Tagged: Brain Studies Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:23 am on July 8, 2019 Permalink | Reply
    Tags: 7 Tesla MRI, , , Brain Studies, ,   

    From Science News: “A 100-hour MRI scan captured the most detailed look yet at a whole human brain” 

    From Science News

    July 8, 2019
    Laura Sanders

    A device recently approved by the U.S. FDA made extremely precise images of a postmortem sample.

    1
    CLOSE-UP A 3-D view of the entire human brain, taken with a powerful 7 Tesla MRI and shown here from two angles, could reveal new details on structures in the mysterious organ.

    Over 100 hours of scanning has yielded a 3-D picture of the whole human brain that’s more detailed than ever before. The new view, enabled by a powerful MRI, has the resolution potentially to spot objects that are smaller than 0.1 millimeters wide.

    “We haven’t seen an entire brain like this,” says electrical engineer Priti Balchandani of the Icahn School of Medicine at Mount Sinai in New York City, who was not involved in the study. “It’s definitely unprecedented.”

    The scan shows brain structures such as the amygdala in vivid detail, a picture that might lead to a deeper understanding of how subtle changes in anatomy could relate to disorders such as post-traumatic stress disorder.

    To get this new look, researchers at Massachusetts General Hospital in Boston and elsewhere studied a brain from a 58-year-old woman who died of viral pneumonia. Her donated brain, presumed to be healthy, was preserved and stored for nearly three years.

    Before the scan began, researchers built a custom spheroid case of urethane that held the brain still and allowed interfering air bubbles to escape. Sturdily encased, the brain then went into a powerful MRI machine called a 7 Tesla, or 7T, and stayed there for almost five days of scanning.

    The strength of the 7T, the length of the scanning time and the fact that the brain was perfectly still led to the high-resolution images, which are described May 31 at bioRxiv.org. Associated videos of the brain, as well as the underlying dataset, are publicly available.


    ZOOM IN This video moves from the outer wrinkles to the inner structures and then back out to the wrinkles of a complete human brain at extremely high resolution.

    Researchers can’t get the same kind of resolution on brains of living people. For starters, people couldn’t tolerate a 100-hour scan. And even tiny movements, such as those that come from breathing and blood flow, would blur the images.

    But pushing the technology further in postmortem samples “gives us an idea of what’s possible,” Balchandani says. The U.S. Food and Drug Administration approved the first 7T scanner for clinical imaging in 2017, and large medical centers are increasingly using them to diagnose and study illnesses.

    These detailed brain images could hold clues for researchers trying to pinpoint hard-to-see brain abnormalities involved in disorders such as comas and psychiatric conditions such as depression. The images “have the potential to advance understanding of human brain anatomy in health and disease,” the authors write.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:08 pm on June 20, 2019 Permalink | Reply
    Tags: "Researchers Call for Personalized Approach to Aging Brain Health", , Brain Studies, ,   

    From University of Arizona: “Researchers Call for Personalized Approach to Aging Brain Health” 

    U Arizona bloc

    From University of Arizona

    June 18, 2019
    Alexis Blue

    UA psychologist Lee Ryan and her collaborators have proposed a precision aging model designed to help researchers better understand and treat age-related cognitive decline on an individual level.

    People are living longer than ever before, but brain health isn’t keeping up. To tackle this critical problem, a team of researchers has proposed a new model for studying age-related cognitive decline – one that’s tailored to the individual.

    1

    There’s no such thing as a one-size-fits-all approach to aging brain health, says Lee Ryan, professor and head of the University of Arizona Department of Psychology. A number of studies have looked at individual risk factors that may contribute to cognitive decline with age, such as chronic stress and cardiovascular disease. However, those factors may affect different people in different ways depending on other variables, such as genetics and lifestyle, Ryan says.

    In a new paper published in the journal Frontiers in Aging Neuroscience, Ryan and her co-authors advocate for a more personalized approach, borrowing principles of precision medicine in an effort to better understand, prevent and treat age-related cognitive decline.

    “Aging is incredibly complex, and most of the research out there was focusing on one aspect of aging at a time,” Ryan said. “What we’re trying to do is take the basic concepts of precision medicine and apply them to understanding aging and the aging brain. Everybody is different and there are different trajectories. Everyone has different risk factors and different environmental contexts, and layered on top of that are individual differences in genetics. You have to really pull all of those things together to predict who is going to age which way. There’s not just one way of aging.”

    Although most older adults – around 85% – will not experience Alzheimer’s disease in their lifetimes, some level of cognitive decline is considered a normal part of aging. The majority of people in their 60s or older experience some cognitive impairment, Ryan said.

    This not only threatens older adults’ quality of life, it also has socioeconomic consequences, amounting to hundreds of billions of dollars in health care and caregiving costs, as well as lost productivity in the workplace, Ryan and her co-authors write.

    The researchers have a lofty goal: to make it possible to maintain brain health throughout the entire adult lifespan, which today in the U.S. is a little over 78 years old on average.

    In their paper, Ryan and her co-authors present a precision aging model meant to be a starting point to guide future research. It focuses primarily on three areas: broad risk categories; brain drivers; and genetic variants. An example of a risk category for age-related cognitive decline is cardiovascular health, which has been consistently linked to brain health. The broader risk category includes within it several individual risk factors, such as obesity, diabetes and hypertension.

    The model then considers brain drivers, or the biological mechanisms through which individual risk factors in a category actually impact the brain. This is an area where existing research is particularly limited, Ryan said.

    Finally, the model looks at genetic variants, which can either increase or decrease a person’s risk for age-related cognitive decline. Despite people’s best efforts to live a healthy lifestyle, genes do factor into the equation and can’t be ignored, Ryan said. For example, there are genes that protect against or make it more likely that a person will get diabetes, sometimes regardless of their dietary choices.

    While the precision aging model is a work in progress, Ryan and her collaborators believe that considering the combination of risk categories, brain drivers and genetic variants is key to better understanding age-related cognitive decline and how to best intervene in different patients.

    Ryan imagines a future in which you can go to your doctor’s office and have all of your health and lifestyle information put into an app that would then help health-care professionals guide you on an individualized path for maintaining brain health across your lifespan. We may not be there yet, but it’s important for research on age-related cognitive decline to continue, as advances in health and technology have the potential to extend the lifespan even further, she said.

    “Kids that are born in this decade probably have a 50% chance of living to 100,” Ryan said. “Our hope is that the research community collectively stops thinking about aging as a single process and recognizes that it is complex and not one-size-fits-all. To really move the research forward you need to take an individualized approach.”

    Ryan is associate director of the Evelyn F. McKnight Brain Institute at the UA, which is one of the foremost universities in the world for researching the aging brain and age-related cognitive changes. Her co-authors on the paper include UA Regents’ Professor of Psychology Carol Barnes, who directs the UA’s Evelyn F. McKnight Brain Institute; UA professors Meredith Hay and Matthias Mehl; and collaborators from the Phoenix-based Translational Genomics Institute, Georgia Institute of Technology, Leonard M. Miller School of Medicine and John Hopkins University.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    U Arizona mirror lab


    An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 10:40 am on May 11, 2019 Permalink | Reply
    Tags: An array of artificial synapses designed by researchers at Stanford and Sandia National Laboratories can mimic how the brain processes and stores information., , Brain Studies, , ,   

    From Stanford University: “Stanford researchers’ artificial synapse is fast, efficient and durable” 

    Stanford University Name
    From Stanford University

    April 25, 2019
    Taylor Kubota

    1
    An array of artificial synapses designed by researchers at Stanford and Sandia National Laboratories can mimic how the brain processes and stores information. (Image credit: Armantas Melianas and Scott Keene)

    The brain’s capacity for simultaneously learning and memorizing large amounts of information while requiring little energy has inspired an entire field to pursue brain-like – or neuromorphic – computers. Researchers at Stanford University and Sandia National Laboratories previously developed [Nature Materials] one portion of such a computer: a device that acts as an artificial synapse, mimicking the way neurons communicate in the brain.

    In a paper published online by the journal Science on April 25, the team reports that a prototype array of nine of these devices performed even better than expected in processing speed, energy efficiency, reproducibility and durability.

    Looking forward, the team members want to combine their artificial synapse with traditional electronics, which they hope could be a step toward supporting artificially intelligent learning on small devices.

    “If you have a memory system that can learn with the energy efficiency and speed that we’ve presented, then you can put that in a smartphone or laptop,” said Scott Keene, co-author of the paper and a graduate student in the lab of Alberto Salleo, professor of materials science and engineering at Stanford who is co-senior author. “That would open up access to the ability to train our own networks and solve problems locally on our own devices without relying on data transfer to do so.”

    A bad battery, a good synapse

    The team’s artificial synapse is similar to a battery, modified so that the researchers can dial up or down the flow of electricity between the two terminals. That flow of electricity emulates how learning is wired in the brain. This is an especially efficient design because data processing and memory storage happen in one action, rather than a more traditional computer system where the data is processed first and then later moved to storage.

    Seeing how these devices perform in an array is a crucial step because it allows the researchers to program several artificial synapses simultaneously. This is far less time consuming than having to program each synapse one-by-one and is comparable to how the brain actually works.

    In previous tests of an earlier version of this device, the researchers found their processing and memory action requires about one-tenth as much energy as a state-of-the-art computing system needs in order to carry out specific tasks. Still, the researchers worried that the sum of all these devices working together in larger arrays could risk drawing too much power. So, they retooled each device to conduct less electrical current – making them much worse batteries but making the array even more energy efficient.

    The 3-by-3 array relied on a second type of device – developed by Joshua Yang at the University of Massachusetts, Amherst, who is co-author of the paper – that acts as a switch for programming synapses within the array.

    “Wiring everything up took a lot of troubleshooting and a lot of wires. We had to ensure all of the array components were working in concert,” said Armantas Melianas, a postdoctoral scholar in the Salleo lab. “But when we saw everything light up, it was like a Christmas tree. That was the most exciting moment.”

    During testing, the array outperformed the researchers’ expectations. It performed with such speed that the team predicts the next version of these devices will need to be tested with special high-speed electronics. After measuring high energy efficiency in the 3-by-3 array, the researchers ran computer simulations of a larger 1024-by-1024 synapse array and estimated that it could be powered by the same batteries currently used in smartphones or small drones. The researchers were also able to switch the devices over a billion times – another testament to its speed – without seeing any degradation in its behavior.

    “It turns out that polymer devices, if you treat them well, can be as resilient as traditional counterparts made of silicon. That was maybe the most surprising aspect from my point of view,” Salleo said. “For me, it changes how I think about these polymer devices in terms of reliability and how we might be able to use them.”

    Room for creativity

    The researchers haven’t yet submitted their array to tests that determine how well it learns but that is something they plan to study. The team also wants to see how their device weathers different conditions – such as high temperatures – and to work on integrating it with electronics. There are also many fundamental questions left to answer that could help the researchers understand exactly why their device performs so well.

    “We hope that more people will start working on this type of device because there are not many groups focusing on this particular architecture, but we think it’s very promising,” Melianas said. “There’s still a lot of room for improvement and creativity. We only barely touched the surface.”

    To read all stories about Stanford science, subscribe to the biweekly Stanford Science Digest.

    This work was funded by Sandia National Laboratories, the U.S. Department of Energy, the National Science Foundation, the Semiconductor Research Corporation, the Stanford Graduate Fellowship fund, and the Knut and Alice Wallenberg Foundation for Postdoctoral Research at Stanford University.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 10:37 am on June 28, 2018 Permalink | Reply
    Tags: , , Brain Studies, , Phase contrast tomography, The human cerebellum   

    From DESY: “Google Maps for the cerebellum” 

    DESY
    From DESY

    Scientists image millions of nerve cells with the help of PETRA III [Image is below].

    2018/06/28

    1
    Result of the phase contrast X-ray tomography at DESY’s X-ray source PETRA III. Credit: Töpperiwen et al., Universität Göttingen

    A team of researchers from Göttingen has successfully applied a special variant of X-ray imaging to brain tissue. With the combination of high-resolution measurements at DESY’s X-ray light source PETRA III and data from a laboratory X-ray source, Tim Salditt’s group from the Institute of X-ray Physics at the Georg August University of Göttingen was able to visualize about 1.8 million nerve cells in the cerebellar cortex. The researchers describe the investigations with the so-called phase contrast tomography in the Proceedings of the National Academy of Sciences (PNAS).

    The human cerebellum contains about 80 percent of all nerve cells in 10 percent of the brain volume – one cubic millimeter can therefore contain more than one million nerve cells. These process signals that mainly control learned and unconscious movement sequences. However, their exact positions and neighbourhood relationships are largely unknown. “Tomography in the so-called phase contrast mode and subsequent automated image processing enables the cells to be located and displayed in their exact position,” explains Mareike Töpperwien from the Institute of X-ray Physics at the University of Göttingen, lead author of the publication.

    The scientists used a biopsy needle to take cylindrical tissue samples from tissue blocks and investigated them with a special phase contrast tomograph developed by Salditt’s research group. Conventional instruments have the disadvantage that small structures and tissues of low density – as in nerve cells – provide little to no contrast and therefore cannot be imaged. The innovative method of the Göttingen researchers is not based on the absorption of X-rays, but on the altered propagation speed of X-rays. The resulting differences in propagation time become indirectly visible through beam propagation on a free flight path between object and detector.

    “For biological samples, this ‘phase’ contrast is up to 1000 times more intense and is used at PETRA III for imaging structures in the sub-micrometer range,” explains DESY researcher Michael Sprung, head of the P10 measuring station where the investigations took place. One micrometer is a thousandth of a millimeter.

    In order to obtain sharp images, the scientists process the images by computer. They can then reconstruct the three-dimensional electron density of the tissue from the entire tomographic image series. “In the future, we will also use this method to show pathological changes, such as those occurring in neurodegenerative diseases, in three dimensions, for example changes in nerve tissue in diseases such as multiple sclerosis,” explains co-author Christine Stadelmann-Nessler, neuropathologist at Göttingen University Medicine.

    The combination of images of different magnifications enabled the Göttingen team to map the cerebellum over many orders of magnitude. “In the future, we want to be able to zoom even further into interesting brain regions, almost like on Google Maps,” says Salditt.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

    DESY Petra III interior


    DESY Petra III

    DESY/FLASH

    H1 detector at DESY HERA ring

    DESY DORIS III

     
  • richardmitnick 9:39 am on April 23, 2018 Permalink | Reply
    Tags: $100 million gift to Brown will name Carney Institute for Brain Science which it is hoped will advance discoveries and cures, , , Brain Studies, ,   

    From Brown University: “$100 million gift to Brown will name Carney Institute for Brain Science, advance discoveries and cures” 

    Brown University
    Brown University

    [This post is dedicated to EJM and EBM]

    April 18, 2018
    No writer credit

    Brown U Carney Institute for Brain Science

    No image credit.

    A new $100 million gift to Brown University’s brain science institute from alumnus Robert J. Carney and Nancy D. Carney will drive an ambitious agenda to quicken the pace of scientific discovery and help find cures to some of the world’s most persistent and devastating diseases, such as ALS and Alzheimer’s.

    Carney graduated in Brown’s undergraduate Class of 1961, is a long-serving Brown trustee, and is founder and chairman of Vacation Publications Inc. Previously, he was a founder of Jet Capital Corp., a financial advisory firm, and Texas Air Corp., which owned Continental Airlines and several other airlines. Nancy Doerr Carney is a former television news producer.

    The Carneys’ gift changes the name of the Brown Institute for Brain Science to the Robert J. and Nancy D. Carney Institute for Brain Science, and establishes the institute as one of the best-endowed university brain institutes in the country. Brown President Christina Paxson said the $100 million donation — one of the largest single gifts in Brown’s history — will help establish the University as a leader in devising treatments and technologies to address brain-related disease and injury.

    “This is a signal moment when scientists around the world are poised to solve some of the most important puzzles of the human brain,” Paxson said. “This extraordinarily generous gift will give Brown the resources to be at the forefront of this drive for new knowledge and therapies. We know that discoveries in brain science in the years to come will dramatically reshape human capabilities, and Brown will be a leader in this critical endeavor.”

    The gift will allow the Carney Institute to accelerate hiring of leading faculty and postdoctoral scholars in fields related to brain science, supply seed funding for high-impact new research, and also fund essential new equipment and infrastructure in technology-intensive areas of exploration.

    Core areas of research at the institute include work on brain-computer interfaces to aid patients with spinal injury and paralysis; innovative advances in computational neuroscience to address behavior and mood disorders; and research into mechanisms of cell death as part of efforts to identify therapies for neurodegenerative diseases that include amyotrophic lateral sclerosis (ALS) and Alzheimer’s.

    Carney said he is excited that he and his wife are making their gift at a time when brain science has emerged as one of the fastest growing programs at Brown, both in terms of research and student interest.

    “Nancy and I have long been impressed by the phenomenal research and education of bright young minds that we see at Brown,” Carney said. “We are excited to see the brain institute continue to grow and serve society in ways that are vitally important.”


    VIDEO: Brain Science at Brown. No video credit.

    With up to 45 labs across campus engaged in research at any given time — and 130 affiliated professors in departments ranging from neurology and neurosurgery to engineering and computer science — Brown’s brain science institute already has built a reputation for studying the brain at all scales, said Diane Lipscombe, the director of the institute since 2016 and a professor of neuroscience. From studying genes and circuits, to healthy behavior and psychiatric disorder, the institute’s faculty contribute expertise to routinely produce insights and tools to see, map, understand and fix problems in the nervous system.

    In addition, as the brain institute’s work grows in its breadth, undergraduates continue to take on key roles as researchers, reflecting a distinctive aspect of Brown’s undergraduate curriculum. About a quarter of all Brown undergraduates take Introduction to Neuroscience, demonstrating the excitement in the field.

    “This is a transformative moment that is going to catapult Brown and our brain science institute,” said Lipscombe, who is president-elect of the Society for Neuroscience, the field’s international professional organization. “We will be able to crack the neural codes, push discoveries forward and address some of the largest challenges facing humanity, at the same time training the next generation of brain scientists.”

    Investments like the gift from the Carneys are the “lifeblood to driving innovation and discovery,” Lipscombe said.

    The Carneys’ gift is part of Brown University’s $3-billion BrownTogether comprehensive campaign, which has raised $1.7 billion to date. In total, $148 million has been raised to support research and education in brain science. The gifts support one of the core research priorities defined in Brown’s Building on Distinction strategic plan: understanding the human brain. The study of the brain and its relationship to cognition, behavior and disease is often described as the “last frontier” in biomedical science.

    Leading in research

    The Carney Institute had its start at Brown as the Brain Science Program in 1999, later becoming the Brown Institute for Brain Science. The scope of its work has increased dramatically in recent years, and the institute now has affiliated faculty spanning 19 academic departments, including clinical departments in the Warren Alpert Medical School.

    Since 2011, core faculty members have led projects with more than $116 million in grant funding from federal and other sources. Many of the institute’s researchers have been recognized as pioneering leaders, winning top national awards in recent years. This includes faculty such as Eric Morrow, associate professor of biology and psychiatry, a 2017 winner of a Presidential Early Career Award for Scientists and Engineers.

    3
    Faculty and Student Voices

    Brown’s brain scientists talk about the brain as ‘final frontier’

    We asked researchers at Brown what excites them about brain science, why they chose to conduct research here, and how Brown’s unique approach to collaborative problem-solving is unlocking and explaining the complexity of the brain.

    Full story here.

    The funding from the Carneys’ gift will help support what has become a signature program of Brown’s brain institute over the past decade: cutting-edge efforts to help those who have lost the ability to move and communicate through paralysis to regain those abilities. Research into brain-computer interfaces, part of the BrainGate project, uses tiny micro-electrode arrays implanted into the brain.

    “This is the area of research that said to us, ‘Look what can be done if you pull groups together from a wide range of academic disciplines within and beyond the life sciences to take an integrative approach to big, challenging questions,’” Lipscombe said. “The breakthroughs we have seen in confronting paralysis could not have happened without the integrative approach that is distinctive to the way Brown approaches brain science.”

    The study of neurodegenerative diseases and the growing research field of computational neuroscience are among the other areas in the institute that are poised for further expansion.

    “The general challenge is that, despite 20 or 30 years of focused effort by pharmaceutical companies and labs, we still don’t know why neurons die in neurodegenerative disorders,” Lipscombe said. “ALS is part of a group of disorders that takes people’s lives way too early. We need more research into the basic mechanisms that lead to cell death.”

    Computational neuroscience is an increasingly influential field that employs mathematical models to understand the brain and develops quantitative approaches to diagnosing and treating complex brain disorders.

    Scientists working in computational psychiatry at Brown are thinking about how they can use their work modeling the brain to address psychiatric disease, such as depression.

    “And when you are catalyzing innovative research in areas such as this by bringing together great faculty from different disciplines, having a pool of seed funding is critical to move from exciting ideas to research and discovery,” Lipscombe said. “From there, federal funding follows. Now we can say we have the people, resources and the new research space to support big ideas to address key problems in brain science.”

    4
    A new technology called “trans-Tango” allows scientists to exploit the connections between pairs of neurons to make discoveries in neuroscience. Developing the system required decades of work and a dedicated team of brain scientists at Brown. No image credit.

    The Carney Institute will move into expanded new quarters at 164 Angell Street early next year, after extensive renovation of the building that formerly housed Brown administrative offices. The building will give the institute state-of-the-art shared lab spaces that will further promote collaboration among teams from cognitive neuroscience, computational neuroscience and neuroengineering. These scientists are working on processes such as decoding neural signals, developing new ways to use neural signals in assistive technology, and mining neural data for more accurate predictors of psychiatric illnesses.

    The new location will be in the same building as Brown’s Data Science Initiative and directly across the street from the new home of Brown’s Jonathan M. Nelson Center for Entrepreneurship, stimulating opportunities for collective work that will support discoveries and their impact on society.

    Inspired giving

    The gift from the Carneys is one of three single gifts of $100 million to Brown in its 254-year history. Brown announced in 2004 that New York businessman Sidney E. Frank, a member of the Brown Class of 1942, had pledged $100 million for undergraduate financial aid. A $100 million gift from the Warren Alpert Foundation announced by Brown in 2007 funded research, faculty recruitment, a new building and named Brown’s Warren Alpert Medical School.

    5
    Brown President Christina Paxson (standing, left) joined Robert J. Carney and Nancy D. Carney to celebrate the couple’s generous gift at an event in Houston on April 18. No image credit.

    This wonderful gift from the Carneys is one of the most significant in the long, distinguished history of Brown University,” Brown Chancellor Samuel M. Mencoff said. “The gift represents a substantial long-term investment in what Brown does exceptionally well — bringing together the people and expertise to solve problems and benefit society.”

    The Carneys said they were inspired to make their gift by many previous positive experiences with Brown, as well as the opportunities they saw for the University in brain science.

    “Brown has meant so much to Nancy and me,” Carney said. “We feel extremely fortunate to be able to help expand Brown’s brain institute and carry forward such a significant priority for the University.”

    The Carneys, of Houston, are long-time supporters of Brown, including as the donors of two endowed professorships — the Robert J. and Nancy D. Carney University Professor of Economics and the Robert J. and Nancy D. Carney Assistant Professor of Neuroscience. This spring, Carney will finish his third term as a trustee on the Corporation of Brown University. His volunteerism includes having served as the co-chair of the 50th reunion gift committee for the Class of 1961.

    Former Brown Chancellor Thomas J. Tisch, currently a member of the Corporation’s Board of Fellows, said about the Carneys, “They have always done things worth doing, quietly and with modesty and deep intelligence. Bob and Nancy have a great combined sense of caring and commitment to things important.”

    As part of a celebration in Houston coinciding with the announcement of the Carneys’ gift to the brain science institute, Paxson on behalf of the University conferred honorary Doctor of Humane Letters degrees on both of the Carneys.

    The citation read, in part: “Through your steadfast support of Brown’s ambitions to expand its reach through excellence in teaching and research in particular, you have played a major role in bolstering its reputation as a world-class learning institution.”

    6
    After implantation with the BrainGate brain-computer interface (which originated in a Brown research laboratory) and stimulative electrodes in his arm, a Cleveland man with quadriplegia was able to again move his arm to eat and drink. Cleveland FES Center.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Welcome to Brown

    Brown U Robinson Hall
    Located in historic Providence, Rhode Island and founded in 1764, Brown University is the seventh-oldest college in the United States. Brown is an independent, coeducational Ivy League institution comprising undergraduate and graduate programs, plus the Alpert Medical School, School of Public Health, School of Engineering, and the School of Professional Studies.

    With its talented and motivated student body and accomplished faculty, Brown is a leading research university that maintains a particular commitment to exceptional undergraduate instruction.

    Brown’s vibrant, diverse community consists of 6,000 undergraduates, 2,000 graduate students, 400 medical school students, more than 5,000 summer, visiting and online students, and nearly 700 faculty members. Brown students come from all 50 states and more than 100 countries.

    Undergraduates pursue bachelor’s degrees in more than 70 concentrations, ranging from Egyptology to cognitive neuroscience. Anything’s possible at Brown—the university’s commitment to undergraduate freedom means students must take responsibility as architects of their courses of study.

     
  • richardmitnick 10:04 am on January 11, 2018 Permalink | Reply
    Tags: , , Blue Brain Nexus, Brain Studies, ,   

    From EPFL: “Blue Brain Nexus: an open-source tool for data-driven science” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne

    11.01.18
    BBP communications

    1
    © iStockphotos

    Knowledge sharing is an important driving force behind scientific progress. In an open-science approach, EPFL’s Blue Brain Project has created and open sourced Blue Brain Nexus that allows the building of data integration platforms. Blue Brain Nexus enables data-driven science through searching, integrating and tracking large-scale data and models.

    EPFL’s Blue Brain Project today announces the release of its open source software project ‘Blue Brain Nexus’, designed to enable the FAIR (Findable, Accessible, Interoperable, and Reusable) data management principles for the Neuroscience and broader scientific community. It is part of EPFL’s open-science initiative, which seeks to maximize the reach and impact of research conducted at the school.

    The aim of the Blue Brain Project is to build accurate, biologically detailed, digital reconstructions and simulations of the rodent brain and, ultimately the human brain. Blue Brain Nexus is instrumental in supporting all stages of Blue Brain’s data-driven modelling cycle including, but not limited to experimental data, single cell models, circuits, simulations and validations. The brain is a complex multi-level system and is one of the biggest ‘Big Data’ problems we have today. Therefore, Blue Brain Nexus has been built to organize, store and process exceptionally large volumes of data and support usage by a broad number of users.

    At the heart of Blue Brain Nexus is the Knowledge Graph, which acts as a data repository and metadata catalogue. It also remains agnostic of the domain to be represented by allowing users to design arbitrary domains, which enables other scientific initiatives (e.g. astronomy, medical research and agriculture) to reuse Blue Brain Nexus as the core of their data platforms. Blue Brain Nexus services are already being evaluated for integration into the Human Brain Project’s Neuroinformatics Platform.

    2
    Specific to enabling scientific progress, Blue Brain Nexus’s Knowledge Graph treats provenance as a first-class citizen, thus facilitating the tracking of the origin of data as well as how it is being used. This allow users to assess the quality of data, and consequently to enable them to build trust. Another key feature of Blue Brain Nexus is its semantic search capability, whereby search is integrated over data and its provenance to enable scientists to easily discover and access new relevant data.

    EPFL Professor Sean Hill commented: “We see that nearly all sciences are becoming data-driven. Blue Brain Nexus represents the culmination of many years of research into building a state-of-the-art semantic data management platform. We can’t wait to see what the community will do with Blue Brain Nexus.”

    Blue Brain Nexus is available under the Apache 2 license, at https://github.com/BlueBrain/nexus

    For more information, please contact:

    EPFL Communications, emmanuel.barraud@epfl.ch, +41 21 693 21 90

    Blue Brain Project communications, kate.mullins@epfl.ch, +41 21 695 51 41

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 3:45 pm on January 8, 2018 Permalink | Reply
    Tags: , Brain Studies, , New Technology Will Create Brain Wiring Diagrams, The TRACT method   

    From Caltech: “New Technology Will Create Brain Wiring Diagrams” 

    Caltech Logo

    Caltech

    01/08/2018
    Lori Dajose
    (626) 395-1217
    ldajose@caltech.edu

    Technique allows for maps of the neural connections of entire insect brains, which was previously not possible with other methods.

    1
    The TRACT method allows for the identification of neurons connected by synapses in a brain circuit. This image shows the olfactory receptor neurons (red) activating the production of a green protein in their synaptically-connected downstream partners. Credit: Courtesy of the Lois Laboratory.

    The human brain is composed of billions of neurons wired together in intricate webs and communicating through electrical pulses and chemical signals. Although neuroscientists have made progress in understanding the brain’s many functions—such as regulating sleep, storing memories, and making decisions—visualizing the entire “wiring diagram” of neural connections throughout a brain is not possible using currently available methods. But now, using Drosophila fruit flies, Caltech researchers have developed a method to easily see neural connections and the flow of communications in real time within living flies. The work is a step forward toward creating a map of the entire fly brain’s many connections, which could help scientists understand the neural circuits within human brains as well.

    A paper describing the work appears online in the December 12 issue of eLife. The research was done in the laboratory of Caltech research professor Carlos Lois.

    “If an electrical engineer wants to understand how a computer works, the first thing that he or she would want to figure out is how the different components are wired to each other,” says Lois. “Similarly, we must know how neurons are wired together in order to understand how brains work.”

    When two neurons connect, they link together with a structure called a synapse, a space through which one neuron can send and receive electrical and chemical signals to or from another neuron. Even if multiple neurons are very close together, they need synapses to truly communicate.

    The Lois laboratory has developed a method for tracing the flow of information across synapses, called TRACT (Transneuronal Control of Transcription). Using genetically engineered Drosophila fruit flies, TRACT allows researchers to observe which neurons are “talking” and which neurons are “listening” by prompting the connected neurons to produce glowing proteins.

    With TRACT, when a neuron “talks”—or transmits a chemical or electrical signal across a synapse—it will also produce and send along a fluorescent protein that lights up both the talking neuron and its synapses with a particular color. Any neurons “listening” to the signal receive this protein, which binds to a so-called receptor molecule—genetically built-in by the researchers—on the receiving neuron’s surface. The binding of the signal protein activates the receptor and triggers the neuron it’s attached to in order to produce its own, differently colored fluorescent protein. In this way, communication between neurons becomes visible. Using a type of microscope that can peer through a thin window installed on the fly’s head, the researchers can observe the colorful glow of neural connections in real time as the fly grows, moves, and experiences changes in its environment.

    Many neurological and psychiatric conditions, such as autism and schizophrenia, are thought to be caused by altered connections between neurons. Using TRACT, scientists can monitor the neuronal connections in the brains of hundreds of flies each day, allowing them to make comparisons at different stages of development, between the sexes, and in flies that have genetic mutations. Thus, TRACT could be used to determine how different diseases perturb the connections within brain circuits. Additionally, because neural synapses change over time, TRACT allows the monitoring of synapse formation and destruction from day to day. Being able to see how and when neurons form or break synapses will be critical to understanding how the circuits in the brain assemble as the animal grows, and how they fall apart with age or disease.

    TRACT can be localized to focus in on the wiring of any particular neural circuit of interest, such as those that control movement, hunger, or vision. Lois and his group tested their method by examining neurons within the well-understood olfactory circuit, the neurons responsible for the sense of smell. Their results confirmed existing data regarding this particular circuit’s wiring diagram. In addition, they examined the circadian circuit, which is responsible for the waking and sleeping cycle, where they detected new possible synaptic connections.

    TRACT, however, can do more than produce wiring diagrams. The transgenic flies can be genetically engineered so that the technique prompts receiving neurons to produce proteins that have a function, rather than colorful proteins that simply trace connections.

    “We could use functional proteins to ask, ‘What happens in the fly if I silence all the neurons that receive input from this one neuron?'” says Lois. “Or, conversely, ‘What happens if I make the neurons that are connected to this neuron hyperactive?’ Our technique not only allows us to create a wiring diagram of the brain, but also to genetically modify the function of neurons in a brain circuit.”

    Previous methods for examining neural connections were time consuming and labor intensive, involving thousands of thin slices of a brain reconstructed into a three-dimensional structure. A laboratory using these techniques could only yield a diagram for a single, small piece of fruit-fly brain per year. Additionally, these approaches could not be performed on living animals, making it impossible to see how neurons communicated in real time.

    Because the TRACT method is completely genetically encoded, it is ideal for use in laboratory animals such as Drosophila and zebrafish; ultimately, Lois hopes to implement the technique in mice to enable the neural tracing of a mammalian brain. “TRACT is a new tool that will allow us to create wiring diagrams of brains and determine the function of connected neurons,” he says. “This information will provide important clues towards understanding the complex workings of the human brain and its diseases.”

    The paper is titled “Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT).” Other Caltech coauthors include graduate students Ting- Hao Huang and Antuca Callejas; AMGEN undergraduate visiting scholar Peter Niesman; Khorana undergraduate visiting scholar Deepshika Arasu; research technicians Aubrie De La Cruz and Daniel Lee; and Elizabeth Hong (BS ’02), the Clare Boothe Luce Assistant Professor of Neuroscience. Funding was provided by BRAIN award UO1 MH109147 from the National Institutes of Health.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
  • richardmitnick 10:32 am on December 22, 2017 Permalink | Reply
    Tags: , Brain Studies, Physicists Overturn a 100-Year-Old Assumption on How Brains Work, , , The human brain contains a little over 80-odd billion neurons each joining with other cells to create trillions of connections called synapses   

    From Science Alert: “Physicists Overturn a 100-Year-Old Assumption on How Brains Work” 

    ScienceAlert

    Science Alert

    22 DEC 2017
    MIKE MCRAE

    1
    (Kateryna Kon/Shutterstock)

    This is how neurons actually fire.

    The human brain contains a little over 80-odd billion neurons, each joining with other cells to create trillions of connections called synapses.

    The numbers are mind-boggling, but the way each individual nerve cell contributes to the brain’s functions is still an area of contention. A new study in Scientific Reports has overturned a hundred-year-old assumption on what exactly makes a neuron ‘fire’, posing new mechanisms behind certain neurological disorders.

    A team of physicists from Bar-Ilan University in Israel conducted experiments on rat neurons grown in a culture to determine exactly how a neuron responds to the signals it receives from other cells.

    To understand why this is important, we need to go back to 1907 when a French neuroscientist named Louis Lapicque proposed a model to describe how the voltage of a nerve cell’s membrane increases as a current is applied.

    Once reaching a certain threshold, the neuron reacts with a spike of activity, after which the membrane’s voltage resets.

    What this means is a neuron won’t send a message unless it collects a strong enough signal.

    Lapique’s equations weren’t the last word on the matter, not by far. But the basic principle of his integrate-and-fire model has remained relatively unchallenged in subsequent descriptions, today forming the foundation of most neuronal computational schemes.

    According to the researchers, the lengthy history of the idea has meant few have bothered to question whether it’s accurate.

    “We reached this conclusion using a new experimental setup, but in principle these results could have been discovered using technology that has existed since the 1980s,” says lead researcher Ido Kanter.

    “The belief that has been rooted in the scientific world for 100 years resulted in this delay of several decades.”

    The experiments approached the question from two angles – one exploring the nature of the activity spike based on exactly where the current was applied to a neuron, the other looking at the effect multiple inputs had on a nerve’s firing.

    Their results suggest the direction of a received signal can make all the difference in how a neuron responds.

    A weak signal from the left arriving with a weak signal from the right won’t combine to build a voltage that kicks off a spike of activity. But a single strong signal from a particular direction can result in a message.

    This potentially new way of describing what’s known as spatial summation could lead to a novel method of categorising neurons, one that sorts them based on how they compute incoming signals or how fine their resolution is, based on a particular direction.

    Better yet, it could even lead to discoveries that explain certain neurological disorders.

    It’s important not to throw out a century of wisdom on the topic on the back of a single study. The researchers also admit they’ve only looked at a type of nerve cell called pyramidal neurons, leaving plenty of room for future experiments.

    But fine-tuning our understanding of how individual units combine to produce complex behaviours could spread into other areas of research. With neural networks inspiring future computational technology, identifying any new talents in brain cells could have some rather interesting applications.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 8:20 am on December 19, 2017 Permalink | Reply
    Tags: A small electrical jolt to the right brain region at just the right time derails impulsive behavior, , Brain Studies, DBS is in clinical trials for depression obsessive-compulsive disorder and multiple other disorders of the brain, DBS-deep brain stimulation, ,   

    From Stanford Scope blog: “A small electrical jolt to the right brain region at just the right time derails impulsive behavior” 

    Stanford University Name
    Stanford University

    stanford-scope-icon

    Stanford Scope blog

    December 18, 2017
    Bruce Goldman

    1

    Just imagine if you could predict and prevent a burst of binge eating or alcohol intake, a heroin injection, a sudden bout of uncontrolled rage or a suicide attempt. The world would be a better place.

    Long journeys start with first steps. In a study published in Proceedings of the National Academy of Sciences, Stanford researchers led by neurosurgeon Casey Halpern, MD, have identified, both in mice and in a human subject, a signature pattern of electrical activity in a small but important deep-brain region called the nucleus accumbens just a second or two before a burst of impulsive behavior.

    The nucleus accumbens is the hub of the brain’s reward circuitry, which evolution has engineered to reinforce survival-promoting actions by inducing pleasure in anticipation or performance of those actions. The researchers showed in mice that supplying a small electrical jolt to the nucleus accumbens as soon as the electrical signature manifested there stopped the mice from overindulging in fatty food — without messing up the rest of their natural activities.

    “Impulses are normal and absolutely necessary for survival,” Halpern said when I interviewed him for our news release on the new study. “They convert our feelings about what’s rewarding into concrete action to obtain food, sex, sleep and defenses against rivals or predators.”

    But in some contexts, impulsive behavior can be pathological, manifesting as a marked tendency to make poor decisions and act on them. One need look no further than the rash of recent reports about sexual predators perched in powerful positions in Hollywood, the media, finance and politics to see blatant examples of a fundamentally healthy drive — sexual appetite — taken to a pathological level.

    Halpern focuses on deep-brain stimulation, whereby devices deliver electrical pulses to targeted brain regions in which they’ve been implanted. Tens of thousands of DBS devices are in current use for treating symptoms of Parkinson’s disease and essential tremor, and DBS is in clinical trials for depression, obsessive-compulsive disorder, and multiple other disorders of the brain.

    But DBS devices in use today are inflexible; they just keep firing away nonstop on a preprogrammed basis. In the new study, the scientists fitted the mice with new-generation DBS devices that can fire or not fire, depending on feedback they get from sensors in the brain region they target — in this case, the nucleus accumbens. They identified a particular pattern of electrical activity that arose there just as mice were about to plunge into a pile of high-fat food to which they’d become quite fond, to the point of pigging out on it. But whenever the implanted device detected this pre-gluttony signal, it zapped the nucleus accumbens with an electrical pulse equivalent to a standard DBS pulse. That snuffed a mouse’s high-fat food bingeing — but not its intake of normal food, social behavior or other physical activity.

    The study’s findings offer the promise, Halpern told me, of an implantable device that monitors the nucleus accumbens for the telltale signal preceding a burst of impulsivity and immediately delivers a measured dose of electricity. This intervention may prevent impulsive and sometimes life-threatening actions by high-risk people for whom all noninvasive therapies have failed.

    Halpern is hoping to find out whether this kind of feedback could be helpful for obese patients who’ve been unable to curb their dietary intake even after bariatric surgery. The findings could also lead to less noninvasive methods of countering substance-abuse disorders, pathological gambling, sexual addiction or intermittent explosive disorder, a psychiatric condition marked by impromptu outbursts of inappropriate ferocity.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Scope is an award-winning blog founded in 2009 and produced by the Stanford University School of Medicine. If you’re curious about the latest advances in medicine and health and enjoy compelling, fresh and easily digestible news and features, then we’ve got just the thing. We’ve written quite a bit (7,000 posts and counting!), and we’re quite proud of it — so please enjoy.

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 4:41 pm on December 18, 2017 Permalink | Reply
    Tags: , Brain Studies, Engineers develop microfluidic devices- microelectrodes for gentle implantation, , Nanotubes go with the flow to penetrate brain tissue, , The device uses the force applied by fast-moving fluids that gently advance insulated flexible fibers into brain tissue without buckling, The electrode is like a cooked noodle that you’re trying to put into a bowl of Jell-O” said Rice engineer Jacob Robinson   

    From Rice: “Nanotubes go with the flow to penetrate brain tissue” 

    Rice U bloc

    Rice University

    December 18, 2017
    Mike Williams

    Rice scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation.

    Rice University researchers have invented a device that uses fast-moving fluids to insert flexible, conductive carbon nanotube fibers into the brain, where they can help record the actions of neurons.

    The Rice team’s microfluidics-based technique promises to improve therapies that rely on electrodes to sense neuronal signals and trigger actions in patients with epilepsy and other conditions.

    Eventually, the researchers said, nanotube-based electrodes could help scientists discover the mechanisms behind cognitive processes and create direct interfaces to the brain that will allow patients to see, to hear or to control artificial limbs.

    The device uses the force applied by fast-moving fluids that gently advance insulated flexible fibers into brain tissue without buckling. This delivery method could replace hard shuttles or stiff, biodegradable sheaths used now to deliver wires into the brain. Both can damage sensitive tissue along the way.

    The technology is the subject of a paper in the American Chemical Society journal Nano Letters.

    Lab and in vivo experiments showed how the microfluidic devices force a viscous fluid to flow around a thin fiber electrode. The fast-moving fluid slowly pulls the fiber forward through a small aperture that leads to the tissue. Once it crosses into the tissue, tests showed the wire, though highly flexible, stays straight.

    1
    Fast-moving fluid pulls a fiber through a microfluidic device to be inserted into brain tissue. The device invented at Rice University could provide a gentler method to implant wires into patients with neurological diseases and help scientists explore cognitive processes and develop implants to help people to see, to hear and to control artificial limbs. Courtesy of the Robinson Lab.

    “The electrode is like a cooked noodle that you’re trying to put into a bowl of Jell-O,” said Rice engineer Jacob Robinson, one of three project leaders. “By itself, it doesn’t work. But if you put that noodle under running water, the water pulls the noodle straight.”

    The wire moves slowly relative to the speed of the fluid. “The important thing is we’re not pushing on the end of the wire or at an individual location,” said co-author Caleb Kemere, a Rice electrical and computer engineer who specializes in neuroscience. “We’re pulling along the whole cross-section of the electrode and the force is completely distributed.”

    “It’s easier to pull things that are flexible than it is to push them,” Robinson said.

    “That’s why trains are pulled, not pushed,” said chemist Matteo Pasquali, a co-author. “That’s why you want to put the cart behind the horse.”

    The fiber moves through an aperture about three times its size but still small enough to let very little of the fluid through. Robinson said none of the fluid follows the wire into brain tissue (or, in experiments, the agarose gel that served as a brain stand-in).

    There’s a small gap between the device and the tissue, Robinson said. The small length of fiber in the gap stays on course like a whisker that remains stiff before it grows into a strand of hair. “We use this very short, unsupported length to allow us to penetrate into the brain and use the fluid flow on the back end to keep the electrode stiff as we move it down into the tissue,” he said.

    “Once the wire is in the tissue, it’s in an elastic matrix, supported all around by the gel material,” said Pasquali, a carbon nanotube fiber pioneer whose lab made a custom fiber for the project. “It’s supported laterally, so the wire can’t easily buckle.”

    Carbon nanotube fibers conduct electrons in every direction, but to communicate with neurons, they can be conductive at the tip only, Kemere said. “We take insulation for granted. But coating a nanotube thread with something that will maintain its integrity and block ions from coming in along the side is nontrivial,” he said.

    Sushma Sri Pamulapati, a graduate student in Pasquali’s lab, developed a method to coat a carbon nanotube fiber and still keep it between 15 to 30 microns wide, well below the width of a human hair. “Once we knew the size of the fiber, we fabricated the device to match it,” Robinson said. “It turned out we could make the exit channel two or three times the diameter of the electrode without having a lot of fluid come through.”

    2
    Rice University researchers have developed a method using microfluidics to implant conductive, thin, flexible fibers into brain tissue. Implanted wires could help patients with neurological diseases and help scientists explore cognitive processes and develop implants to help people to see, to hear and to control artificial limbs. Click on the image for a larger version. Courtesy of the Robinson Lab.

    The researchers said their technology may eventually be scaled to deliver into the brain at once multiple microelectrodes that are closely packed; this would make it safer and easier to embed implants. “Because we’re creating less damage during the implantation process, we might be able to put more electrodes into a particular region than with other approaches,” Robinson said.

    Flavia Vitale, a Rice alumna and now a research instructor at the University of Pennsylvania, and Daniel Vercosa, a Rice graduate student, are lead authors of the paper. Co-authors are postdoctoral fellow Alexander Rodriguez, graduate students Eric Lewis, Stephen Yan and Krishna Badhiwala and alumnus Mohammed Adnan of Rice; postdoctoral researcher Frederik Seibt and Michael Beierlein, an associate professor of neurobiology and anatomy at McGovern Medical School at the University of Texas Health Science Center at Houston; and Gianni Royer-Carfagni, a professor of structural mechanics at the University of Parma, Italy.

    Robinson and Kemere are assistant professors of electrical and computer engineering and adjunct assistant professors at Baylor College of Medicine. Pasquali is a professor of chemical and biomolecular engineering, of materials science and nanoengineering and of chemistry and chair of Rice’s Department of Chemistry.

    Supporting the research are the Defense Advanced Research Projects Agency, the Welch Foundation, the National Science Foundation, the Air Force Office of Scientific Research, the American Heart Association, the National Institutes of Health, the Citizens United for Research in Epilepsy Taking Flight Award and the Dan L. Duncan Family Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Rice U campus

    In his 1912 inaugural address, Rice University president Edgar Odell Lovett set forth an ambitious vision for a great research university in Houston, Texas; one dedicated to excellence across the range of human endeavor. With this bold beginning in mind, and with Rice’s centennial approaching, it is time to ask again what we aspire to in a dynamic and shrinking world in which education and the production of knowledge will play an even greater role. What shall our vision be for Rice as we prepare for its second century, and how ought we to advance over the next decade?

    This was the fundamental question posed in the Call to Conversation, a document released to the Rice community in summer 2005. The Call to Conversation asked us to reexamine many aspects of our enterprise, from our fundamental mission and aspirations to the manner in which we define and achieve excellence. It identified the pressures of a constantly changing and increasingly competitive landscape; it asked us to assess honestly Rice’s comparative strengths and weaknesses; and it called on us to define strategic priorities for the future, an effort that will be a focus of the next phase of this process.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: