Tagged: California Institute of Technology (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:45 pm on October 22, 2021 Permalink | Reply
    Tags: "Controlling Light with a Material Three Atoms Thick", , California Institute of Technology (US), Light exists as a wave and has a property known as polarization., Most of us control light all the time without even thinking about it usually in mundane ways., , Polarization can be useful because it allows light to be controlled in specific ways., Scientists say the technology could also open the door to a light-based replacement for Wi-Fi., Scientists thanks to a new breakthrough that uses a specialized material only three atoms thick they can control light more precisely than ever before., The material is constructed from so-called black phosphorous which is similar in many ways to graphite or graphene.   

    From California Institute of Technology (US) : “Controlling Light with a Material Three Atoms Thick” 

    Caltech Logo

    From California Institute of Technology (US)

    October 22, 2021
    Emily Velasco
    (626) 372‑0067
    evelasco@caltech.edu

    1
    Credit: California Institute of Technology (US).

    Most of us control light all the time without even thinking about it usually in mundane ways: we don a pair of sunglasses and put on sunscreen, and close—or open—our window blinds.

    But the control of light can also come in high-tech forms. The screen of the computer, tablet, or phone on which you are reading this is one example. Another is telecommunications, which controls light to create signals that carry data along fiber-optic cables.

    Scientists also use high-tech methods to control light in the laboratory, and now, thanks to a new breakthrough that uses a specialized material only three atoms thick they can control light more precisely than ever before.

    The work was conducted in the lab of Harry Atwater, the Otis Booth Leadership Chair of the Division of Engineering and Applied Science, Howard Hughes Professor of Applied Physics and Materials Science, and director of the Liquid Sunlight Alliance (LiSA). It appears in a paper published in the October 22 issue of Science.

    To understand the work, it is helpful first to remember that light exists as a wave and that it has a property known as polarization, which describes the direction in which the waves vibrate. Imagine being in a boat bobbing on the ocean: Ocean waves have a vertical polarization, which means that as the waves pass under the boat, it goes up and down. Light waves behave in much the same way, except these waves can be polarized at any angle. If a boat could ride waves of light, it might bob from side to side, or on a diagonal, or even in a spiraling fashion.

    1
    Polarization refers to the orientation in which a wave (including light) vibrates. The angle of polarization can be changed. Credit: Smouss/Wikimedia Commons.

    Polarization can be useful because it allows light to be controlled in specific ways. For example, the lenses in your sunglasses block glare (light often becomes polarized when it reflects off a surface, like the window of a car). The screen of a desk calculator creates legible numbers by polarizing light and blocking it in areas. Those areas where the polarized light is blocked appear dark, while areas where the light is not blocked appear light.

    2
    The display of a calculator that uses the properties of polarized light to create light and dark areas that are readable as numbers and other figures. Credit: David R. Tribble/Wikimedia Commons.

    In the paper, Atwater and his co-authors describe how they used three layers of phosphorous atoms to create a material for polarizing light that is tunable, precise, and extremely thin.

    The material is constructed from so-called black phosphorous which is similar in many ways to graphite or graphene, forms of carbon that consist of single-atom-thick layers. But whereas the layers of graphene are perfectly flat, black phosphorous’s layers are ribbed, like the texture of a pair of corduroy pants or corrugated cardboard. (Phosphorus also comes in red, white, and violet forms, distinct because of the arrangement of the atoms within it.)

    That crystal structure, Atwater says, makes the black phosphorus have significantly anisotropic optical properties. “Anisotropy means is that it’s angle dependent,” he explains. “In a material like graphene, light is absorbed and reflected equally no matter the angle at which it’s polarized. Black phosphorus is very different in the sense that if the polarization of light is aligned along the corrugations, it has a very different response than if it’s aligned perpendicular to the corrugations.”

    When polarized light is oriented across the corrugations in black phosphorous, it interacts with the material differently than when it is oriented along the corrugations—kind of like how it is easier to rub your hand along the ribs in corduroy than it is to rub your hand across them.

    3
    Sheets of black phosphorus, much like this corduroy fabric, are ribbed. Credit: Ariel Glenn/Wikimedia Commons.

    Many materials can polarize light, though, and that ability alone is not especially useful. What makes black phosphorous special, Atwater says, is that it is also a semiconductor, a material that conducts electricity better than an insulator, like glass, but not as well as a metal like copper. The silicon in microchips is an example of a semiconductor. And just as how tiny structures built from silicon can control the flow of electricity in a microchip, structures built from black phosphorous can control the polarization of light as an electric signal is applied to them.

    “These tiny structures are doing this polarization conversion,” Atwater says, “so now I can make something that’s very thin and tunable, and at the nanometer scale. I could make an array of these little elements, each of which can convert the polarization into a different reflected polarization state.”

    The liquid crystal display (LCD) technology found in phone screens and TVs already has some of those abilities, but black phosphorous tech has the potential to leap far ahead of it. The “pixels” of a black phosphorous array could be 20 times smaller than those in LCDs, yet respond to inputs a million times faster.

    Such speeds are not necessary for watching a movie or reading an article online, but they could revolutionize telecommunications, Atwater says. The fiber-optic cable through which light signals are sent in telecommunications devices can transmit only so many signals before they begin to interfere with and overwhelm each other, garbling them (picture trying to hear what a friend is saying in a crowded and loud bar). But a telecommunications device based on thin layers of black phosphorous could tune the polarization of each signal so that none interfere with each other. This would allow a fiber-optic cable to carry much more data than it does now.

    Atwater says the technology could also open the door to a light-based replacement for Wi-Fi, something researchers in the field refer to as Li-Fi.

    “Increasingly, we’re going to be looking at light-wave communications in free space,” he says. “Lighting like this very cool-looking lamp above my desk doesn’t carry any communication signal. It just provides light. But there’s no reason that you couldn’t sit in a future Starbucks and have your laptop taking a light signal for its wireless communication rather than a radio signal. It’s not quite here yet, but when it gets here, it will be at least a hundred times faster than Wi-Fi.”

    The lead author is Souvik Biswas, graduate student in applied physics. Other co-authors are Meir Y. Grajower, postdoctoral scholar research associate in applied physics and materials science, and Kenji Watanabe and Takashi Taniguchi of the NIMS-National Institute for Materials Science [物質・材料研究機構] (JP).

    “These are exciting times for new materials discovery that can shape the future of photonic devices, and we have barely scratched the surface,” Biswas says. “It would be gratifying if some day you could buy a commercial product constructed out of such atomically thin materials, and that day might not be very far.”

    Funding for the research was provided by the U.S. Department of Energy; Japan’s Ministry of Education, Culture, Sports, Science and Technology; the Japan Society for the Promotion of Science; and the Japan Science and Technology Agency.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 10:11 am on October 14, 2021 Permalink | Reply
    Tags: "Quantum Science and Technology", California Institute of Technology (US)   

    From California Institute of Technology (US) : “Quantum Science and Technology” 

    Caltech Logo

    From California Institute of Technology (US)

    1

    Quantum Science and Technology

    Quantum science emerged from studies of the smallest objects in nature. Today, it promises to deepen our understanding of the universe and deliver groundbreaking technology, from quantum computers to ultra-precise measuring devices to next-generation materials, with many of these advances happening at Caltech. Learn about the basic concepts underlying the field of quantum science, including superposition, entanglement, and the uncertainty principle. Discover how quantum principles and our understanding of them have been harnessed to benefit society and catalyze new research across disciplines.

    2

    What Is Quantum Physics?

    If you’re new to the field, we suggest you start here. Learn about the origins of quantum physics, also known as quantum mechanics, why mathematics is essential to the field, and how the act of observing the smallest objects can affect them.

    READ MORE.

    3

    What Is Quantum Computing?

    Find out how quantum computers work, the advances they might make possible, and why universities, technology companies, and government agencies are racing to develop them.

    READ MORE.

    4

    What Is Entanglement and Why Is It Important?

    Entanglement is at the heart of quantum physics and emerging quantum technologies. Read about how scientists proved its existence, and watch Caltech scientists take a stab at explaining this “spooky” phenomenon.

    READ MORE.

    5

    What Is Superposition and Why Is It Important?

    Go beyond Schrödinger’s cat and learn more about superposition, a concept that might be difficult to visualize but could hold the key to advancing technology such as quantum computers.

    READ MORE.

    6

    What Is the Uncertainty Principle and Why Is It Important?

    Formulated by the German physicist and Nobel laureate Werner Heisenberg in 1927, the uncertainty principle states that we cannot know both the position and speed of a particle, such as a photon or electron, with perfect accuracy. Find out why.

    READ MORE.

    7

    How Do Scientists Conduct Quantum Experiments?

    Let this comic take you inside the labs where researchers probe the subatomic world of quantum physics.

    READ MORE

    8

    How Will Quantum Technologies Change Cryptography?

    Quantum information science has the potential to change computer encryption. Researchers envision secure cryptography that can’t be cracked by future quantum computers and are exploring how the properties of quantum mechanics could be used to send communications that are impervious to eavesdropping.

    READ MORE

    9

    How Are Quantum Phenomena Used in Technology Today?

    Surprising but true: Quantum mechanics are at work inside of your toaster and other devices we encounter in everyday life.

    READ MORE

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 8:07 pm on October 13, 2021 Permalink | Reply
    Tags: "How Long Does a Neutron Live?", California Institute of Technology (US), In the end the neutron lifetime was calculated to a precision better than 400 parts per million making it the most precise result yet., One team was led by Caltech; another by Indiana University; and another by LANL., Over the span of the experiments the UCNtau collaboration counted 40 million neutrons., The key step at the end is to make the neutrons interact with a solid frozen chunk of deuterium [a heavier version of hydrogen]., The researchers had to create a very tight vacuum in the chamber to keep out unwanted gases., they found a remarkable level of agreement., They had to dramatically slow down the neutrons so that they can be trapped by magnetic fields and counted., To remove any possible biases in the measurements caused by researchers skewing results to match expected outcomes the collaboration split into three groups that worked in a blind fashion., UCNtau : Ultra Cold Neutrons tau where tau refers to the neutron lifetime   

    From California Institute of Technology (US) : “How Long Does a Neutron Live?” 

    Caltech Logo

    From California Institute of Technology (US)

    October 13, 2021

    Whitney Clavin
    (626) 395‑1944
    wclavin@caltech.edu

    1
    Credit: Caltech. Physicists use “bottle” method to make most precise measurement yet of a neutron’s lifetime.

    Particles called neutrons are typically very content inside atoms. They stick around for billions of years and longer inside some of the atoms that make up matter in our universe. But when neutrons are free and floating alone outside of an atom, they start to decay into protons and other particles. Their lifetime is short, lasting only about 15 minutes.

    2
    Bailey Slaughter, who formerly worked on the UCNtau project while an undergraduate student at The Indiana University, is seen here performing work inside the trap, or “bottle,” used to count the lifetime of neutrons. Credit: Chen-Yu Liu

    Physicists have spent decades trying to measure the precise lifetime of a neutron using two techniques, one involving bottles and the other beams. But the results from the two methods have not matched: they differ by about 9 seconds, which is significant for a particle that only lives about 15 minutes.

    Now, in a new study published in the journal Physical Review Letters, a team of scientists has made the most precise measurement yet of a neutron’s lifetime using the bottle technique. The experiment, known as UCNtau (for Ultra Cold Neutrons tau where tau refers to the neutron lifetime), has revealed that the neutron lives 14.629 minutes with an uncertainty of 0.005 minutes. This is a factor of two more precise than previous measurements made using either of the methods. While the results do not solve the mystery of why the bottle and beam methods disagree, they bring scientists closer to an answer.

    “This new result provides an independent assessment to help settle the neutron lifetime puzzle,” says Brad Filippone, the Francis L. Moseley Professor of Physics and a co-author of the new study. The methods continue to disagree, he explains, because either one of the methods is faulty or because something new is going on in the physics that is yet to be understood.

    “When combined with other precision measurements, this result could provide the much-searched-for evidence for the discovery of new physics,” he says.

    The results can also help to solve other long-standing mysteries, such as how matter in our infant universe first congealed out of a hot soup of neutrons and other particles. “Once we know the neutron lifetime precisely, it can help explain how atomic nuclei formed in the early minutes of the universe,” says Filippone.

    Blind Tests

    In 2017 and 2018, the UCNtau team performed two bottle experiments at the DOE’s Los Alamos National Laboratory (US). In the bottle method, free neutrons are trapped in an ultracold, magnetized bottle about the size of a bathtub, where they begin to decay into protons. Using sophisticated data analyses methods, researchers can count how many neutrons remain over time. (In the beam method, a beam of neutrons decays into protons, and the protons are counted not the neutrons.)

    Over the span of the experiments the UCNtau collaboration counted 40 million neutrons.

    To remove any possible biases in the measurements caused by researchers skewing results to match expected outcomes the collaboration split into three groups that worked in a blind fashion. One team was led by Caltech; another by Indiana University; and another by LANL. Each team was given a fake clock, so that the researchers would not actually know how much time had elapsed.

    “We made our clocks purposely a little off by an amount that somebody knew but then kept secret until the end of the experiment,” says co-author Eric Fries (PhD ’22), who led the Caltech team and performed the research as part of his PhD thesis.

    “This makes the experiment more reliable because there’s no chance of conscious or unconscious bias in fitting the results to match the expected neutron lifetime,” adds Filippone. “Thus, we don’t know the actual lifetime until we correct for this at the very end during the ‘unblinding.'”

    Trapping the zippy neutrons

    One challenge in the study of stray neutrons is that they can easily bind to atoms, says Filippone. He notes that atomic nuclei in the experimental apparatus can readily “eat up the neutrons like Pac-Man.” As a result, the researchers had to create a very tight vacuum in the chamber to keep out unwanted gases.

    They had to dramatically slow down the neutrons so that they can be trapped by magnetic fields and counted.

    “We have to cool these neutrons down through various steps,” says Filippone. “The key step at the end is to make the neutrons interact with a solid frozen chunk of deuterium [a heavier version of hydrogen] about the size of a birthday cake, which causes the neutrons to lose energy.”

    Once the experiments were done and the data were collected, each of the three teams used different approaches to analyze the data. Fries and the Caltech team used machine learning methods to help count the neutrons. “The tricky part is to look at the individual data points and say, yes, that is in fact a neutron,” says Fries.

    “We all dealt with the data differently but came up with nearly the same answer, with differences that were less than the overall statistical error,” says Fries.

    In the end the neutron lifetime was calculated to a precision better than 400 parts per million making it the most precise result yet. Future experiments are underway to help further refine measurements made using the beam method and to ultimately determine whether systematic errors or new physics are behind the neutron-lifetime mystery.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 12:03 pm on September 29, 2021 Permalink | Reply
    Tags: "Extending LIGO's Reach Into the Cosmos", As more and more upgrades are made to the LIGO observatories the facilities are expected to detect increasingly large numbers of these extreme cosmic events., California Institute of Technology (US), , , , New mirror coatings will increase the volume of space LIGO can probe in its next run., There is a catch: The coatings that make the mirrors reflective also can lead to background noise in the instrument—noise that masks gravitational-wave signals of interest.,   

    From California Institute of Technology (US) : “Extending LIGO’s Reach Into the Cosmos” 

    Caltech Logo

    From California Institute of Technology (US)

    September 29, 2021

    Whitney Clavin
    (626) 395‑1944
    wclavin@caltech.edu

    1
    New mirror coatings will increase the volume of space LIGO can probe in its next run.

    Since LIGO’s groundbreaking detection, in 2015, of gravitational waves produced by a pair of colliding black holes, the observatory, together with its European partner facility Virgo, has detected dozens of similar cosmic rumblings that send ripples through space and time.
    _______________________________________________________________________

    LIGOVIRGO

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA.

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation.

    VIRGO Gravitational Wave interferometer, near Pisa, Italy
    _______________________________________________________________________

    In the future, as more and more upgrades are made to the LIGO observatories—one in Hanford, Washington, and the other in Livingston, Louisiana—the facilities are expected to detect increasingly large numbers of these extreme cosmic events. These observations will help solve fundamental mysteries about our universe, such as how black holes form and how the ingredients of our universe are manufactured.

    One important factor in increasing the sensitivity of the observatories involves the coatings on the glass mirrors that lie at the heart of the instruments. Each 40-kilogram (88-pound) mirror (there are four in each detector at the two LIGO observatories) is coated with reflective materials that essentially turn the glass into mirrors. The mirrors reflect laser beams that are sensitive to passing gravitational waves.

    Generally, the more reflective the mirrors the more sensitive the instrument, but there is a catch: The coatings that make the mirrors reflective also can lead to background noise in the instrument—noise that masks gravitational-wave signals of interest.

    Now, a new study by the LIGO team describes a new type of mirror coating made of titanium oxide and germanium oxide and outlines how it can reduce background noise in LIGO’s mirrors by a factor of two, thereby increasing the volume of space that LIGO can probe by a factor of eight.

    2
    Researchers test coatings for the LIGO mirrors by depositing them on glass disks that are smaller than the real mirrors, and therefore easier to handle. One of those test disks is shown here being taken out of its storage container. Credit: Caltech.

    “We wanted to find a material at the edge of what is possible today,” says Gabriele Vajente, a LIGO senior research scientist at Caltech and lead author of a paper about the work that appears in the journal Physical Review Letters. “Our ability to study the astronomically large scale of the universe is limited by what happens in this very tiny microscopic space.”

    “With these new coatings, we expect to be able to increase the detection rate of gravitational waves from once a week to once a day or more,” says David Reitze, executive director of LIGO Laboratory at Caltech.

    The research, which may have future applications in the fields of telecommunications and semiconductors, was a collaboration between Caltech; Colorado State University (US); The University of Montréal [Université de Montréal] (CA); and Stanford University (US), whose synchrotron at the DOE’s SLAC National Accelerator Laboratory (US) was used in the characterization of the coatings.

    LIGO detects ripples in space-time using detectors called interferometers. In this setup, a powerful laser beam is split into two: each beam travels down one arm of a large L-shaped vacuum enclosure toward mirrors 4 kilometers away. The mirrors reflect the laser beams back to the source from which they originated. When gravitational waves pass by, they will stretch and squeezes space by nearly imperceptible and yet detectable amounts (much less than the width of a proton). The perturbations change the timing of the arrival of the two laser beams back at the source.

    Any jiggling in the mirrors themselves—even the microscopic thermal vibrations of the atoms in the mirrors’ coatings—can affect the timing of the laser beams’ arrival and make it hard to isolate the gravitational-wave signals.

    “Every time light passes between two different materials, a fraction of that light is reflected,” says Vajente. “This is the same thing that happens in your windows: you can see your faint reflection in the glass. By adding multiple layers of different materials, we can reinforce each reflection and make our mirrors up to 99.999 percent reflective.”

    “What’s important about this work is that we developed a new way to better test the materials,” says Vajente. “We can now test the properties of a new material in about eight hours, completely automated, when before it took almost a week. This allowed us to explore the periodic table by trying a lot of different materials and a lot of combinations. Some of the materials we tried didn’t work, but this gave us insights into what properties might be important.”

    In the end, the scientists discovered that a coating material made from a combination of titanium oxide and germanium oxide dissipated the least energy (the equivalent of reducing thermal vibrations).

    “We tailored the fabrication process to meet the stringent demands in optical quality and reduced thermal noise of the mirror coatings,” says Carmen Menoni, professor at Colorado State University and member of the LIGO Scientific Collaboration. Menoni and her colleagues at Colorado State used a method called ion beam sputtering to coat the mirrors. In this process, atoms of titanium and germanium are peeled away from a source, combined with oxygen, and then deposited onto the glass to create thin layers of atoms.

    The new coating may be used for LIGO’s fifth observing run, which will begin in the middle of the decade as part of the Advanced LIGO Plus program. Meanwhile, LIGO’s fourth observing run, the last in the Advanced LIGO campaign, is expected to commence in the summer of 2022.

    “This is a game changer for Advanced LIGO Plus,” says Reitze. “And this is a great example of how LIGO relies heavily on cutting-edge optics and materials science research and development. This is the biggest advance in precision optical coating development for LIGO in the past 20 years.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Caltech campus

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 1:51 pm on September 15, 2021 Permalink | Reply
    Tags: , , California Institute of Technology (US),   

    From California Institute of Technology (US) : “Observatory in Chile Takes Highest-Resolution Measurements of Asteroid Surface Temperatures Ever Obtained from Earth” 

    Caltech Logo

    From California Institute of Technology (US)

    August 05, 2021

    Robert Perkins
    (626) 395‑1862
    rperkins@caltech.edu

    1
    The study’s target, Psyche, is the destination of an upcoming NASA mission.

    A close examination of the millimeter-wavelength emissions from the asteroid Psyche, which NASA intends to visit in 2026, has produced the first temperature map of the object, providing new insight into its surface properties. The findings, described in a paper published in Planetary Science Journal (PSJ) on August 5, are a step toward resolving the mystery of the origin of this unusual object, which has been thought by some to be a chunk of the core of an ill-fated protoplanet.

    Psyche orbits the sun in the asteroid belt, a donut-shaped region of space between Earth and Jupiter that contains more than a million rocky bodies that range in size from 10 meters to 946 kilometers in diameter.

    With a diameter of more than 200 km, Psyche is the largest of the M-Type asteroids, an enigmatic class of asteroids that are thought to be metal rich and therefore potentially may be fragments of the cores of proto-planets that broke up as the solar system formed.

    “The early solar system was a violent place, as planetary bodies coalesced and then collided with one another while settling into orbits around the sun,” says Caltech’s Katherine de Kleer, assistant professor of planetary science and astronomy and lead author of the PSJ article. “We think that fragments of the cores, mantles, and crusts of these objects remain today in the form of asteroids. If that’s true, it gives us our only real opportunity to directly study the cores of planet-like objects.”

    Studying such relatively tiny objects that are so far away from Earth (Psyche drifts at a distance that ranges between 179.5 and 329 million km from Earth) poses a significant challenge to planetary scientists, which is why NASA plans to send a probe to Psyche to examine it up close. Typically, thermal observations from Earth—which measure the light emitted by an object itself rather than light from the sun reflected off of that object—are in infrared wavelengths and can produce only 1-pixel images of asteroids. That one pixel does, however, reveal a lot of information; for example, it can be used to study the asteroid’s thermal inertia, or how fast it heats up in sunlight and cools down in darkness.

    “Low thermal inertia is typically associated with layers of dust, while high thermal inertia may indicate rocks on the surface,” says Caltech’s Saverio Cambioni, postdoctoral scholar in planetary science and co-author of the PSJ article. “However, discerning one type of landscape from the other is difficult.” Data from viewing each surface location at many times of day provide much more detail, leading to an interpretation that is subject to less ambiguity, and which provide a more reliable prediction of landscape type prior to a spacecraft’s arrival.

    De Kleer and Cambioni, together with co-author Michael Shepard of Bloomsburg University (US) in Pennsylvania, took advantage of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, which became fully operational in 2013, to obtain such data.

    The array of 66 radio telescopes enabled the team to map the thermal emissions from Psyche’s entire surface at a resolution of 30 km (where each pixel is 30 km by 30 km) and generate an image of the asteroid composed of about 50 pixels.

    This was possible because ALMA observed Psyche at millimeter wavelengths, which are longer (ranging from 1 to 10 millimeters) than the infrared wavelengths (typically between 5 and 30 microns). The use of longer wavelengths allowed the researchers to combine the data collected from the 66 telescopes to create a much larger effective telescope; the larger a telescope, the higher the resolution of the images it produces.

    The study confirmed that Psyche’s thermal inertia is high compared to that of a typical asteroid, indicating that Psyche has an unusually dense or conductive surface. When de Kleer, Cambioni, and Shepard analyzed the data, they also found that Psyche’s thermal emission—the amount of heat it radiates—is just 60 percent of what would be expected from a typical surface with that thermal inertia. Because surface emission is affected by the presence of metal on the surface, their finding indicates that Psyche’s surface is no less than 30 percent metal. An analysis of the polarization of the emission helped the researchers to roughly determine what form that metal takes. A smooth solid surface emits well-organized polarized light; the light emitted by Psyche, however, was scattered, suggesting that rocks on the surface are peppered with metallic grains.

    “We’ve known for many years that objects in this class are not, in fact, solid metal, but what they are and how they formed is still an enigma,” de Kleer says. The findings reinforce alternative proposals for Psyche’s surface composition, including that Psyche could be a primitive asteroid that formed closer to the sun than it is today instead of a core of a fragmented protoplanet.

    The techniques described in this study provide a new perspective on asteroid surface compositions. The team is now expanding its scope to apply these techniques to other large objects in the asteroid belt.

    The study was enabled by a related project by the team led by Michael Shepard at Bloomsburg University that utilized de Kleer’s data in combination with data from other telescopes, including Arecibo Observatory in Puerto Rico, to pin down the size, shape, and orientation of Psyche. That in turn allowed the researchers to determine which pixels that had been captured actually represented the asteroid’s surface. Shepard’s team was scheduled to observe Psyche again at the end of 2020, but damage from cable failures shut the telescope down before the observations could be made.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 9:57 am on September 12, 2021 Permalink | Reply
    Tags: "Finding a Metal-Oxide Needle in a Periodic Table Haystack", Anything more than two elements is considered 'high dimensional' in materials science., , California Institute of Technology (US), , , Most of the materials in Earth's crust are metal oxides., , The Caltech team created 376752 three-metal-oxide combinations based on 10 metal elements and produced samples of each individual combination 10 different times., The unknown frontier is three or more elements together.   

    From California Institute of Technology (US) : “Finding a Metal-Oxide Needle in a Periodic Table Haystack” 

    Caltech Logo

    From California Institute of Technology (US)

    September 11, 2021

    Robert Perkins
    (626) 395‑1862
    rperkins@caltech.edu

    Materials Scientists and Data Scientists Team Up to Create New Way to Discover Potentially Useful Materials.

    1

    Coupling computer automation with an ink-jet printer originally used to print T-shirt designs, researchers at Caltech and Google have developed a high-throughput method of identifying novel materials with interesting properties. In a trial run of the process, they screened hundreds of thousands of possible new materials and discovered one made from cobalt, tantalum, and tin that has tunable transparency and acts as a good catalyst for chemical reactions while remaining stable in strong acid electrolytes.

    The effort, described in a scientific article published in PNAS, was led by John Gregoire and Joel Haber of Caltech, and Lusann Yang of Google. It builds on research conducted at the Joint Center for Artificial Photosynthesis (JCAP), a Department of Energy (US) Energy Innovation Hub at Caltech, and continues with JCAP’s successor, the Liquid Sunlight Alliance (LiSA), a DOE-funded effort that aims to streamline the complicated steps needed to convert sunlight into fuels, to make that process more efficient.

    Creating new materials is not as simple as dropping a few different elements into a test tube and shaking it up to see what happens. You need the elements that you combine to bond with each other at the atomic level to create something new and different rather than just a heterogeneous mixture of ingredients. With a nearly infinite number of possible combinations of the various squares on the periodic table, the challenge is knowing which combinations will yield such a material.

    “Materials discovery can be a bleak process. If you can’t predict where to find the desired properties, you could spend your entire career mixing random elements and never find anything interesting,” says Gregoire, research professor of applied physics and materials science, researcher at JCAP, and LiSA team lead.

    When combining a small number of individual elements, materials scientists can often make predictions about what properties a new material might have based on its constituent parts. However, that process quickly becomes untenable when more complicated mixtures are made.

    “Anything more than two elements is considered ‘high dimensional’ in materials science,” Gregoire says. “Most or all of the one- and two-metal oxides are already known,” he says. “The unknown frontier is three or more together.” (Metal oxides are solid materials that contain positively charged metal ions, or cations, and negatively charged oxygen ions, or anions; rust, for example, is iron oxide.)

    Most of the materials in Earth’s crust are metal oxides, because the oxygen in the atmosphere reacts with various metals in the crust of the planet. The environmental stability of metal oxides makes them practically useful, provided that specific compositions of such oxides can be identified that will provide the mechanical, optical, electronic, and chemical properties needed for a given technology.

    Although materials scientists have shown how all of these properties can be tuned through the use of various metal oxides, achieving the necessary properties for a particular application can require specific combinations of multiple elements, and finding the right ones is a daunting challenge.

    To broach the three-or-more-metal-oxide frontier, Gregoire’s group drew on a decade’s worth of work by JCAP. There, researchers have developed methods to create 100,000 materials per day. One such material—discovered in this study—was produced by using repurposed ink-jet printers to “print” new materials onto glass sheets. Each combination of elements was printed as a line with a gradation of the ratio between its constituents and then oxidized at high temperature.

    Each of those materials was then scanned and imaged at Caltech using a hyperspectral imaging technique co-developed with Google that can quickly capture information about the material by recording how much light it absorbs at nine different wavelengths. “It’s not a comprehensive analysis of the material, but it’s rapid and offers clues to the compositions with interesting properties,” says Haber, research chemist and material engineer at JCAP and LiSA.

    In all, the Caltech team created 376752 three-metal-oxide combinations based on 10 metal elements and produced samples of each individual combination 10 different times to detect and weed out any flaws in the synthesis process. “The printing can have artifacts, which is the sacrifice you make for speed. Analyses by Google taught us to make everything 10 times to build trust in the results,” Gregoire says.

    Though imperfect, the process creates three-metal materials about 1,000 times faster than traditional techniques such as vapor deposition, in which the new material is coated onto a substrate by condensing it from a vapor.

    Google computer engineers then created algorithms to process the hyperspectral images and searched for specific compositions whose optical properties can only be explained by chemical interactions among the three metal elements.

    “If the three elements chemically interact to provide exceptional optical properties, their interactions may also give rise to other exceptional properties,” Gregoire explains. Because the technique can identify the small fraction of compositions that show evidence of these chemical interactions, it also narrows down the haystack for materials scientists searching for needles, so to speak.

    “John’s lab had the sort of problem we dream about at Google Applied Science; he can print hundreds of thousands of samples in a day, resulting in terabytes of image data,” says Google researcher Lusann Yang. “We were delighted to work closely with him at every step of this six-year collaboration, finding places to apply Google’s unique toolkit for iterative experiments on large quantities of noisy data: designing experiments, debugging hardware, processing large amounts of image data, and creating physics-inspired algorithms. The result is an experimental data set of unique breadth across many chemical spaces that I’m proud to open source.”

    To validate their findings, Gregoire’s team at Caltech recreated the materials flagged as “interesting” using physical vapor deposition and analyzed them using X-ray diffraction, a slower but more thorough process than hyperspectral imaging. This type of validation revealed that the automated high-throughput process was more adept at spotting new materials than a thorough analysis of the hyperspectral data by a human scientist.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 1:12 pm on September 10, 2021 Permalink | Reply
    Tags: "Caltech Astronomers Win New Horizons Breakthrough Prize", California Institute of Technology (US), , First-ever observations of the cosmic event to be witnessed in both gravitational waves and electromagnetic-or light-waves., , The event called GW170817 began when two dense stellar remnants-called neutron stars-spiraled together and collided.   

    From California Institute of Technology (US) : “Caltech Astronomers Win New Horizons Breakthrough Prize” 

    Caltech Logo

    From California Institute of Technology (US)

    September 09, 2021

    Professor of Astronomy Mansi Kasliwal (MS ’07, PhD ’11) and Professor of Astronomy Gregg Hallinan have been named winners of a 2022 New Horizons Prize in Physics, one of several Breakthrough Prizes announced today.

    1
    Mansi Kasliwal Credit: Lance Hayashida/Caltech.

    2
    Gregg Hallinan

    Together with former Caltech postdoctoral scholar Alessandra Corsi, now at The Texas Tech University (US), and Raffaella Margutti of The University of California-Berkeley (US), the scientists are being honored “for leadership in laying foundations for electromagnetic observations of sources of gravitational waves, and leadership in extracting rich information from the first observed collision of two neutron stars,” according to the award citation.

    In 2017, Kasliwal, Hallinan, Corsi, and Margutti helped make history with their observations of the first-ever cosmic event to be witnessed in both gravitational waves and electromagnetic-or light-waves. The event called GW170817 began when two dense stellar remnants-called neutron stars-spiraled together and collided, creating a storm of ripples in space and time, or gravitational waves, that traveled outward in all directions. Some of those waves ultimately reached Earth, where the Laser Interferometer Gravitational-wave Observatory(LIGO) detected their signatures.

    Just seconds after the gravitational waves were produced, the neutron star collision resulted in an explosion of matter, as well as light spanning the electromagnetic spectrum, ranging from high-energy gamma rays to low-energy radio waves. Kasliwal’s team was one of the first to observe the collision in visible and infrared light, using the National Science Foundation (NSF)-funded Global Relay of Observatories Watching Transients Happen (GROWTH) project, a worldwide network of telescopes that specializes in catching short-lived energetic events such as this. The GROWTH team put together a picture of a cocoon breaking out to explain the rich multi-wavelength dataset.

    Around two weeks later, as predicted by models, Gregg Hallinan, who is also director of the Owens Valley Radio Observatory (OVRO), together with Alessandra Corsi and collaborators, began seeing the radio waves created by the event using the Very Large Array, a collection of 27 radio telescopes in New Mexico.

    These radio observations later confirmed the presence of the cocoon, as well as providing the first direct confirmation that a relativistic jet, consistent with an energetic short gamma-ray burst, was produced by the merger. The collision was also seen by X-ray detecting telescopes.

    The observation of celestial events through multiple channels (gravitational waves, visible light, X-rays and radio waves, in this case is known as multi-messenger astronomy, and is a growing field of study.

    “It is truly an honor to be awarded the New Horizons Prize in Physics, and to share it with valued colleagues,” Hallinan says. “Multi-messenger astronomy is an exciting field undergoing exponential growth, and I am grateful to those who have worked closely with me on this journey, particularly Kunal Mooley, Mansi Kasliwal, Udi Nakar, Samaya Nissanke, Kenta Hotokezaka, Alessandra Corsi, Shri Kulkarni, and Dale Frail.”

    Kasliwal also highlighted the team-based nature of the work.

    “Collaborating with a worldwide network of astronomers—the GROWTH collaboration—and working closely with observatory staff and engineers is inspiring. Mentoring students and postdocs is the biggest perk of my job,” Kasliwal says. “Pursuing astrophysics to unlock mysteries of our universe is truly a dream job for me—a passion converted into a profession in a dynamic field where the book is actively being written. Discovering where and how the elements in our periodic table are synthesized is exhilarating.”

    Each New Horizons Prize, which is intended to honor early-career scientists showing leadership in their field, is accompanied by a $100,000 award. The awards ceremony, televised live, has been postponed until 2022 due to the ongoing COVID-19 pandemic.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 10:32 pm on September 1, 2021 Permalink | Reply
    Tags: "Berkeley Lab; UC Berkeley; and Caltech to Build Quantum Network Testbed", California Institute of Technology (US), , QUANT-NET (Quantum Application Network Testbed for Novel Entanglement Technology), U.S. National Quantum Initiative,   

    From DOE’s Lawrence Berkeley National Laboratory (US) and University of California-Berkeley (US) and California Institute of Technology (US) : “Berkeley Lab; UC Berkeley; and Caltech to Build Quantum Network Testbed” 

    From DOE’s Lawrence Berkeley National Laboratory (US)

    and

    University of California-Berkeley (US)

    and

    Caltech Logo

    California Institute of Technology (US)

    August 31, 2021
    Kathy Kincade
    kkincade@lbl.gov
    (510) 301-6056

    1
    (Credit: iStock)

    Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley (UC Berkeley) will be home to a cutting-edge quantum network testbed, thanks to a new five-year, $12.5 million funding award from the Department of Energy (US). Led by personnel from Berkeley Lab’s Scientific Networking Division/ESnet, UC Berkeley, and Caltech, the R&D collaboration will also leverage quantum development efforts at Berkeley Lab and beyond.

    The goal is to build a distributed quantum network between Berkeley Lab and UC Berkeley that will help realize the DOE’s vision of establishing a nationwide quantum Internet and support the U.S. National Quantum Initiative. Quantum networks leverage the quantum properties of light to encode much more information than the “ones and zeros” of traditional computing. The quantum Internet will enable future capabilities, including distributed quantum sensing, upscaling quantum computing, and enabling highly secure communications.

    “Berkeley Lab has always been a global leader in developing advanced networks for research,” said Berkeley Lab Director Mike Witherell. “With this award, we will be advancing the design of the quantum Internet and furthering the DOE Office of Science mission to deliver scientific discoveries and major scientific tools that transform our understanding of nature.”

    The DOE announced the funding award on August 19, with a total commitment of $61 million for several quantum information system projects, including another quantum network testbed at DOE’s Oak Ridge National Laboratory (US) ($12.5 million), five new Nanoscale Science Research Centers ($30 million), and ongoing development of new building blocks for the quantum Internet ($5 million).

    The Berkeley-based project, dubbed QUANT-NET (Quantum Application Network Testbed for Novel Entanglement Technology), will focus on building a software-controlled, application-focused quantum computing network link between Berkeley Lab and UC Berkeley. The three-node distributed testbed will feature an entanglement swapping substrate over optical fiber and will be managed by a quantum network protocol stack. The collaboration will also demonstrate entanglement between small-scale quantum computers at the two testbed locations.

    “These demonstrations will require seamless integration of a host of different technologies, ranging from quantum information processing with trapped ions, color centers, and superconducting systems, to ultra-highly efficient conversion of quantum information from atoms to light and routing it through a fiber network,” said co-investigator Hartmut Häffner, associate professor of physics at UC Berkeley. “We envision that this work will pave the way toward a quantum Internet for quantum communication applications and allow us to connect different quantum computers to create larger and more powerful ones.”

    The idea for QUANT-NET was born out of the 2020 DOE Quantum Internet Blueprint workshop, where representatives from DOE national laboratories, universities, industry, and other U.S. agencies came together to define a roadmap for building the first nationwide quantum Internet. Quantum networking is poised to revolutionize how information gets transmitted between quantum systems, locally and over long distances, and is expected to have a major impact on large-scale sensing experiments, making it of key interest to DOE mission areas, such as astronomy, materials discovery, and life sciences.

    “The funded project will lead the way in developing distributed quantum applications using a scalable quantum internet prototype. The focus on systems integration in the proposal was to pave a path toward useful operational deployment and showcase the value generated from building the quantum Internet,” said Inder Monga, director of the Scientific Networking Division and of ESnet, a DOE Office of Science Advanced Scientific Computing Research (US) user facility. He co-chaired the 2020 DOE blueprint workshop and is principal investigator on the QUANT-NET project.

    The project also builds on ESnet’s legacy of supporting game-changing research and innovation testbed projects, Monga added. “Ten years ago, we built the Advanced Network Initiative’s 100G testbed for research, and today we are working with FABRIC to build a nationwide testbed for cutting-edge networking and distributed systems research with the National Science Foundation (US),” he said. “We will leverage all of this expertise and experience to build QUANT-NET.”

    The project brings together world-leading expertise in quantum technologies, optics, materials, networks, testbed operations, and other assets from Berkeley Lab, UC Berkeley, and Caltech.

    “We have a diverse, talented, multidisciplinary team with focus and intensity to carry out this challenging project,” said co-investigator Maria Spiropulu, professor of physics at Caltech. “We are especially excited to build our testbed while fostering research public-private partnerships with an eye on the quantum industries of the future and the relevant workforce development needed for the Nation to be competitive. And the future is now!”

    Additional co-investigators on the QUANT-NET project are Thomas Schenkel of Berkeley Lab and Alp Sipahigil of UC Berkeley.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

    The University of California-Berkeley US) is a public land-grant research university in Berkeley, California. Established in 1868 as the state’s first land-grant university, it was the first campus of the University of California (US) system and a founding member of the Association of American Universities (US). Its 14 colleges and schools offer over 350 degree programs and enroll some 31,000 undergraduate and 12,000 graduate students. Berkeley is ranked among the world’s top universities by major educational publications.

    Berkeley hosts many leading research institutes, including the Mathematical Sciences Research Institute and the Space Sciences Laboratory. It founded and maintains close relationships with three national laboratories at DOE’s Lawrence Berkeley National Laboratory(US), DOE’s Lawrence Livermore National Laboratory(US) and DOE’s Los Alamos National Lab(US), and has played a prominent role in many scientific advances, from the Manhattan Project and the discovery of 16 chemical elements to breakthroughs in computer science and genomics. Berkeley is also known for student activism and the Free Speech Movement of the 1960s.

    Berkeley alumni and faculty count among their ranks 110 Nobel laureates (34 alumni), 25 Turing Award winners (11 alumni), 14 Fields Medalists, 28 Wolf Prize winners, 103 MacArthur “Genius Grant” recipients, 30 Pulitzer Prize winners, and 19 Academy Award winners. The university has produced seven heads of state or government; five chief justices, including Chief Justice of the United States Earl Warren; 21 cabinet-level officials; 11 governors; and 25 living billionaires. It is also a leading producer of Fulbright Scholars, MacArthur Fellows, and Marshall Scholars. Berkeley alumni, widely recognized for their entrepreneurship, have founded many notable companies.

    Berkeley’s athletic teams compete in Division I of the NCAA, primarily in the Pac-12 Conference, and are collectively known as the California Golden Bears. The university’s teams have won 107 national championships, and its students and alumni have won 207 Olympic medals.

    Made possible by President Lincoln’s signing of the Morrill Act in 1862, the University of California was founded in 1868 as the state’s first land-grant university by inheriting certain assets and objectives of the private College of California and the public Agricultural, Mining, and Mechanical Arts College. Although this process is often incorrectly mistaken for a merger, the Organic Act created a “completely new institution” and did not actually merge the two precursor entities into the new university. The Organic Act states that the “University shall have for its design, to provide instruction and thorough and complete education in all departments of science, literature and art, industrial and professional pursuits, and general education, and also special courses of instruction in preparation for the professions”.

    Ten faculty members and 40 students made up the fledgling university when it opened in Oakland in 1869. Frederick H. Billings, a trustee of the College of California, suggested that a new campus site north of Oakland be named in honor of Anglo-Irish philosopher George Berkeley. The university began admitting women the following year. In 1870, Henry Durant, founder of the College of California, became its first president. With the completion of North and South Halls in 1873, the university relocated to its Berkeley location with 167 male and 22 female students.

    Beginning in 1891, Phoebe Apperson Hearst made several large gifts to Berkeley, funding a number of programs and new buildings and sponsoring, in 1898, an international competition in Antwerp, Belgium, where French architect Émile Bénard submitted the winning design for a campus master plan.

    20th century

    In 1905, the University Farm was established near Sacramento, ultimately becoming the University of California-Davis. In 1919, Los Angeles State Normal School became the southern branch of the University, which ultimately became the University of California-Los Angeles. By 1920s, the number of campus buildings had grown substantially and included twenty structures designed by architect John Galen Howard.

    In 1917, one of the nation’s first ROTC programs was established at Berkeley and its School of Military Aeronautics began training pilots, including Gen. Jimmy Doolittle. Berkeley ROTC alumni include former Secretary of Defense Robert McNamara and Army Chief of Staff Frederick C. Weyand as well as 16 other generals. In 1926, future fleet admiral Chester W. Nimitz established the first Naval ROTC unit at Berkeley.

    In the 1930s, Ernest Lawrence helped establish the Radiation Laboratory (now DOE’s Lawrence Berkeley National Laboratory (US)) and invented the cyclotron, which won him the Nobel physics prize in 1939. Using the cyclotron, Berkeley professors and Berkeley Lab researchers went on to discover 16 chemical elements—more than any other university in the world. In particular, during World War II and following Glenn Seaborg’s then-secret discovery of plutonium, Ernest Orlando Lawrence’s Radiation Laboratory began to contract with the U.S. Army to develop the atomic bomb. Physics professor J. Robert Oppenheimer was named scientific head of the Manhattan Project in 1942. Along with the Lawrence Berkeley National Laboratory, Berkeley founded and was then a partner in managing two other labs, Los Alamos National Laboratory (1943) and Lawrence Livermore National Laboratory (1952).

    By 1942, the American Council on Education ranked Berkeley second only to Harvard University (US) in the number of distinguished departments.

    In 1952, the University of California reorganized itself into a system of semi-autonomous campuses, with each campus given its own chancellor, and Clark Kerr became Berkeley’s first Chancellor, while Sproul remained in place as the President of the University of California.

    Berkeley gained a worldwide reputation for political activism in the 1960s. In 1964, the Free Speech Movement organized student resistance to the university’s restrictions on political activities on campus—most conspicuously, student activities related to the Civil Rights Movement. The arrest in Sproul Plaza of Jack Weinberg, a recent Berkeley alumnus and chair of Campus CORE, in October 1964, prompted a series of student-led acts of formal remonstrance and civil disobedience that ultimately gave rise to the Free Speech Movement, which movement would prevail and serve as precedent for student opposition to America’s involvement in the Vietnam War.

    In 1982, the Mathematical Sciences Research Institute (MSRI) was established on campus with support from the National Science Foundation and at the request of three Berkeley mathematicians — Shiing-Shen Chern, Calvin Moore and Isadore M. Singer. The institute is now widely regarded as a leading center for collaborative mathematical research, drawing thousands of visiting researchers from around the world each year.

    21st century

    In the current century, Berkeley has become less politically active and more focused on entrepreneurship and fundraising, especially for STEM disciplines.

    Modern Berkeley students are less politically radical, with a greater percentage of moderates and conservatives than in the 1960s and 70s. Democrats outnumber Republicans on the faculty by a ratio of 9:1. On the whole, Democrats outnumber Republicans on American university campuses by a ratio of 10:1.

    In 2007, the Energy Biosciences Institute was established with funding from BP and Stanley Hall, a research facility and headquarters for the California Institute for Quantitative Biosciences, opened. The next few years saw the dedication of the Center for Biomedical and Health Sciences, funded by a lead gift from billionaire Li Ka-shing; the opening of Sutardja Dai Hall, home of the Center for Information Technology Research in the Interest of Society; and the unveiling of Blum Hall, housing the Blum Center for Developing Economies. Supported by a grant from alumnus James Simons, the Simons Institute for the Theory of Computing was established in 2012. In 2014, Berkeley and its sister campus, Univerity of California-San Fransisco (US), established the Innovative Genomics Institute, and, in 2020, an anonymous donor pledged $252 million to help fund a new center for computing and data science.

    Since 2000, Berkeley alumni and faculty have received 40 Nobel Prizes, behind only Harvard and Massachusetts Institute of Technology (US) among US universities; five Turing Awards, behind only MIT and Stanford; and five Fields Medals, second only to Princeton University (US). According to PitchBook, Berkeley ranks second, just behind Stanford University, in producing VC-backed entrepreneurs.

    UC Berkeley Seal

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) (US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences (US), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering (US), and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (US) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley (US) physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.


    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory (US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy (US). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory (US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy (US), with management from the University of California (US). Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science (US):

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    LBNL/ALS


    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The DOE Joint Genome Institute (US) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory (US), DOE’s Oak Ridge National Laboratory (US)(ORNL), DOE’s Pacific Northwest National Laboratory (US) (PNNL), and the HudsonAlpha Institute for Biotechnology (US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry (US) [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center (US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center(US) at Lawrence Berkeley National Laboratory

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network (US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory (US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science (US), and DOE’s Lawrence Livermore National Laboratory (US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology (US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory (US) leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 3:41 pm on August 25, 2021 Permalink | Reply
    Tags: "The Science of Underground Kingdoms", A team of researchers from Caltech has unraveled one of the secrets behind how ants build these amazingly complex and stable structures., Ants do what they want, , , California Institute of Technology (US), , Understanding ant physics, What are ants thinking (if anything)?   

    From California Institute of Technology (US) : “The Science of Underground Kingdoms” 

    Caltech Logo

    From California Institute of Technology (US)

    August 23, 2021

    Emily Velasco
    (626) 372‑0067
    evelasco@caltech.edu

    1
    Slip beneath the surface and the above-ground simplicity gives way to subterranean complexity. Tunnels dive downward, branching and leading to specialized chambers that serve as home for the colony’s queen, as nurseries for its young, as farms for fungus cultivated for food, and as dumps for its trash. These are not just burrows. They are underground cities, some of them home to millions of individuals, reaching as far as 25 feet underground, often lasting for decades. Credit: Caltech.

    Picture an anthill. What do you see? A small mound of sand and crumbly dirt poking up through the lawn? A tiny hole disappearing into the ground? A few ants scrambling around busily. Not very impressive, right?

    This kind of construction would be an impressive undertaking for most creatures, but when performed by animals that don’t get much bigger than your fingernail, it is especially remarkable.

    Now, driven by the desire to improve our own ability to dig underground—whether it is for mining, subways or underground farming—a team of researchers from Caltech has unraveled one of the secrets behind how ants build these amazingly complex and stable structures.

    Led by the laboratory of Jose Andrade, the George W. Housner Professor of Civil and Mechanical Engineering, the team studied the digging habits of ants and uncovered the mechanisms guiding them. The research is described in a paper published in the journal PNAS.

    What are ants thinking (if anything)?

    Before beginning this research, Andrade, who is also the Cecil and Sally Drinkward Leadership Chair and Executive Officer for Mechanical and Civil Engineering, had a big question he wanted to answer: Do ants “know” how to dig tunnels, or are they just blindly digging?

    2
    A casting of a nest made by a species of ant found in Florida next to an adult man for scale. Credit: Charles F. Badland.

    “I got inspired by these exhumed ant nests where they pour plastic or molten metal into them and you see these vast tunnel systems that are incredibly impressive,” Andrade says. “I saw a picture of one of these next to a person and I thought ‘My goodness, what a fantastic structure.’ And I got to wondering if ants ‘know’ how to dig.”

    “We didn’t interview any ants to ask if they know what they’re doing, but we did start with the hypothesis that they dig in a deliberate way,” Andrade says. “We hypothesized that maybe ants were playing Jenga.”

    What he means by “playing Jenga” is that the team suspected the ants were feeling their way around in the dirt, looking for loose grains of soil to remove, in much the same way a person playing Jenga checks for loose blocks that are safe to take out of the stack. The blocks that can’t be removed—the ones bearing the load of the stack—are said to be part of the structure’s ‘force chains,’ the collection of pieces jammed together by the forces placed on them.

    “We hypothesized that the ants could sense these force chains and avoided digging there,” Andrade says. “We thought maybe they were tapping grains of soil, and that way they could assess the mechanical forces on them.”

    Ants do what they want

    To learn about ants, the team needed to have ants to study. But Andrade is an engineer, not an entomologist (someone who studies insects), so he enlisted the help of Joe Parker, assistant professor of biology and biological engineering, whose research focuses on ants and their ecological relationships with other species.

    “What Jose and his team needed was somebody who works with ants and understands the adaptive, collective behaviors of these social insects to give them some context for what they were doing,” Parker says.

    With Parker on board, the team started culturing ants and learning how to work with them. It was a process that took nearly a year, Andrade says. Not only did they need to breed enough ants to work with, there was a lot of trial and error involved in getting the ants to dig in little cups of soil that they could load into an X-ray imager. Through that work, they determined an optimal size of cup to use, and an ideal number of ants to put in each cup. Still, the ants did not always cooperate with the researchers’ own priorities.

    “They’re sort of capricious,” Andrade says. “They dig whenever they want to. We would put these ants in a container, and some would start digging right away, and they would make this amazing progress. But others, it would be hours and they wouldn’t dig at all. And some would dig for a while and then would stop and take a break.”

    But once the ants got going, the researchers would take the little cups and X-ray them using a technique that created a 3-D scan of all the tunnels inside. By taking a series of these scans, letting the ants work a little bit between each, the researchers could create simulations showing the progress the ants made as they extended their tunnels further and further below the surface.

    3
    By x-raying the ants as they worked, the researchers were able to create 3-D animations showing their progress. Credit: Caltech.

    Understanding ant physics

    Next, Andrade’s team set about analyzing what the ants were actually doing as they worked, and a few patterns emerged. For one, Andrade says, the ants tried to be efficient as possible. That meant they dug their tunnels along the inside edges of the cups, because the cup itself would act as part of their tunnels’ structures, resulting in less work for them. They also dug their tunnels as straight as possible.

    “That makes sense because a straight line is the shortest path between two points,” Andrade says. “And with them taking advantage of the sides of the container, it shows that the ants are very efficient at what they do.”

    The ants also dug their tunnels as steeply as they possibly could, right up to what’s known as the angle of repose. That angle represents the steepest angle that a granular material—a material made of individual grains—can be piled up before it collapses.

    4
    The steepest angle a granular material, in this case, sand, can be piled up before collapsing is known as the angle of repose. That angle can be seen in the slopes of this pile of sand. Credit: Andy Arthur/Creative Commons.

    To understand the angle of repose, picture a child building a sand castle at the beach. If the child uses dry sand, every scoop of sand they add will slide down the sides of the pile they’ve already made. More sand will make the pile taller, but also wider, and it will never get steeper. On the other hand, if the child uses wet sand, they will be able to pile the sand steeply enough to build walls, and towers, and all the other things a sand castle might have. Wet sand has a higher angle of repose than dry sand, and every granular material has an angle that is unique to it. The ants, Andrade says, can tell how steep that angle is for whatever they’re digging in, and they don’t exceed it. That, too, makes sense, he says.

    “If I’m a digger, and I’m going to survive, my digging technique is going to align with the laws of physics, otherwise my tunnels are going to collapse and I’m going to die,” he says.

    Finally, the team discovered something about the physics of ant tunnels that could one day be useful to humans.

    As ants remove grains of soil they are subtly causing a rearrangement in the force chains around the tunnel. Those chains, somewhat randomized before the ants begin digging, rearrange themselves around the outside of the tunnel, sort of like a cocoon or liner. As they do so, two things happen: 1.) the force chains strengthen the existing walls of the tunnel and 2.) the force chains relieve pressure from the grains at end of the tunnel where the ants are working, making it easier for the ants to safely remove them.

    4
    On the left, force chains are randomly distributed. On the right, the force chains have rearranged themselves to encapsulate a tunnel dug by the ant. Credit: Caltech.

    “It’s been a mystery in both engineering and in ant ecology how ants build these structures that persist for decades,” Parker says. “It turns out that by removing grains in this pattern that we observed, the ants benefit from these circumferential force chains as they dig down.”

    But what about the central question of the team’s hypothesis? Are ants aware of what they’re doing when they dig?


    How Do Ants Tunnel So Well?

    What ants know and don’t

    “What we discovered was that they didn’t seem to ‘know’ what they are doing,” Andrade says. “They didn’t systematically look for soft spots in the sand. Rather, they evolved to dig according to the laws of physics.”

    Parker calls this a behavioral algorithm.

    “That algorithm does not exist within a single ant,” he says. “It’s this emergent colony behavior of all these workers acting like a superorganism. How that behavioral program is spread across the tiny brains of all these ants is a wonder of the natural world we have no explanation for.”

    Andrade says he hopes to begin working on an artificial intelligence approach that can emulate that behavioral algorithm so he can simulate how ants dig on a computer. Part of that emulation, Andrade says, will be determining how to scale ant physics for human-sized tunnels.

    “Granular materials scale in different ways than other materials like fluids or solids,” he says. “You can go from experiments at the grain scale, in this case a few millimeters, to the meter scale, by scaling the intergranular friction coefficient.”

    The next step after that? Robotic ants that could dig tunnels for humans.

    “Moving granular materials is very energy intensive, and it’s very expensive and you always need an operator there running the machines,” he says. “This would be the final frontier.”

    The paper describing the research, titled, “Unearthing real time 3D ant tunneling mechanics,” appears in the August 23 issue of the journal Proceedings of the National Academy of Sciences.

    Co-authors are Robert Buarque de Macedo, applied mechanics graduate student; Shilpa Joya, a former PhD student at Caltech; Edward Andò and Gioacchino Viggiani of University of Grenoble Alpes [Université Grenoble Alpes] (FR); and Raj Kumar Pal of Kansas State University (US).

    Funding for the research was provided by a grant from the Army Research Office (US).

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 10:10 am on August 19, 2021 Permalink | Reply
    Tags: "New Technique Surveys Microbial Spatial Gene Expression Patterns", , , California Institute of Technology (US), , , par-seqFISH: parallel and sequential fluorescence in situ hybridization   

    From California Institute of Technology (US) : “New Technique Surveys Microbial Spatial Gene Expression Patterns” 

    Caltech Logo

    From California Institute of Technology (US)

    August 16, 2021
    Lori Dajose
    (626) 395‑1217
    ldajose@caltech.edu

    1
    Left: A black-and-white image of a biofilm. Right: A closeup of a portion of this biofilm with individual cells circled and colors corresponding to the expression of particular genes. Credit: Courtesy of the Newman laboratory.

    What do you do at different times in the day? What do you eat? How do you interact with your neighbors? These are some of the questions that biologists would love to ask communities of microbes, from those that live in extreme environments deep in the ocean to those that cause chronic infections in humans. Now, a new technique developed at Caltech can answer these questions by surveying gene expression across a population of millions of bacterial cells while still preserving the cells’ positions relative to one another.

    The technique can be used to understand the wide variety of microbial communities on our planet, including the microbes that live within our gut and influence our health as well as those that colonize the roots of plants and contribute to soil health, to name a few.

    The technique was developed at Caltech by Daniel Dar, a former postdoctoral scholar in the laboratory of Dianne Newman, Gordon M. Binder/Amgen Professor of Biology and Geobiology and executive officer for biology and biological engineering, and by Dr. Nina Dar, a former senior research technician in the laboratory of Long Cai, professor of biology and biological engineering. Daniel Dar is now an assistant professor at the Weizmann Institute of Science (IL). A paper describing the research appears on August 12 in the journal Science.

    We cannot ask a bacterium what it is doing or how it is feeling, but we can look at the genes it is expressing. Gene expression is the basis of any behaviors or actions a microbe can take. For example, if there is a lack of food in a bacterium’s environment, the microbe can turn on a set of genes that will help it to conserve energy and dial back less necessary genes, such as those that are involved in reproduction. Though two bacteria in the same species can have the same genetic information, genes can be turned on and off in different situations, resulting in different behaviors at the individual bacterium level.

    “Traditional methods for measuring gene expression tend to minimize an entire population, in all of its complexity and three-dimensional organization, into a single number,” says Daniel Dar. “Imagine taking a tray of fruits with unique colors, flavors, and scents and having to blend them all together into a single smoothie. All identity is lost. The meaning of this technological limitation for microbiological research, both in medicine and environmental sciences, is that biological signatures that manifest at the microscale—the scale at which microorganisms make their living—remain mostly invisible. This was a major motivation for us along this collaborative study: building on the revolutionary technology first developed in the Cai lab to expose the complexity of microbial populations in a fundamentally new way.”

    The new technique, dubbed par-seqFISH (for parallel and sequential fluorescence in situ hybridization), can track these differences in gene expression with high precision. In this study, par-seqFISH was used to examine gene expression in populations of Pseudomonas aeruginosa, a pathogen that often causes infections (such as those found in the lungs of people with cystic fibrosis or within chronic skin wounds) and is studied extensively in the Newman laboratory. par-seqFISH can be used on virtually any species of bacteria whose genomes have been sequenced and on communities of microbes composed of different species.

    par-seqFISH is precise to the sub-micrometer level and is able to show differences in gene expression even within individual cells. For example, the team found that certain genes can be expressed more at the poles of a cell rather than near the center. The technique preserves the spatial organization of bacteria, or their positions relative to one another. Because of its level of precision, it revealed significant diversity in the gene expression and resulting activity of individual members of a population of the same species of bacteria.

    The method’s ability to image at this level of detail makes it a powerful technique for cellular biology research.

    “We saw patterns where certain genes were being expressed spatiotemporally—in space and in time—in ways that we would have never been able to predict, which suggested new ideas about how the population functions as a whole,” says Newman. “The heterogeneity of bacterial populations and communities at spatial scales on the order of a few micrometers is incredibly important and underappreciated. The profound thing that this technique hammers home is that context matters. Every cell is experiencing a slightly different microenvironment; for example, how much oxygen is around a given cell indicates what kind of metabolism that cell will engage in. Appreciating the full extent of such heterogeneities is necessary if we are to be able to manipulate these communities, such as being able to treat chronic bacterial infections. Understanding what all the members of the population are doing will help guide more effective therapeutic strategies.”

    seqFISH, the precursor technique to par-seqFISH, was pioneered in the Cai laboratory.

    “Every time we look at a biological system with both spatial context and genomics information, we find interesting new biology,” says Cai. “Microbial communities, with their rich diversity, show us again how beautiful and complex biology is when looked through the lens of spatial genomics.”

    Newman, who is the lead and faculty supervisor for the Ecology and Biosphere Engineering initiative at Caltech’s Resnick Sustainability Institute (RSI), envisions that the technology will be available to researchers across Caltech to utilize through RSI, assisting studies of microbes in diverse environments, from the soil around plant roots (called the rhizosphere) to deep-sea sediments.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: