Tagged: Botany Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:48 am on January 1, 2023 Permalink | Reply
    Tags: "Hack-and-squirt", "The Secret Life of Plant Killers", , Botany, , To take out invasives the US relies on crews wielding hatchets and chainsaws and herbicide. It’s a messy and fun job—but it may not be enough to stop the spread.,   

    From WIRED: “The Secret Life of Plant Killers” 

    From WIRED

    12.22.22
    Sonya Bennett-Brandt

    1
    Photograph: Kennedi Carter.

    To take out invasives, the US relies on crews wielding hatchets, chainsaws, and herbicide. It’s a messy, fun job—but it may not be enough to stop the spread.

    “When you hunt the “tree of heaven”, you come to know it by its smell. A waft of creamy peanut butter leads you to a tall trunk, silvery and nubbled like cantaloupe rind, rising into a wide crown of papery pink seeds and slender leaves. To kill this tree, you cannot simply cut it down with a chainsaw. Ailanthus altissima is a hydra; it counters any assault by sealing off its wounds and sending up a horde of new shoots across its root system. Where you had one tree, now you have a grove of clones extending 25 feet all around you. No, the trick to killing this tree, Triston Kersenbrock explained, is to attack it “without alarming it,” so slowly that it does not even realize it’s dying.

    Triston and I were standing in the shade of a tree of heaven in Pisgah National Forest, on the fringes of the Appalachian Mountains. We were with his crew of four AmeriCorps members, enjoying a respite from the hot North Carolina summer sun. To my unstudied eye, the tree looked like just another beautiful inhabitant of the ecosystem—and in its native East Asia, that’s what it would be. But here, the species grows so quickly that it takes over the forest canopy, stealing sunlight from the trees, shrubs, and grasses that live below. Its leaves are toxic; when they fall, they poison the soil and suppress the germination of any plant that tries to survive in its shadow.

    The crew members, all in their early to mid-twenties, were on a mission to find and kill as many invasive plants as they could. They were outfitted with identical PPE—long pants and sleeves, turquoise nitrile gloves, safety glasses, and hard hats bearing the logo of their employer, American Conservation Experience, a nonprofit that coordinates environmental restoration work around the country. But each member of the ACE crew retained a personalized style: Triston was neatly ironed and tucked in, a carabiner tidily clipping his car keys to his belt loop. Eva Tillett had tied her pants up with a length of tattered white rope. Carly Coffman hung her safety glasses from a cheerful rainbow-colored strap. Lucas Durham had threaded earbuds through his shirt and under the straps of his helmet so he could listen to jams while he worked. 

    To kill the tree, the ACErs would use a technique known as “hack-and-squirt”. Triston held up a hatchet. “Would you like the honors?” he asked me. I felt a pang. I steadied myself and cut 10 shallow notches into the trunk—minor enough wounds, we hoped, that the tree wouldn’t go into hydra mode. The bark curled off like half-peeled scabs. Eva passed me a squirt bottle full of bright blue liquid containing Triclopyr, an herbicide. “Spritz it, yo!” Lucas said. I spritzed. The liquid filled each wound and dripped down like alien blood. 

    Hack-and-squirt allows the Triclopyr to stealthily infiltrate the tree’s vascular system. The tree, oblivious, carries the poison to its roots, where the chemical mimics one of its own growth hormones and forces its cells to divide themselves to death. Like something out of a Greek myth, the punishment parallels the crime.

    Our work on the big tree took just a few minutes. Then the crew fanned out and went after its offspring. The saplings were too young to have bark, so instead of notching them we shaved a bit of stem off with our hatchet blades and dabbed herbicide into the scrape like antiseptic on a skinned knee. Triston found a sapling that another crew had already tried to kill. It had been cut down to a few knotty stumps, but a bundle of tenacious shoots was erupting out of it. “It doesn’t want to die,” Triston said. We unceremoniously skinned and squirted it. Maybe this time the herbicide would take. 

    Almost 20 years ago, around when American Conservation Experience was founded, the US Forest Service estimated that invasive plants covered 133 million acres in the country, an area as big as California and New York combined. Every year since then, they have claimed millions of additional acres in the United States, incurring billions of dollars in crop losses and land management costs and introducing numerous new pathogens and pests. (The tree of heaven, for example, is the primary reproductive host for the infamous spotted lanternfly, which managed to infest New York City within two years of appearing there.)

    At a time when Earth’s ecosystems are under constant assault from habitat destruction and climate change, invasive plants present a uniquely unsettling global threat. Like Triclopyr, they kill silently and slowly. First they choke out native flora, which means some native herbivores and pollinators start to go hungry, which means some native carnivores do too. Eventually, those species may depart or die out, draining the landscape of biodiversity. The rich, layered variety of the ecosystem gives way to a bland monoculture. Some evolutionary biologists warn of a dawning Homogocene, an era in which invasive species become increasingly dominant—and uniform—across the globe.

    Triston and the ACE crew were here, hacking and hollering, to fight one tiny part of that global advance. They would measure their success not in millions of acres or billions of dollars but in freshly sawn bittersweet stumps, withered spiraea tendrils, and native seedlings winding toward the light. 

    By 7 pm, we were all starving. Dinner was at the sprawling, ranch-style crew house in Asheville where Triston, Eva, Carly, and Lucas lived with an ever-rotating gang of ACEers. The vibe was a combination of college dorm, co-op, and barrack; there were bunk beds, comfy mismatched sofas, and a cherished collection of Star Trek videotapes. 

    When I arrived, Ron Bethea, 25, was choosing a garnish for a shakshuka he’d made with Carly. He picked out a few herbs from an old lunch box crammed with spice blends he collects from every new city he visits. Ron, I learn, is a bit of an ACE legend. A born-and-raised North Carolinian with a sharp sense of humor, he keeps crews entertained with horror stories about rogue birders. (“Birders do not play. They get violent.”) Ron started as an ACE crew member in 2019, became a crew leader in 2020, and was recently promoted to project manager. He watches out for the younger crew members, gently reminding new recruits to brush their teeth. The seemingly endless grind of fieldwork can be a shock, but Ron brings out the fun and drama in the job; when you’re working with Ron, you’re not just weeding, you’re waging war. “I don’t know if you’ve seen anyone play Call of Duty, but that’s exactly how it feels,” Ron said. “We have our ammunition, we’re coordinating our strategies. Like ‘Hey, you go around this tree line, I’ll go around the other side, and we’ll meet you in the middle.’”

    “He’s a great cook,” Lucas told me. “He’s so iconic.” Carly pulled out her water bottle and showed me a sticker of Ron in his trademark tie-dye bandana. Wreathing his head was one of his catchphrases: “It be ya own bitches.” As in, trust no one. 

    2
    Ron Bethea, an ACE project manager. Photograph: Kennedi Carter.

    The six of us sat down at a big scuffed-up table, surrounded by crew members’ handmade artwork and goofy photos tacked to the walls. Over dinner, while we passed around Ron’s garlic confit, everyone told their funniest stories from the summer. Like how once Ron ugly-cried after accidentally chainsawing in half a turtle that was hidden in an old log. There was the time a crew member peed on a hornet’s nest and sicced the hornets on the rest of the crew; the only person to escape unscathed had his oversize T-shirt to thank. “He was built like a toothpick in a garbage bag!” Ron said—the stingers just couldn’t find him. Another time, an angry wasp flew down a crew member’s shirt, but he stayed so calm no one believed him. “I’m being stung. Ow. I’m being stung,” he’d said, serenely. 

    The crew’s easy camaraderie had formed over just a few months. ACE functions as a contractor for government organizations that need conservation work done, including the Park Service, the Forest Service, Fish and Wildlife, the Bureau of Land Management, and municipalities. Its funding is pieced together from federal agencies, grants, and other nonprofits, like the Conservation Fund or the Nature Conservancy. For labor, the organization relies on training inexperienced young people to be, essentially, short-term volunteers; besides room and board, crew members receive a living allowance of $240 per week. You don’t need a college degree to serve in AmeriCorps, and the program grants an education award that can be applied to tuition or student loans. It gives aspiring conservationists a chance to build land and forest management expertise that can only come from being in the field. 

    Everyone around the table was there for different reasons. Triston hoped the field experience would help him get a long-term job with the Forest Service. Carly was shadowing Triston. Lucas was looking for something interesting to do during his summer break from college. Eva had a degree in ecology and was hoping to leave her office job for something more hands-on. Many ACEers are trying to jump-start conservation careers; others just want to work in nature for a while. Some stay for a few months; a few, like Ron, stay for years. 

    In his time at ACE, Ron has worked on invasive plant removal projects across the East Coast and all the way to Kansas; he’s traveled to seven states this year alone. Over his tenure, he’s grown to appreciate the wiliness of his floral foes. “These plants are smart. They know what they’re doing,” Ron told me. “They’re invasive because they know.”

    Out of all the non-native plants that arrive in North America, only a fraction become invasive. Most either perish immediately or weave themselves into their new ecosystems, participating in the normal push and pull of predation, symbiosis, and competition. But even a small number of invasive species can quickly provoke disaster because they share traits that make them impressively resilient: They are hyper-fertile and fast-growing, with an arsenal of botanical superpowers that allow them to decimate native flora and transform their surroundings according to their own tastes.

    Climate change is only accelerating the problem. Across the country, growing seasons for invasive plants are getting longer. In the Southeast, winter freezes were once an effective natural weapon against tropical plants that tried to grow in the temperate ecosystem. Now, as the region warms, the plants can survive year-round.

    3
    Ron Bethea collects specimens of invasive plants in jars. Photograph: Kennedi Carter.

    It’s worth noting that most invasive plants aren’t true invaders; they are escape artists. Every one of the invasive plants I saw in North Carolina was brought to North America deliberately in the 18th and 19th centuries, during a kind of horticultural free-for-all. Wealthy enthusiasts scooped up attractive plants from across the world and promoted them as exotic, hardy additions to gardens, parks, and hedgerows. Then, one by one, the plants escaped from cultivation, and these luxury goods transformed into ecological disasters. Some of America’s most noxious invasive plants—floating heart, Asiatic bittersweet, Japanese meadowsweets, princess tree, porcelain berry—are the botanical pets of aristocrats, gone feral. 

    The sun was about to rise when I joined Ron and an ACE wetland restoration crew in Raleigh’s Walnut Creek Wetland Park for the start of their work day. The park preserves a corner of wilderness within one of the city’s lowest-income areas. For decades, the nearby creek was a dumping ground for sewage. Local residents started doing volunteer cleanups, and in the 90s funding was secured to create the park. This was a big win for biodiversity; wetland ecosystems like the park support more than 70 percent of North Carolina’s protected species. Now, the park is being eaten by kudzu, and this crew was tasked with removing it. 

    Kudzu, the infamous “vine that ate the South,” lives up to the hype. Most of the roadsides I saw in North Carolina had been fully digested into a surreal kudzu-textured world. Tree-shaped kudzu. A delicate curve of telephone-wire-shaped kudzu. Barn-shaped kudzu, with little kudzu chimneys. “If you leave for six months, your car belongs to the wilderness,” Ron said. “It’s not your car anymore.” The vine can grow a foot a day.

    Invasive vines tend to be serial stranglers. Not only do they climb high enough to cover the canopy and steal sunlight, they can wrap trees so tightly that they squeeze the sapwood, making it harder for water and nutrients to travel between the canopy and the roots. It’s yet another ability that allows invasive vines to outcompete their native counterparts. On the bright side, it makes them easier for an inexperienced invasive-plant hunter like myself to identify. Just keep an eye out for the stranglers, one ACE project manager told me. “Native vines that are meant to be here don’t girdle trees just for fun.” 

    4
    Ron looks at a growth of Oriental bittersweet. Photograph: Kennedi Carter.

    Ron and Emery Harms, the crew leader, drove me and the crew into the park to get us closer to the day’s first target site, and we armed ourselves with hand tools from a fat plastic bucket: thick gardening gloves, handsaws that unfolded like switchblades, loppers, and squeeze bottles with spongy tips for blotting herbicide. Thus equipped, we began the kudzu massacre. Whenever the crew and I painstakingly unwound a kudzu vine from the tree beneath, it left craggy scars in the bark. Slowly, native white ash and Eastern cottonwood trees appeared from below the kudzu, like freed hostages. Then, to make sure the vines didn’t just climb right back up, we had to find and chop the root—or rather, roots, because a single vine can have several root sites. It was like untangling a colossal, fragile knot, except every mistake generated a new knot. More than once, I pulled on the end of a kudzu vine, chasing the stem up and down trees and under old logs—only to find one of my crewmates pulling on the other end, like a giant, botanical version of the spaghetti scene from Lady and the Tramp. Meanwhile, every tug on a vine covered us in kudzu bugs: chunky, invasive sap-suckers that pinged off our safety helmets like hail. 

    The wetland itself was lush and lively with animals, with a warm buzz of crickets, grasshoppers, and frogs. After a few hours, one of the crew members called everyone over and we stopped working for a moment to watch a wolf spider carrying her egg sac, a perfect blue marble, through the grass.

    5
    Ron holds up a salt cedar specimen. Photograph: Kennedi Carter.

    In the afternoon, we tackled a clump of wetland where kudzu, bittersweet, and invasive privet shrubs wrapped thickly together into an evil matrix. We were “windowing”: creating an open space between the bottom of the canopy and the ground to remove the invasive vines’ access to soil and bring sunlight back to the forest floor. While Emery tackled the nearly foot-thick privet trunk with a chainsaw, I kept carefully outside the “blood bubble”—the hypothetical circle circumscribed by an outstretched arm holding a chainsaw—and hacked away at a smaller shrub with a handsaw. Once Emery cut completely through the trunk, I braced for the tree to fall, but instead it hung in the air like a ghost, its whole weight suspended from above by the vines knotted around its canopy. We cheered as Ron dragged the tree, 10 times his size, to the deadwood pile. By the end of the afternoon, we’d turned the shady thicket, clotted with privet, into a sunny, airy clearing. “It seems like you’ve got a bloodlust now,” Emery said to me. 

    In that new clearing, native plants will have a chance to gain back a little ground. Other parts of the park are too far gone. As we walked back to the ACE van at the end of the day, Emery pointed out a monster tower of kudzu, too dense to chop; “I’d have loved to hit that,” they said wistfully, “but it would have grown back in three weeks.” With limited manpower, crews have to ruthlessly prioritize areas where they can have the most impact. The goal is to do enough to keep native plants in the game until their next visit. As Ron put it, “it’s never a one-and-done deal.” Even in the best-case scenario, the same fight will keep playing out season after season. “On the one hand, it looks better than it was,” one crew member said. “But compared to what it could be … woof.” In this field, every victory is a small win. If the birds, amphibians, insects, and other creatures that rely on the wetland can flourish for another year, that will have to do. 

    6
    A hack-and-squirt treatment (L) and treatment on a tree of heaven stump (R). Photograph: Kennedi Carter.

    Is the painstaking, piecemeal work of halting invasives more trouble than it’s worth? Some ecologists argue that if the plants are left alone, the ecosystems will manage themselves. Invasive species, the thinking goes, will eventually become less dominant as they build connections to other organisms and as those other organisms evolve defenses against them. Given some time, native species can put up a fight against the Homogocene. When I asked Joost Besijn, the director of ACE’s eastern division, about this idea, he said that in the long term it could prove true—but in many cases, “long” might be longer than people can afford. “I guess it all depends on the time scale you look at,” he said. “In a million years, does it really matter? But in the short term, many invasive species will completely decimate the carrying capacity of an ecosystem.”

    In the face of such enormous and intractable environmental problems, the public tends to look to the white-collar experts—scientists, researchers, policymakers—for answers. But in North Carolina, I saw that some of the United States’ most immediate needs depend on an entirely different set of skills. The truth is that once invasive vegetation takes hold, the only viable mitigation strategy is to send in crews of people—mostly young, underpaid people on temporary contracts—to wield hatchets, chainsaws, and herbicide in the tangle of the forest, taking out plants one at a time.

    ACE’s conservation corps model has its appeal. The chaotic gaggle of young people in Triston’s and Emery’s crews transmitted an infectious energy. They showed me which plants had serrated leaves or backward-hooked thorns and hairs on their stems. They taught me which plants smelled like root beer and Froot Loops. When we walked alone into the forest, we stayed within “whooping distance” of each other; every so often a “WHOOP!” or a “YEE!” would drift through the trees and we would each hoot back our locations. I sneezed, and someone shouted “BLESS YOU!” from far away. When our hands were too grubby to accept a stick of gum, Eva went around and placed a piece in each of our mouths like a communion wafer.

    7
    Ron and another ACE worker sharpen loppers on a truck tailgate. Photograph: Kennedi Carter.

    The care each crew leader had for their members was plain. Emery checked on everyone’s bug bites and always knew which crew members had leaky boots. Triston took on all the hardest jobs himself. Ron handed around his contact info in case anyone ever needed a job reference or a pep talk. Several crew members talked to me about the new skills they were learning, even beyond the field of conservation: budgeting, teamwork, harmonious co-living.

    Camaraderie, though, may not be enough to sustain a vital front of conservation work. Most of the people I spoke with who do plant removal feared long-term financial struggle. Full-time, hands-on positions in conservation generally require field experience, which is often unpaid. One route to a viable career is the Forest Service, but much of that work is seasonal. Some people work second jobs; others depend on savings. Ron would like to go back to school to get an advanced degree, but he’s hesitant. “I need to get on that train, but I am in debt too bad,” he told me. “I just need to breathe for a minute.” ACE’s most significant challenge right now isn’t finding funders—it’s finding enough members willing to do the work.

    Recently, ACE leadership, alongside other conservation corps from across the country, took part in conversations in DC about how to replace volunteer or poorly paid labor with a paid conservation workforce. In Ron’s estimation, even a wage of $15 an hour, plus benefits, “would change ACE entirely.” But President Joe Biden’s infrastructure bill was passed with only about $250 million set aside for an invasive plant elimination program. That’s not a lot of money to tackle one of the country’s biggest biodiversity threats. 

    As it stands, invasive plants are gaining ground in the vast majority of the country’s natural areas. Once I started seeing them, I couldn’t stop—since my visit to North Carolina, I spotted a baby kudzu twisting up a tree in a city park, hogweed on a hiking trail, garlic mustard in parking lots, a spiraea bush behind a taco shop. They have us surrounded. Check your backyard, and your local park; maybe they’re there, strangling trees or casting a deadly shade. If you’re lucky, a troop of young conservationists will stop by, when funding allows, to give native plants and wildlife a fighting chance for another season. 

    Driving out of Pisgah National Forest after a long day of cut-stumping, stump-squirting, trunk-hacking, and vine-pulling, the ACE crew spotted a massive bank of bittersweet on the roadside, choking a telephone pole. The vine was only a few months away from reaching the top and winding along the wires like a Christmas garland. “Don’t look!” someone squealed, and we all covered our eyes.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:05 pm on December 24, 2022 Permalink | Reply
    Tags: "Decoding the secret language of photosynthesis", , , , , Botany, , , Determining which proteins are the signal to them to trigger photosynthesis was like finding needles in a haystack., For half a century botanists have known that the command center of a plant cell-the nucleus-sends instructions to other parts of the cell compelling them to move forward with photosynthesis., Previously the science team demonstrated that certain proteins in plant nuclei are activated by light kicking off photosynthesis., The conductors of the symphony are proteins in the nucleus called photoreceptors that respond to light.,   

    From The University of California-Riverside: “Decoding the secret language of photosynthesis” 

    UC Riverside bloc

    From The University of California-Riverside

    12.21.22

    Jules L Bernstein
    Senior Public Information Officer
    (951) 827-4580
    jules.bernstein@ucr.edu

    1
    Sunlight triggering photosynthesis in a flowering plant. Credit: PxHere.

    For decades, scientists have been stumped by the signals plants send themselves to initiate photosynthesis, the process of turning sunlight into sugars. UC Riverside researchers have now decoded those previously opaque signals. 

    2
    Basic inputs and outputs of the photosynthesis process. (Olha Pohorielova/iStock/Getty)

    For half a century botanists have known that the command center of a plant cell, the nucleus, sends instructions to other parts of the cell, compelling them to move forward with photosynthesis. These instructions come in the form of proteins, and without them, plants won’t turn green or grow.

    “Our challenge was that the nucleus encodes hundreds of proteins containing building blocks for the smaller organelles. Determining which ones are the signal to them to trigger photosynthesis was like finding needles in a haystack,” said UCR botany professor Meng Chen.

    The process the scientists in Chen’s laboratory used to find four of these proteins is now documented in a Nature Communications paper [below].

    Previously, Chen’s team demonstrated [Nature Communications (below)] that certain proteins in plant nuclei are activated by light, kicking off photosynthesis. These four newly identified proteins are part of that reaction, sending a signal that transforms small organs into chloroplasts, which generate growth-fueling sugars.

    Chen compares the whole photosynthesis process to a symphony. 

    “The conductors of the symphony are proteins in the nucleus called photoreceptors that respond to light. We showed in this paper that both red and blue light-sensitive photoreceptors initiate the symphony. They activate genes that encode the building blocks of photosynthesis.”

    2
     (colematt/iStock/Getty)

    The unique situation, in this case, is that the symphony is performed in two “rooms” in the cell, by both local (nucleus) and remote musicians. As such, the conductors (photoreceptors), who are present only in the nucleus, must send the remotely located musicians some messages over distance. This last step is controlled by the four newly discovered proteins that travel from the nucleus to the chloroplasts. 

    This work was funded by the National Institutes of Health, in the hopes that it will help with a cure for cancer. This hope is based on similarities between chloroplasts in plant cells and mitochondria in human cells. Both organelles generate fuel for growth, and both harbor genetic material. 

    Currently, a lot of research describes communication from organelles back to the nucleus. If something is wrong with the organelles, they’ll send signals to the nucleus “headquarters.” Much less is known about the activity-regulating signals sent from the nucleus to the organelles. 

    “The nucleus may control the expression of mitochondrial and chloroplast genes in a similar fashion,” said Chen. “So, the principles we learn from the nucleus-to-chloroplast communication pathway might further our understanding of how the nucleus regulates mitochondrial genes, and their dysfunction in cancer,” Chen said. 

    The significance of understanding how photosynthesis is controlled has applications beyond disease research. Human settlements on another planet would likely require indoor farming and creating a light scheme to increase yields in that environment. Even more immediately, climate change is posing challenges for crop growers on this planet. 

    “The reason we can survive on this planet is because organisms like plants can do photosynthesis. Without them there are no animals, including humans,” Chen said. “A full understanding of and ability to manipulate plant growth is vital for food security.”

    Science papers:
    Nature Communications
    Nature Communications 2021
    See the science papers for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of California-Riverside Campus

    The University of California-Riverside is a public land-grant research university in Riverside, California. It is one of the 10 campuses of The University of California system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to The University of California-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    The University of California-Riverside ‘s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared The University of California-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the The University of California-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    The University of California-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of The University of California-Riverside ‘s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked The University of California-Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks The University of California-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all The University of California-Riverside students graduate within six years without regard to economic disparity. The University of California-Riverside ‘s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, The University of California-Riverside became the first public university campus in the nation to offer a gender-neutral housing option. The University of California-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The University of California-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the University of California Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley alumni, lobbied aggressively for a University of California -administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at The University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    The University of California-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. The University of California-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. The University of California-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at University of California-Riverside to keep the campus open.

    In the 1990s, The University of California-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted The University of California-Riverside for an annual growth rate of 6.3%, the fastest in The University of California system, and anticipated 19,900 students at The University of California-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of The University of California-Riverside student body, the highest proportion of any University of California campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at The University of California-Riverside.

    With The University of California-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move The University of California-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at The University of California-Riverside, with The University of California-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, The University of California-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved The University of California-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of The University of California system, The University of California-Riverside is governed by a Board of Regents and administered by a president University of California-Riverside ‘s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    The University of California-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. The University of California-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at The University of California-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. The University of California-Riverside ‘s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and The University of California-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. The University of California-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with The University of California-Berkeley and The University of California-Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, The University of California-Riverside offers the Thomas Haider medical degree program in collaboration with The University of California-Los Angeles. The University of California-Riverside ‘s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and The University of California-Riverside ‘s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    The University of California-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at The University of California-Riverside have an economic impact of nearly $1 billion in California. The University of California-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at The University of California-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout The University of California-Riverside ‘s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, The University of California-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, The University of California-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. University of California-Riverside can also boast the birthplace of two-name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 9:42 am on December 22, 2022 Permalink | Reply
    Tags: "New Study Finds Animals Play Key Role in Restoring Forests", , , Animals play a key role in the recovery of tree species by carrying a wide variety of seeds into previously deforested areas., , , , , Botany, , , Forests soak up carbon dioxide from the atmosphere and store it in biomass and soils., The researchers say the findings can serve as a road map for natural regeneration of forests that preserve biodiversity and capture and store carbon., , Tropical forests in particular play an important role in regulating global climate and supporting high plant and animal diversity., U.N. Decade of Ecosystem Restoration,   

    From The School of the Environment At Yale University: “New Study Finds Animals Play Key Role in Restoring Forests” 

    1

    From The School of the Environment

    at

    Yale University

    12.19.22

    Fran Silverman
    Associate Director of Communications
    fran.silverman@yale.edu
    +1 203-436-4842

    1
    A coati (Nasua narica) forages on palm fruits in a secondary forest, Panama. Credit: Christian Ziegler, MPG Institute of Animal Behavior.

    The world’s wildlife populations have declined by almost 70% in the last 50 years as their habitats have been polluted and cleared by humans. Yet, a new study has found animals play a crucial role in reforestation.

    As nations meet this week in Montreal on efforts to address an unprecedented loss of biodiversity — more than a million species are threatened with extinction — a new study published in The Royal Society journal Philosophical Transactions [below] points to the unique and vital role animals play in reforestation.

    1
    An aerial view of regenerating secondary tropical forest in the Barro Colorado Nature Monument, Panama. Credit: Christian Ziegler, MPG Institute of Animal Behavior. 

    Efforts to restore forests have often focused on trees, but the study found that animals play a key role in the recovery of tree species by carrying a wide variety of seeds into previously deforested areas.

    The study was conducted by an international team led by Sergio Estrada-Villegas, a postdoctoral associate at the Yale School of the Environment, working with Professor of Tropical Forest Ecology Liza Comita. The project, which examined a series of regenerating forests in central Panama spanning 20 to 100 years post-abandonment, was completed by Estrada-Villegas during his time as a Cullman Fellow in the joint program between YSE and the New York Botanical Garden. The study was published in a special theme issue of the journal that focused on forest landscape restoration as part of the U.N. Decade of Ecosystem Restoration.

    “When we talk about forest restoration, people typically think about going out and digging holes and planting seedlings,” Comita says. “That’s actually not a very cost-effective or efficient way to restore natural forests. If you have a nearby preserved intact forest, plus you have your animal seed dispersers around, you can get natural regeneration, which is a less costly and labor-intensive approach.”

    The research team analyzed a unique, long-term data set from the forest in Barro Colorado Nature Monument in Panama, which is overseen by the Smithsonian Tropical Research Institute, to compare what proportion of tree species in forests were dispersed by animals or other methods, like wind or gravity, and how that changes over time as the forest ages. The team focused on the proportion of plants dispersed by four groups of animals: flightless mammals, large birds, small birds, and bats.

    Because the area has been intensely studied by biologists at the Smithsonian for about a century, the research team was able to delve into data stemming back decades, including aerial photographs taken in the 1940s-1950s. The area also presents a unique view into forests where there is very little hunting or logging. The results offer the most detailed data of animal seed dispersal across the longest time frame of natural restoration, according to the study.

    The role of flightless animals in seed dispersal across all forest ages, from 20 years to old growth, and the variety of animal species involved were among the most important findings of the study and point to the importance of natural regeneration of forests, Comita and Estrada-Villegas say. In tropical forests, more than 80% of tree species can be dispersed by animals.

    The researchers say the findings can serve as a road map for natural regeneration of forests that preserve biodiversity and capture and store carbon at a time when the U.N. Decade of Restoration is highlighting the need for land conservation, and world leaders are working to mitigate climate change stemming from fossil fuel emissions. Forests soak up carbon dioxide from the atmosphere and store it in biomass and soils. Tropical forests, in particular, play an important role in regulating global climate and supporting high plant and animal diversity, the researchers note.

    Estrada-Villegas, an ecologist who studies both bats and plants, says the study highlights how crucial animals are to healthy forests.

    “In these tropical environments, animals are paramount to a speedy recovery of forests,” says Estrada-Villegas, who has recently joined the faculty of Universidad del Rosario in Bogotá, Colombia.

    The study was co-authored by Daisy H. Dent, a tropical ecologist from the MPG Institute for Animal Behavior; Pablo Stevenson, of the Universidad de los Andes in Bogota, Columbia; Omar López, of the Smithsonian Tropical Research Institute in Balboa, Panama; and Saara J. DeWalt, chair of the Department of Biological Sciences at Clemson University.

    Science paper:
    Philosophical Transactions

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Yale School of the Environment

    2

    Yale School of the Environment Vision and Mission

    We are leading the world toward a sustainable future with cutting-edge research, teaching, and public engagement on society’s evolving and urgent environmental challenges.

    Core Values

    Our Mission and Vision are grounded in seven fundamental values:

    Excellence: We promote and engage in path-breaking science, policy, and business models that build on a fundamental commitment to analytic rigor, data, intellectual integrity, and excellence.
    Leadership: We attract outstanding students nationally and internationally and offer a pioneering curriculum that defines the knowledge and skills needed to be a 21st century environmental leader in a range of professions.
    Sustainability: We generate knowledge that will advance thinking and understanding across the various dimensions of sustainability.
    Community: We offer a community that finds strength in its collegiality, diversity, independence, commitment to excellence, and lifelong learning.
    Diversity: We celebrate our differences and identify pathways to a sustainable future that respects diverse values including equity, liberty, and civil discourse.
    Collaboration: We foster collaborative learning, professional skill development, and problem-solving — and we strengthen our scholarship, teaching, policy work, and outreach through partnerships across the university and beyond.
    Responsibility: We encourage environmental stewardship and responsible behavior on campus and beyond.

    Guiding Principles

    In pursuit of our Mission and Vision, we:

    Build on more than a century of work bringing science-based strategies, ethical considerations, and conservation practices to natural resource management.
    Approach problems on a systems basis and from interdisciplinary perspectives.
    Integrate theory and practice, providing innovative solutions to society’s most pressing environmental problems.
    Address environmental challenges at multiple scales and settings — from local to global, urban to rural, managed to wild.
    Draw on the depth of resources at Yale University and our network of alumni who extend across the world.
    Create opportunities for research, policy application, and professional development through our unique centers and programs.
    Provide a diverse forum to convene conversations on difficult issues that are critical to progress on sustainability.
    Bring special focus on the most significant threats to a sustainable future including climate change, the corresponding need for clean energy, and the increasing stresses on our natural resources.

    Statement of Environmental Policy

    As faculty, staff, and students of the Yale School of the Environment, we affirm our commitment to responsible stewardship of the environment of our School, our University, the city of New Haven, and the other sites of our teaching, research, professional, and social activities.

    In the course of these activities, we shall strive to:

    Reduce our use of natural resources.
    Support the sustainable production of the resources we must use by purchasing renewable, reusable, recyclable, and recycled materials.
    Minimize our use of toxic substances and ensure that unavoidable use is in full compliance with federal, state, and local environmental regulations.
    Reduce the amount of waste we generate and promote strategies to reuse and recycle those wastes that cannot be avoided.
    Restore the environment where possible.

    Each member of the School community is encouraged to set an example for others by serving as an active steward of our environment.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton.

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 3:03 pm on December 13, 2022 Permalink | Reply
    Tags: "Precise solar observations fed millions in ancient Mexico", , , Botany, , , Global climate change, , , Solar Calendar, Solar declination, The ancient texts referred to Mount Tlaloc., The failure of any calendar to adjust for leap-year fluctuations could also have led to crop failure., The researchers studied Mexica manuscripts.,   

    From The University of California-Riverside: “Precise solar observations fed millions in ancient Mexico” 

    UC Riverside bloc

    From The University of California-Riverside

    12.12.22
    Jules L Bernstein
    Senior Public Information Officer
    (951) 827-4580
    jules.bernstein@ucr.edu

    1
    Aztec farming calendar accurately tracked seasons, leap years.

    Without clocks or modern tools, ancient Mexicans watched the sun to maintain a farming calendar that precisely tracked seasons and even adjusted for leap years.

    2
    Rising sun seen from the stone causeway on Mount Tlaloc in Mexico. (Ben Meissner)

    Before the Spanish arrival in 1519, the Basin of Mexico’s agricultural system fed a population that was extraordinarily large for the time. Whereas Seville, the largest urban center in Spain, had a population of fewer than 50,000, the Basin, now known as Mexico City, was home to as many as 3 million people.

    To feed so many people in a region with a dry spring and summer monsoons required advanced understanding of when seasonal variations in weather would arrive. Planting too early, or too late, could have proved disastrous. The failure of any calendar to adjust for leap-year fluctuations could also have led to crop failure.

    Though colonial chroniclers documented the use of a calendar, it was not previously understood how the Mexica, or Aztecs, were able to achieve such accuracy. New University of California-Riverside research, published in the PNAS [below], demonstrates how they did it. They used the mountains of the Basin as a solar observatory, keeping track of the sunrise against the peaks of the Sierra Nevada mountains. 

    “We concluded they must have stood at a single spot, looking eastwards from one day to another, to tell the time of year by watching the rising sun,” said Exequiel Ezcurra, distinguished University of California-Riverside professor of ecology who led the research.

    2
    Stone causeway atop Mount Tlaloc, Mexico. (Ben Messiner)

    To find that spot, the researchers studied Mexica manuscripts. These ancient texts referred to Mount Tlaloc, which lies east of the Basin. The research team explored the high mountains around the Basin and a temple at the mountain’s summit. Using astronomical computer models, they confirmed that a long causeway structure at the temple aligns with the rising sun on Feb. 24, the first day of the Aztec new year.

    “Our hypothesis is that they used the whole Valley of Mexico. Their working instrument was the Basin itself. When the sun rose at a landmark point behind the Sierras, they knew it was time to start planting,” Ezcurra said.

    The sun, as viewed from a fixed point on Earth, does not follow the same trajectory every day. In winter, it runs south of the celestial equator and rises toward the southeast. As summer approaches, because of the Earth’s tilt, sunrise moves northeast, a phenomenon called solar declination. 

    This study may be the first to demonstrate how the Mexica were able to keep time using this principle, the sun, and the mountains as guiding landmarks. Though some may be familiar with the “Aztec calendar,” that is an incorrect name given to the Sun Stone, arguably the most famous work of Aztec sculpture used solely for ritual and ceremonial purposes. 

    “It did not have any practical use as a celestial observatory. Think of it as a monument, like Nelson’s Column in Trafalgar Square or Lincoln’s Memorial in Washington, D.C.,” Ezcurra said. 

    Learning about Aztec tools that did have practical use offers a lesson about the importance of using a variety of methods to solve questions about the natural world. 

    “The same goals can be achieved in different ways. It can be difficult to see that sometimes. We don’t always need to rely solely on modern technology,” Ezcurra said. “The Aztecs were just as good or better as the Europeans at keeping time, using their own methods.”

    The Aztec observatory could also have a more modern function, according to Ezcurra. Comparing old images of the Basin of Mexico to current ones shows how the forest is slowly climbing up Mount Tlaloc, likely as a result of an increase in average temperatures at lower elevation. 

    “In the 1940s the tree line was way below the summit. Now there are trees growing in the summit itself,” Ezcurra said. “What was an observatory for the ancients could also be an observatory for the 21st century, to understand global climate changes.”

    Science paper:
    PNAS
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of California-Riverside Campus

    The University of California-Riverside is a public land-grant research university in Riverside, California. It is one of the 10 campuses of The University of California system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to The University of California-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    The University of California-Riverside ‘s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared The University of California-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the The University of California-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    The University of California-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of The University of California-Riverside ‘s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked The University of California-Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks The University of California-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all The University of California-Riverside students graduate within six years without regard to economic disparity. The University of California-Riverside ‘s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, The University of California-Riverside became the first public university campus in the nation to offer a gender-neutral housing option. The University of California-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The University of California-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the University of California Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley alumni, lobbied aggressively for a University of California -administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at The University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    The University of California-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. The University of California-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. The University of California-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at University of California-Riverside to keep the campus open.

    In the 1990s, The University of California-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted The University of California-Riverside for an annual growth rate of 6.3%, the fastest in The University of California system, and anticipated 19,900 students at The University of California-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of The University of California-Riverside student body, the highest proportion of any University of California campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at The University of California-Riverside.

    With The University of California-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move The University of California-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at The University of California-Riverside, with The University of California-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, The University of California-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved The University of California-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of The University of California system, The University of California-Riverside is governed by a Board of Regents and administered by a president University of California-Riverside ‘s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    The University of California-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. The University of California-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at The University of California-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. The University of California-Riverside ‘s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and The University of California-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. The University of California-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with The University of California-Berkeley and The University of California-Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, The University of California-Riverside offers the Thomas Haider medical degree program in collaboration with The University of California-Los Angeles. The University of California-Riverside ‘s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and The University of California-Riverside ‘s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    The University of California-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at The University of California-Riverside have an economic impact of nearly $1 billion in California. The University of California-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at The University of California-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout The University of California-Riverside ‘s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, The University of California-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, The University of California-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. University of California-Riverside can also boast the birthplace of two-name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 4:02 pm on December 8, 2022 Permalink | Reply
    Tags: "Old-growth trees more drought tolerant than younger ones providing a buffer against climate change", , , , Botany, ,   

    From The University of Michigan: “Old-growth trees more drought tolerant than younger ones providing a buffer against climate change” Photo Essay 

    U Michigan bloc

    From The University of Michigan

    12.1.22
    Contact:
    Jim Erickson

    1
    The stump of a 500-year-old juniper on the Tibetan Plateau, China. Deforestation has made forests younger and has also negatively impacted associated ecosystem functions and biodiversity. Image credit: Tsun Fung Au.

    A new analysis of more than 20,000 trees on five continents shows that old-growth trees are more drought tolerant than younger trees in the forest canopy and may be better able to withstand future climate extremes.

    The findings highlight the importance of preserving the world’s remaining old-growth forests, which are biodiversity strongholds that store vast amounts of planet-warming carbon, according to University of Michigan forest ecologist Tsun Fung (Tom) Au, a postdoctoral fellow at the Institute for Global Change Biology.

    “The number of old-growth forests on the planet is declining, while drought is predicted to be more frequent and more intense in the future,” said Au, lead author of the study published online Dec. 1 in the journal Nature Climate Change [below].

    2
    Diverse age structure and composition could help forests withstand climate change. Photo taken in Sichuan, China. Image credit: Tsun Fung Au.

    “Given their high resistance to drought and their exceptional carbon storage capacity, conservation of older trees in the upper canopy should be the top priority from a climate mitigation perspective.”

    The researchers also found that younger trees in the upper canopy—if they manage to survive drought—showed greater resilience, defined as the ability to return to pre-drought growth rates.

    While deforestation, selective logging and other threats have led to the global decline of old-growth forests, subsequent reforestation—either through natural succession or through tree planting—has led to forests dominated by increasingly younger trees.

    3
    Drought is seriously affecting younger trees in the upper canopy, but younger trees also have a greater ability to recover after a drought. Photo taken in Kruger National Park, South Africa. Image credit: Tsun Fung Au.

    For example, the area covered by younger trees (<140 years old) in the upper canopy layer of temperate forests worldwide already far exceeds the area covered by older trees. As forest demographics continue to shift, younger trees are expected to play an increasingly important role in carbon sequestration and ecosystem functioning.

    “Our findings—that older trees in the upper canopy are more drought tolerant, while younger trees in the upper canopy are more drought resilient—have important implications for future carbon storage in forests,” Au said.

    “These results imply that in the short term, drought’s impact on forests may be severe due to the prevalence of younger trees and their greater sensitivity to drought. But in the long run, those younger trees have a greater ability to recover from drought, which could be beneficial to the carbon stock.”

    4
    Trees in the upper canopy layer provide important ecosystem functions, such as a higher carbon sequestration rate and a better cooling effect on the understory. Photo of a mixed forest in Indiana. Image credit: Tsun Fung Au.

    Those implications will require further study, according to Au and colleagues, given that reforestation has been identified by the Intergovernmental Panel on Climate Change as a potential nature-based solution to help mitigate climate change.

    The Sharm el-Sheikh Implementation Plan published during the 2022 United Nations Climate Change Conference in Egypt (COP27) also reaffirmed the importance of maintaining intact forest cover and associated carbon storage as a social and environmental safeguard.

    “These findings have implications for how we manage our forests. Historically, we have managed forests to promote tree species that have the best wood quality,” said Indiana University’s Justin Maxwell, a senior author of the study.

    5
    Older trees in the upper forest canopy are more drought tolerant, with less growth reduction. An old spruce tree in Sichuan, China. Image credit: Tsun Fung Au.

    “Our findings suggest that managing forests for their ability to store carbon and to be resilient to drought could be an important tool in responding to climate change, and thinking about the age of the forest is an important aspect of how the forest will respond to drought.”

    The researchers used long-term tree-ring data from the International Tree-Ring Data Bank to analyze the growth response of 21,964 trees from 119 drought-sensitive species, during and after droughts of the past century.

    They focused on trees in the uppermost canopy. The forest canopy is a multilayered, structurally complex and ecologically important zone formed by mature, overlapping tree crowns.

    The upper canopy trees were separated into three age groups—young, intermediate and old—and the researchers examined how age influenced drought response for different species of hardwoods and conifers.

    They found that young hardwoods in the upper canopy experienced a 28% growth reduction during drought, compared to a 21% growth reduction for old hardwoods. The 7% difference between young and old hardwoods grew to 17% during extreme drought.

    5
    6
    (2) Global tree planting programs and reforestation efforts lead to younger forest age. Tulip poplars (Liriodendron tulipifera) planted in North Carolina, above, and myrobalan (Phyllanthus emblica) planted in Hong Kong, below. Image credit: Tsun Fung Au.

    While those age-related differences may appear fairly minor, when applied at the global scale they could have “huge impacts” on regional carbon storage and the global carbon budget, according to the study authors. That’s especially true in temperate forests that are among the largest carbon sinks worldwide.

    In the study, age-related drought-response differences in conifers were smaller than in hardwoods, likely because needle-bearing trees tend to inhabit more arid environments, the researchers say.

    The current study was part of Au’s doctoral dissertation at Indiana University, and he continued the work after joining U-M’s Institute for Global Change Biology, which is based at the School for Environment and Sustainability.

    The new study is a synthesis that represents the net effects of thousands of trees in diverse forests across five continents, rather than focusing on single forest types. In addition, the new study is unique in its focus on trees in the upper forest canopy, which reduces the confounding effects of tree height and size, according to the authors.

    In addition to Au and Maxwell, the study’s authors include Scott Robeson, Sacha Siani, Kimberly Novick and Richard Phillips of Indiana University; Jinbao Li of the University of Hong Kong; Matthew Dannenberg of the University of Iowa; Teng Li of Guangzhou University; Zhenju Chen of Shenyang Agricultural University; and Jonathan Lenoir of the UMR CNRS 7058 at Université de Picardie Jules Verne in Amiens, France.

    Study authors received support from Indiana University, the Hong Kong Research Grants Council and the National Natural Science Foundation of China. The research was supported in part by Lilly Endowment Inc., through its support for the Indiana University Pervasive Technology Institute.

    Science paper:
    Nature Climate Change

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 11:40 am on November 14, 2022 Permalink | Reply
    Tags: "Researchers Solve Hundred-Year-Old Botanical Mystery that was Key to the Spread of Plant Life on Land", Air bubbles block the movement of water., , Around 400 million years ago plants developed vascular systems to extract water efficiently from the soil and use it for photosynthesis altering forever alter the Earth’s atmosphere and ecosystems., Avoiding the formation and spread of these air bubbles is of critical importance for tolerating drought today., , Botany, , , , , , Plants had to overcome drought-induced air bubbles., The earliest land plants were small — just a few centimeters tall at most — and restricted to moist boggy habitats around streams and ponds., , When plants begin to dry out air-bubbles get stuck in the xylem., , YSE-led research has discovered the answer to a 100-year-old paleontology mystery — how early plants emerged from their watery habitats to grow on land through changes to their vascular systems.   

    From The School of the Environment At Yale University: “Researchers Solve Hundred-Year-Old Botanical Mystery that was Key to the Spread of Plant Life on Land” 

    1

    From The School of the Environment

    at

    Yale University

    11.10.22

    Fran Silverman
    Associate Director of Communications
    fran.silverman@yale.edu
    +1 203-436-4842

    YSE-led research has discovered the answer to a 100-year-old paleontology mystery — how early plants emerged from their watery habitats to grow on land through changes to their vascular systems.

    1

    The earliest land plants were small — just a few centimeters tall at most — and restricted to moist, boggy habitats around streams and ponds. Around 400 million years ago, however, plants developed vascular systems to extract water more efficiently from the soil and use it for photosynthesis, a transition that would forever alter the Earth’s atmosphere and ecosystems. A team of researchers have now solved a 100-year-old paleontology mystery: How did ancient plants emerge from swamps and riverbanks to new habitats with limited access to water?

    In a new paper published in Science [below], YSE Professor of Plant Physiological Ecology Craig Brodersen and his research team, including lead author Martin Bouda ’17 PhD, ’12 MPhil and Kyra A. Prats ’22 PhD, ’16 MFS, discovered that a simple change in the vascular system of plants made them more drought-resistant, which opened up new landscapes for exploration.

    2
    Plant material from Yale-Myers Forest and YSE greenhouses were used to study how their vascular systems are constructed and how they compare to the extinct plants from the fossil record. Without developing their vascular systems, plants would largely still look like mosses. Shown here: Huperzia lucidula, also known as Shining club-moss. Photo courtesy of Craig Brodersen Lab.

    The research was spurred by a century-long debate about why the simple, cylindrical vascular system of the earliest land plants rapidly changed to more complex shapes. In the 1920s, scientists noted this increasing complexity in the fossil record but were not able to pinpoint the reason — if there even was one — for the evolutionary changes.

    Over the past decade, Brodersen and colleagues have explored the implications of how modern plant vascular systems are constructed, especially within the context of drought. When plants begin to dry out, air-bubbles get stuck in the xylem, which is the specialized tissue that transports water and nutrients from the soil to stems and leaves. The bubbles block the movement of water. Left unchecked, they spread throughout the network, disconnect plants from the soil, and ultimately lead to plant death. Avoiding the formation and spread of these bubbles is of critical importance for tolerating drought today, and the research team applied this same thinking to explain the patterns of vascular organization in the fossil record.

    3
    Cross section though leaf of Cheilanthes lanosa, also known as Hairy lip fern, showing a heart-shaped vascular system in the xylem. Credit: Craig Brodersen Lab.

    The cylinder-shaped vascular systems in the earliest land plants, which were similar to a bundle of straws, had initially served them well in their early watery habitats. But as they moved onto land with fewer water resources, the plants had to overcome drought-induced air bubbles. Early land plants did this by reconfiguring the ancestral, cylindrical-shaped xylem into more complex shapes that prevented air bubbles from spreading.

    Historically, observations of increasing vascular complexity in the fossil record were thought to be coincidental and of marginal significance, a byproduct of plants growing in size and developing more complex architecture. The new study reverses this view.

    “It didn’t just sort of happen. There’s actually a good evolutionary reason,” says Bouda. “There was strong pressure from drought that made it happen. That was the hundred-year-old riddle, which we’ve now answered.”

    Bouda notes that the makeup of the team of researchers who co-authored the study, which included a paleobotanist, plant physiologists, and a hydrologist, helped provide techniques and perspectives that led them to uncover the reason for the complex vascular structure that had emerged in Devonian-era plants. The team used microscopy and anatomical analysis to view the inner workings of plant specimens, which included fossil specimens from the Yale Peabody Museum, and living plants from Yale Myers Forest, the Marsh Botanical Garden, the New York Botanical Garden, and the University of Connecticut. Using this information, the team then predicted vascular configurations that could tolerate drought and illustrated how seemingly simple changes in shape lead to profound improvements in drought tolerance.

    4
    Schematic animation of embolism spreading between conduits in two stem cross-sections. In both, embolism crosses half of the conduit walls it encounters. The plant on the left dies, the one on the right lives. Credit: Martin Bouda, under CC Attribution license.

    “Every time a plant deviates from that cylindrical vascular system, every time it changes just a little bit, the plant gets a reward in terms of its ability to survive drought. And if that reward is constantly there, then it’s going to force plants in the direction away from the ancient cylindrical vascular system toward these more complex forms,” says Brodersen. “By making these very small changes, plants solved this problem that they had to figure out very early in the history of the earth, otherwise the forests that we see today just wouldn’t exist.”

    These changes happened rather rapidly — in paleontological time frames, that is — over approximately 20-40 million years. The driving forces behind the change to plant vascular structure could help inform research in breeding drought-resistant plants, helping to build resilience to the impacts of climate change and address production-related food insecurity issues.

    “Now that we have a better understanding of how the vascular systems are put together and how that influences a plant’s ability to tolerate drought, that’s the kind of thing that could be used as a target for breeding programs — for example, making better root systems, making better vascular systems in plants,” Brodersen says.

    The co-authors of the study include Brett A. Huggett, Bates College associate professor of biology; Jay Wason, University of Maine assistant professor of forest ecosystem physiology; and Jonathan Wilson, Haverford College associate professor of environmental studies.

    Science paper:
    Science

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Yale School of the Environment

    2

    Yale School of the Environment Vision and Mission

    We are leading the world toward a sustainable future with cutting-edge research, teaching, and public engagement on society’s evolving and urgent environmental challenges.

    Core Values

    Our Mission and Vision are grounded in seven fundamental values:

    Excellence: We promote and engage in path-breaking science, policy, and business models that build on a fundamental commitment to analytic rigor, data, intellectual integrity, and excellence.
    Leadership: We attract outstanding students nationally and internationally and offer a pioneering curriculum that defines the knowledge and skills needed to be a 21st century environmental leader in a range of professions.
    Sustainability: We generate knowledge that will advance thinking and understanding across the various dimensions of sustainability.
    Community: We offer a community that finds strength in its collegiality, diversity, independence, commitment to excellence, and lifelong learning.
    Diversity: We celebrate our differences and identify pathways to a sustainable future that respects diverse values including equity, liberty, and civil discourse.
    Collaboration: We foster collaborative learning, professional skill development, and problem-solving — and we strengthen our scholarship, teaching, policy work, and outreach through partnerships across the university and beyond.
    Responsibility: We encourage environmental stewardship and responsible behavior on campus and beyond.

    Guiding Principles

    In pursuit of our Mission and Vision, we:

    Build on more than a century of work bringing science-based strategies, ethical considerations, and conservation practices to natural resource management.
    Approach problems on a systems basis and from interdisciplinary perspectives.
    Integrate theory and practice, providing innovative solutions to society’s most pressing environmental problems.
    Address environmental challenges at multiple scales and settings — from local to global, urban to rural, managed to wild.
    Draw on the depth of resources at Yale University and our network of alumni who extend across the world.
    Create opportunities for research, policy application, and professional development through our unique centers and programs.
    Provide a diverse forum to convene conversations on difficult issues that are critical to progress on sustainability.
    Bring special focus on the most significant threats to a sustainable future including climate change, the corresponding need for clean energy, and the increasing stresses on our natural resources.

    Statement of Environmental Policy

    As faculty, staff, and students of the Yale School of the Environment, we affirm our commitment to responsible stewardship of the environment of our School, our University, the city of New Haven, and the other sites of our teaching, research, professional, and social activities.

    In the course of these activities, we shall strive to:

    Reduce our use of natural resources.
    Support the sustainable production of the resources we must use by purchasing renewable, reusable, recyclable, and recycled materials.
    Minimize our use of toxic substances and ensure that unavoidable use is in full compliance with federal, state, and local environmental regulations.
    Reduce the amount of waste we generate and promote strategies to reuse and recycle those wastes that cannot be avoided.
    Restore the environment where possible.

    Each member of the School community is encouraged to set an example for others by serving as an active steward of our environment.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton.

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 10:14 am on October 23, 2022 Permalink | Reply
    Tags: "EEFs": Enhanced-efficiency fertilizers, "MPNs": Metal-Phenolic Networks, "Smart fertilizers for food security", A primary research focus is engineering new fertilizer coatings for the controlled release of nutrients and inhibitors in a range of soil types., , , , , , Botany, , , , Fertilizers that increase nitrogen efficiency are being designed to boost crop productivity while reducing farming costs and environmental impact., , Granular urea is the most widely used form of N fertilizer in agriculture., How can more food be produced without further damage to the natural environment?, If the conversion to ammonia occurs before urea is fully dissolved in the soil ammonia is lost to the atmosphere before the plants can use it., Nitrogen (N) fertilizers, Nitrogen pollution causes loss of biodiversity; contributes to global warming; depletes stratospheric ozone; damages human health and imposes economic costs., , , , The ARC Research Hub for Innovative Nitrogen Fertilizers and Inhibitors ("Smart Fertilizers"),   

    From The University of Melbourne (AU): “Smart fertilizers for food security” 

    u-melbourne-bloc

    From The University of Melbourne (AU)

    10.20.22
    By Dr Shu Kee Lam, Dr Emma (Xia) Liang, Professor Uta Wille, Professor Hang-wei Hu, Professor Frank Caruso, Associate Professor Kathryn Mumford, Professor Bill Malcolm, Dr Baobao Pan, Professor Ji-zheng He, Associate Professor Helen Suter and Professor Deli Chen, University of Melbourne.

    Fertilizers that increase nitrogen efficiency are being designed to boost crop productivity while reducing farming costs and environmental impact.

    By 2050, we will need to feed a population of ten billion people, which is around 70 per cent more food than we currently produce.

    Factoring in the added challenges of climate change and ecosystem degradation, how can this extra food be produced without further damage to the natural environment?

    1
    Nitrogen fertilizers are used to produce half the world’s food supply. Picture: Getty Images.

    Crops – be they grains, cereals, fruits or vegetables – are integral to human food security given that they’re eaten directly as well as fed to animals.

    So, one key potential improvement is to increase fertilizer efficiency – particularly nitrogen (N) fertilizers – by using the right amounts of N when and where plants need it and finding ways to reduce N losses to the environment.

    Currently, N fertilizers are used to produce half the world’s food supply. However, 50 to 80 per cent of N applied to crops is lost from production [Nature (below)], polluting the natural environment in the form of nitrous oxide and ammonia emissions into the atmosphere as well as nitrate leaching and runoff to groundwater and waterways.

    Nitrogen pollution also causes loss of biodiversity, contributes to global warming, depletes stratospheric ozone, damages human health and imposes economic costs.

    DESIGNING SMART FERTILIZERS

    Enhanced-efficiency fertilizers (“EEFs”) exist but have not been adopted widely because of inconsistent performance across soils, crops, and climates, and uncertainty about economic benefits [Nature Food (below)].

    In 2021, the ARC Research Hub for Innovative Nitrogen Fertilizers and Inhibitors (“Smart Fertilizers”) was founded to overcome the limitations of existing EEFs.

    The Hub is a partnership between leading researchers and industries to deliver next-generation EEFs that increase the efficiency of nitrogen use by up to 20 per cent. The partnership will also develop decision-making tools to assist farmers in reducing costs and nitrogen loss to the environment.

    2
    Granular urea is the most widely used form of N fertilizer, but can be lost to the atmosphere before plants use it. Picture: Getty Images.

    In pursuing major breakthroughs in the design and development of EEFs, the Hub takes a multidisciplinary approach, integrating agronomy and soil science with synthetic chemistry, chemical engineering, plant physiology, plant biochemistry and economics.

    A primary research focus is engineering new fertilizer coatings for the controlled release of nutrients and inhibitors in a range of soil types, climatic conditions and diverse agroecosystems and land uses.

    Granular urea is the most widely used form of N fertilizer in agriculture. Urea is rapidly converted to ammonia through a reaction with water in the soil, and subsequently to nitrate, that plants take up.

    However, if the conversion to ammonia occurs before urea is fully dissolved in the soil, ammonia is lost to the atmosphere before the plants can use it.

    A recent study [Advanced Functional Materials (below)] that included researchers from the Smart Fertilizers Hub showed that Metal-Phenolic Networks (“MPNs”) can provide a physical barrier against water, controlling the dissolution of urea and its release into soil reducing the risk of N losses.

    This simple MPNs fabrication method is a new chapter in creating environmentally-friendly materials in controlled-release fertilizers.

    Another research focus is on the development of a new suite of inhibitors, which are small synthetic molecules that slow the conversion of urea to ammonia by inhibiting the activity of the enzyme urease (urease inhibitors) or slowing the microbial autotrophic oxidation of ammonia to nitrite and nitrate (nitrification inhibitors).

    3
    Proposed scenarios that harness plant signals for designing new fertilizer coatings. Picture: Supplied.

    The aim is to retain desirable forms of N in the soil for the plant and limit N losses.

    These new inhibitors will be tailored to different soils, climates and cropping systems, at the same time ensuring that their eventual degradation in the soil is environmentally benign.

    ‘LISTENING’ TO PLANTS

    The soil immediately around plant roots – the rhizosphere – is an especially active zone populated by billions of fungi, bacteria and other microbes.

    These microorganisms break down organic matter in the soil to produce nutrients that plants can use for growth and help plants to improve immunity and promote resistance to drought, salinity and N stresses.

    Research shows [Nature Reviews Microbiology (below)] that plants can influence how fungi and bacteria behave by sending chemical signals like sugars, organic acids, lipids and proteins, especially when lacking a specific nutrient or under stress.

    These messengers can be identified and incorporated into the coatings of fertilizer beads. Beneficial microbes are then attracted by these messengers to the plant root, improving the absorption of N and promoting the resistance of a crop to environmental stresses.

    EEF coating can also be designed to include sensors that respond to the signalling molecules released by plants suffering from N stress. When the sensors detect these stress molecules in the soil, the fertilizer is then released via the coating.

    COSTS AND BENEFITS OF SMART FERTILIZERS

    Farmers adopting new fertilizers need evidence of their consistent performance across soils, crops and climates as well as information about likely net benefits.

    Wider adoption of next-generation EEF technologies hinges on demonstrating the net benefits to farmers, which requires sharing relevant and plausible information to farmers and their networks.

    The Smart Fertilizers Hub team analyzed [Nature Food (below)] the results of 21 meta-analyses about the potential of EEFs to reduce N losses from food production systems, at both regional and global scales.

    This data shows that EEFs show a lot of promise for reducing N losses from agricultural systems. Considering the immense social costs associated with N pollution globally – US$200−2000 billion each year – EEFs have great potential to reduce these social costs.

    POLICY IMPLICATIONS

    By measuring the N loss pathways and yield benefits of existing and newly developed products in field trials, the agronomic, environmental and social benefits of the new fertilizer technologies developed by the Hub can then be evaluated.

    The Hub will develop indicators of N losses to allow farmers to understand the full impact of their fertilizer management practices on their production and on the environment.

    The team will map the potential benefits of new fertilizers [Global Environmental Change (below)], identify sources of added benefit in commercial value chains, while informing farmers and consumers about the usefulness of products grown using EEFs.

    Smart fertilizers avoids the social and environmental costs of N pollution, a benefit that will far outweigh the economic cost and a more efficient approach than cleaning up environmental damage afterwards.

    Sound policies that lead to the adoption of smart fertilizers are vital to achieving food security and environmental health for our growing population.

    Science papers:
    Nature 2015
    Nature Food
    Advanced Functional Materials
    Nature Reviews Microbiology 2020
    Nature Food
    Global Environmental Change 2021

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-melbourne-campus

    The University of Melbourne (AU) is an Australian public research university located in Melbourne, Victoria. Founded in 1853, it is Australia’s second oldest university and the oldest in Victoria. Times Higher Education ranks Melbourne as 33rd in the world, while the Academic Ranking of World Universities places Melbourne 44th in the world (both first in Australia).

    Melbourne’s main campus is located in Parkville, an inner suburb north of the Melbourne central business district, with several other campuses located across Victoria. Melbourne is a sandstone university and a member of the Group of Eight, Universitas 21 and the Association of Pacific Rim Universities. Since 1872 various residential colleges have become affiliated with the university. There are 12 colleges located on the main campus and in nearby suburbs offering academic, sporting and cultural programs alongside accommodation for Melbourne students and faculty.

    Melbourne comprises 11 separate academic units and is associated with numerous institutes and research centres, including the Walter and Eliza Hall Institute of Medical Research, Florey Institute of Neuroscience and Mental Health, the Melbourne Institute of Applied Economic and Social Research and the Grattan Institute. Amongst Melbourne’s 15 graduate schools the Melbourne Business School, the Melbourne Law School and the Melbourne Medical School are particularly well regarded.

    Four Australian prime ministers and five governors-general have graduated from Melbourne. Nine Nobel laureates have been students or faculty, the most of any Australian university.

     
  • richardmitnick 6:47 pm on October 17, 2022 Permalink | Reply
    Tags: "Aquaporins": a protein structure that regulate the movement of water molecules through cell membranes., "Plant water loss - it’s complicated", , , Botany, , , , Plant water loss: first described in 1889 might just be about to change.,   

    From The Australian National University (AU) Via “COSMOS (AU)” : “Plant water loss – it’s complicated” 

    ANU Australian National University Bloc

    From The Australian National University (AU)

    Via

    Cosmos Magazine bloc

    “COSMOS (AU)”

    10.17.22
    Matthew Cawood

    It has long been thought that plants lose water through the same pathway as they acquire CO2. New evidence that this isn’t the case – that water loss and CO2 acquisition may occur via different pathways – not only overturns more than a century of plant physiology: it suggests there may be new approaches to developing drought-resistant crop species.

    1
    New research on the mechanism of plant water loss reveals the role of humidity is important Credit: Witthaya Prasongsin Getty Images.

    Plant water loss mechanisms have been led by science’s long-standing assumption that stomata, the tiny orifices on leaf surfaces, are where CO2 enters the plant, and where water exits it.

    On warm days, it was thought, the stomata’s opening to allow the plant to acquire CO2 also allowed water from the humid area inside the leaf to diffuse into drier air.

    This water loss is costly, and one of the reasons it takes about 300 grams of water to grow one gram of plant dry matter.

    But 14 years of intermittent experiments by Dr Suan Chin Wong, a Visiting Fellow at Australian National University’s Farquhar Laboratory, and colleagues have revealed an equation more complex than just “CO2 in -> H2O out”.

    It has long been assumed that relative humidity inside the leaf is always 100% because there is no method directly measuring the relative humidity of the air inside leaves. But in the late 2000s, Wong did a series of experiments in which he found that the relative humidity inside cotton and sunflower leaves could be as low as 80%.

    In 2018, a collaboration with colleagues with access to new equipment fully corroborated his earlier findings, and sparked a more in-depth investigation into the cause.

    “It was thought that a plant taking in carbon dioxide couldn’t avoid losing water,” Wong says. “But we’re saying that it’s possible to take in CO2 and not lose water – at least, much less water than we thought possible.”

    Plant water loss: first described in 1889 might just be about to change.

    In the subsequent search for other mechanisms, the researchers identified a probable answer in “aquaporins”. Discovered in 1992 by American researcher Peter Agre – who won a 2003 Nobel Prize for his work – aquaporins are a protein structure that regulate the movement of water molecules through cell membranes. In humans, aquaporins regulate the water content of blood cells, are vital to kidney function, and to the flow of body fluids in general.

    And right now, as reported in a recent Nature Plants [below] paper, that’s where this long, patient scientific process currently rests – with an important new understanding, and many questions.

    The understanding that plant water loss and CO2 acquisition are on different control mechanisms overturns assumptions that have been in place since stomata were first described in 1889.

    ”I’ve been working on stomata for over 40 years,” Wong says ruefully, “and I only realised this in the last few months.”

    Next, the questions. Are aquaporins really influential in controlling plant water loss? How? And if that process is understood, what does that mean for future plant breeding? Particularly in a world where the temperature is climbing.

    “First we have to really pinpoint the mechanism that’s a work in regulating water loss,” says Wong. “And then we work out what it all means.”

    Science paper:
    Nature Plants

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ANU Campus

    The Australian National University (AU) is a world-leading university in Australia’s capital city, Canberra. Our location points to our unique history, ties to the Australian Government and special standing as a resource for the Australian people.

    Our focus on research as an asset, and an approach to education, ensures our graduates are in demand the world-over for their abilities to understand, and apply vision and creativity to addressing complex contemporary challenges.

    Australian National University (AU) is regarded as one of the world’s leading research universities, and is ranked as the number one university in Australia and the Southern Hemisphere by the 2021 QS World University Rankings. It is ranked 31st in the world by the 2021 QS World University Rankings, and 59th in the world (third in Australia) by the 2021 Times Higher Education.

    In the 2020 Times Higher Education Global Employability University Ranking, an annual ranking of university graduates’ employability, Australian National University (AU) was ranked 15th in the world (first in Australia). According to the 2020 QS World University by Subject, the university was also ranked among the top 10 in the world for Anthropology, Earth and Marine Sciences, Geography, Geology, Philosophy, Politics, and Sociology.

    Established in 1946, ANU is the only university to have been created by the Parliament of Australia. It traces its origins to Canberra University College, which was established in 1929 and was integrated into Australian National University (AU) in 1960. Australian National University (AU) enrolls 10,052 undergraduate and 10,840 postgraduate students and employs 3,753 staff. The university’s endowment stood at A$1.8 billion as of 2018.

    Australian National University (AU) counts six Nobel laureates and 49 Rhodes scholars among its faculty and alumni. The university has educated two prime ministers, 30 current Australian ambassadors and more than a dozen current heads of government departments of Australia. The latest releases of ANU’s scholarly publications are held through ANU Press online.

     
  • richardmitnick 5:21 pm on October 14, 2022 Permalink | Reply
    Tags: "Endangered fruit-eating animals play an outsized role in a tropical forest — losing them could have dire consequences", "Frugivores": the scientific term for animals that eat primarily fruit., , , Botany, , , , ,   

    From The University of Washington : “Endangered fruit-eating animals play an outsized role in a tropical forest — losing them could have dire consequences” 

    From The University of Washington

    1
    A view of the Atlantic Forest in Brazil’s Rio de Janeiro state. Credit: Adriano Gambarini/The Nature Conservancy.

    2
    The Superagüi lion tamarin, Leontopithecus caissara, is one of the endangered frugivores analyzed in the new study. Credit: Everton Leonardi.

    3
    The red-billed curassow, Crax blumenbachii, is another endangered frugivore in the Atlantic Forest. This male was photographed in Brazil’s Espírito Santo state in 2016. Credit: Brendan Ryan.

    A new study by researchers at the University of Washington shows that losing a particular group of endangered animals — those that eat fruit and help disperse the seeds of trees and other plants — could severely disrupt seed-dispersal networks in the Atlantic Forest, a shrinking stretch of tropical forest and critical biodiversity hotspot on the coast of Brazil.

    The findings, published Oct. 12 in the Proceedings of the Royal Society B [below], indicate that a high number of plant species in today’s Atlantic Forest rely on endangered frugivores — the scientific term for animals that eat primarily fruit — to help disperse their seeds throughout the forest. As a result, losing those endangered frugivores would leave a high proportion of plants without an effective means to disperse and regenerate — endangering these plants, reducing diversity in the Atlantic Forest and crippling critical portions of this ecosystem.

    “Tropical forests contain this incredible diversity of trees,” said lead author Therese Lamperty, a UW postdoctoral researcher in biology. “One of the main processes forests use to maintain this diversity is dispersal. If you’re not dispersed, you’re in a crowd of trees that are just like you – all competing for resources. And there are a lot of plant enemies already in the area or that can be easily recruited, like harmful animals or plant diseases. Your chance of survival is higher when you get transported away from your mother tree to an area without trees like you.”

    The Atlantic Forest, which lies east of the rainforests of the Amazon Basin, once encompassed an area twice the size of Texas. Some 85% of it has been lost over the centuries due to deforestation, industrial development and urbanization in eastern Brazil, according to The Nature Conservancy. The forest is home to a variety of frugivores, from primates to birds, which disperse seeds by regurgitating or excreting them. The seeds of some plant species can’t even germinate until they pass through the gastrointestinal tract of a frugivore.

    Lamperty and senior author Berry Brosi, a UW associate professor of biology, analyzed a dataset published in 2017 that incorporated data on the diet and distribution of fruit-eating vertebrates in the Atlantic Forest. The data, compiled from 166 studies spanning more than half a century, allowed Lamperty and Brosi to paint a comprehensive picture of the interactions between hundreds of frugivore species — 331 total — and 788 tree species.

    “For reference, the entire state of Washington only has 25 native tree species,” said Lamperty.

    Lamperty and Brosi deduced how important those frugivore species are for the forest by modeling how many tree species would be left without seed-dispersal partners if certain frugivores died out. According to the International Union for the Conservation of Nature, only 14% of the frugivore species they analyzed are endangered, but losing them left about 28% of the plant species they analyzed without a means of dispersing seeds. Losing endangered frugivores led to a worse outcome than losing even “generalist” frugivores, which eat fruits and nuts from a variety of species and were previously believed to be the most important group of frugivores for seed dispersal networks.

    “A lot of frugivores are generalists. But in the Atlantic Forest, it turns out that a lot of plants are specialists,” said Brosi. “The size and the toughness of their fruit and their distribution in the forest can really limit which animals can perform this important role for them.”

    Nearly 55% of the specialist plant species in the dataset relied solely on endangered frugivores to disperse their seeds.

    Losing a species — like an endangered frugivore — is bad enough. But this study serves as a reminder that what appears to be one loss has numerous “secondary effects,” said Lamperty. Researchers don’t always know these effects until in-depth studies that span years and incorporate many species linked by different interactions, like this one, are conducted. That can also keep the public unaware about the long-term consequences of losing endangered species.

    “It’s a reminder that we should try to understand better what ecological roles and interactions we lose when endangered animals disappear — not just these seed dispersal networks, but other roles, too,” said Lamperty. “Endangered animals have co-evolved with many species in these ecosystems, and I’m not sure we know enough about the roles they play in the health and well-being of places like the Atlantic Forest.”

    “It’s an alarming finding, and a sign that we should pay more attention to these interactions between species when considering conservation and land protections,” said Brosi.

    The study was funded by the U.S. Department of Defense, Emory University and the UW.

    For more information, contact Lamperty at jtl28@uw.edu and Brosi at bbrosi@uw.edu.

    Science paper:
    Proceedings of the Royal Society B

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    Stem Education Coalition

    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences, 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
  • richardmitnick 10:17 am on October 7, 2022 Permalink | Reply
    Tags: "DOE Funds Pilot Study Focused on Biosecurity for Bioenergy Crops", , , , , Botany, , , , Research into threats from pathogens and pests would speed short-term response and spark long-term mitigation strategies.,   

    From The DOE’s Brookhaven National Laboratory: “DOE Funds Pilot Study Focused on Biosecurity for Bioenergy Crops” 

    From The DOE’s Brookhaven National Laboratory

    10.6.22

    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Research into threats from pathogens and pests would speed short-term response and spark long-term mitigation strategies.

    1
    Pilot study on an important disease in sorghum (above) will develop understanding of threats to bioenergy crops, potentially speeding the development of short-term responses and long-term mitigation strategies. (Credit: U.S. Department of Energy Genomic Science program)

    The U.S. Department of Energy’s (DOE) Office of Science has selected Brookhaven National Laboratory to lead a new research effort focused on potential threats to crops grown for bioenergy production. Understanding how such bioenergy crops could be harmed by known or new pests or pathogens could help speed the development of rapid responses to mitigate damage and longer-term strategies for preventing such harm. The pilot project could evolve into a broader basic science capability to help ensure the development of resilient and sustainable bioenergy crops as part of a transition to a net-zero carbon economy.

    The idea is modeled on the way DOE’s National Virtual Biotechnology Laboratory (NVBL) pooled basic science capabilities to address the COVID-19 pandemic. With $5 Million in initial funding, allocated over the next two years, Brookhaven Lab and its partners will develop a coordinated approach for addressing biosecurity challenges. This pilot study will lead to a roadmap for building out a DOE-wide capability known as the National Virtual Biosecurity for Bioenergy Crops Center (NVBBCC).

    “A robust biosecurity capability optimized to respond rapidly to biological threats to bioenergy crops requires an integrated and versatile platform,” said Martin Schoonen, Brookhaven Lab’s Associate Laboratory Director for Environment, Biology, Nuclear Science & Nonproliferation, who will serve as principal investigator for the pilot project. “With this initial funding, we’ll develop a bio-preparedness platform for sampling and detecting threats, predicting how they might propagate, and understanding how pests or pathogens interact with bioenergy crops at the molecular level—all of which are essential for developing short-term control measures and long-term solutions.”

    The team will invest in new research tools—including experimental equipment and an integrating computing environment for data sharing, data analysis, and predictive modeling. Experiments on an important disease of energy sorghum, a leading target for bioengineering as an oil-producing crop, will serve as a model to help the team establish optimized protocols for studying plant-pathogen interactions.

    In addition, a series of workshops will bring together experts from a range of perspectives and institutions to identify partnerships within and outside DOE, as well as any future investments needed, to establish the full capabilities of an end-to-end biosecurity platform.

    “NVBBCC is envisioned to be a distributed, virtual center with multiple DOE-labs at its core to maximize the use of unique facilities and expertise across the DOE complex,” Schoonen said. “The center will support plant pathology research driven by the interests of the bioenergy crop community, as well as broader plant biology research that could impact crop health.”

    Building the platform

    2
    The pilot study experiments and workshops will be organized around four main themes: detection and sampling, biomolecular characterization, assessment, and mitigation.

    In this initial phase, the research will focus on energy sorghum. This crop’s potential oil yield per acre far exceeds than that of soybeans, currently the world’s primary source of biodiesel.

    “Sorghum is susceptible to a devastating fungal disease, caused by Colletotrichum sublineola, which can result in yield losses of up to 67 percent,” said John Shanklin, chair of Brookhaven Lab’s Biology Department and co-lead of the assessment theme. “Finding ways to thwart this pathogen is a high priority for the bioenergy crop community.”

    The NVBBCC team will use a range of tools—including advanced remote-sensing technologies, COVID-19-like rapid test strips, and in-field sampling—to detect C. sublineola. Additional experiments will assess airborne propagation of fungal spores, drawing on Brookhaven Lab’s expertise in modeling the dispersal of aerosol particles.

    The team will also use state-of-the-art biomolecular characterization tools—including cryo-electron microscopes in Brookhaven’s Laboratory for BioMolecular Structure (LBMS) and x-ray crystallography beamlines at the National Synchrotron Light Source-II (NSLS-II)—to explore details of how pathogen proteins and plant proteins interact. In addition, they’ll add a new tool—a cryogenic-focused ion beam—to produce samples for high-resolution three-dimensional cellular imaging and other advanced imaging modalities.

    Together, these experiments will reveal mechanistic details that provide insight into how plants respond to infections, including how some strains of sorghum develop resistance to C. sublineola. The team will also draw on extensive information about the genetic makeup of sorghum and C. sublineola to identify factors that control expression of the various plant and pathogen proteins.

    The program will be supported by an integrating computing infrastructure with access to sophisticated computational tools across the DOE complex and at partner institutions, enabling integrated data analysis and collaboration using community data standards and tools. The infrastructure will also provide capabilities to develop, train, and verify new analytical and predictive computer models, including novel artificial intelligence (AI) solutions.

    “NVBBCC will build on the Johns Hopkins University-developed SciServer environment, which has been used successfully in large data-sharing and analysis projects in cosmology and soil ecology,” said Kerstin Kleese van Dam, head of Brookhaven Lab’s Computational Science Initiative. “NVBBCC’s computational infrastructure will allow members to easily coordinate research across different domains and sites, accelerating discovery and response times through integrated knowledge sharing.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Brookhaven Campus

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC).

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map.

    Iconic view of the European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear] [Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .


    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II.

    BNL NSLS II.

    BNL Relative Heavy Ion Collider Campus.

    BNL/RHIC Phenix detector.


     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: