search for evidence of life on Mars with a planned touch down in early 2021, while separate flyby missions to Jupiter’s ice-covered moon, Europa, and Saturn’s atmospherically hazy moon, Titan, are due for launch in 2025 and 2026, respectively.

    Although not approved within budget as yet, there is potential for a lander-based mission to Europa, potentially enabling scientists to test for the existence of a salty brine beneath its frozen crust.

    Not to be outdone, ESA also has plans to revisit Mars, having launched an orbiter in 2016, delivering the ExoMars 2020 which will also focus on chemically and mineralogically analysing drilled samples for traces of past microbial life.

    Perseverence Mars 2020 Perseverance Rover – NASA Mars annotated.

    European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/Roscosmos State Corporation for Space Activities,A.K.A. Roscosmos [Роскосмос] (RU) ExoMars Rosalind Franklin, scheduled for launch in September 2022.

    Finally, our attempts to both listen for and reach out to any existing extra-terrestrial life will continue throughout the 2020s and beyond.

    For example, initiatives such as Breakthrough Listen, a ten-year, US$100,000,000 programme begun in 2016, continually survey the Universe for signals of extra-terrestrial life.

    _____________________________________________________________________________________
    Breakthrough Listen Project

    1

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    Green Bank Radio Telescope, West Virginia, USA, now the center piece of the Green Bank Observatory(US), being cut loose by the National Science Foundation(US), supported by Breakthrough Listen Project, West Virginia University, and operated by the nonprofit Associated Universities, Inc.

    CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) Parkes Observatory [ Murriyang, the traditional Indigenous name] , located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    SKA SARAO Meerkat telescope(SA) 90 km outside the small Northern Cape town of Carnarvon, SA.

    Newly added

    University of Arizona Veritas Four Čerenkov telescopes A novel gamma ray telescope under construction at the CfA Fred Lawrence Whipple Observatory (US), Mount Hopkins, Arizona (US), altitude 2,606 m 8,550 ft. A large project known as the Čerenkov Telescope Array, composed of hundreds of similar telescopes to be situated at Roque de los Muchachos Observatory [Instituto de Astrofísica de Canarias ](ES) in the Canary Islands and Chile at European Southern Observatory Cerro Paranal(EU) site. The telescope on Mount Hopkins will be fitted with a prototype high-speed camera, assembled at the University of Wisconsin–Madison (US) and capable of taking pictures at a billion frames per second. Credit: Vladimir Vassiliev. _____________________________________________________________________________________

    Meanwhile, Breakthrough Starshot is a proof-of-concept project involving sending a fleet of tiny centimetre-sized light-sail spacecraft to our nearest neighbouring star system, Alpha Centauri. This project could lead to the development of Earth-based steerable lasers.

    Breakthrough Starshot Initiative

    Breakthrough Starshot

    ESO 3.6m telescope & HARPS at LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    SPACEOBS, the San Pedro de Atacama Celestial Explorations Observatory is located at 2450m above sea level, north of the Atacama Desert, in Chile, near to the village of San Pedro de Atacama and close to the border with Bolivia and Argentina.

    SNO Sierra Nevada Observatory is a high elevation observatory 2900m above the sea level located in the Sierra Nevada mountain range in Granada Spain and operated maintained and supplied by IAC.

    Teide Observatory,Teide National Park, Tenerife in Tenerife Spain, home of two 40 cm LCO,telescopes, Altitude 2,390 m (7,840 ft)

    Observatori Astronòmic del Montsec (OAdM), located in the town of Sant Esteve de la Sarga (Pallars Jussà), 1,570 meters on the sea level.

    Bayfordbury Observatory,approximately 6 miles from the main campus of the University of Hertfordshire.

    These continuing and developing enterprises will inevitably deliver new technological advancements, meaning that the 2020s will be an exciting decade, indeed.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-melbourne-campus

    The University of Melbourne (AU) is an Australian public research university located in Melbourne, Victoria. Founded in 1853, it is Australia’s second oldest university and the oldest in Victoria. Times Higher Education ranks Melbourne as 33rd in the world, while the Academic Ranking of World Universities places Melbourne 44th in the world (both first in Australia).

    Melbourne’s main campus is located in Parkville, an inner suburb north of the Melbourne central business district, with several other campuses located across Victoria. Melbourne is a sandstone university and a member of the Group of Eight, Universitas 21 and the Association of Pacific Rim Universities. Since 1872 various residential colleges have become affiliated with the university. There are 12 colleges located on the main campus and in nearby suburbs offering academic, sporting and cultural programs alongside accommodation for Melbourne students and faculty.

    Melbourne comprises 11 separate academic units and is associated with numerous institutes and research centres, including the Walter and Eliza Hall Institute of Medical Research, Florey Institute of Neuroscience and Mental Health, the Melbourne Institute of Applied Economic and Social Research and the Grattan Institute. Amongst Melbourne’s 15 graduate schools the Melbourne Business School, the Melbourne Law School and the Melbourne Medical School are particularly well regarded.

    Four Australian prime ministers and five governors-general have graduated from Melbourne. Nine Nobel laureates have been students or faculty, the most of any Australian university.

     
  • richardmitnick 11:45 am on June 22, 2021 Permalink | Reply
    Tags: "Physicists bring human-scale object to near standstill reaching a quantum state", , Caltech MIT Advanced aLIGO, For the first time scientists at MIT and elsewhere have cooled a large human-scale object to close to its motional ground state., , , , The object isn’t tangible in the sense of being situated at one location but is the combined motion of four separate objects each weighing about 40 kilograms., The object they aimed to cool is not an individual mirror but rather the combined motion of all four of LIGO’s mirrors., The results open possibilities for studying gravity’s effects on relatively large objects in quantum states., The scientists say they now have a chance to observe the effect of gravity on a massive quantum object.   

    From Massachusetts Institute of Technology (US) : “Physicists bring human-scale object to near standstill reaching a quantum state” 

    MIT News

    From Massachusetts Institute of Technology (US)

    June 18, 2021
    Jennifer Chu

    The results open possibilities for studying gravity’s effects on relatively large objects in quantum states.

    1
    MIT scientists have cooled a 10-kilogram object to a near standstill, using LIGO’s precise measurements of its 40-kilogram mirrors. Shown here are LIGO optics technicians examining one of LIGO’s mirrors.
    Credit: Caltech/MIT/LIGO Lab

    To the human eye, most stationary objects appear to be just that — still, and completely at rest. Yet if we were handed a quantum lens, allowing us to see objects at the scale of individual atoms, what was an apple sitting idly on our desk would appear as a teeming collection of vibrating particles, very much in motion.

    In the last few decades, physicists have found ways to super-cool objects so that their atoms are at a near standstill, or in their “motional ground state.” To date, physicists have wrestled small objects such as clouds of millions of atoms, or nanogram-scale objects, into such pure quantum states.

    Now for the first time scientists at MIT and elsewhere have cooled a large human-scale object to close to its motional ground state. The object isn’t tangible in the sense of being situated at one location but is the combined motion of four separate objects each weighing about 40 kilograms. The “object” that the researchers cooled has an estimated mass of about 10 kilograms, and comprises about 1×10^26, or nearly 1 octillion, atoms.

    The researchers took advantage of the ability of the Caltech/ MIT Advanced aLIGO (US) to measure the motion of the masses with extreme precision and super-cool the collective motion of the masses to 77 nanokelvins, just shy of the object’s predicted ground state of 10 nanokelvins.

    Caltech /MIT Advanced aLigo .

    Their results, appearing today in Science, represent the largest object to be cooled to close to its motional ground state. The scientists say they now have a chance to observe the effect of gravity on a massive quantum object.

    “Nobody has ever observed how gravity acts on massive quantum states,” says Vivishek Sudhir, assistant professor of mechanical engineering at MIT, who directed the project. “We’ve demonstrated how to prepare kilogram-scale objects in quantum states. This finally opens the door to an experimental study of how gravity might affect large quantum objects, something hitherto only dreamed of.”

    The study’s authors are members of the LIGO Laboratory, and include lead author and graduate student Chris Whittle, postdoc Evan Hall, research scientist Sheila Dwyer, Dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics Nergis Mavalvala, and assistant professor of mechanical engineering Vivishek Sudhir.

    Precision pushback

    All objects embody some sort of motion as a result of the many interactions that atoms have, with each other and from external influences. All this random motion is reflected in an object’s temperature. When an object is cooled down close to zero temperature, it still has a residual quantum motion, a state called the “motional ground state.”

    To stop an object in its tracks, one can exert upon it an equal and opposite force. (Think of stopping a baseball in mid-flight with the force of your glove.) If scientists can precisely measure the magnitude and direction of an atom’s movements, they can apply counteracting forces to bring down its temperature — a technique known as feedback cooling.

    Physicists have applied feedback cooling through various means, including laser light, to bring individual atoms and ultralight objects to their quantum ground states, and have attempted to super-cool progressively larger objects, to study quantum effects in bigger, traditionally classical systems.

    “The fact that something has temperature is a reflection of the idea that it interacts with stuff around it,” Sudhir says. “And it’s harder to isolate larger objects from all the things happening around them.”

    To cool the atoms of a large object to near ground state, one would first have to measure their motion with extreme precision, to know the degree of pushback required to stop this motion. Few instruments in the world can reach such precision. LIGO, as it happens, can.

    The gravitational-wave-detecting observatory comprises twin interferometers in separate U.S. locations.

    Each interferometer has two long tunnels connected in an L-shape, and stretching 4 kilometers in either direction. At either end of each tunnel is a 40-kilogram mirror suspended by thin fibers, that swings like a pendulum in response to any disturbance such as an incoming gravitational wave. A laser at the tunnels’ nexus is split and sent down each tunnel, then reflected back to its source. The timing of the return lasers tells scientists precisely how much each mirror moved, to an accuracy of 1/10,000 the width of a proton.

    Sudhir and his colleagues wondered whether they could use LIGO’s motion-measuring precision to first measure the motion of large, human-scale objects, then apply a counteracting force, opposite to what they measure, to bring the objects to their ground state.

    Acting back on back-action

    The object they aimed to cool is not an individual mirror but rather the combined motion of all four of LIGO’s mirrors.

    “LIGO is designed to measure the joint motion of the four 40-kilogram mirrors,” Sudhir explains. “It turns out you can map the joint motion of these masses mathematically, and think of them as the motion of a single 10-kilogram object.”

    When measuring the motion of atoms and other quantum effects, Sudhir says, the very act of measuring can randomly kick the mirror and put it in motion — a quantum effect called “measurement back-action.” As individual photons of a laser bounce off a mirror to gather information about its motion, the photon’s momentum pushes back on the mirror. Sudhir and his colleagues realized that if the mirrors are continuously measured, as they are in LIGO, the random recoil from past photons can be observed in the information carried by later photons.

    Armed with a complete record of both quantum and classical disturbances on each mirror, the researchers applied an equal and opposite force with electromagnets attached to the back of each mirror. The effect pulled the collective motion to a near standstill, leaving the mirrors with so little energy that they moved no more than 10-20 meters, less than one-thousandth the size of a proton.

    The team then equated the object’s remaining energy, or motion, with temperature, and found the object was sitting at 77 nanokelvins, very close to its motional ground state, which they predict to be 10 nanokelvins.

    “This is comparable to the temperature atomic physicists cool their atoms to get to their ground state, and that’s with a small cloud of maybe a million atoms, weighing picograms,” Sudhir says. “So, it’s remarkable that you can cool something so much heavier, to the same temperature.”

    “Preparing something in the ground state is often the first step to putting it into exciting or exotic quantum states,” Whittle says. “So this work is exciting because it might let us study some of these other states, on a mass scale that’s never been done before.”

    This research was supported, in part, by the National Science Foundation (US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the Massachusetts Institute of Technology (US) community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 8:45 pm on April 20, 2021 Permalink | Reply
    Tags: "Testing Einstein's theory of gravity from the shadows and collisions of black holes":, , , , Caltech MIT Advanced aLIGO, , , , The Event Horizon Telescope (EHT) collaboration   

    From ARC Centres of Excellence for Gravitational Wave Discovery OzGrav (AU) via phys.org : “Testing Einstein’s theory of gravity from the shadows and collisions of black holes” 

    arc-centers-of-excellence-bloc

    From ARC Centres of Excellence for Gravitational Wave Discovery OzGrav (AU)

    via

    phys.org

    1
    Artist’s impression of binary black holes about to collide. Credit: Mark Myers, OzGrav-Swinburne University of Technology (AU).

    General relativity, Einstein’s theory of gravity, is best tested at its most extreme—close to the event horizon of a black hole. This regime is accessible through observations of shadows of supermassive black holes and gravitational waves—ripples in the fabric of our Universe from colliding stellar-mass black holes. For the first time, scientists from the ARC Center of Excellence for Gravitational Wave Discovery (OzGrav), the Event Horizon Telescope (EHT) and the Caltech MIT Advanced aLIGO(US), have outlined a consistent approach to exploring deviations from Einstein’s general theory of relativity in these two different observations. This research, published in Physical Review D, confirms that Einstein’s theory accurately describes current observations of black holes, from the smallest to the largest.

    One of the hallmark predictions from general relativity is the existence of black holes.The theory provides a specific description of a black hole’s effect on the fabric of space-time: a four-dimensional mesh which encodes how objects move through space and time. Known as the Kerr metric, this prediction can be related to the bending of light around a black hole, or the orbital motion of binary black holes. In this study, the deviations from the Kerr metric were linked to features in these black hole observations.

    In 2019, the Event Horizon Telescope generated silhouette images of the black hole at the center of the galaxy M87, with a mass several billion times that of our Sun.

    The first image of the event horizon of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via JPL/ Event Horizon Telescope Collaboration released on 10 April 2019 Messier 87*, via National Science Foundation(US)

    The angular size of the shadow is related to the mass of the black hole, its distance from Earth and possible deviations from general relativity’s prediction. These deviations can be calculated from the scientific data, including previous measurements of the black hole’s mass and distance.

    Meanwhile, since 2015 the LIGO and Virgo gravitational-wave observatories have been detecting gravitational waves from merging stellar mass black holes. By measuring the gravitational waves from the colliding black holes, scientists can explore the mysterious nature and metrics of the black holes. This study focussed on deviations from general relativity that appear as slight changes to the pitch and intensity of the gravitational waves, before the two black holes collide and merge.

    Combining the measurements of the shadow of the supermassive black hole in M87 and gravitational waves from a couple of binary black hole detections, called GW170608 and GW190924, the researchers found no evidence for deviations from general relativity. Co-author of the study and OzGrav research assistant Ethan Payne (Australian National University) explained that the two measurements provided similar, consistent constraints. “Different sizes of black holes may help break the complementary behavior seen here between EHT and LIGO/Virgo observations,” said Payne. “This study lays the groundwork for future measurements of deviations from the Kerr metric.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    OzGrav (AU)


    ARC Centres of Excellence for Gravitational Wave Discovery OzGrav (AU)
    A new window of discovery.
    A new age of gravitational wave astronomy.
    One hundred years ago, Albert Einstein produced one of the greatest intellectual achievements in physics, the theory of general relativity. In general relativity, spacetime is dynamic. It can be warped into a black hole. Accelerating masses create ripples in spacetime known as gravitational waves (GWs) that carry energy away from the source. Recent advances in detector sensitivity led to the first direct detection of gravitational waves in 2015. This was a landmark achievement in human discovery and heralded the birth of the new field of gravitational wave astronomy. This was followed in 2017 by the first observations of the collision of two neutron-stars. The accompanying explosion was subsequently seen in follow-up observations by telescopes across the globe, and ushered in a new era of multi-messenger astronomy.

    The mission of the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) is to capitalise on the historic first detections of gravitational waves to understand the extreme physics of black holes and warped spacetime, and to inspire the next generation of Australian scientists and engineers through this new window on the Universe.

    OzGrav is funded by the Australian Government through the Australian Research Council Centres of Excellence funding scheme, and is a partnership between Swinburne University of Technology (AU) (host of OzGrav headquarters), the Australian National University (AU), Monash University (AU), University of Adelaide (AU), University of Melbourne (AU), and University of Western Australia (AU), along with other collaborating organisations in Australia and overseas.

    ________________________________________________________

    The objectives for the ARC Centres of Excellence are to to:

    undertake highly innovative and potentially transformational research that aims to achieve international standing in the fields of research envisaged and leads to a significant advancement of capabilities and knowledge

    link existing Australian research strengths and build critical mass with new capacity for interdisciplinary, collaborative approaches to address the most challenging and significant research problems

    develope relationships and build new networks with major national and international centres and research programs to help strengthen research, achieve global competitiveness and gain recognition for Australian research

    build Australia’s human capacity in a range of research areas by attracting and retaining, from within Australia and abroad, researchers of high international standing as well as the most promising research students

    provide high-quality postgraduate and postdoctoral training environments for the next generation of researchers

    offer Australian researchers opportunities to work on large-scale problems over long periods of time

    establish Centres that have an impact on the wider community through interaction with higher education institutes, governments, industry and the private and non-profit sector.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: