Tagged: Breakthrough Initiatives Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:29 am on July 21, 2019 Permalink | Reply
    Tags: , , , Breakthrough Initiatives, , , , Is anyone out there?, , , Shelley Wright of UCSD and Niroseti at UCSC Lick Observatory's Nickel Telescope,   

    From WIRED: “An Alien-Hunting Tech Mogul May Help Solve a Space Mystery” 

    Wired logo

    From WIRED

    Katia Moskvitch

    Yuri Milner. Billy H.C. Kwok/Getty Images

    In spring 2007, David Narkevic, a physics student at West Virginia University, was sifting through reams of data churned out by the Parkes telescope—a dish in Australia that had been tracking pulsars, the collapsed, rapidly spinning cores of once massive stars.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    His professor, astrophysicist Duncan Lorimer, had asked him to search for a recently discovered type of ultra-rapid pulsar dubbed RRAT. But buried among the mountain of data, Narkevic found an odd signal that seemed to come from the direction of our neighboring galaxy, the Small Magellanic Cloud.


    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2

    The signal was unlike anything Lorimer had encountered before. Although it flashed only briefly, for just five milliseconds, it was 10 billion times brighter than a typical pulsar in the Milky Way galaxy. It was emitting in a millisecond as much energy as the sun emits in a month.

    What Narkevic and Lorimer found was the first of many bizarre, ultra-powerful flashes detected by our telescopes. For years the flashes first seemed either improbable or at least vanishingly rare. But now researchers have observed more than 80 of these Fast Radio Bursts, or FRBs. While astronomers once thought that what would be later dubbed the “Lorimer Burst” was a one-off, they now agree that there’s probably one FRB happening somewhere in the universe nearly every second.

    And the reason for this sudden glut of discoveries? Aliens. Well, not aliens per se, but the search for them. Among the scores of astronomers and researchers working tirelessly to uncover these enigmatic signals is an eccentric Russian billionaire who, in his relentless hunt for extraterrestrial life, has ended up partly bankrolling one of the most complex and far-reaching scans of our universe ever attempted.

    Ever since Narkevic spotted the first burst, scientists have been wondering what could produce these mesmerizing flashes in deep space. The list of possible sources is long, ranging from the theoretical to the simply unfathomable: colliding black holes, white holes, merging neutron stars, exploding stars, dark matter, rapidly spinning magnetars, and malfunctioning microwaves have all been proposed as possible sources.

    While some theories can now be rejected, many live on. Finally though, after more than a decade of searching, a new generation of telescopes is coming online that could help researchers to understand the mechanism that is producing these ultra-powerful bursts. In two recent back-to-back papers, one published last week and one today, two different arrays of radio antennas—the Australian Square Kilometer Array Pathfinder (ASKAP) and Caltech’s Deep Synoptic Array 10 at the Owens Valley Radio Observatory (OVRO) in the US—have for the first time ever been able to precisely locate two different examples of these mysterious one-off FRBs.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    Caltech’s Deep Synoptic Array 10 dish array at Owens Valley Radio Observatory, near Big Pine, California USA, Altitude 1,222 m (4,009 ft

    Physicists are now expecting that two other new telescopes—Chime (the Canadian Hydrogen Intensity Mapping Experiment) in Canada and MeerKAT in South Africa—will finally tell us what produces these powerful radio bursts.

    CHIME Canadian Hydrogen Intensity Mapping Experiment -A partnership between the University of British Columbia, the University of Toronto, McGill University, Yale and the National Research Council in British Columbia, at the Dominion Radio Astrophysical Observatory in Penticton, British Columbia, CA Altitude 545 m (1,788 ft)

    SKA Meerkat telescope(s), 90 km outside the small Northern Cape town of Carnarvon, SA

    But Narkevic’s and Lorimer’s discovery nearly got binned. For a few months after they first spotted the unusually bright burst, it looked like the findings wouldn’t make it any further than Lorimer’s office walls, just beyond the banks of the Monongahela River that slices through the city of Morgantown in West Virginia.

    Soon after detecting the burst, Lorimer asked his former graduate adviser Matthew Bailes, an astronomer at Swinburne University in Melbourne, to help him plot the signal—which to astronomers is now a famous and extremely bright energy peak, rising well above the power of any known pulsar. The burst seemed to come from much, much further away than where the Parkes telescope would usually find pulsars; in this case, probably from another galaxy, potentially billions of light-years away.

    “It just looked beautiful. I was like, ‘Whoa, that’s amazing.’ We nearly fell off our chairs,” recalls Bailes. “I had trouble sleeping that night because I thought if this thing is really that far away and that insanely bright, it’s an amazing discovery. But it better be right.”

    Within weeks, Lorimer and Bailes crafted a paper and sent it to Nature—and swiftly received a rejection. In a reply, a Nature editor raised concerns that there had been only one event, which appeared way brighter than seemed possible. Bailes was disappointed, but he had been in a worse situation before. Sixteen years earlier, he and fellow astronomer Andrew Lyne had submitted a paper claiming to have spotted the first ever planet orbiting another star—and not just any star but a pulsar. The scientific discovery turned out to be a fluke of their telescope. Months later, Lyne had to stand up in front of a large audience at an American Astronomical Society conference and announce their mistake. “It’s science. Anything can happen,” says Bailes. This time around, Bailes and Lorimer were certain that they had it right and decided to send their FRB paper to another journal, Science.

    After it was published, the paper immediately stirred interest; some scientists even wondered whether the mysterious flash was an alien communication. This wasn’t the first time that astronomers had reached for aliens as the answer for a seemingly inexplicable signal from space; in 1967, when researchers detected what turned out to be the first pulsar, they also wondered whether it could be a sign of intelligent life.

    Just like Narkevic decades later, Cambridge graduate student Jocelyn Bell had stumbled across a startling signal in the reams of data gathered by a radio array in rural Cambridgeshire.

    Women in STEM – Dame Susan Jocelyn Bell Burnell

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell at work on first plusar chart 1967 pictured working at the Four Acre Array in 1967. Image courtesy of Mullard Radio Astronomy Observatory.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    Not much of the array is left today; in the fields near the university where it once stood, there’s an overgrown hedge, hiding a collection of wonky, sad-looking wooden poles that were once covered in a web of copper wire designed to detect radio waves from faraway sources. The wire has long been stolen and sold on to scrap metal dealers.

    “We did seriously consider the possibility of aliens,” Bell says, now an emeritus professor at Oxford University. Tellingly, the first pulsar was half-jokingly dubbed LGM-1 —for little green men. With only half a year left until the defense of her PhD thesis, she was less than thrilled that “some silly lot of little green men” were using her telescope and her frequency to signal to planet Earth. Why would aliens “be using a daft technique signaling to what was probably still a rather inconspicuous planet?” she once wrote in an article for Cosmic Search Magazine.

    Just a few weeks later, however, Bell spotted a second pulsar, and then a third just as she got engaged, in January 1968. Then, as she was defending her thesis and days before her wedding, she discovered a fourth signal in yet another part of the sky. Proof that pulsars had to be a natural phenomenon of an astrophysical origin, not a signal from intelligent life. Each new signal made the prospect even more unlikely that groups of aliens, separated by the vastness of the space, were somehow coordinating their efforts to send a message to an uninteresting hunk of rock on the outskirts of the Milky Way.

    Lorimer wasn’t so lucky. After the first burst, six years would pass without another detection. Many scientists began to lose interest. The microwave explanation persisted for a while, says Lorimer, as skeptics sneered at the notion of finding a burst that was observed only once. It didn’t help that in 2010 Parkes detected 16 similar pulses, which were quickly proven to be indeed caused by the door of a nearby microwave oven that had been opened suddenly during its heating cycle.

    Yuri Milner on stage with Mark Zuckerberg at a Breakthrough Prize event in 2017. Kimberly White/Getty Images

    When Avi Loeb first read of Lorimer’s unusual discovery, he too wondered if it was nothing more than the result of some errant wiring or miscalibrated computer. The chair of the astronomy department at Harvard happened to be in Melbourne in November 2007, just as Lorimer’s and Bailes’ paper appeared in Science, so he had a chance to discuss the odd burst with Bailes. Loeb thought the radio flash was a compelling enigma—but not much more than that.

    Still, that same year Loeb wrote a theoretical paper arguing that radio telescopes built to detect very specific hydrogen emissions from the early universe would also be able to eavesdrop on radio signals from alien civilizations up to about 10 light-years away. “We have been broadcasting for a century—so another civilization with the same arrays can see us from a distance out to 50 light-years,” was Loeb’s reasoning. He followed up with another paper on the search for artificial lights in the solar system. There, Loeb showed that a city as bright as Tokyo could be detected with the Hubble Space Telescope even if it was located right at the edge of the solar system. In yet another paper he argued how to detect industrial pollution in planetary atmospheres.

    Ever since he was a little boy growing up in Israel, Loeb has been fascinated with life—on Earth and elsewhere in the universe. “Currently, the search for microbial life is part of the mainstream in astronomy—people are looking for the chemical fingerprints of primitive life in the atmosphere of exoplanets,” says Loeb, who first dabbled in philosophy before his degree in physics.

    But the search for intelligent life beyond Earth should also be part of the mainstream, he argues. “There is a taboo, it’s a psychological and sociological problem that people have. It’s because there is the baggage of science fiction and UFO reports, both of which have nothing to do with what actually goes on out there in space,” he adds. He’s frustrated with having to explain—and defend—his point of view. After all, he says, billions have been poured into the search for dark matter over decades with zero results. Should the search for extraterrestrial intelligence, more commonly known as SETI, be regarded as even more fringe than this fruitless search?

    Lorimer didn’t follow Loeb’s SETI papers closely. After six long and frustrating years, his luck turned in 2013, when a group of his colleagues—including Bailes—spotted four other bright radio flashes in Parkes’ data. Lorimer felt vindicated and relieved. More detections followed and the researchers were on a roll: At long last, FRBs had been confirmed as a real thing. After the first event was dubbed “Lorimer’s Burst,” it swiftly made it onto the physics and astronomy curricula of universities around the globe. In physics circles, Lorimer was elevated to the position of a minor celebrity.

    Keeping an eye on events from a distance was Loeb. One evening in February 2014, at a dinner in Boston, he started chatting to a charismatic Russian-Israeli called Yuri Milner, a billionaire technology investor with a background in physics and a well-known name in Silicon Valley. Ever since he could remember, Milner had been fascinated with life beyond Earth, a subject close to Loeb’s heart; the two instantly hit it off.

    Milner came to see Loeb again in May the following year, at Harvard, and asked the academic how long it would take to travel to Alpha Centauri, the star system closest to Earth.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Loeb replied he would need half a year to identify the technology that would allow humans to get there in their lifetime. Milner then asked Loeb to lead Breakthrough Starshot, one of five Breakthrough Initiatives the Russian oligarch was about to announce in a few weeks—backed by $100 million of his own money and all designed to support SETI.

    Breakthrough Starshot Initiative

    Breakthrough Starshot

    ESO 3.6m telescope & HARPS at LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    SPACEOBS, the San Pedro de Atacama Celestial Explorations Observatory is located at 2450m above sea level, north of the Atacama Desert, in Chile, near to the village of San Pedro de Atacama and close to the border with Bolivia and Argentina

    SNO Sierra Nevada Observatory is a high elevation observatory 2900m above the sea level located in the Sierra Nevada mountain range in Granada Spain and operated maintained and supplied by IAC

    Teide Observatory in Tenerife Spain, home of two 40 cm LCO telescopes

    Observatori Astronòmic del Montsec (OAdM), located in the town of Sant Esteve de la Sarga (Pallars Jussà), 1,570 meters on the sea level

    Bayfordbury Observatory,approximately 6 miles from the main campus of the University of Hertfordshire

    Fast-forward six months, and at the end of December 2015 Loeb got a call asking him to prepare a presentation summarizing his recommended technology for the Alpha Centauri trip. Loeb was visiting Israel and about to head on a weekend trip to a goat farm in the southern part of the country. “The following morning, I was sitting next to the reception of the farm—the only location with internet connectivity—and typing the PowerPoint presentation that contemplated a lightsail technology for Yuri’s project,” says Loeb. He presented it at Milner’s home in Moscow two weeks later, and the Breakthrough Initiatives were announced with fanfare in July 2015.

    The initiatives were an adrenaline shot in the arm of the SETI movement—the largest ever private cash injection into the search for aliens. One of the five projects is Breakthrough Listen, which was championed, among others, by the famous astronomer Stephen Hawking (who has died since) and British astronomer royal Martin Rees.

    Breakthrough Listen Project


    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA

    GBO radio telescope, Green Bank, West Virginia, USA

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Newly added

    CfA/VERITAS, a major ground-based gamma-ray observatory with an array of four 12m optical reflectors for gamma-ray astronomy in the GeV – TeV energy range. Located at Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, US in AZ, USA, Altitude 2,606 m (8,550 ft)

    Echoing the film Contact, with Jodie Foster playing an astronomer listening out for broadcasts from aliens (loosely based on real-life SETI astronomer Jill Tarter), the project uses radio telescopes around the world to look for any signals from extraterrestrial intelligence.

    Jill Tarter Image courtesy of Jill Tarter

    After the Breakthrough Initiatives were announced, Milner’s money quickly got invested into the deployment of cutting-edge technology—such as computer storage and new receivers—at existing radio telescopes, including Green Bank in West Virginia and Parkes in Australia; whether the astronomers using these observatories believed in alien life or not, they welcomed the investment with open arms. It didn’t take long to receive the first scientific returns.

    After the Breakthrough Initiatives were announced, Milner’s money quickly got invested into the deployment of cutting-edge technology—such as computer storage and new receivers—at existing radio telescopes, including Green Bank in West Virginia and Parkes in Australia; whether the astronomers using these observatories believed in alien life or not, they welcomed the investment with open arms. It didn’t take long to receive the first scientific returns.

    In August 2015 one of the previously spotted FRBs decided to make a repeat appearance, triggering headlines worldwide because it was so incredibly powerful, brighter than the Lorimer Burst and any other FRB. It was dubbed “the repeater” and is also known as the Spitler Burst, because it was first discovered by astronomer Laura Spitler of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

    Max Planck Institute for Radio Astronomy

    Max Planck Institute for Radio Astronomy Bonn Germany

    Over the next few months, the burst flashed many more times, not regularly, but often enough to allow researchers to determine its host galaxy and consider its possible source—likely a highly magnetized, young, rapidly spinning neutron star (or magnetar).

    This localization was done with the Very Large Array (VLA), a group of 27 radio dishes in New Mexico that feature heavily in the film Contact. But the infrastructure at Green Bank Telescope upgraded by Breakthrough Listen caught the repeating flashes many more times, says Lorimer—allowing researchers to study its host galaxy more in detail. “It’s wonderful—they have a mission to find ET, but along the way they want to show that this is producing other useful results for the scientific community,” he adds. Detecting FRBs has quickly become one of the main objectives of Breakthrough Listen.

    Netting the repeater was both a boon and a hindrance—on the one hand, it eliminated models that cataclysmic events such as supernova explosions were causing FRBs; after all, these can happen only once. On the other hand, it deepened the mystery. The repeater lives in a small galaxy with a lot of star formation—the kind of environment where a neutron star could be born, hence the magnetar model. But what about all the other FRBs that don’t repeat?

    Researchers started to think that perhaps there were different types of these bursts, each with its own source. Scientific conferences still buzz with talks of mights and might-nots, with physicists eagerly debating possible sources of FRBs in corridors and at conference bars. In March 2017, Loeb caused a media frenzy by suggesting that FRBs could actually be of alien origin—solar-powered radio transmitters that might be interstellar light sails pushing huge spaceships across galaxies.

    That Parkes is part of the SETI project is obvious to any visitor. Walking up the flight of stairs to the circular operating tower below the dish, every button, every door, and every wall nostalgically screams 1960s, until you reach the control room full of modern screens where astronomers remotely control the antenna to observe pulsars.

    Up another flight of stairs is the data storage room, stacked with columns and columns of computer drives full of blinking lights. One thick column of hard drives is flashing neon blue, put there by Breakthrough Listen as part of a cutting-edge recording system designed to help astronomers search for every possible radio signal in 12 hours of data, much more than ever before. Bailes, who now splits his time between FRB search and Breakthrough Listen, takes a smiling selfie in front of Milner’s drives.

    While many early FRB discoveries were made with veteran telescopes—single mega dishes like Parkes and Green Bank—new telescopes, some with the financial backing of Breakthrough Listen, are now revolutionizing the FRB field.

    Deep in South African’s semi-desert region of the Karoo, eight hours by car from Cape Town, stands an array of 64 dishes, permanently tracking space. They are much smaller than their mega-dish cousins, and all work in unison. This is MeerKAT [above], another instrument in Breakthrough Listen’s growing worldwide network of giant telescopes. Together with a couple of other next-generation instruments, this observatory might hopefully tell us one day, probably in the next decade, what FRBs really are.

    The name MeerKAT means “More KAT,” a follow up to KAT 7, the Karoo Array Telescope of seven antennas—although real meerkats do lurk around the remote site, sharing the space with wild donkeys, horses, snakes, scorpions and kudus, moose-sized mammals with long, spiraling antlers. Visitors to MeerKAT are told to wear safety leather boots with steel toes as a precaution against snakes and scorpions. They’re also warned about the kudus, which are very protective of their calves and recently attacked the pickup truck of a security guard, turning him and his car over. Around MeerKAT there is total radio silence; all visitors have to switch off their phones and laptops. The only place with connectivity is an underground “bunker” shielded by 30-centimeter-thick walls and a heavy metal door to protect the sensitive antennas from any human-made interference.

    MeerKAT is one of the two precursors to a much bigger future radio observatory—the SKA, or Square Kilometer Array.

    SKA Square Kilometer Array

    SKA South Africa

    Once SKA is complete, scientists will have added another 131 antennas in the Karoo. The first SKA dish has just been shipped to the MeerKAT site from China. Each antenna will take several weeks to assemble, followed by a few more months of testing to see whether it actually works the way it should. If all goes well, more will be commissioned, built, and shipped to this faraway place, where during the day the dominant color is brown; as the sun sets, however, the MeerKAT dishes dance in an incredible palette of purples, reds, and pinks, as they welcome the Milky Way stretching its starry path just above. MeerKAT will soon be an incredible FRB machine, says Bailes.

    There is another SKA precursor—ASKAP in Australia.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    Back in 2007, when Lorimer was mulling over the Nature rejection, Ryan Shannon was finishing his PhD in physics at Cornell University in New York—sharing the office with Laura Spitler, who would later discover the Spitler Burst. Shannon had come to the US from Canada, growing up in a small town in British Columbia. About half an hour drive from his home is the Dominion and Radio Astronomical Observatory (DRAO)—a relatively small facility that was involved in building equipment for the VLA.


    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    Subconsciously, says Shannon, DRAO must have impacted his choice of career. And it was at DRAO that a few years later a totally new telescope—Chime [above]—would be built that would greatly impact the nascent field of FRB research. But in 2007 that was still to come. After graduating from Cornell in 2011, Shannon decided not to stay close to home—“something my mum would’ve wanted.” Instead, he moved to Australia and ultimately to Swinburne University on the outskirts of Melbourne.

    Shannon joined Bailes’ team in 2017—and by then astronomers had begun to understand why they weren’t detecting more FRBs, even though they were already estimating that these flashes were happening hundreds of times every day, if not more. “Our big radio telescopes don’t have wide fields of view, they can’t see the entire sky—that’s why we missed nearly all FRBs in the first decade of realizing these things exist,” says Shannon.

    When he, Bailes, and other FRB hunters saw the ultra-bright repeater, the Spitler Burst, they understood that there were fast radio bursts which could be found even without gigantic telescopes like Parkes, by using instruments that have a wider field of view. So they started building ASKAP [above]—a new observatory conceived in 2012 and recently completed in the remote Australian outback. It sports 36 dishes with a 12-meter diameter each, and just like with MeerKAT, they all work together.

    To get to ASKAP, in a very sparsely populated area in the Murchison Shire of Western Australia, one has to first fly to Perth, change for a smaller plane bound for Murchison, then squeeze into a really tiny single propeller plane, or drive for five hours across 150 kilometers of dirt roads. “When it rains, it turns to mud, and you can’t drive there,” says Shannon, who went to the ASKAP site twice, to introduce the local indigenous population to the new telescope constructed—with permission—on their land and see the remote, next-generation ultra-sensitive radio observatory for himself.

    MeerKAT and ASKAP bring two very different technological approaches to the hunt for FRBs. Both observatories look at the southern sky, which makes it possible to see the Milky Way’s bright core much better than in the northern hemisphere; they complement old but much upgraded observatories like Parkes and Arecibo in South America. But the MeerKAT dishes have highly sensitive receivers which are able to detect very distant objects, while ASKAP’s novel multi-pixel receivers on each dish offer a much wider field of view, enabling the telescope to find nearby FRBs more often.

    “ASKAP’s dishes are less sensitive, but we can observe a much larger portion of the sky,” says Shannon. “So ASKAP is going to be able to see things that are usually intrinsically brighter.” Together, the two precursors will be hunting for different parts of the FRB population—since “you want to understand the entire population to know the big picture.”

    MeerKAT only started taking data in February, but ASKAP has been busy scanning the universe for FRBs for a few years now. Not only has it already spotted about 30 new bursts, but in a new paper just released in Science, Shannon and colleagues have detailed a new way to localize them despite their short duration, which is a big and important step toward being able to determine what triggers this ultra-bright radiation. Think of ASKAP’s antennas as the eye of a fly; they can scan a wide patch of the sky to spot as many bursts as possible, but the antennas can all be made to point instantly in the same direction. This way, they make an image of the sky in real time, and spot a millisecond-long FRB as it washes over Earth. That’s what Shannon and his colleagues have done, and for the first time ever, managed to net one burst they named FRB 180924 and pinpoint its host galaxy, some 4 billion light-years away, all in real time.

    Another team, at Caltech’s Owens Valley Radio Observatory (OVRO) in the Sierra Nevada mountains in California, have also just caught a new burst and traced it back to its source, a galaxy 7.9 billion light years away.

    Caltech’s Deep Synoptic Array 10 dish array at Owens Valley Radio Observatory, near Big Pine, California USA, Altitude 1,222 m (4,009 ft

    And just like Shannon, they didn’t do it with a single dish telescope but a recently built array of 10 4.5-meter antennas called the Deep Synoptic Array-10. The antennas act together like a mile-wide dish to cover an area on the sky the size of 150 full moons. The telescope’s software then processes an amount of data equivalent to a DVD every second. The array is a precursor for the Deep Synoptic Array that, when built by 2021, will sport 110 radio dishes, and may be able to detect and locate more than 100 FRBs every year.

    What both ASKAP’s and OVRO’s teams found was that their presumably one-off bursts originated in galaxies very different from the home of the first FRB repeater. Both come from galaxies with very little star formation, similar to the Milky Way and very different from the home of the repeater, where stars are born at a rate of about a hundred times faster. The discoveries show that “every galaxy, even a run-of-the-mill galaxy like our Milky Way, can generate an FRB,” says Vikram Ravi, an astronomer at Caltech and part of the OVRO team.

    But the findings also mean that the magnetar model, accepted by many as the source of the repeating burst, does not really work for these one-off flashes. Perhaps, Shannon says, ASKAP’s burst could be the result of a merger of two neutron stars, similar to the one spotted two years ago by the gravitational wave detectors LIGO and Virgo in the US and Italy, because both host galaxies are very similar. “It’s a bit spooky that way,” says Shannon. One thing is clear though, he adds: The findings show that there is likely more than one type of FRBs.

    Back in Shannon’s hometown in Canada, the excitement has also been growing exponentially because of CHIME. Constructed at the same time as MeerKAT and ASKAP, this is a very different observatory; it has no dishes but antennas in the form of long buckets designed to capture light. In January, the CHIME team reported the detection of the second FRB repeater and 12 non-repeating FRBs. CHIME is expected to find many, many more bursts, and with ASKAP, MeerKAT and CHIME working together, astronomers hope to understand the true nature of the enigmatic radio flashes very soon.

    But will they fulfill Milner’s dream and successfully complete SETI, the search for extraterrestrial intelligence? Lorimer says that scientists hunting for FRBs and pulsars have for decades been working closely with colleagues involved in SETI projects.

    After all, Loeb’s models for different—alien—origins of FRBs are not fundamentally wrong. “The energetics when you consider what we know from the observations are consistent and there’s nothing wrong with that,” says Lorimer. “And as part of the scientific method, you definitely want to encourage those ideas.” He personally prefers to find the simplest natural explanation for the phenomena he observes in space—but until we manage to directly observe the source of these FRBs, all theoretical ideas should stand, as long as they are scientifically sound—whether they involve aliens or not.

    Any image repeats in this post were required for complete coverage.

    See the full article here .

    Totally missing from this article on SETI-

    SETI Institute

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)

    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch).jpg

    Shelley Wright of UC San Diego, with NIROSETI, developed at U Toronto, at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz

    Laser SETI, the future of SETI Institute research

    SETI@home, a BOINC project originated in the Space Science Lab at UC Berkeley


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 11:03 am on November 28, 2018 Permalink | Reply
    Tags: A billionaire’s plan to search for life on Enceladus, , , , Breakthrough Initiatives, Breakthrough Starshot Foundation, , , ,   

    From EarthSky: “A billionaire’s plan to search for life on Enceladus” 


    From EarthSky

    November 27, 2018
    Paul Scott Anderson

    Russian entrepreneur and physicist Yuri Milner wants to send a probe back to Saturn’s ocean moon Enceladus, to search for evidence of life there. NASA wants to help him.

    Illustration showing plumes on Saturnian moon Enceladus. Illustration: NASA /JPL-Caltech

    Saturn’s moon Enceladus is very small – only about 310 miles (500 kilometers) across – but it may hold clues to one of the biggest mysteries of all time – are we alone? Beneath the icy crust lies a global salty ocean, not too different from Earth’s oceans. Could that ocean contain life of some kind? That is a question that many scientists – and the public alike – would like to find an answer for. Enceladus, however, is very far away and planetary missions are expensive – but there may be an ideal solution.

    Billionaire entrepreneur and physicist Yuri Milner wants to send a private mission back to this intriguing world, and NASA wants to help him. This incredible idea was first reported in New Scientist on November 8, 2018 (please note this article is behind a paywall). It was then reported by Gizmodo the same day.

    “It looks like NASA will offer billionaire entrepreneur and physicist Yuri Milner help on the first private deep-space mission: a journey designed to detect life, if it exists, on Saturn’s moon Enceladus, according to documents acquired by New Scientist.

    New Scientist’s Mark Harris reports:

    Agreements signed by NASA and Milner’s non-profit Breakthrough Starshot Foundation in September show that the organisations are working on scientific, technical and financial plans for the ambitious mission. NASA has committed over $70,000 to help produce a concept study for a flyby mission. The funds won’t be paid to Breakthrough but represent the agency’s own staffing costs on the project.

    The teams will be working in the project plan and concepts through next year, New Scientist reports.”

    Enceladus is a very small moon, but it has a global ocean beneath its icy crust. Image via NASA/JPL-Caltech.

    Breakthrough Initiatives, part of Milner’s non-profit Breakthrough Starshot Foundation, would lead and pay for the mission, with consultation from NASA. The board of Breakthrough Initiatives includes billionaires Yuri Milner and Mark Zuckerberg, and the late physicist Stephen Hawking. Breakthrough Initiatives has been studying various mission concepts for space exploration, including a solar sail to nearby stars, advancing the technology to discover other Earth-like planets and sending out a direct message, similar to the previous Arecibo message, specifically to try and catch the attention of aliens.

    Solar sail. Breakthrough Starshot image. Credit: Breakthrough Starshot

    This radio message was transmitted toward the globular cluster M13 using the Arecibo telescope in 1974. Image Credit Arne Nordmann (norro) Wikipedia

    NAIC Arecibo Observatory operated by University of Central Florida, Yang Enterprises and UMET, Altitude 497 m (1,631 ft).

    Enceladus has become a prime target in the search for extraterrestrial life in our solar system, since its subsurface ocean is thought to be quite similar to oceans on Earth, thanks to data from the Cassini mission, which orbited Saturn from 2004 until September of last year.

    NASA/ESA/ASI Cassini-Huygens Spacecraft

    Scientists already know it is salty and there is evidence for geothermal activity on the ocean floor, such as “smoker” volcanic vents on the bottom of oceans on Earth. Such geothermal vents – at least on Earth – are oases for a wide variety of ocean life despite the darkness and cold temperatures away from the vents.

    Cassini also investigated the plumes of Enceladus – huge “geysers” of water vapor erupting through cracks in the surface at the south pole of Enceladus. Cassini flew right through some of them, analyzing their composition, and found they contain water vapor, ice particles, complex organic molecules and salts. Cassini wasn’t capable of finding life directly, but it did find valuable clues and hints that there may well be something alive in that alien ocean, even if only microbes.

    Earlier this year, New Scientist also reported that there may already be some tentative evidence for microbes in Enceladus’s ocean [Nature Communications]. Cassini detected traces of methane in the water vapor plumes, and when scientists tested computer models of conditions in the ocean, they found that microbes that emit methane after combining hydrogen and carbon dioxide – called methanogens – could easily survive there. According to Chris McKay at NASA’s Ames Research Center in Moffett Field, California:

    “This [team] has taken the first step to showing experimentally that methanogens can indeed live in the conditions expected on Enceladus.”

    The scientists found that the microbes were able to thrive at temperatures and pressures likely found in Enceladus’s oceans, ranging from 0 to 90 degrees Celsius, and up to 50 Earth atmospheres. They also found that olivine minerals, thought to exist in the moon’s core, could be chemically broken down to produce enough hydrogen for methanogens to thrive.

    Another proposed return mission to Enceladus is the Enceladus Life Finder (ELF), which would orbit Saturn and make repeated passes through the plumes – like Cassini, but with updated instruments. Image via Jonathan Lunine.

    Another proposed return mission to Enceladus is the Enceladus Life Finder (ELF), which would orbit Saturn and make repeated passes through the plumes – like Cassini, but with updated instruments that could even test whether any amino acids found have predominately left or right-handed structures. (Life on Earth predominately creates left-handed forms, and scientists think that life elsewhere will also favor one form over the other instead of a random mixture as would occur from abiotic chemistry.)

    Cassini wasn’t designed to detect life directly, but on a future mission – such as the one proposed – a mass spectrometer would be able to detect carbon isotope ratios unique to living organisms, as well as other potential “biomarkers” of methanogens, including lipids and hydrocarbons.

    Bottom line: Scientists are eager to return to Enceladus to learn more about its intriguing subsurface ocean. The new plan by billionaire Yuri Milner, with NASA’s assistance, may be the best bet to go back and see if anything is swimming in those mysterious alien waters.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.orgin 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

    • stewarthoughblog 10:52 pm on November 28, 2018 Permalink | Reply

      This substantiates the maxim that intelligence can only be coincidently related to financial possession. Even considering that science can be expected to pursue the investigation of a wide array of physical phenomenon, wasting $billions on speculation of the possibility of life on remote bodies is nonsensical considering that there is virtually a total absence of any evidence of naturalist creation of life on Earth. Projection of any conditions on Enceladus of conditions similar to primordial Earth is pure faith, not based on scientific evidence.

      But, it is true that anyone can spend their money (peaceably) on what they want to


      • richardmitnick 2:08 pm on November 29, 2018 Permalink | Reply

        I totally agree with your assessment of this proposed project. But, of course, it is Milner’s money. The real problem beyond is that we cannot squelch even the wildest quests in hopes for new science. Science never sleeps. The best example of this is that when our Congress in 1993 killed the Superconducting super collider, we left the door wide open for Europe via CERN to build its substitute, the LHC and High Energy Physics simply moved to Europe.


  • richardmitnick 3:04 pm on December 3, 2017 Permalink | Reply
    Tags: , , , Breakthrough Initiatives, , Privately Funded Team May Launch Life-Hunting Mission to Saturn Moon Enceladus   

    From SPACE.com: “Privately Funded Team May Launch Life-Hunting Mission to Saturn Moon Enceladus” 

    space-dot-com logo


    November 13, 2017
    Mike Wall


    A privately funded team may beat NASA to the punch when it comes to looking for life on the Saturn moon Enceladus.

    Breakthrough Initiatives — a program founded by billionaire tech investor Yuri Milner to hunt for alien life and help explore the cosmos — is considering launching a mission that would fly through the plume of water vapor and other material emanating from Enceladus’ south polar region, Milner said here yesterday (Nov. 9) at The Economist magazine’s inaugural global space summit, called “A New Space Age.”

    NASA’s Saturn-orbiting Cassini spacecraft discovered the plume, and the 100-odd geysers that create it, in 2005. Subsequent observations by the probe revealed that these geysers are blasting stuff out from a potentially habitable ocean of salty liquid water that sloshes beneath the 313-mile-wide (504 kilometers) moon’s icy shell.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 8:43 pm on May 31, 2017 Permalink | Reply
    Tags: Breakthrough Initiatives, ,   

    From SETI@home: “Jodrell Bank to partner with Breakthrough Initiatives” 


    At Berkeley SETI Research Center, we’ve long been friends and collaborators with Professor Michael Garrett and the team at Jodrell Bank. We’re delighted to continue our collaboration as the Breakthrough Initiatives announce a formal partnership with Jodrell in the search for intelligent life beyond Earth: https://breakthroughinitiatives.org/News/11

    Although this partnership doesn’t involve data from telescopes at Jodrell flowing to SETI@home (at least at the present time), the sharing of data, algorithms, and strategies will benefit the science programs at Berkeley and Jodrell, as well as at other telescopes involved in Breakthrough Listen and in SETI in general. You can seen an interview with Mike, recorded a few weeks back, at https://youtu.be/ZRMiuCFACCw, and take a 3D tour of the Lovell telescope and control room at Jodrell at https://my.matterport.com/show/?m=B8UZb1joxsG.

    For more news from Berkeley SETI, follow us on social media:


    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The science of SETI@home
    SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect intelligent life outside Earth. One approach, known as radio SETI, uses radio telescopes to listen for narrow-bandwidth radio signals from space. Such signals are not known to occur naturally, so a detection would provide evidence of extraterrestrial technology.

    Radio telescope signals consist primarily of noise (from celestial sources and the receiver’s electronics) and man-made signals such as TV stations, radar, and satellites. Modern radio SETI projects analyze the data digitally. More computing power enables searches to cover greater frequency ranges with more sensitivity. Radio SETI, therefore, has an insatiable appetite for computing power.

    Previous radio SETI projects have used special-purpose supercomputers, located at the telescope, to do the bulk of the data analysis. In 1995, David Gedye proposed doing radio SETI using a virtual supercomputer composed of large numbers of Internet-connected computers, and he organized the SETI@home project to explore this idea. SETI@home was originally launched in May 1999.

    SETI@home is not a part of the SETI Institute

    The SET@home screensaver image
    SETI@home screensaver

    To participate in this project, download and install the BOINC software on which it runs. Then attach to the project. While you are at BOINC, look at some of the other projects which you might find of interest.

    My BOINC

  • richardmitnick 4:51 pm on May 26, 2017 Permalink | Reply
    Tags: , , Breakthrough Initiatives, , , , , Dr. Greg Matloff, Near-term interstellar probe   

    From Centauri Dreams: “Near-Term Interstellar Probes: Some Gentle Suggestions” 

    Centauri Dreams

    May 26, 2017
    Paul Gilster

    When Greg Matloff’s “Solar Sail Starships: Clipper Ships of the Galaxy” appeared in JBIS in 1981, the science fictional treatments of interstellar sails I had been reading suddenly took on scientific plausibility. Later, I would read Robert Forward’s work, and realize that an interstellar community was growing in space agencies, universities and the pages of journals. Since those days, Matloff’s contributions to the field have kept coming at a prodigious rate, with valuable papers and books exploring not only how we might reach the stars but what we can do in our own Solar System to ensure a bright future for humanity. In today’s essay, Greg looks at interstellar propulsion candidates and ponders the context provided by Breakthrough Starshot, which envisions small sailcraft moving at 20 percent of the speed of light, bound for Proxima Centauri. What can we learn from the effort, and what alternatives should we consider as we ponder the conundrum of interstellar propulsion?

    Dr. Greg Matloff
    Marc Millis, Paul Gilster and their associates of the Tau Zero Foundation are to be congratulated on the recent award of a $500,000 NASA grant to investigate the prospects for a near-term interstellar probe. As one of the co-authors of The Starlight Handbook, the author of Deep-Space Probes and many interstellar related papers, a former NASA consultant in this field and an Advisor to Project Starshot, I would like to offer some gentle and very personal suggestions about how to best spend this money. Since it is unlikely that I can attend this year’s Tennessee Valley Interstellar Workshop, I have elected to submit these concepts to Centauri Dreams.


    The basic reason for an early interstellar endeavor is knowledge acquisition. Data acquired by a star-probe en route to its destination includes in situ measurements of the interstellar medium including ions, neutral atoms, dust grains and cosmic rays. Of particular interest to designers of eventual human-carrying star arks is measurements of the directionality of high-Z cosmic rays. If these originate from discrete sources in and beyond our galaxy rather than being omni-directional, the problem of shielding a space ark will be more readily solved.

    Another possible function of such a probe is extra-galactic astrometry. If the probe carries a telescope, the very-long baseline observations possible when pairing with solar-system instruments during interstellar cruise should yield valuable data regarding distances and kinematics of extra-galactic objects.

    During the interstellar transfer after the probe’s distance from the Sun exceeds 550 AU, the Sun’s Gravitational Focus can be applied to obtain greatly amplified images of astrophysical objects occulted by the Sun. Trajectory deviations farther along the probe’s interstellar track might indicate the presence of elusive dark matter.

    Upon arrival in the destination planetary system, investigation of planets within the target star’s habitable zone will be the highest priority. Does life evolve on any water-rich world within the liquid-water temperature range, if that world has an atmosphere? Or are special conditions such as a massive satellite a requisite?

    If living planets are commonplace, do technology and civilization naturally evolve? Because we have received no unambiguous signals from hypothetical advanced extraterrestrial civilizations and intelligent ETs are apparently rare or non-existent in our solar system, our early interstellar robots should be configured to investigate the “Eerie Silence” (as Paul Davies has dubbed it) and Fermi’s Paradox (“where is everybody?”). Do advanced ETs perhaps evolve in a non-technological direction, or do they generally self-destruct? Or do they generally elect to remain radio silent and not engage in interstellar exploration and colonization?


    I will next consider the probable destination for a probe that we might conceivably launch in the 2050-2100 time frame. Our early probes should almost certainly be directed towards the nearest stars—the Proxima/Alpha Centauri triple star system.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    This system, which is estimated to be about 6 billion years old, consists of two central Sun-like stars (Alpha A and Alpha B) and a red dwarf companion (Proxima). Alpha A and B orbit their common center of mass in an elliptical orbit with a period of about 80 years. At their closest (periapsis), Alpha A and Alpha B are separated by about 9 Astronomical Units. At their farthest (apoapsis), their separation is in excess of 30 AU. Each of the central Centauri suns could have planets orbiting within their habitable zones. Alpha A/B Centauri is about 4.27 light years from the Sun.

    Proxima Centauri is a bit closer at 4.24 light years from the Sun. It is quite possible (but not definite) that this star is gravitationally bound to the Alpha A/B even though its current separation from Alpha A/B is about 15,000 Astronomical Units.. During the summer of 2016, the discovery of a planet with a probable mass 30% greater than Earth orbiting Proxima Centauri within that star’s habitable zone was announced. A less-than-poetic designation for this planet is Proxima b Centauri.

    Although several research teams are investigating the possibility of habitable worlds attending Alpha A or Alpha B Centauri, the discovery of Proxima b was totally unexpected. Since the nearest star to the Sun has a probable planet orbiting within its habitable zone, it is reasonable to conclude that such worlds are very common in our galaxy.

    Achievable Interstellar Transit Duration

    Our early extrasolar probes— Pioneer 10/11, Voyager 1/2, and New Horizons— don’t really count as starships.

    NASA Pioneer 10

    NASA/Voyager 1

    NASA/New Horizons spacecraft

    Yes, they have left or will eventually leave our solar system and move freely through the Milky Way galaxy. But their propulsion systems—chemical rockets combined with giant-planet gravity assists are not effective enough for true star voyaging. Even the fastest of these would require about 70,000 years to reach Proxima/Alpha Centauri if it happened to be pointing in the right direction (which it isn’t).

    A human colony ship, often called an interstellar ark or world ship, could probably be designed using near-term technology such that it could survive a millennial journey to our nearest stellar neighbor. But such a long travel time for a robotic probe would be difficult to sell to the scientific community since most research participants would prefer to see some results within their lifetimes.

    So the Breakthrough Initiatives project Breakthrough Starshot pushes technology to its limits on numerous fronts in order to design a starcraft capable of traversing the enormous distance between the Sun and Proxima/Alpha Centauri in about 20 years.

    Everything about Starshot is enormously challenging. A hyperthin sail with dimensions up to a few meters on a side must be generated.

    Image: Artist’s concept of the Breakthrough Starshot sail under beamed acceleration. Credit: Breakthrough Initiatives.

    It must have near perfect reflectivity, high emissivity, low areal mass thickness and very high melting point. This is necessary for it to survive a several minute exposure to a 50-100 GW laser beam without melting. By the way, it must also have enormous tensile strength in order to support the nano-payload during the acceleration process. The sail must also be configured to maintain stability within the beam.

    The laser array would likely be mounted atop a Southern Hemisphere mountain, in order to point at Alpha Centauri. Adaptive optics must be used not only to compensate for the effects of Earth’s atmosphere but to insure that the beam completely fills the sail during the acceleration process at distances measured in millions of kilometers. Also, since a single continuous wave 50-100 GW laser is somewhat beyond current capabilities, thousands of smaller lasers must be synced together to produce the beam.

    Assuming that the sail survives the acceleration process, it must possess ample on-board intelligence to perform several tasks independent of Mission Control. First, it should reorient itself to travel edge-on rather than broadside through interstellar space. This is necessary to reduce the effects of dust grain impacts. Although interstellar dust is rare in our galactic vicinity, even a single grain moving at 0.2c (60,000 kilometers per second) relative to the sail has an enormous wallop.

    But we’re not done yet. Approaching Proxima/Alpha Centauri, the sail must reorient itself once again to allow its instrument suite to survey the environment of the destination stars and to send the results towards Earth. A very tall order indeed for a ~gram-massed nano payload.

    None of the above challenges present physical impossibilities. The question is whether they can all be achieved in a single nano-spacecraft within the next few decades.

    So any NASA-funded interstellar initiative intended for possible implementation within the next few decades should not attempt to duplicate the goals of Project Starshot. Rather than a 20-year travel duration, a 100-year flight time might be more realizable in the near term. Mission planners need to realize that even this is quite a challenge. A 100-200 year travel duration might be a reasonable goal.

    Proposed Propulsion Systems

    Many propulsion systems have been proposed to enable interstellar exploration and colonization. Only a few have any hope of being feasible in the near term. Before we get to the near-term possibilities, it might be nice to review some of the more exotic suggestions.

    Space Warps, Wormholes, and Hyperdrives

    It would indeed be lovely if one of these devices emerged from the realms of science fiction and Hollywood special effects into the real world. Then we could wander the star lanes with the same dispatch that we book a flight to Europe.

    Unfortunately, all of these short-cuts through space-time require either enormous amounts of energy, exotic forms of matter or new physics. It seems wise to continue research in these possibilities. There is no telling when or if a breakthrough might occur. But it would be unwise to hold our collective breaths.

    Thrust Machines

    In the 1960’s, we were treated to the famous Dean Drive. Now engineers in several international locations are testing the Shawyer EM Drive. These and similar devices apparently violate one of the basic laws of classical mechanics: Conservation of Linear Momentum. Although excess unidirectional thrust seems to be generated by the EM Drive, Marc Millis has described in this blog numerous possible causes for this effect that do not violate this law.

    Before any proposed thrust machine can be seriously considered for application to interplanetary or interstellar propulsion, it must demonstrate excess thrust in outer space conditions. Two venues for preliminary in-space tests are stratospheric balloons and sub-orbital rockets. If these succeed, a follow-on demonstration would be a dedicated cubesat containing the device deployed in Low Earth Orbit.

    The Matter/Antimatter Rocket

    This physically possible interstellar propulsion system utilizes total conversion of matter to energy in the reaction between matter and antimatter. Sadly, we are a very long way from the capability of creating the necessary mass of antimatter in a reasonable time frame. If we applied humanity’s best antimatter factory (the Large Hadron Collider) to the the task of full-time antimatter production, we might have a gram of the stuff after 100 million years.

    Another problem is storing the antimatter. Charged sub-atomic particles can be stored in Penning Traps for periods of weeks. These devices use crossed electric and magnetic fields to contain the particles. If applied in space travel, how would the trap’s fields compensate for variable spacecraft acceleration? Also, might stray cosmic rays heat and divert the anti-ions so that they explosively interact with the walls of the containment vessel?

    Perhaps it’s a good thing that application matter-antimatter technology does not seem a near-term possibility. Our security would be jeopardized enormously (and probably terminally) if terrorists could smuggle city-killing weapons in thimble-sized containers.

    Ramjets and EM Sails

    By far the most elegant of physically possible interstellar spacecraft is Robert Bussard’s fusion ramjet. This craft utilizes an electromagnetic (EM) scoop to collect interstellar hydrogen over a large area and redirect the plasma to a proton-proton fusion reactor. Energized fusion products (helium nuclei) are exhausted out the rear of the craft. An ideal ramjet, accelerating at 1g could reach near-optic velocities in about a year Earth time. Because of relativistic effects, the craft could cross the galaxy within the crew’s lifetime, according to on-board clocks.

    Sadly, there are a few problems with the proton-fusing ramjet. First and most significant is the difficulty of igniting the proton-proton thermonuclear reaction. This reaction, which powers main sequence stars such as our Sun, is many orders of magnitude more difficult to ignite than the fusion reactions we currently experiment with. One way around this is to consider lower performance ramjet alternatives such as the ram-augmented interstellar rocket (RAIR) that carries on-board fusion fuel and uses scooped protons as additional reaction mass.

    But even that approach is limited by the limitations of EM scoops that have been suggested to date. Most (including those considered by this author) function better as proton reflectors or drag sails—very good for interstellar deceleration but not too effective for achieving high velocities. The one exception to this is Brice Cassenti’s toroidal scoop, suggested in the late 1990’s. But because this scoop utilizes an array of superconducting wires projected in front of the spacecraft, only accelerations of the order 0.01 g are possible.

    In the near future, the best we can likely hope for to apply ramjet technology is in-space experiments using electric and magnetic sails to reflect the solar wind. This might encourage the perfection of both an interplanetary propulsion option requiring no on-board fuel and experimental tests of an approach to interstellar deceleration.

    Beamed Propulsion

    It is unclear whether Project Starshot’s imaginative enterprise will be successful. Even if a beam projector is located on a high mountain, it is not known how rapidly it can be adjusted to compensate for atmospheric turbulence. Another unknown is whether the beam-steering mechanism will be efficient enough to keep the beam output directed at Alpha/Proxima Centauri for several minutes. Finally, much analysis is required to insure that the beam is centered on the sail and fills the sail during the acceleration process.

    Any funded consideration of interstellar probes would be wise, however, to investigate terrestrial and in-space experiments to demonstrate the utility of beamed propulsion. These could be far less ambitious and expensive than the Project Starshot concepts.

    For example, imagine two cubesats launched simultaneously into Low Earth Orbit. One contains a wafer sail. Its neighbor deploys a very low-power laser or maser projector. The beam is focused on the unfurled sail. It should be possible to monitor both sail acceleration and stability in the beam.

    Another possibility is to repeat an experiment originally planned for the failed Planetary Society Cosmos-1 Earth-orbiting solar-photon sail. After the sail is unfurled, a microwave beam from a terrestrial radio telescope could be focused on the sail. If sail stability and acceleration can be demonstrated, this will advance the possibility of Earth-escape by low-orbit photon sails as well as furthering the cause of interstellar travel.

    Theoretical researchers might also expand the concept of particle-beam propulsion. Because electrically charged sub-atomic particles carry significantly more linear momentum than photons, it would be interesting to develop an understanding of particle-beam collimation over interplanetary and interstellar distances.

    But there is a geopolitical obstacle to the construction of a ~gigawatt laser-, maser-, or particle-beam projector in space. Such a device could be applied to accelerating a starship or diverting an Earth-threatening asteroid; it could also be construed as a weapon.

    If such an enormous beam projector could be constructed in space and could maintain its aim for decades, a hybrid interstellar propulsion system might ultimately become feasible. This is the laser ramjet. In such a vehicle, interstellar ions collected by a Cassenti EM scoop could be accelerated by energy beamed from the solar system.

    Fission-Electric Propulsion

    Nuclear fission has been an available energy source for more than 70 years. The solar-electric rocket (or ion drive) has been used successfully on several interplanetary probes. One reasonable approach to interstellar travel is to remove the solar panels and connect the ion drive’s thruster to a nuclear-fission reactor. In such a device, the reactor energy output would ionize propellant atoms (or molecules) and accelerate the resulting ions out the rear of the spacecraft.

    There are at least three factors limiting interstellar application of fission-electric propulsion. One is propellant availability. To reduce thruster erosion, the inert gas xenon is used as propellant in most current solar-electric drives. Applying this approach to the much more massive fuel requirement of an interstellar probe would likely far exceed the annual terrestrial production rate of xenon. Alternative propellants should be investigated.

    Then there is the matter of geopolitics. Many citizens of our planet would be somewhat unnerved if one of the major space powers began to store the large amount of fissionable material required in Low Earth Orbit during construction of the massive probe. One way around this is to construct the probe as an international project, similar to that applied to creation and operation of the International Space Station.

    Technology is another limitation. Present day ion thrusters are limited to exhaust velocities of about 100 kilometers per second. So a nuclear-electric rocket launched using current technology might require 10,000 years to reach Alpha/Proxima Centauri.

    Exhaust velocity must be raised to at least 1000 kilometers/second to propel a “1000-year ark”, as discussed by Les Shepherd in his 1952-vintage JBIS paper on interstellar travel. To reduce probe flight time to 100 years or so, the ion-exhaust velocity must be increased by another order of magnitude.

    Another required improvement to implement ion-propelled interstellar travel is the reduction of the propulsion system’s specific mass (kilograms/kilowatts). As my late friend, the UK propulsion expert Dr. David Fearn once told me, such a reduction is challenging but ultimately not impossible.

    Thermonuclear Fusion Rockets

    There are two major types of fusion under development. Magnetic fusion, which confines the reacting plasma in EM fields, seems to always be a few decades in the future. Some have quipped that it is the energy source and the propulsion system of the future and always will be.

    Small scale inertial fusion confines and compresses micropellets using crossed electron or laser beams. Large scale inertial fusion—the hydrogen bomb—accomplishes confinement and heating reactants using fission charges, and has of course been operational for more than 60 years.

    Large scale inertial-fusion propulsion was first investigated during the early space age by NASA and the US Department of Defense in the original Project Orion. The first demonstration in a scientific journal of the near-term feasibility of large-scale interstellar travel was Freeman Dyson’s original paper on an interstellar Orion in the October 1968 issue of Physics Today. Assuming propulsion by exploding hydrogen bombs, Dyson demonstrated that the US and USSR Cold War nuclear arsenals were sufficient to dispatch thousands of migrants on colonization ships. The estimated duration of one-way voyages to Alpha/Proxima Centauri was 130-1,300 years.

    In an ideal world, the former Cold War adversaries would be glad to donate their now-obsolete thermonuclear arsenals to the worthy cause of promoting an interstellar diaspora. Sadly, we do not live in such a world.

    Even if nuclear “devices” would be donated to the worthy cause of interstellar exploration/colonization, there are a few technical difficulties to contend with. Unless we can master aneutronic fusion reactions such as the boron-proton scheme, it must be demonstrated that spacecraft structures can survive periodic high-energy thermal-neutron doses.

    Application of fusion micro pellets also has a number of technical issues. First, there is the problem of fuel availability. To reduce neutron irradiation on ship structures, the Daedalus study of the British Interplanetary Society (BIS) considered a Deuterium-Helium3 fusion fuel cycle. The problem is that Helium3 is very rare on Earth. To construct a Daedalus craft, cosmic helium sources must be tapped—perhaps the lunar regolith, atmospheres of giant planets or the solar wind.

    The BIS follow-up to Daedalus, called Icarus, uses a Deuterium-Tritium fuel cycle. Here, it might be necessary to breed Tritium in nuclear fission reactors.

    Some engineering issues must be addressed before Daedalus/Icarus-type pulsed fusion ships can become operational. What are the acoustic effects of repeated fusion ignitions within the reaction chamber? Will the walls of the reaction chamber be damaged if laser- or electron-beams miss a fuel pellet?

    Another significant issue is the enormous size of inertial fusion ships. Even if payload mass can be drastically reduced, the beam projectors, reaction chamber and associated gear are massive.

    One suggestion to reduce the mass of an inertial-fusion propelled spacecraft is worthy of future study. That is Johndale Solem’s Medusa concept. In Medusa, the massive reaction chamber is replaced by a hyper-thin, high-melting-point, radiation-tolerant sail. Fusion charges are ignited within this flexible canopy, which is connected to the payload by strong cables.

    The Solar-Photon Sail

    There are several reasons why photon sails have emerged as the near-term interstellar propulsion system of choice. First, small photon sails have been unfurled and operated in Earth orbit and interplanetary space.

    Second, the photon sail can be scaled with the payload. A payload-on-a-chip requires a small sail. If the payload is small enough, sail and payload can be deployed from a small cubesat. Sail deployment and integration with payload can therefore be based upon current operational experience.

    But today’s multi-layer solar-photon sails are not really capable of interstellar travel. Even if sail acceleration is combined with giant-planet gravity assists, it seems clear that Alpha/Proxima Centauri travel times less than 10,000 years will be difficult to achieve.

    The best we can expect from current solar-photon sails is exploration of the heliopause at around 550 AU, the Sun’s gravity focus at >550 AU, and the inner reaches of the Sun’s Oort Comet Cloud.

    In all likelihood, interstellar probes launched by solar-photon sails will never be as fast as those launched by laser-photon or maser-photon sails. The reason for this is that solar irradiance is an inverse square phenomenon—acceleration at Jupiter is 1/25 that at Earth’s solar orbit. A collimated and accurately aimed beam could maintain sail acceleration over much greater distances.

    But the advantage of solar-photon over beam-photon sails is that mission designers need not concern themselves with the beam-projection system. The solar constant should not vary too much for the foreseeable future.

    So a number of researchers have evaluated the possibility of all-metal sails, dielectric sails, carbon nanotube sails and mesh sails. But the ultimate sail material might be a molecular monolayer such as graphene.

    Graphene is a hyper-strong layer of carbon, one molecule thick. Its melting point is in excess of 4,000 K and it is impermeable to many gases. In the visible spectral range, graphene is essentially transparent. Its fractional visible absorption is 0.023. As I describe in a 2012 JBIS paper, combination with other materials can increase reflectivity to about 0.05 and absorption to ~0.4. Graphene sails carrying robotic payloads and unfurled near the Sun seem capable of reaching Alpha/Proxima Centauri in a few centuries. Because human-carrying arks are limited to ~3g accelerations, these larger ships require about 1,000 years to reach these stars if they are propelled by graphene sails.

    But here is where Project Starshot can play a very major role. In order to reach ~0.2c in a ~50 GW laser beam without melting, the sail reflectivity to laser light must be very high. Perhaps this can be achieved with an appropriate mesh-like meta material. Or perhaps the reflectivity of molecular monolayers such as graphene can be greatly increased.

    After the Project Starshot workshop last August, participants produced draft Requests For Proposals (RFPs). I have discussed the possibility of increasing graphene reflectivity with theoretical condensed-matter researchers at my home institution (CUNY). It is quite possible that they will submit a proposal in response to the RFP when it is issued.

    If monolayer reflectivity can be greatly increased, it will be necessary to demonstrate that this action does not adversely affect monolayer tensile strength so that the wafer sail is strong enough to support the payload during a very close solar approach. It will also be necessary to demonstrate that sail and payload can survive the very hostile environment encountered near the Sun.

    A solar-photon sail will likely never achieve the ~0.2c interstellar velocity of the laser-boosted Project Starshot sail. But, just possibly, solar-photon-sail terminal velocities capable of making the journey to Alpha/Proxima Centauri in a century or so may not be totally infeasible.


    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Tracking Research into Deep Space Exploration

    Alpha Centauri and other nearby stars seem impossible destinations not just for manned missions but even for robotic probes like Cassini or Galileo. Nonetheless, serious work on propulsion, communications, long-life electronics and spacecraft autonomy continues at NASA, ESA and many other venues, some in academia, some in private industry. The goal of reaching the stars is a distant one and the work remains low-key, but fascinating ideas continue to emerge. This site will track current research. I’ll also throw in the occasional musing about the literary and cultural implications of interstellar flight. Ultimately, the challenge may be as much philosophical as technological: to reassert the value of the long haul in a time of jittery short-term thinking.

  • richardmitnick 8:07 am on May 20, 2017 Permalink | Reply
    Tags: , , , Breakthrough Initiatives, , , How long to travel to Alpha Centauri?   

    From EarthSky: “How long to travel to Alpha Centauri?” 



    May 16, 2017
    Deborah Byrd

    Artist’s concept via Breakthrough Starshot.

    Outer space is big. Really, really, really big. And that’s why NASA has no plans at present to send a spacecraft to any of the several thousand known planets beyond our solar system. Meanwhile, with respect to star travel, NASA isn’t the only game in town anymore. In April 2016, Russian high-tech billionaire Yuri Milner announced a new and ambitious initiative called Breakthrough Starshot, which intends to pour $100 million into proof-of-concept studies for an entirely new technology for star travel, aimed at unmanned space flight at 20% of light speed, with the goal of reaching the Alpha Centauri system – and, presumably, its newly discovered planet Proxima b – within 20 years. Is it possible? No one knows yet, but Alpha Centauri is an obvious target. It’s the nearest star system to our sun at 4.3 light-years away. That’s about 25 trillion miles (40 trillion km) away from Earth – nearly 300,000 times the distance from the Earth to the sun. Follow the links below to learn more about why star travel is so formidable, and about how we might accomplish it.

    Why won’t a conventional rocket work?

    Warp drive?

    Breakthrough Starshot

    These 4 conventional spacecraft are headed out of the solar system. A 5th spacecraft, New Horizons, will also eventually leave the solar system.

    NASA/New Horizons spacecraft

    But conventional spacecraft move slowly in contrast to the vast distances between stars. It’ll be tens of thousands of years before one of these craft encounters a star. Image via Wikimedia Commons.

    Why won’t a conventional rocket work? Consider the Space Shuttles, which traveled only a few hundred kilometers above Earth’s surface, into Earth orbit. If Earth were the size of a sand grain, this distance would be about the width of a hair in contrast to a 6-mile (10-km) distance to Alpha Centauri.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    The Space Shuttles weren’t starships, but we have built starships. Five craft from Earth are currently on their way out of the solar system, headed into interstellar space. They are the two Pioneer spacecraft, the two Voyager spacecraft, and the New Horizons spacecraft. All are moving extremely slowly relative to the speed needed to travel among the stars.

    NASA Pioneer II

    NASA/Voyager 1

    So … consider the two Voyagers – Voyager 1 and Voyager 2 – launched in 1977. Neither Voyagers is aimed toward Alpha Centauri, but if one of them were – assuming it maintained its current rate of speed – it would requires take tens of thousands of years to this next-nearest star. Eventually, the Voyagers will pass other stars. In about 40,000 years, Voyager 1 will drift within 1.6 light-years (9.3 trillion miles) of AC+79 3888, a star in the constellation of Camelopardalis. In some 296,000 years, Voyager 2 will pass 4.3 light-years from Sirius, the brightest star in the sky. Hmm, 4.3 light-years. That’s the distance between us and Alpha Centauri.

    What about the New Horizons spacecraft, the first spacecraft ever to visit Pluto and its moons. NASA’s New Horizons spacecraft travels at 36,373 miles per hour (58,536 km/h). Launched from Earth in mid-January, 2006, it reached Pluto in mid-July, 2015 … nine-and-a-half years later. If New Horizons were aimed toward the Alpha Centauri system, which it isn’t, it would take this spacecraft about 78,000 years to get there.

    So conventional rockets won’t work because they are too slow.

    What a spaceship with warp drive might look like. Credit: Mark Rademaker/Mike Okuda/Harold White/NASA.

    Illustration via the Anderson Institute.

    Warp drive? What if we could travel faster than light? Countless sci-fi books and movies are built around the concept, which brings with its challenges to physicists’ understanding of how space and time actually work. Still, a few years ago, Dr. Harold “Sonny” White – who leads NASA’s Advanced Propulsion Team at Johnson Space Center – claimed to have made a discovery which made plausible the idea of faster-than-light travel, via a concept known as the Alcubierre warp drive.

    This concept is based on ideas put forward by Mexican physicist Miguel Alcubierre in 1994. He suggested that faster-than-light travel might be achieved by distorting spacetime, as shown in the illustration above.

    Harold “Sonny” White has been working to investigate these ideas further. They are highly speculative, but possibly valid, and involve a solution of the Einstein field equations, specifically how space, time and energy interact. In June of 2014, White unveiled images of what a faster-than-light ship might look like. Artist Mark Rademaker based these designs on White’s theoretical ideas. He said creating them took more than 1,600 hours, and they are very cool. See the 2014 faster-than-light spacecraft designs on this Flickr page.

    The video below presents Harold White’s talk at the SpaceVision 2013 Space Conference in November, 2013 in Phoenix. He talks about the concepts and progress in warp-drive development over recent decades.

    One hour

    s it faster-than-light travel possible, via the Alcubierre warp drive? As with conventional propulsion systems, the problem is energy. In this case, it’s the type of energy the warp drive would need. Daily Kos reported:

    In order to form the warp field/bubble, a region of space-time with negative energy density (i.e. repulsing space-time) is necessary. Scientific models predict exotic matter with a negative energy may exist, but it has never been observed. All forms of matter and light have a positive energy density, and create an attractive gravitational field.

    So faster-than-light travel via the Alcubierre warp drive is highly speculative, to say the least.

    With current technologies, it’s not possible.

    However, if it could be accomplished, it would reduce the travel time to Alpha Centauri from thousands of years to just days.

    Want technical details on the Alcubierre warp drive? Read this 2014 article at Daily Kos.

    Or try this January 2017 article on the Alcubierre warp drive, at Phys.org

    NASA has a whole area on its website about faster-than-light travel, in which it basically says … it’s not currently possible.

    Breakthrough Starshot. In April, 2016, Yuri Milner’s organization Breakthrough Initiatives announced a $100 million investment in proof-of concept studies for an all-new way to get to the stars.

    Well, not all new., exactly. The Breakthrough Starshot project relies on technologies that are being tested now, and also on some new technologies that have been around only a few years. But it does put these technologies together in a way that’s entirely new, and extremely visionary.

    The Breakthrough Starshot team has some heavy hitters, including physicist Stephen Hawking and Facebook’s Mark Zuckerberg. It proposes to use the $100 million to learn whether it’s possible to use a 100-gigawatt light beam and light sails to propel some 1,000 ultra-lightweight nanocraft to 20% of light speed. If it’s shown to be possible, such a mission could (hypothetically) reach Alpha Centauri within about 20 years of its launch.

    There are a lot of appealing things about this project. For example, the use of lightsails is currently in the process of being tested by another organization, the Planetary Society, with a publicly funded project called LightSail.

    But the most appealing thing is that the Breakthrough Starshot project is truly innovative, yet still grounded in current, cutting-edge science and technology. Just realize that all existing spacecraft are huge and clunky in contrast to the gram-scale nanostarships – dubbed StarChips – being proposed by Breakthrough Starshot. Can tiny, light ships – on sails pushed by a light beam – fly 1,000 times faster than the fastest spacecraft built up to now? That’s what Breakthrough Starshot is exploring with its ongoing proof-of-concept studies.

    Starshot envisions launching a mothership carrying the 1,000 tiny spacecraft to a high-altitude orbit. Each craft is a gram-scale wafer, carrying cameras, photon thrusters, power supply, navigation and communication equipment, and “constituting a fully functional space probe,” the Starshot team has said.

    Mission controllers would deploy the nanocraft – send them on their way – one by one. A ground-based laser array called a light beamer would be used to focus light on the sails of the ships, to accelerate individual craft to the target speed “within minutes.”

    The plan is to stick four cameras (two-megapixels each) on the nanocraft, allowing for some elementary imaging. The data would be transmitted back to Earth using a retractable meter-long antenna, or perhaps even using the lightsail to facilitate laser-based communications that could focus a signal back towards Earth.

    The original idea was to send the spacecraft flying through the Alpha Centauri system without slowing down. After all, how can they slow down? It turns out someone has already figured out a possible way. In early 2017 two scientists announced the results of their study of a possible braking method, using the radiation and gravity of the Alpha Centauri stars themselves. We don’t know yet if such a thing can work, but it’s heartening to see scientists getting involved in this idea!

    Clearly, the Breakthrough Starshot project is one that’s worth watching.

    On April 20 and 21, 2017, Breakthrough Initiatives held the second of what it says will be an annual conference – called Breakthrough Discuss – aimed at bringing together leading astronomers, engineers, astrobiologists and astrophysicists. This year, they held the conference at Stanford University and focused it on discoveries of potentially habitable planets in nearby star systems, including Alpha Centauri. Videos related to discussions at the conference are archived on Breakthrough’s Facebook page, if you’re interested.

    Illustration via FutureHumanEvolution.com

    Bottom line: At 4.3 light-years away, the Alpha Centauri system is the nearest star system to our Earth and sun, but getting there would be extremely difficult.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 3:59 pm on January 10, 2017 Permalink | Reply
    Tags: Breakthrough Initiatives,   

    From ESO: ESOcast 91 Light: VLT to search for planets around Alpha Centauri 4K UHD” Video 

    ESO 50 Large

    European Southern Observatory

    ESO has signed an agreement with the Breakthrough Initiatives to adapt the Very Large Telescope instrumentation in Chile to conduct a search for planets in the nearby star system Alpha Centauri. Such planets could be the targets for an eventual launch of miniature space probes by the Breakthrough Starshot Initiative.

    Access mp4 video here .

    The video is available in 4K UHD.
    This ESOcast Light takes a quick look at the main facts and why this is an important step for the future.
    More information and download options: http://www.eso.org/public/videos/eso1…
    Subscribe to ESOcast in iTunes! https://itunes.apple.com/podcast/esoc…
    Receive future episodes on YouTube by pressing the Subscribe button above or follow us on Vimeo: https://vimeo.com/esoastronomy
    Watch more ESOcast episodes: http://www.eso.org/public/videos/arch…
    Find out how to view and contribute subtitles for the ESOcast in multiple languages, or translate this video on dotSUB: http://www.eso.org/public/outreach/pa…


    Visual Design and Editing: Martin Kornmesser and Luis Calçada.
    Editing: Herbert Zodet.
    Web and technical support: Mathias André and Raquel Yumi Shida.
    Written by: Lars Lindberg Christensen and Oana Sandu.
    Music: Paulo Raimundo.
    Footage and photos: ESO, Breakthrough Initiatives, Gianluca Lombardi (glphoto.it), Nick Risinger (skysurvey.org), B. Tafreshi (twanight.org), S. Brunier and C. Malin (christophmalin.com).
    Directed by: Herbert Zodet.
    Executive producer: Lars Lindberg Christensen.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-




    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres

    ESO/E-ELT to be built at Cerro Armazones at 3,060 m

    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

  • richardmitnick 3:13 pm on January 9, 2017 Permalink | Reply
    Tags: Breakthrough Initiatives, , , VLT to Search for Planets in Alpha Centauri System   

    From ESO: “VLT to Search for Planets in Alpha Centauri System” 

    ESO 50 Large

    European Southern Observatory

    9 January 2017
    Markus Kasper
    Garching bei München, Germany
    Tel: +49 89 3200 6359
    Email: mkasper@eso.org

    Breakthrough Initiatives
    Email: media@breakthroughprize.org

    Janet Wootten
    Rubenstein Communications, Inc.
    Tel: +1 212 843 8024
    Email: jwootten@rubenstein.com

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    ESO Signs Agreement with Breakthrough Initiatives

    ESO has signed an agreement with the Breakthrough Initiatives to adapt the Very Large Telescope instrumentation in Chile to conduct a search for planets in the nearby star system Alpha Centauri. Such planets could be the targets for an eventual launch of miniature space probes by the Breakthrough Starshot initiative. No image credit.

    ESO, represented by the Director General, Tim de Zeeuw, has signed an agreement with the Breakthrough Initiatives, represented by Pete Worden, Chairman of the Breakthrough Prize Foundation and Executive Director of the Breakthrough Initiatives. The agreement provides funds for the VISIR (VLT Imager and Spectrometer for mid-Infrared) instrument, mounted at ESO’s Very Large Telescope (VLT) to be modified in order to greatly enhance its ability to search for potentially habitable planets around Alpha Centauri, the closest stellar system to the Earth. The agreement also provides for telescope time to allow a careful search programme to be conducted in 2019.

    The discovery in 2016 of a planet, Proxima b, around Proxima Centauri, the third and faintest star of the Alpha Centauri system, adds even further impetus to this search.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker
    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Knowing where the nearest exoplanets are is of paramount interest for Breakthrough Starshot, the research and engineering programme launched in April 2016, which aims to demonstrate proof of concept for ultra-fast light-driven “nanocraft”, laying the foundation for the first launch to Alpha Centauri within a generation.

    Detecting a habitable planet is an enormous challenge due to the brightness of the planetary system’s host star, which tends to overwhelm the relatively dim planets. One way to make this easier is to observe in the mid-infrared wavelength range, where the thermal glow from an orbiting planet greatly reduces the brightness gap between it and its host star. But even in the mid-infrared, the star remains millions of times brighter than the planets to be detected, which calls for a dedicated technique to reduce the blinding stellar light.

    The existing mid-infrared instrument VISIR on the VLT will provide such performance if it were enhanced to greatly improve the image quality using adaptive optics, and adapted to employ a technique called coronagraphy to reduce the stellar light and thereby reveal the possible signal of potential terrestrial planets. Breakthrough Initiatives will pay for a large fraction of the necessary technologies and development costs for such an experiment, and ESO will provide the required observing capabilities and time.

    The new hardware includes an instrument module contracted to Kampf Telescope Optics (KTO), Munich, which will host the wavefront sensor, and a novel detector calibration device. In addition, there are plans for a new coronagraph to be developed jointly by University of Liège (Belgium) and Uppsala University (Sweden).

    Detecting and studying potentially habitable planets orbiting other stars will be one of the main scientific goals of the upcoming European Extremely Large Telescope (E-ELT).

    Although the increased size of the E-ELT will be essential to obtaining an image of a planet at larger distances in the Milky Way, the light collecting power of the VLT is just sufficient to image a planet around the nearest star, Alpha Centauri.

    The developments for VISIR will also be beneficial for the future METIS instrument, to be mounted on the E-ELT, as the knowledge gained and proof of concept will be directly transferable. The huge size of the E-ELT should allow METIS to detect and study exoplanets the size of Mars orbiting Alpha Centauri, if they exist, as well as other potentially habitable planets around other nearby stars.
    More information

    The Breakthrough Initiatives are a program of scientific and technological exploration founded in 2015 by Internet investor and science philanthropist Yuri Milner to explore the Universe, seek scientific evidence of life beyond Earth, and encourage public debate from a planetary perspective.

    Breakthrough Starshot is a $100 million research and engineering program aiming to demonstrate proof of concept for a new technology, enabling ultra-light unmanned space flight at 20% of the speed of light, and to lay the foundations for a flyby mission to Alpha Centauri within a generation.

    Breakthrough Initiative

    See the full article here .

    Also on this project,

    GBO radio telescope, Green Bank, West Virginia, USA
    GBO radio telescope, Green Bank, West Virginia, USA

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia
    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    UC Observatories Lick Aumated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA
    UC Observatories Lick Aumated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-




    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres

    ESO/E-ELT to be built at Cerro Armazones at 3,060 m

    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: