Tagged: Breakthrough Listen Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:58 pm on January 16, 2018 Permalink | Reply
    Tags: , , , Breakthrough Listen, , , , , , , , ,   

    From QUB via The Conversation: “How we created a mini ‘gamma ray burst’ in the lab for the first time” 

    QUB bloc

    Queens University Belfast (QUB)

    The Conversation

    January 15, 2018
    GIANLUCA SARRI

    Gamma ray bursts, intense explosions of light, are the brightest events ever observed in the universe – lasting no longer than seconds or minutes. Some are so luminous that they can be observed with the naked eye, such as the burst “GRB 080319B” discovered by NASA’s Swift GRB Explorer mission on March 19, 2008.

    NASA Neil Gehrels Swift Observatory

    But despite the fact that they are so intense, scientists don’t really know what causes gamma ray bursts. There are even people who believe some of them might be messages sent from advanced alien civilisations. Now we have for the first time managed to recreate a mini version of a gamma ray burst in the laboratory – opening up a whole new way to investigate their properties. Our research is published in Physical Review Letters.

    One idea for the origin of gamma ray bursts [Science] is that they are somehow emitted during the emission of jets of particles released by massive astrophysical objects, such as black holes. This makes gamma ray bursts extremely interesting to astrophysicists – their detailed study can unveil some key properties of the black holes they originate from.

    The beams released by the black holes would be mostly composed of electrons and their “antimatter” companions, the positrons – all particle have antimatter counterparts that are exactly identical to themselves, only with opposite charge. These beams must have strong, self-generated magnetic fields. The rotation of these particles around the fields give off powerful bursts of gamma ray radiation. Or, at least, this is what our theories predict [MNRAS]. But we don’t actually know how the fields would be generated.

    Unfortunately, there are a couple of problems in studying these bursts. Not only do they last for short periods of time but, most problematically, they are originated in distant galaxies, sometimes even billion light years from Earth (imagine a one followed by 25 zeroes – this is basically what one billion light years is in metres).

    That means you rely on looking at something unbelievably far away that happens at random, and lasts only for few seconds. It is a bit like understanding what a candle is made of, by only having glimpses of candles being lit up from time to time thousands of kilometres from you.

    World’s most powerful laser

    It has been recently proposed that the best way to work out how gamma ray bursts are produced would be by mimicking them in small-scale reproductions in the laboratory – reproducing a little source of these electron-positron beams and look at how they evolve when left on their own. Our group and our collaborators from the US, France, UK, and Sweden, recently succeeded in creating the first small-scale replica of this phenomenon by using one of the most intense lasers on Earth, the Gemini laser, hosted by the Rutherford Appleton Laboratory in the UK.

    1
    The Gemini laser, hosted by the Rutherford Appleton Laboratory in the UK.

    How intense is the most intense laser on Earth? Take all the solar power that hits the whole Earth and squeeze it into a few microns (basically the thickness of a human hair) and you have got the intensity of a typical laser shot in Gemini. Shooting this laser onto a complex target, we were able to release ultra-fast and dense copies of these astrophysical jets and make ultra-fast movies of how they behave. The scaling down of these experiments is dramatic: take a real jet that extends even for thousands of light years and compress it down to a few millimetres.

    In our experiment, we were able to observe, for the first time, some of the key phenomena that play a major role in the generation of gamma ray bursts, such as the self-generation of magnetic fields that lasted for a long time. These were able to confirm some major theoretical predictions of the strength and distribution of these fields. In short, our experiment independently confirms that the models currently used to understand gamma ray bursts are on the right track.

    The experiment is not only important for studying gamma ray bursts. Matter made only of electrons and positrons is an extremely peculiar state of matter. Normal matter on Earth is predominantly made of atoms: a heavy positive nucleus surrounded by clouds of light and negative electrons.

    2
    Artist impression of gamma ray burst. NASA [no additional credit for which facility or which artist].

    Due to the incredible difference in weight between these two components (the lightest nucleus weighs 1836 times the electron) almost all the phenomena we experience in our everyday life comes from the dynamics of electrons, which are much quicker in responding to any external input (light, other particles, magnetic fields, you name it) than nuclei. But in an electron-positron beam, both particles have exactly the same mass, meaning that this disparity in reaction times is completely obliterated. This brings to a quantity of fascinating consequences. For example, sound would not exist in an electron-positron world.

    So far so good, but why should we care so much about events that are so distant? There are multiple reasons indeed. First, understanding how gamma ray bursts are formed will allow us to understand a lot more about black holes and thus open a big window on how our universe was born and how it will evolve.

    But there is a more subtle reason. SETI – Search for Extra-Terrestrial Intelligence – looks for messages from alien civilisations by trying to capture electromagnetic signals from space that cannot be explained naturally (it focuses mainly on radio waves, but gamma ray bursts are associated with such radiation too).

    Breakthrough Listen Project

    1

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA



    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    U Manchester Jodrell Bank Lovell Telescope


    SETI@home, BOINC project at UC Berkeley Space Science Lab

    Laser SETI, the future of SETI Institute research

    Of course, if you put your detector to look for emissions from space, you do get an awful lot of different signals. If you really want to isolate intelligent transmissions, you first need to make sure all the natural emissions are perfectly known so that they can excluded. Our study helps towards understanding black hole and pulsar emissions, so that, whenever we detect anything similar, we know that it is not coming from an alien civilisation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    QUB campus

    An international institution

    Queen’s is in the top one per cent of global universities.

    With more than 23,000 students and 3,700 staff, it is a dynamic and diverse institution, a magnet for inward investment, a major employer and investor, a patron of the arts and a global player in areas ranging from cancer studies to sustainability, and from pharmaceuticals to creative writing.
    World-leading research

    Queen’s is a member of the Russell Group of 24 leading UK research-intensive universities, alongside Oxford, Cambridge and Imperial College London.

    In the UK top ten for research intensity

    The Research Excellence Framework (REF) 2014 results placed Queen’s joint 8th in the UK for research intensity, with over 75 per cent of Queen’s researchers undertaking world-class or internationally leading research.

    The University also has 14 subject areas ranked within the UK’s top 20 and 76 per cent of its research classified in the top two categories of world leading and internationally excellent.

    This validates Queen’s as a University with world-class researchers carrying out world-class or internationally leading research.

    Globally recognised education

    The University has won the Queen’s Anniversary Prize for Higher and Further Education on five occasions – for Northern Ireland’s Comprehensive Cancer Services programme and for world-class achievement in green chemistry, environmental research, palaeoecology and law.

     
  • richardmitnick 11:54 am on August 31, 2017 Permalink | Reply
    Tags: Berkeley SETI Research Center, Breakthrough Listen, , ,   

    From UC Berkeley: “Distant galaxy sends out 15 high-energy radio bursts” 

    UC Berkeley

    UC Berkeley

    August 30, 2017
    Robert Sanders
    rlsanders@berkeley.edu

    Breakthrough Listen, an initiative to find signs of intelligent life in the universe, has detected 15 brief but powerful radio pulses emanating from a mysterious and repeating source – FRB 121102 – far across the universe.

    Breakthrough Listen Project

    Fast radio bursts are brief, bright pulses of radio emission from distant but largely unknown sources, and FRB 121102 is the only one known to repeat: more than 150 high-energy bursts have been observed coming from the object, which was identified last year as a dwarf galaxy about 3 billion light years from Earth.

    2
    A sequence of 14 of the 15 detected bursts illustrate their dispersed spectrum and extreme variability. The streaks across the colored energy plot are the bursts appearing at different times and different energies because of dispersion caused by 3 billion years of travel through intergalactic space. In the top frequency spectrum, the dispersion has been removed to show the 300 microsecond pulse spike. Capturing this diverse set of bursts was made possible by the broad bandwidth that can be processed by the Breakthrough Listen backend at the Green Bank Telescope.



    GBO radio telescope, Green Bank, West Virginia, USA

    Possible explanations for the repeating bursts range from outbursts from rotating neutron stars with extremely strong magnetic fields – so-called magnetars – to a more speculative idea: They are directed energy sources, powerful laser bursts used by extraterrestrial civilizations to power spacecraft, akin to Breakthrough Starshot’s plan to use powerful laser pulses to propel nano-spacecraft to our solar system’s nearest star, Proxima Centauri.

    Breakthrough Starshot

    “Bursts from this source have never been seen at this high a frequency,” said Andrew Siemion, director of the Berkeley SETI Research Center and of the Breakthrough Listen program.

    As astronomers around the globe try to understand the mechanism generating fast radio bursts, they have repeatedly turned their radio telescopes on FRB 121102. Siemion and his team alerted the astronomical community to the high-frequency activity via an Astronomer’s Telegram on Monday evening, Aug. 28.

    “As well as confirming that the source is in a newly active state, the high resolution of the data obtained by the Listen instrument will allow measurement of the properties of these mysterious bursts at a higher precision than ever possible before,” said Breakthrough Listen postdoctoral researcher Vishal Gajjar, who discovered the increased activity.

    First detected with the Parkes Telescope in Australia, fast radio bursts have now been seen by several radio telescopes around the world.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    FRB 121102 was discovered on Nov. 2, 2012, (hence its name) and in 2015 it was the first fast radio burst seen to repeat, ruling out theories of bursts’ origins that involved the catastrophic destruction of the progenitor, at least in this instance.

    Regardless of FRB 121102’s ultimate source, when the recently detected pulses left their host galaxy, our solar system was less than 2 billion years old, noted Steve Croft, a Breakthrough Listen astronomer at UC Berkeley. Life on Earth consisted only of single-celled organisms; it would be another billion years before even the simplest multi-cellular life began to evolve.

    As part of Breakthrough Listen’s program to observe nearby stars and galaxies for signatures of extraterrestrial technology, the project science team at UC Berkeley added FRB 121102 to its list of targets. In the early hours of Saturday, Aug. 26, Gajjar observed that area of the sky using the Breakthrough Listen backend instrument at the Green Bank Telescope in West Virginia.

    The instrument accumulated 400 terabytes (a million million bytes) of data over a five-hour period, observing across the entire 4 to 8 GHz frequency band. This large dataset was searched for signatures of short pulses from the source over a broad range of frequencies, with a characteristic dispersion, or delay as a function of frequency, caused by the presence of gas in space between Earth and the source. The distinctive shape that the dispersion imposes on the initial pulse is an indicator of the amount of material between us and the source, and hence an indicator of the distance to the host galaxy.

    Analysis by Gajjar and the Breakthrough Listen team revealed 15 new pulses from FRB 121102. The observations show for the first time that fast radio bursts emit at higher frequencies than previously observed, with the brightest emission occurring at around 7 GHz.

    “The extraordinary capabilities of the backend receiver, which is able to record several gigahertz of bandwidth at a time, split into billions of individual channels, enable a new view of the frequency spectrum of FRBs, and should shed additional light on the processes giving rise to FRB emission.” Gajjar said.

    “Whether or not fast radio bursts turn out to be signatures of extraterrestrial technology, Breakthrough Listen is helping to push the frontiers of a new and rapidly growing area of our understanding of the universe around us,” Siemion said.

    See the full article here .
    Previously noted briefly here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: