Tagged: Brookhaven’s Computational Science Initiative Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:29 pm on February 22, 2019 Permalink | Reply
    Tags: , , , Brookhaven’s Computational Science Initiative, IBM Q,   

    From Brookhaven National Lab: “Quantum Information Science Effort Expands at Brookhaven Lab” 

    From Brookhaven National Lab

    February 19, 2019
    Ariana Tantillo
    atantillo@bnl.gov

    The Computational Science Initiative is building its staff, capabilities, and programs in this emerging research area expected to revolutionize science and other fields.

    1
    Brookhaven Lab’s Computational Science Initiative recently formed a new Quantum Computing Group as one of the many ways it’s expanding its efforts in quantum information science. The group members are (left to right) Meifeng Lin, Dimitrios Katramatos, Eden Figueroa, Michael McGuigan, Yao-Lung (Leo) Fang, and Layla Hormozi. Lin and Hormozi are co-leading the group.

    An emerging and exciting research field known as quantum information science (QIS) is ramping up in the Computational Science Initiative (CSI) at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory.

    “Because of our extraordinary data management, analysis, and distribution requirements at Brookhaven Lab, we are always on the look out for new computational technologies that will enable us to continue to provide leading services,” said CSI Director Kerstin Kleese van Dam. “Quantum computing and networking are among these promising technologies, and we want to make sure we are at the forefront of this exciting new research and development.”

    From classical to quantum computing

    The computers we use today store and process information in the form of binary digits (bits) that encode a value of zero or one. The values represent two different states, such as off or on, true or false, and yes or no.

    2
    A schematic illustrating the difference between a bit (left) and qubit (right). A bit can be at either of the two poles of the imaginary sphere, while a qubit can be at any point within the volume of the sphere. Credit: IBM.

    By contrast, quantum computers use quantum bits, or qubits, that can exist as a zero and one at the same time. This newer form of computing takes advantage of the strange way that matter behaves at atomic and subatomic scales. In this quantum world, atoms and subatomic particles appear to exist in multiple states or places at the same time (quantum superposition) and can correlate their behavior across large distances (quantum entanglement). Because of these quantum mechanical phenomena, quantum computers can store much more information, perform calculations significantly faster, and use less energy than classical computers.

    A quantum community

    At Brookhaven Lab, CSI staff are evaluating and designing QIS systems and developing the system-level support and algorithms needed to fully exploit the new QIS architectures.

    “CSI has access to several online test systems, including the IBM Q quantum computer, and is actively using these systems for its research,” said Kleese van Dam.

    2
    Launched in 2016, IBM Q is a cloud platform that provides companies, universities, and research labs around the world with the ability to perform quantum computations online without having direct access to a quantum computer. Credit: IBM.

    In addition, CSI has been building relationships with leading experts in the field from various institutions, including the Massachusetts Institute of Technology (MIT), Princeton University, Harvard University, Tufts University, Stony Brook University, and the University of Toronto. Several of these experts now have joint appointments with Brookhaven, including MIT mechanical engineering and physics professor Seth Lloyd and Tufts associate physics professor Peter Love.

    In house, CSI is building its QIS expertise through educating existing staff, hiring new personnel, and hosting students, such as those participating in DOE’s Computational Science Graduate Fellowship. CSI researchers and external QIS experts are currently carrying out several joint QIS projects.

    Quantum solutions

    CSI computational scientists Shinjae Yoo and Layla Hormozi—who is co-leading CSI’s new Quantum Computing Group with computational scientist Meifeng Lin—and collaborators from Carnegie Mellon University, MIT, and Stony Brook are evaluating existing QIS architectures for state-of-the-art machine learning algorithms. In particular, they are identifying issues related to the programmability and performance of algorithms operating on QIS systems. Currently, the team is investigating strategies to overcome slow data loading speeds and to effectively encode data.


    A video describing why we need quantum computers and how the Q quantum computer works. Credit: IBM.

    “Input/output and error correction are serious challenges to using upcoming quantum computers,” said Yoo. “We are looking into how machine learning can help such challenges and how we can improve quantum machine learning algorithms.”

    Another team—including CSI computational scientist Michael McGuigan and collaborators from Boston University, Microsoft, MIT, Michigan State, Syracuse University, University of California, Santa Barbara, and University of Iowa (lead)—is developing the building blocks of quantum computing to solve basic questions in high-energy physics (HEP) and the early universe. In particular, the team is studying ways to efficiently map quantum field theories of the strong interactions—mathematical frameworks that describe the interactions between subatomic particles—to quantum computing hardware.

    3
    Proposed structure of the oxygen-evolving, or water-splitting, center of Photosystem II, a protein complex that executes the initial photosynthesis reaction. The center contains a cluster of manganese (Mn) ions, a calcium (Ca) ion, oxygen (O) atoms, and coordinating amino acids.

    Through a separate collaboration, Brookhaven Lab and Harvard University are developing quantum-based models of biomimetic photosynthesis. Chemical processes that replicate and optimize photosynthesis—the process by which plants convert solar energy into chemical energy—could be used to produce clean and sustainable fuels and other chemicals.

    “The natural protein co-factors that catalyze photosynthetic reactions involve multiple transition-metal atoms that exhibit strongly correlated electron behavior,” said CSI application architect and team member Hubertus van Dam. “An accurate description of this correlated behavior requires far more terms from different electron distributions than can ever be calculated on a conventional computer. Quantum computers enable the use of quantum matter to simulate the quantum behavior of these electrons much more efficiently.”

    CSI has also created the Northeast Quantum Systems Center (NEQsys), a partnership between Harvard, MIT, Princeton, Raytheon, Stony Brook, University of Toronto, Tufts, and Yale. By leveraging the wealth of quantum expertise at leading universities and in industry, this collaboration seeks to impact a broad range of areas—for example, theoretical and experimental materials science and condensed matter physics, devices and system software, and algorithms and computational applications.

    “This cross-cutting research effort will impact the entire quantum ecosystem,” explained Kleese van Dam. “CSI is providing knowledge integration across the hardware and software stack to impact work being conducted across the institutions.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    BNL Campus

    BNL NSLS-II


    BNL NSLS II

    BNL RHIC Campus

    BNL/RHIC Star Detector

    BNL RHIC PHENIX

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
  • richardmitnick 12:45 pm on October 20, 2017 Permalink | Reply
    Tags: , , Brookhaven’s Computational Science Initiative, , , , Scientists at Brookhaven Lab will help to develop the next generation of computational tools to push the field forward, Supercomputering   

    From BNL: “Using Supercomputers to Delve Ever Deeper into the Building Blocks of Matter” 

    Brookhaven Lab

    October 18, 2017
    Karen McNulty Walsh
    kmcnulty@bnl.gov

    Scientists to develop next-generation computational tools for studying interactions of quarks and gluons in hot, dense nuclear matter.

    1
    Swagato Mukherjee of Brookhaven Lab’s nuclear theory group will develop new tools for using supercomputers to delve deeper into the interactions of quarks and gluons in the extreme states of matter created in heavy ion collisions at RHIC and the LHC.

    Nuclear physicists are known for their atom-smashing explorations of the building blocks of visible matter. At the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, and the Large Hadron Collider (LHC) at Europe’s CERN laboratory, they steer atomic nuclei into head-on collisions to learn about the subtle interactions of the quarks and gluons within.

    BNL RHIC Campus

    BNL/RHIC Star Detector

    BNL RHIC PHENIX

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    To fully understand what happens in these particle smashups and how quarks and gluons form the structure of everything we see in the universe today, the scientists also need sophisticated computational tools—software and algorithms for tracking and analyzing the data and to perform the complex calculations that model what they expect to find.

    Now, with funding from DOE’s Office of Nuclear Physics and the Office of Advanced Scientific Computing Research in the Office of Science, nuclear physicists and computational scientists at Brookhaven Lab will help to develop the next generation of computational tools to push the field forward. Their software and workflow management systems will be designed to exploit the diverse and continually evolving architectures of DOE’s Leadership Computing Facilities—some of the most powerful supercomputers and fastest data-sharing networks in the world. Brookhaven Lab will receive approximately $2.5 million over the next five years to support this effort to enable the nuclear physics research at RHIC (a DOE Office of Science User Facility) and the LHC.

    The Brookhaven “hub” will be one of three funded by DOE’s Scientific Discovery through Advanced Computing program for 2017 (also known as SciDAC4) under a proposal led by DOE’s Thomas Jefferson National Accelerator Facility. The overall aim of these projects is to improve future calculations of Quantum Chromodynamics (QCD), the theory that describes quarks and gluons and their interactions.

    “We cannot just do these calculations on a laptop,” said nuclear theorist Swagato Mukherjee, who will lead the Brookhaven team. “We need supercomputers and special algorithms and techniques to make the calculations accessible in a reasonable timeframe.”

    2
    New supercomputing tools will help scientists probe the behavior of the liquid-like quark-gluon plasma at very short length scales and explore the densest phases of the nuclear phase diagram as they search for a possible critical point (yellow dot).

    Scientists carry out QCD calculations by representing the possible positions and interactions of quarks and gluons as points on an imaginary 4D space-time lattice. Such “lattice QCD” calculations involve billions of variables. And the complexity of the calculations grows as the questions scientists seek to answer require simulations of quark and gluon interactions on smaller and smaller scales.

    For example, a proposed upgraded experiment at RHIC known as sPHENIX aims to track the interactions of more massive quarks with the quark-gluon plasma created in heavy ion collisions. These studies will help scientists probe behavior of the liquid-like quark-gluon plasma at shorter length scales.

    “If you want to probe things at shorter distance scales, you need to reduce the spacing between points on the lattice. But the overall lattice size is the same, so there are more points, more closely packed,” Mukherjee said.

    Similarly, when exploring the quark-gluon interactions in the densest part of the “phase diagram”—a map of how quarks and gluons exist under different conditions of temperature and pressure—scientists are looking for subtle changes that could indicate the existence of a “critical point,” a sudden shift in the way the nuclear matter changes phases. RHIC physicists have a plan to conduct collisions at a range of energies—a beam energy scan—to search for this QCD critical point.

    “To find a critical point, you need to probe for an increase in fluctuations, which requires more different configurations of quarks and gluons. That complexity makes the calculations orders of magnitude more difficult,” Mukherjee said.

    Fortunately, there’s a new generation of supercomputers on the horizon, offering improvements in both speed and the way processing is done. But to make maximal use of those new capabilities, the software and other computational tools must also evolve.

    “Our goal is to develop the tools and analysis methods to enable the next generation of supercomputers to help sort through and make sense of hot QCD data,” Mukherjee said.

    A key challenge will be developing tools that can be used across a range of new supercomputing architectures, which are also still under development.

    “No one right now has an idea of how they will operate, but we know they will have very heterogeneous architectures,” said Brookhaven physicist Sergey Panitkin. “So we need to develop systems to work on different kinds of supercomputers. We want to squeeze every ounce of performance out of the newest supercomputers, and we want to do it in a centralized place, with one input and seamless interaction for users,” he said.

    The effort will build on experience gained developing workflow management tools to feed high-energy physics data from the LHC’s ATLAS experiment into pockets of unused time on DOE supercomputers. “This is a great example of synergy between high energy physics and nuclear physics to make things more efficient,” Panitkin said.

    A major focus will be to design tools that are “fault tolerant”—able to automatically reroute or resubmit jobs to whatever computing resources are available without the system users having to worry about making those requests. “The idea is to free physicists to think about physics,” Panitkin said.

    Mukherjee, Panitkin, and other members of the Brookhaven team will collaborate with scientists in Brookhaven’s Computational Science Initiative and test their ideas on in-house supercomputing resources. The local machines share architectural characteristics with leadership class supercomputers, albeit at a smaller scale.

    “Our small-scale systems are actually better for trying out our new tools,” Mukherjee said. With trial and error, they’ll then scale up what works for the radically different supercomputing architectures on the horizon.

    The tools the Brookhaven team develops will ultimately benefit nuclear research facilities across the DOE complex, and potentially other fields of science as well.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: