Tagged: Black Holes Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:55 pm on July 3, 2019 Permalink | Reply
    Tags: , , , Black Holes, , ,   

    From NASA Chandra: “X-rays Spot Spinning Black Holes Across Cosmic Sea” 

    NASA Chandra Banner

    NASA/Chandra Telescope


    From NASA Chandra

    2019-07-03

    1
    Quasars. Credit: NASA/CXC/Univ. of Oklahoma/X. Dai et al.

    Like whirlpools in the ocean, spinning black holes in space create a swirling torrent around them. However, black holes do not create eddies of wind or water. Rather, they generate disks of gas and dust heated to hundreds of millions of degrees that glow in X-ray light.

    Using data from NASA’s Chandra X-ray Observatory and chance alignments across billions of light years, astronomers have deployed a new technique to measure the spin of five supermassive black holes. The matter in one of these cosmic vortices is swirling around its black hole at greater than about 70% of the speed of light.

    The astronomers took advantage of a natural phenomenon called a gravitational lens.

    Gravitational Lensing NASA/ESA

    With just the right alignment, the bending of space-time by a massive object, such as a large galaxy, can magnify and produce multiple images of a distant object, as predicted by Einstein.

    In this latest research, astronomers used Chandra and gravitational lensing to study five quasars, each consisting of a supermassive black hole rapidly consuming matter from a surrounding accretion disk. Gravitational lensing of the light from each of these quasars by an intervening galaxy has created multiple images of each quasar, as shown by these Chandra images of four of the targets. The sharp imaging ability of Chandra is needed to separate the multiple, lensed images of each quasar.

    The key advance made by researchers in this study was that they took advantage of “microlensing,” where individual stars in the intervening, lensing galaxy provided additional magnification of the light from the quasar.

    Gravitational microlensing, S. Liebes, Physical Review B, 133 (1964): 835

    A higher magnification means a smaller region is producing the X-ray emission.

    The researchers then used the property that a spinning black hole is dragging space around with it and allows matter to orbit closer to the black hole than is possible for a non-spinning black hole. Therefore, a smaller emitting region corresponding to a tight orbit generally implies a more rapidly spinning black hole. The authors concluded from their microlensing analysis that the X-rays come from such a small region that the black holes must be spinning rapidly.

    The results showed that one of the black holes, in the lensed quasar called the “Einstein Cross,” (labeled Q2237 in the image above) is spinning at, or almost at, the maximum rate possible. This corresponds to the event horizon, the black hole’s point of no return, spinning at the speed of light, which is about 670 million miles per hour. Four other black holes in the sample are spinning, on average, at about half this maximum rate.

    For the Einstein Cross the X-ray emission is from a part of the disk that is less than about 2.5 times the size of the event horizon, and for the other 4 quasars the X-rays come from a region four to five times the size of the event horizon.

    How can these black holes spin so quickly? The researchers think that these supermassive black holes likely grew by accumulating most of their material over billions of years from an accretion disk spinning with a similar orientation and direction of spin, rather than from random directions. Like a merry-go-round that keeps getting pushed in the same direction, the black holes kept picking up speed.

    The X-rays detected by Chandra are produced when the accretion disk surrounding the black hole creates a multimillion-degree cloud, or corona above the disk near the black hole. X-rays from this corona reflect off the inner edge of the accretion disk, and the strong gravitational forces near the black hole distort the reflected X-ray spectrum, that is, the amount of X-rays seen at different energies. The large distortions seen in the X-ray spectra of the quasars studied here imply that the inner edge of the disk must be close to the black holes, giving further evidence that they must be spinning rapidly.

    The quasars are located at distances ranging from 9.8 billion to 10.9 billion light years from Earth, and the black holes have masses between 160 and 500 million times that of the sun. These observations were the longest ever made with Chandra of gravitationally lensed quasars, with total exposure times ranging between 1.7 and 5.4 days.

    A paper describing these results is published in the July 2nd issue of The Astrophysical Journal. The authors are Xinyu Dai, Shaun Steele and Eduardo Guerras from the University of Oklahoma in Norman, Oklahoma, Christopher Morgan from the United States Naval Academy in Annapolis, Maryland, and Bin Chen from Florida State University in Tallahassee, Florida.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 8:33 am on May 25, 2019 Permalink | Reply
    Tags: , , , Black Holes, , , , ,   

    From European Space Agency: “Two merging black holes” 

    ESA Space For Europe Banner

    From European Space Agency

    1

    20/05/2019

    Black holes are among the most fascinating objects in the Universe. Enclosing huge amounts of mass in relatively small regions, these compact objects have enormous densities that give rise to some of the strongest gravitational fields in the cosmos, so strong that nothing can escape – not even light.

    This artistic impression shows two black holes that are spiralling towards each other and will eventually coalesce. A black hole merger was first detected in 2015 by LIGO, the Laser Interferometer Gravitational-Wave Observatory, which detected the gravitational waves – fluctuations in the fabric of spacetime – created by the giant collision.

    Black holes and gravitational waves are both predictions of Albert Einstein’s general relativity, which was presented in 1915 and remains to date the best theory to describe gravity across the Universe.

    Karl Schwarzschild derived the equations for black holes in 1916, but they remained rather a theoretical curiosity for several decades, until X-ray observations performed with space telescopes could finally probe the highly energetic emission from matter in the vicinity of these extreme objects. The first ever image of a black hole’s dark silhouette, cast against the light from matter in its immediate surrounding, was only captured recently by the Event Horizon Telescope and published just last month.

    As for gravitational waves, it was Einstein himself who predicted their existence from his theory, also in 1916, but it would take another century to finally observe these fluctuations. Since 2015, the ground-based LIGO and Virgo observatories have assembled over a dozen detections, and gravitational-wave astronomy is a burgeoning new field of research.

    But another of Einstein’s predictions found observational proof much sooner: the gravitational bending of light, which was demonstrated only a few years after the theory had appeared, during a total eclipse of the Sun in 1919.

    In the framework of general relativity, any object with mass bends the fabric of spacetime, deflecting the path of anything that passes nearby – including light. An artistic view of this distortion, also known as gravitational lensing, is depicted in this representation of two merging black holes.

    One hundred years ago, astronomers set out to test general relativity, observing whether and by how much the mass of the Sun deflects the light of distant stars. This experiment could only be performed by obscuring the Sun’s light to reveal the stars around it, something that is possible during a total solar eclipse.

    On 29 May 1919, Sir Arthur Eddington observed the distant stars around the Sun during an eclipse from the island of Príncipe, in West Africa, while Andrew Crommelin performed similar observations in Sobral, in the north east of Brazil.

    Eddington/Einstein exibition of gravitational lensing solar eclipse of 29 May 1919

    The results, presented six months later, indicated that stars observed near the solar disc during the eclipse were slightly displaced, with respect to their normal position in the sky, roughly by the amount predicted by Einstein’s theory for the Sun’s mass to have deflected their light.

    “Lights All Askew in the Heavens,” headlined the New York Times in November 1919 to announce the triumph of Einstein’s new theory. This inaugurated a century of exciting experiments investigating gravity on Earth and in space, proving general relativity more and more precisely.

    We have made giant leaps over the past hundred years, but there is still much for us to discover. Athena, ESA’s future X-ray observatory, will investigate in unprecedented detail the supermassive black holes that sit at the centre of galaxies.


    LISA, another future ESA mission, will detect gravitational waves from orbit, looking for the low-frequency fluctuations that are released when two supermassive black holes merge and can only be detected from space.

    ESA/NASA eLISA

    ESA/NASA eLISA space based, the future of gravitational wave research

    Both missions are currently in the study phase, and are scheduled to launch in the early 2030s. If Athena and LISA could operate jointly for at least a few years, they could perform a unique experiment: observing the merger of supermassive black holes both in gravitational waves and X-rays, using an approach known as multi-messenger astronomy.

    We have never observed such a merger before: we need LISA to detect the gravitational waves and tell us where to look in the sky, then we need Athena to observe it with high precision in X-rays to see how the mighty collision affects the gas surrounding the black holes. We don’t know what happens during such a cosmic clash so this experiment, much like the eclipse of 1919 that first proved Einstein’s theory, is set to shake our understanding of gravity and the Universe.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 8:01 am on May 10, 2019 Permalink | Reply
    Tags: "Q&A: SLAC/Stanford researchers prepare for a new quantum revolution", , Black Holes, , , , , , , , Quantum squeezing, , The most exciting opportunities in quantum control make use of a phenomenon known as entanglement   

    From SLAC National Accelerator Lab- “Q&A: SLAC/Stanford researchers prepare for a new quantum revolution” 

    From SLAC National Accelerator Lab

    May 9, 2019
    Manuel Gnida

    Monika Schleier-Smith and Kent Irwin explain how their projects in quantum information science could help us better understand black holes and dark matter.

    The tech world is abuzz about quantum information science (QIS). This emerging technology explores bizarre quantum effects that occur on the smallest scales of matter and could potentially revolutionize the way we live.

    Quantum computers would outperform today’s most powerful supercomputers; data transfer technology based on quantum encryption would be more secure; exquisitely sensitive detectors could pick up fainter-than-ever signals from all corners of the universe; and new quantum materials could enable superconductors that transport electricity without loss.

    In December 2018, President Trump signed the National Quantum Initiative Act into law, which will mobilize $1.2 billion over the next five years to accelerate the development of quantum technology and its applications. Three months earlier, the Department of Energy had already announced $218 million in funding for 85 QIS research awards.

    The Fundamental Physics and Technology Innovation directorates of DOE’s SLAC National Accelerator Laboratory recently joined forces with Stanford University on a new initiative called Q-FARM to make progress in the field. In this Q&A, two Q-FARM scientists explain how they will explore the quantum world through projects funded by DOE QIS awards in high-energy physics.

    Monika Schleier-Smith, assistant professor of physics at Stanford, wants to build a quantum simulator made of atoms to test how quantum information spreads. The research, she said, could even lead to a better understanding of black holes.

    Kent Irwin, professor of physics at Stanford and professor of photon science and of particle physics and astrophysics at SLAC, works on quantum sensors that would open new avenues to search for the identity of the mysterious dark matter that makes up most of the universe.

    1
    Monika Schleier-Smith and Kent Irwin are the principal investigators of three quantum information science projects in high-energy physics at SLAC. (Farrin Abbott/Dawn Harmer/SLAC National Accelerator Laboratory)

    What exactly is quantum information science?

    Irwin: If we look at the world on the smallest scales, everything we know is already “quantum.” On this scale, the properties of atoms, molecules and materials follow the rules of quantum mechanics. QIS strives to make significant advances in controlling those quantum effects that don’t exist on larger scales.

    Schleier-Smith: We’re truly witnessing a revolution in the field in the sense that we’re getting better and better at engineering systems with carefully designed quantum properties, which could pave the way for a broad range of future applications.

    What does quantum control mean in practice?

    Schleier-Smith: The most exciting opportunities in quantum control make use of a phenomenon known as entanglement – a type of correlation that doesn’t exist in the “classical,” non-quantum world. Let me give you a simple analogy: Imagine that we flip two coins. Classically, whether one coin shows heads or tails is independent of what the other coin shows. But if the two coins are instead in an entangled quantum state, looking at the result for one “coin” automatically determines the result for the other one, even though the coin toss still looks random for either coin in isolation.

    Entanglement thus provides a fundamentally new way of encoding information – not in the states of individual “coins” or bits but in correlations between the states of different qubits. This capability could potentially enable transformative new ways of computing, where problems that are intrinsically difficult to solve on classical computers might be more efficiently solved on quantum ones. A challenge, however, is that entangled states are exceedingly fragile: any measurement of the system – even unintentional – necessarily changes the quantum state. So a major area of quantum control is to understand how to generate and preserve this fragile resource.

    At the same time, certain quantum technologies can also take advantage of the extreme sensitivity of quantum states to perturbations. One application is in secure telecommunications: If a sender and receiver share information in the form of quantum bits, an eavesdropper cannot go undetected, because her measurement necessarily changes the quantum state.

    Another very promising application is quantum sensing, where the idea is to reduce noise and enhance sensitivity by controlling quantum correlations, for instance, through quantum squeezing.

    What is quantum squeezing?

    Irwin: Quantum mechanics sets limits on how we can measure certain things in nature. For instance, we can’t perfectly measure both the position and momentum of a particle. The very act of measuring one changes the other. This is called the Heisenberg uncertainty principle. When we search for dark matter, we need to measure an electromagnetic signal extremely well, but Heisenberg tells us that we can’t measure the strength and timing of this signal without introducing uncertainty.

    Quantum squeezing allows us to evade limits on measurement set by Heisenberg by putting all the uncertainty into one thing (which we don’t care about), and then measuring the other with much greater precision. So, for instance, if we squeeze all of the quantum uncertainty in an electromagnetic signal into its timing, we can measure its strength much better than quantum mechanics would ordinarily allow. This lets us search for an electromagnetic signal from dark matter much more quickly and sensitively than is otherwise possible.

    2
    Kent Irwin (at left with Dale Li) leads efforts at SLAC and Stanford to build quantum sensors for exquisitely sensitive detectors. (Andy Freeberg/SLAC National Accelerator Laboratory)

    What types of sensors are you working on?

    Irwin: My team is exploring quantum techniques to develop sensors that could break new ground in the search for dark matter.

    We’ve known since the 1930s that the universe contains much more matter than the ordinary type that we can see with our eyes and telescopes – the matter made up of atoms. Whatever dark matter is, it’s a new type of particle that we don’t understand yet. Most of today’s dark matter detectors search for relatively heavy particles, called weakly interacting massive particles, or WIMPs.

    PandaX II Dark Matter experiment at Jin-ping Underground Laboratory (CJPL) in Sichuan, China

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB deep in Sudbury’s Creighton Mine

    LBNL LZ project at SURF, Lead, SD, USA

    But what if dark matter particles were so light that they wouldn’t leave a trace in those detectors? We want to develop sensors that would be able to “see” much lighter dark matter particles.

    There would be so many of these very light dark matter particles that they would behave much more like waves than individual particles. So instead of looking for collisions of individual dark matter particles within a detector, which is how WIMP detectors work, we want to look for dark matter waves, which would be detected like a very weak AM radio signal.

    In fact, we even call one of our projects “Dark Matter Radio.” It works like the world’s most sensitive AM radio. But it’s also placed in the world’s most perfect radio shield, made up of a material called a superconductor, which keeps all normal radio waves out. However, unlike real AM radio signals, dark matter waves would be able to go right through the shield and produce a signal. So we are looking for a very weak AM radio station made by dark matter at an unknown frequency.

    Quantum sensors can make this radio much more sensitive, for instance by using quantum tricks such as squeezing and entanglement. So the Dark Matter Radio will not only be the world’s most sensitive AM radio; it will also be better than the Heisenberg uncertainty principle would normally allow.

    What are the challenges of QIS?

    Schleier-Smith: There is a lot we need to learn about controlling quantum correlations before we can make broad use of them in future applications. For example, the sensitivity of entangled quantum states to perturbations is great for sensor applications. However, for quantum computing it’s a major challenge because perturbations of information encoded in qubits will introduce errors, and nobody knows for sure how to correct for them.

    To make progress in that area, my team is studying a question that is very fundamental to our ability to control quantum correlations: How does information actually spread in quantum systems?

    The model system we’re using for these studies consists of atoms that are laser-cooled and optically trapped. We use light to controllably turn on interactions between the atoms, as a means of generating entanglement. By measuring the speed with which quantum information can spread in the system, we hope to understand how to design the structure of the interactions to generate entanglement most efficiently. We view the system of cold atoms as a quantum simulator that allows us to study principles that are also applicable to other physical systems.

    In this area of quantum simulation, one major thrust has been to advance understanding of solid-state systems, by trapping atoms in arrays that mimic the structure of a crystalline material. In my lab, we are additionally working to extend the ideas and tools of quantum simulation in new directions. One prospect that I am particularly excited about is to use cold atoms to simulate what happens to quantum information in black holes.

    3
    Monika Schleier-Smith (at center with graduate students Emily Davis and Eric Cooper) uses laser-cooled atoms in her lab at Stanford to study the transfer of quantum information. (Dawn Harmer/SLAC National Accelerator Laboratory)

    What do cold atoms have to do with black holes?

    Schleier-Smith: The idea that there might be any connection between quantum systems we can build in the lab and black holes has its origins in a long-standing theoretical problem: When particles fall into a black hole, what happens to the information they contained? There were compelling arguments that the information should be lost, but that would contradict the laws of quantum mechanics.

    More recently, theoretical physicists – notably my Stanford colleague Patrick Hayden – found a resolution to this problem: We should think of the black hole as a highly chaotic system that “scrambles” the information as fast as physically possible. It’s almost like shredding documents, but quantum information scrambling is much richer in that the result is a highly entangled quantum state.

    Although precisely recreating such a process in the lab will be very challenging, we hope to look at one of its key features already in the near term. In order for information scrambling to happen, information needs to be transferred through space exponentially fast. This, in turn, requires quantum interactions to occur over long distances, which is quite counterintuitive because interactions in nature typically become weaker with distance. With our quantum simulator, we are able to study interactions between distant atoms by sending information back and forth with photons, particles of light.

    What do you hope will happen in QIS over the next few years?

    Irwin: We need to prove that, in real applications, quantum technology is superior to the technology that we already have. We are in the early stages of this new quantum revolution, but this is already starting to happen. The things we’re learning now will help us make a leap in developing future technology, such as universal quantum computers and next-generation sensors. The work we do on quantum sensors will enable new science, not only in dark matter research. At SLAC, I also see potential for quantum-enhanced sensors in X-ray applications, which could provide us with new tools to study advanced materials and understand how biomolecules work.

    Schleier-Smith: QIS offers plenty of room for breakthroughs. There are many open questions we still need to answer about how to engineer the properties of quantum systems in order to harness them for technology, so it’s imperative that we continue to broadly advance our understanding of complex quantum systems. Personally, I hope that we’ll be able to better connect experimental observations with the latest theoretical advances. Bringing all this knowledge together will help us build the technologies of the future.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC/LCLS


    SLAC/LCLS II projected view


    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

     
  • richardmitnick 9:45 am on April 14, 2019 Permalink | Reply
    Tags: "The Day Feynman Worked Out Black-Hole Radiation on My Blackboard", , , , Black Holes, , ,   

    From Nautilus: “The Day Feynman Worked Out Black-Hole Radiation on My Blackboard” 

    Nautilus

    From Nautilus

    Apr 11, 2019

    The amazing image of a black hole unveiled Wednesday, along with data from the Event Horizon Telescope, may not substantiate Stephen Hawking’s famous theory that radiation, an example of spontaneous emission at the quantum level, is emitted by a black hole.

    The first image of a black hole, Messier 87 Credit Event Horizon Telescope Collaboration, via NSF 4.10.19

    But the news did remind us of a story that physicist and writer Alan Lightman told Nautilus: Richard Feynman came up with the idea for spontaneous emission before Hawking. Here is Lightman in his own words:

    1
    After a few minutes, Richard Feynman had worked out the process of spontaneous emission, which is what Stephen Hawking became famous for a year later.Wikicommons

    “One day at lunch in the Caltech cafeteria, I was with two graduate students, Bill Press and Saul Teukolsky, and Feynman. Bill and Saul were talking about a calculation they had just done. It was a theoretical calculation, purely mathematical, where they looked at what happens if you shine light on a rotating black hole. If you shine it at the right angle, the light will bounce off the black hole with more energy than it came in with. The classical analogue is a spinning top. If you throw a marble at the top at the right angle, the marble will bounce off the top with more velocity than it came in with. The top slows down and the energy, the increased energy of the marble, comes from the spin of the top. As Bill and Saul were talking, Feynman was listening.

    We got up from the table and began walking back through the campus. Feynman said, ‘You know that process you’ve described? It sounds very much like stimulated emission.’ That’s a quantum process in atomic physics where you have an electron orbiting an atom, and a light particle, a photon, comes in. The two particles are emitted and the electron goes to a lower energy state, so the light is amplified by the electron. The electron decreases energy and gives up that extra energy to sending out two photons. Feynman said, ‘What you’ve just described sounds like stimulated emission. According to Einstein, there’s a well-known relationship between stimulated emission and spontaneous emission.’

    Spontaneous emission is when you have an electron orbiting an atom and it just emits a photon all by itself, without any light coming in, and goes to a lower energy state. Einstein had worked out this relationship between stimulated and spontaneous emission. Whenever you have one, you have the other, at the atomic level. That’s well known to graduate students of physics. Feynman said that what Bill and Saul were describing sounded like simulated emission, and so there should be a spontaneous emission process analogous to it.

    We’d been wandering through the campus. We ended up in my office, a tiny little room, Bill, Saul, me, and Feynman. Feynman went to the blackboard and began working out the equations for spontaneous emission from black holes. Up to this point in history, it had been thought that all black holes were completely black, that a black hole could never emit on its own any kind of energy. But Feynman had postulated, after listening to Bill and Saul talk at lunch, that if a spinning black hole can emit with light coming in, it can also emit energy with nothing coming in, if you take into account quantum mechanics.

    After a few minutes, Feynman had worked out the process of spontaneous emission, which is what Stephen Hawking became famous for a year later. Feynman had it all on my blackboard. He wasn’t interested in copying down what he’d written. He just wanted to know how nature worked, and he had just learned that isolated black holes are capable of emitting energy when you take into account quantum effects. After he finished working it out, he brushed his hands together to get the chalk dust off them, and walked out of the office.

    After Feynman left, Bill and Saul and I were looking at the blackboard. We were thinking it was probably important, not knowing how important. Bill and Saul had to go off to some appointment, and so they left the office. A little bit later, I left. But that night I realized this was a major thing that Feynman had done and I needed to hurry back to my office and copy down the equations. But when I got back to my office in the morning, the cleaning lady had wiped the blackboard clean.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
  • richardmitnick 10:28 am on March 30, 2019 Permalink | Reply
    Tags: "Hello Quantum Vacuum Nice to See You", , “Back action”, Black Holes, , , , , , Quantum radiation pressure noise, Quantum vacuum or ‘"nothingness"   

    From Louisiana State University: “Hello, Quantum Vacuum, Nice to See You” 

    From Louisiana State University

    March 25, 2019

    Elsa Hahne
    LSU Office of Research & Economic Development
    504-610-1950
    ehahne@lsu.edu

    Mimi LaValle
    LSU Department of Physics & Astronomy
    225-439-5633
    mlavall@lsu.edu

    Thomas Corbitt, associate professor at the LSU Department of Physics & Astronomy, and his team of researchers measure quantum behavior at room temperature, visible to the naked eye, as reported today in the journal Nature.

    1
    Thomas Corbitt in his lab, setting up a complex sequence of lasers.Elsa Hahne/LSU

    Since the historic finding of gravitational waves from two black holes colliding over a billion light years away was made in 2015, physicists are advancing knowledge about the limits on the precision of the measurements that will help improve the next generation of tools and technology used by gravitational wave scientists.

    Artist’s iconic conception of two merging black holes similar to those detected by LIGO Credit LIGO-Caltech/MIT/Sonoma State /Aurore Simonnet

    LSU Department of Physics & Astronomy Associate Professor Thomas Corbitt and his team of researchers now present the first broadband, off-resonance measurement of quantum radiation pressure noise in the audio band, at frequencies relevant to gravitational wave detectors, as reported today in the scientific journal Nature. The research was supported by the National Science Foundation, or NSF, and the results hint at methods to improve the sensitivity of gravitational-wave detectors by developing techniques to mitigate the imprecision in measurements called “back action,” thus increasing the chances of detecting gravitational waves.

    Corbitt and researchers have developed physical devices that make it possible to observe—and hear—quantum effects at room temperature. It is often easier to measure quantum effects at very cold temperatures, while this approach brings them closer to human experience. Housed in miniature models of detectors like LIGO (the Laser Interferometer Gravitational-Wave Observatory, one located in Livingston, La., and the other in Hanford, Wash.), these devices consist of low-loss, single-crystal micro-resonators—each a tiny mirror pad the size of a pin prick, suspended from a cantilever. A laser beam is directed at one of these mirrors, and as the beam is reflected, the fluctuating radiation pressure is enough to bend the cantilever structure, causing the mirror pad to vibrate, which creates noise.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    Gravitational wave interferometers use as much laser power as possible in order to minimize the uncertainty caused by the measurement of discrete photons and to maximize the signal-to-noise ratio. These higher power beams increase position accuracy but also increase back action, which is the uncertainty in the number of photons reflecting from a mirror that corresponds to a fluctuating force due to radiation pressure on the mirror, causing mechanical motion. Other types of noise, such as thermal noise, usually dominate over quantum radiation pressure noise, but Corbitt and his team, including collaborators at MIT, have sorted through them. Advanced LIGO and other second and third generation interferometers will be limited by quantum radiation pressure noise at low frequencies when running at their full laser power. Corbitt’s paper in Nature offers clues as to how researchers can work around this when measuring gravitational waves.

    2
    Thomas Corbitt looks through the custom-built device used to measure quantum radiation pressure noise. Elsa Hahne/LSU

    “Given the imperative for more sensitive gravitational wave detectors, it is important to study the effects of quantum radiation pressure noise in a system similar to Advanced LIGO, which will be limited by quantum radiation pressure noise across a wide range of frequencies far from the mechanical resonance frequency of the test mass suspension,” Corbitt said.

    Corbitt’s former academic advisee and lead author of the Nature paper, Jonathan Cripe, graduated from LSU with a Ph.D. in Physics last year and is now a postdoctoral research fellow at the National Institute of Standards and Technology:

    “Day-to-day at LSU, as I was doing the background work of designing this experiment and the micro-mirrors and placing all of the optics on the table, I didn’t really think about the impact of the future results,” Cripe said. “I just focused on each individual step and took things one day at a time. [But] now that we have completed the experiment, it really is amazing to step back and think about the fact that quantum mechanics—something that seems otherworldly and removed from the daily human experience—is the main driver of the motion of a mirror that is visible to the human eye. The quantum vacuum, or ‘nothingness,’ can have an effect on something you can see.”

    Pedro Marronetti, a physicist and NSF program director, notes that it can be tricky to test new ideas for improving gravitational wave detectors, especially when reducing noise that can only be measured in a full-scale interferometer:

    “This breakthrough opens new opportunities for testing noise reduction,” he said. The relative simplicity of the approach makes it accessible by a wide range of research groups, potentially increasing participation from the broader scientific community in gravitational wave astrophysics.”

    For more information from LSU Physics & Astronomy, visit http://www.phys.lsu.edu.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Louisiana State University (officially Louisiana State University and Agricultural and Mechanical College, commonly referred to as LSU) is a public coeducational university located in Baton Rouge, Louisiana. The university was founded in 1853 in what is now known as Pineville, Louisiana, under the name Louisiana State Seminary of Learning & Military Academy. The current LSU main campus was dedicated in 1926, consists of more than 250 buildings constructed in the style of Italian Renaissance architect Andrea Palladio, and occupies a 650-acre (2.6 km²) plateau on the banks of the Mississippi River.

    LSU is the flagship institution of the Louisiana State University System. In 2017, the university enrolled over 25,000 undergraduate and over 5,000 graduate students in 14 schools and colleges. Several of LSU’s graduate schools, such as the E.J. Ourso College of Business and the Paul M. Hebert Law Center, have received national recognition in their respective fields of study. Designated as a land-grant, sea-grant and space-grant institution, LSU is also noted for its extensive research facilities, operating some 800 sponsored research projects funded by agencies such as the National Institutes of Health, the National Science Foundation, the National Endowment for the Humanities, and the National Aeronautics and Space Administration.

    LSU’s athletics department fields teams in 21 varsity sports (9 men’s, 12 women’s), and is a member of the NCAA (National Collegiate Athletic Association) and the SEC (Southeastern Conference). The university is represented by its mascot, Mike the Tiger.

     
  • richardmitnick 5:50 pm on March 6, 2019 Permalink | Reply
    Tags: Black Holes, For an arbitrary process whose scrambling properties might not be known this method could be used to test whether—or even how much—it scrambles, If information is successfully teleported from one atom to another it means that the state of the first atom is spread out across all of the atoms, If the information was lost successful teleportation would not be possible, In terms of the difficulty of quantum algorithms that have been run we’re toward the top of that list, In the case of the new experiment Information seems lost but it’s actually still hidden in the correlations between the different particles, Information seems lost but it’s actually still hidden in the correlations between the different particles, it means that the state of the first atom is spread out across all of the atoms, , Quantum scrambling: a chaotic shuffling of the information stored among a collection of quantum particles, Researchers at the Joint Quantum Institute have implemented an experimental test for quantum scrambling, The final step relies on quantum teleportation—a method for transferring information between two quantum particles that are potentially very far apart, The protocol may one day help verify the calculations of quantum computers which harness the rules of quantum physics to process information in novel ways, the teleportation is over modest distances—just 35 microns separates the first atom from the seventh, This is a very complicated experiment to run and it takes a very high level of control, This is something that only happens if the information is scrambled   

    From Joint Quantum Institute: “Ion experiment aces quantum scrambling test” 

    JQI bloc

    From Joint Quantum Institute

    March 6, 2019
    Chris Cesare

    1
    Artist conception of information falling into a black hole. Researchers have implemented an experimental test for quantum scrambling, a chaotic shuffling of the information stored among a collection of quantum particles. The experiment was originally inspired by the physics of black holes. Quantum scrambling is one suggestion for how information can fall into a black hole and come out as random-looking radiation. Perhaps, the argument goes, it’s not random at all, and black holes are just excellent scramblers. (Credit E. Edwards/JQI)

    Researchers at the Joint Quantum Institute have implemented an experimental test for quantum scrambling, a chaotic shuffling of the information stored among a collection of quantum particles. Their experiments on a group of seven atomic ions, reported in the March 7 issue of Nature, demonstrate a new way to distinguish between scrambling—which maintains the amount of information in a quantum system but mixes it up—and true information loss. The protocol may one day help verify the calculations of quantum computers, which harness the rules of quantum physics to process information in novel ways.

    “In terms of the difficulty of quantum algorithms that have been run, we’re toward the top of that list,” says Kevin Landsman, a graduate student at JQI and the lead author of the new paper. “This is a very complicated experiment to run, and it takes a very high level of control.”

    The research team, which includes JQI Fellow and UMD Distinguished University Professor Christopher Monroe and JQI Fellow Norbert Linke, performed their scrambling tests by carefully manipulating the quantum behavior of seven charged atomic ions using well-timed sequences of laser pulses. They found that they could correctly diagnose whether information had been scrambled throughout a system of seven atoms with about 80% accuracy.

    “With scrambling, one particle’s information gets blended or spread out into the entire system,” Landsman says. “It seems lost, but it’s actually still hidden in the correlations between the different particles.”

    Quantum scrambling is a bit like shuffling a fresh deck of cards. The cards are initially ordered in a sequence, ace through king, and the suits come one after another. Once it’s sufficiently shuffled, the deck looks mixed up, but—crucially—there’s a way to reverse that process. If you kept meticulous track of how each shuffle exchanged the cards, it would be simple (though tedious) to “unshuffle” the deck by repeating all those exchanges and swaps in reverse.

    Quantum scrambling is similar in that it mixes up the information stored inside a set of atoms and can also be reversed, which is a key difference between scrambling and true, irreversible information loss. Landsman and colleagues used this fact to their advantage in the new test by scrambling up one set of atoms and performing a related scrambling operation on a second set. A mismatch between the two operations would indicate that the process was not scrambling, causing the final step of the method to fail.

    That final step relied on quantum teleportation—a method for transferring information between two quantum particles that are potentially very far apart. In the case of the new experiment, the teleportation is over modest distances—just 35 microns separates the first atom from the seventh—but it is the signature by which the team detects scrambling: If information is successfully teleported from one atom to another, it means that the state of the first atom is spread out across all of the atoms—something that only happens if the information is scrambled. If the information was lost, successful teleportation would not be possible. Thus, for an arbitrary process whose scrambling properties might not be known, this method could be used to test whether—or even how much—it scrambles.

    The authors say that prior tests for scrambling couldn’t quite capture the difference between information being hidden and lost, largely because individual atoms tend to look similar in both cases. The new protocol, first proposed by theorists Beni Yoshida of the Perimeter Institute in Canada, and Norman Yao at the University of California, Berkeley, distinguishes the two cases by taking correlations between particular particles into account in the form of teleportation.

    “When our colleague Norm Yao told us about this teleportation litmus test for scrambling and how it needed at least seven qubits capable of running many quantum operations in a sequence, we knew that our quantum computer was uniquely-suited for the job,” says Linke.

    The experiment was originally inspired by the physics of black holes. Scientists have long pondered what happens when something falls into a black hole, especially if that something is a quantum particle. The fundamental rules of quantum physics suggest that regardless of what a black hole does to a quantum particle, it should be reversible—a prediction that seems at odds with a black hole’s penchant for crushing things into an infinitely small point and spewing out radiation. But without a real black hole to throw things into, researchers have been stuck speculating.

    Quantum scrambling is one suggestion for how information can fall into a black hole and come out as random-looking radiation. Perhaps, the argument goes, it’s not random at all, and black holes are just excellent scramblers. The paper discusses this motivation, as well as an interpretation of the experiment that compares quantum teleportation to information going through a wormhole.

    “Regardless of whether real black holes are very good scramblers, studying quantum scrambling in the lab could provide useful insights for the future development of quantum computing or quantum simulation,” Monroe says.

    In addition to Landsman, Monroe and Linke, the new paper had four other coauthors: Caroline Figgatt, now at Honeywell in Colorado; Thomas Schuster at UC Berkeley; Beni Yoshida at the Perimeter Institute for Theoretical Physics; and Norman Yao at UC Berkeley and Lawrence Berkeley National Laboratory.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    JQI supported by Gordon and Betty Moore Foundation

    We are on the verge of a new technological revolution as the strange and unique properties of quantum physics become relevant and exploitable in the context of information science and technology.

    The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland (UMD), the National Institute of Standards and Technology (NIST) and the Laboratory for Physical Sciences (LPS). Each institution brings to JQI major experimental and theoretical research programs that are dedicated to the goals of controlling and exploiting quantum systems.

     
  • richardmitnick 3:07 pm on February 6, 2019 Permalink | Reply
    Tags: , , , Black Holes, , , , ,   

    From Niels Bohr Institute: “Catching a glimpse of the gamma-ray burst engine” 

    University of Copenhagen

    Niels Bohr Institute bloc

    From Niels Bohr Institute

    16 January 2019

    A gamma-ray burst registered in December of 2017 turns out to be “one of the closets GRBs ever observed”. The discovery is featured in Nature [co-authors are: Jonathan Selsing, Johan Fynbo, Jens Hjorth and Daniele Malesani from the Niels Bohr Institute, Giorgos Leloudas from the Technical University of Denmark and Kasper Heintz from University of Iceland] – and it has yielded valuable information about the formation of the most luminous phenomenon in the universe. Scientists from the Niels Bohr Institute at the University of Copenhagen helped carrying out the analysis.

    Jonatan Selsing frequently receives text messages from a certain sender regarding events in space. It happens all around the clock, and when his cell phone goes ‘beep’ he knows that yet another gamma-ray burst (GRB) notification has arrived. Which, routinely, raises the question: Does this information – originating from the death of a massive star way back, millions if not billions of years ago – merit further investigation?

    1
    The development in a dying star until the gamma ray burst forms. Attribution: National Science Foundation

    Gamma ray bursts – bright signals from space

    “GRBs represent the brightest phenomenon known to science – the luminous intensity of a single GRB may in fact exceed that of all stars combined! And at the same time GRBs – which typically last just a couple of seconds – represent one of the best sources available, when it comes to gleaning information about the initial stages of our universe”, explains Jonatan Selsing.

    He is astronomer and postdoc at Cosmic Dawn Center at the Niels Bohr Institute in Copenhagen. And he is one of roughly 100 astronomers in a global network set up to ensure that all observational resources needed can be instantaneously mobilized when the GRB-alarm goes off.

    Quick action must be taken when a gamma ray burst is registered

    The alarm sits on board the international Swift-telescope which was launched in 2004 – and has orbited Earth ever since with the mission of registering GRBs.

    NASA Neil Gehrels Swift Observatory

    Swift is capable of constantly observing one third of the night sky, and when the telescope registers a GRB – which on average happens a couple of times per week – it will immediately text the 100 astronomers. The message will tell where in space the GRB has been observed – whereupon the astronomer on duty must make a here-and-now decision:

    Is there reason to assume that this specific GRB is of such importance that we should ask the VLT-telescope in Chile to immediately take a closer look at it?

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    Or should we consider the information from Swift sheer routine, and leave it at that?

    On December 5th 2017 – just around 09 o’clock in the morning Copenhagen time – the GRB-alarm went off. Luca Izzo, Italian astronomer, was on duty – and Izzo did not harbor the slightest doubt: He right away alerted VLT – the Very Large Telescope in Chile – which is run by 11 European countries, including Germany, Great Britain, Italy, France, Sweden and Denmark.

    At that time it was early in the morning in Chile – 05 o’clock – and dawn was rapidly approaching, tells Jonatan Selsing: “For VLT to take a closer look at the GRB, action had to be taken immediately – since the telescope is only capable of working against a background of the night sky. And fortunately this was exactly what happened, when Izzo contacted VLT”.

    This is also why Luca Izzo is listed as first author of the scientific article describing this GRB – an article which has just been published in Nature, one of the world’s most influential scientific journals. The article is based on analyses of the VLT-recordings, and the recordings reveal that this GRB in more than one respect can be described as unusual, says Jonatan Selsing:

    “Not least because this is one of the closest GRBs ever observed. GRB171205A – which has since become the official name of this gamma-ray burst – originated a mere 500 million years ago, and has ever since traveled through space at the speed of light, i.e. at 300.000 kilometer per second”. Working closely with a number of his colleagues at the Niels Bohr Institute, Jonatan Selsing contributed to the Nature-article with an analysis which – put simply – represents “a glimpse” of the very engine behind a gamma-ray burst.

    Gamma ray bursts are the results of violent events in space

    When a massive star – rotating at very high speed – dies, its core may collapse, thus creating a so-called black hole.

    This computer-simulated image of a supermassive black hole at the core of a galaxy. Credit NASA, ESA, and D. Coe, J. Anderson

    A massive star may weigh up to 300 times more than the Sun, and due to combustion the star is transforming light elements to heavier elements. This process, which takes place in the core, is the source of energy not only in massive stars, but in all stars.

    Ashes – the by-product of combustion – may over time become such a heavy load that a massive star can no longer carry its own weight, which is why it finally collapses. When that happens, the outer layers will gradually fall towards the core – towards the black hole – at which point a disc is formed.

    Due to the star’s rotation, the disc will function as a dynamo creating a gigantic magnetic field – which will emit two jets, both going away from the black hole at a velocity close to the speed of light. During this process, the dying star is also releasing – spewing – matter, which lightens up with extreme intensity.
    This light is the very gamma-ray burst – the GRB itself. And the matter which is released from the center of the star is set free in the form of a so-called jet cocoon.

    The gamma ray burst confirms our assumptions about the elements stars produce

    “One of the unique features of GRB171205A is that it proved possible to determine which elements this gamma-ray burst released via the jet cocoon 500 million years ago. That was measured here at the Niels Bohr Institute, and that is our contribution to the Nature-article. These measurements were carried out via X-shooter – an extremely sensitive piece of equipment mounted on the VLT-telescope”, says Jonatan Selsing.

    X-shooter analyzed the VLT-footage of the gamma-ray burst – and this analysis led to the conclusion that the jet cocoon from GRB171205A contained iron, cobalt and nickel which had formed in the center of the star, explains Jonatan Selsing:

    “This corresponds with our theoretical expectations – and therefore also corroborates our model for a star-collapse of this magnitude. Being able to establish that it actually did happen in this way is, however, really special. That’s when you get a glimpse of the very engine behind a gamma-ray burst”.

    ESO X-shooter on VLT on UT2 at Cerro Paranal, Chile


    ESO X-shooter on VLT on UT2 at Cerro Paranal, Chile

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institute (Danish: Niels Bohr Institutet) is a research institute of the University of Copenhagen. The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the University of Copenhagen, by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institute.[1] Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.[2]

    During the 1920s, and 1930s, the Institute was the center of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institute.

    The University of Copenhagen (UCPH) (Danish: Københavns Universitet) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge, Yale University, The Australian National University, and UC Berkeley, amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient

     
  • richardmitnick 2:25 pm on January 22, 2019 Permalink | Reply
    Tags: , , , Black Holes, , , Sagittarius A*   

    From Harvard-Smithsonian Center for Astrophysics: “Lifting the Veil on the Black Hole at the Heart of Our Galaxy” 

    Harvard Smithsonian Center for Astrophysics


    From Harvard-Smithsonian Center for Astrophysics

    January 22, 2019

    Tyler Jump
    Public Affairs
    Center for Astrophysics | Harvard & Smithsonian
    +1 617-495-7462
    tyler.jump@cfa.harvard.edu

    1

    A black hole four million times as massive as our Sun lurks at the center of the Milky Way. This black hole, called Sagittarius A* (Sgr A*), swallows nearby material that glows brightly as it approaches the event horizon.

    SGR A and SGR A* from Penn State and NASA/Chandra

    This galactic furnace is key to understanding black holes, but our view of it is obscured by lumpy clouds of electrons throughout the Galaxy. These clouds stretch, blur, and crinkle the image of Sgr A*, making it appear as though the black hole is blocked by an enormous sheet of frosted glass.

    Now, a team of astronomers, led by Radboud University PhD student Sara Issaoun, have finally been able to see through these clouds and to study what makes the black hole glow. Issaoun completed this work while participating in the Predoctoral Program at the Smithsonian Astrophysical Observatory in Cambridge, MA.

    “The source of the radiation from Sgr A* has been debated for decades,” says Michael Johnson of the Center for Astrophysics | Harvard and Smithsonian (CfA). “Some models predict that the radiation comes from the disk of material being swallowed by the black hole, while others attribute it to a jet of material shooting away from the black hole. Without a sharper view of the black hole, we can’t exclude either possibility.”

    The team used the technique of Very Long Baseline Interferometry (VLBI), which combines many telescopes to form a virtual telescope the size of the Earth. The decisive advance was equipping the powerful ALMA array of telescopes in northern Chile with a new phasing system. This allowed it to join the GMVA, a global network of twelve other telescopes in North America and Europe.

    GMVA The Global VLBI Array

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    “ALMA itself is a collection of more than 50 radio dishes. The magic of the new ALMA Phasing System is to allow all these dishes to function as a single telescope, which has the sensitivity of a single dish more than 75 meters across. That sensitivity, and its location high in the Andes mountains, makes it perfect for this Sgr A* study,” says Shep Doeleman of the CfA, who was Principal Investigator of the ALMA Phasing Project.

    “The breakthrough in image quality came from two factors,” explains Lindy Blackburn, a radio astronomer at the CfA. “By observing at high frequencies, the image corruption from interstellar material was less significant, and by adding ALMA, we doubled the resolving power of our instrument.”

    The new images show that the radiation from Sgr A* has a symmetrical morphology and is smaller than expected – it spans a mere 300 millionth of a degree. “This may indicate that the radio emission is produced in a disk of infalling gas rather than by a radio jet,” explains Issaoun, who tested computer simulations against the images. “However, that would make Sgr A* an exception compared to other radio-emitting black holes. The alternative could be that the radio jet is pointing almost directly at us.”

    Issaoun’s supervisor Heino Falcke, Professor of Radio Astronomy at Radboud University, was surprised by this result. Last year, Falcke would have considered this new jet model implausible, but recently another set of researchers came to a similar conclusion using ESO’s Very Large Telescope Interferometer of optical telescopes and an independent technique. “Maybe this is true after all,” concludes Falcke, “and we are looking at this beast from a very special vantage point.”

    To learn more will require pushing these telescopes to even higher frequencies. “The first observations of Sgr A* at 86 GHz date from 26 years ago, with only a handful of telescopes. Over the years, the quality of the data has improved steadily as more telescopes join,” says J. Anton Zensus, director of the Max Planck Institute for Radio Astronomy.

    Michael Johnson is optimistic. “If ALMA has the same success in joining the Event Horizon Telescope at even higher frequencies, then these new results show that interstellar scattering will not stop us from peering all the way down to the event horizon of the black hole.”

    The results were published in The Astrophysical Journal.

    See the full article here .

    See also here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

     
  • richardmitnick 11:44 am on January 21, 2019 Permalink | Reply
    Tags: A huge flare from a black hole helps reveal how matter and energy are expelled, , , “Light echoes” — time lags between the x-ray light coming from two different areas around the black hole, , Black Holes, , , MAXI J1820+070,   

    From Scientific American: “Erupting Black Hole Shows Intriguing ‘Light Echoes'” 

    Scientific American

    From Scientific American

    Jan 11, 2019
    Clara Moskowitz

    1
    A black hole called MAXI J1820+070 emitted a huge flare of X-ray light that astronomers monitored over time to study how black holes swallow and spit out matter. Photo: NASA’s Goddard Space Flight Center.

    A huge flare from a black hole helps reveal how matter and energy are expelled

    We tend to think black holes gobble up all the matter around them — but they can actually spew out as much as they suck in. And sometimes they seem to go downright crazy.

    Astronomers recently spotted one black hole, nearly 10,000 light-years from Earth, belching out an enormous explosion of x-ray light. Measurements of this tantrum have given scientists one of the clearest pictures yet of what happens when black holes erupt with energy. “One of our big questions is how do we go from this process of material flowing into the black hole to this process of flowing out?” says astronomer Erin Kara of the University of Maryland, College Park, lead author of a paper on the findings, published this week in Nature. “We know this is happening but we don’t understand how it works in detail.” Kara presented the discovery Wednesday at the American Astronomical Society’s annual meeting in Seattle.

    The outburst began on March 11, 2018, and quickly transformed a black hole that had been totally invisible to telescopes into one of the brightest objects (in terms of x-ray light) in the entire sky. The object, called MAXI J1820+070, was first spotted by the Monitor of All-sky X-ray Image (MAXI) experiment on the International Space Station. Another observatory on the station, the Neutron star Interior Composition Explorer (NICER), monitored the flare with near-daily observations over the next few months.

    JAXA MAXI on the ISS

    NASA/NICER on the ISS

    Not only did astronomers measure the black hole brightening extremely over this time, they also observed what they called “light echoes” — time lags between the x-ray light coming from two different areas around the black hole. Some light travels straight from a region called the corona, made of electrons and other charged particles close in to the black hole. Farther out and perpendicular to the corona is the “accretion disk” — a wider pancake of gas swirling around the hole and falling into it. Other light comes out of the corona and bounces off this disk, arriving at the NICER detectors later. As NICER watched the eruption, the time between echoes became shorter and shorter, indicating the distance between the disk and corona was shrinking. The scientists had evidence the boundaries of the disk were not changing, so they concluded the corona itself must be getting shorter and thus light did not have to travel so far to reach the disk. “This is the clearest detection to date of these light echoes off of the gas falling into a stellar-mass black hole in our own galaxy,” says Dan Wilkins, an astrophysicist at Stanford University who was not involved in the study. “Being able to detect a change in the time delays between the echoes over the course of the outburst means we can start to learn about what is happening around the black hole.”

    2
    This illustration shows X-rays from the black hole’s corona (blue) echoing off its accretion disk (orange). Timing these echoes helped scientists determine that the corona was shrinking over time. Photo: NASA’s Goddard Space Flight Center

    Zeroing in on the corona is especially helpful because scientists think this region is likely the base from which powerful beams of particles and light, called relativistic jets, are launched. These jets travel close to light-speed and can be spotted coming from black holes across the universe. “The big fun of this paper, from my point of view, is that we really can ‘see’ the corona shrinking during the evolution of the outburst,” says Stephen Eikenberry of the University of Florida, a co-author on the new paper. “I don’t know of any real theoretical prediction for this ‘shrinkage’ nor of any prior observation of it, so this result will already require overhauling of the theories we have for jet formation.”

    The black hole in this study holds about 10 times the mass of the sun. The new observations should help astronomers understand not just star-size black holes like this one but also the gargantuan “supermassive” black holes that are located at the centers of galaxies and contain millions of times more mass. “These stellar-mass systems are a convenient analogue for supermassive black holes,” Kara says. “They have similar components, but we see outbursts over several weeks and months whereas for supermassive black holes it’s years.” The new findings support one theory for how supermassive black hole coronas are structured — called the “lamppost model” — which posits coronas are lightbulb-shaped blobs above and below the black hole, as opposed to diffuse clouds. “These new observations are exactly in line with the lamppost model,” Wilkins says. “Indeed, we observed very similar behavior during flares from supermassive black holes, seeing a change in the size of the corona.”

    Astronomers hope NICER, which launched in June 2017, and other new observatories will observe many more outbursts in the future and help fill in the missing details of erupting black holes. “It’s a really exciting time to be doing this,” says Joey Neilsen, a physicist at Villanova University and a co-author of the new paper. “We’re getting to a point where the observations are actually ahead of the theory. New missions are allowing us to see things that we hadn’t necessarily thought of before.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 10:44 am on January 21, 2019 Permalink | Reply
    Tags: , , , Black Holes, , , , , ,   

    Weizmann Institute of Science via Science Alert: “We Just Got Lab-Made Evidence of Stephen Hawking’s Greatest Prediction About Black Holes” 

    Weizmann Institute of Science logo

    Weizmann Institute of Science

    via

    ScienceAlert

    Science Alert

    21 JAN 2019
    MICHELLE STARR

    Scientists may have just taken a step towards experimentally proving the existence of Hawking radiation. Using an optical fibre analogue of an event horizon – a lab-created model of black hole physics – researchers from Weizmann Institute of Science in Rehovot, Israel report that they have created stimulated Hawking radiation.

    Under general relativity, a black hole is inescapable. Once something travels beyond the event horizon into the heart of the black hole, there’s no return. So intense is the gravitational force of a black hole that not even light – the fastest thing in the Universe – can achieve escape velocity.

    Under general relativity, therefore, a black hole emits no electromagnetic radiation. But, as a young Stephen Hawking theorised in 1974, it does emit something when you add quantum mechanics to the mix.

    This theoretical electromagnetic radiation is called Hawking radiation; it resembles black body radiation, produced by the temperature of the black hole, which is inversely proportional to its mass (watch the video below to get a grasp of this neat concept).

    This radiation would mean that black holes are extremely slowly and steadily evaporating, but according to the maths, this radiation is too faint to be detectable by our current instruments.

    So, cue trying to recreate it in a lab using black hole analogues. These can be built from things that produce waves, such as fluid and sound waves in a special tank, from Bose-Einstein condensates, or from light contained in optical fibre.

    “Hawking radiation is a much more general phenomenon than originally thought,” explained physicist Ulf Leonhardt to Physics World. “It can happen whenever event horizons are made, be it in astrophysics or for light in optical materials, water waves or ultracold atoms.”

    These won’t, obviously, reproduce the gravitational effects of a black hole (a good thing for, well, us existing), but the mathematics involved is analogous to the mathematics that describe black holes under general relativity.

    This time, the team’s method of choice was an optical fibre system developed by Leonhardt some years ago.

    The optical fibre has micro-patterns on the inside, and acts as a conduit. When entering the fibre, light slows down just a tiny bit. To create an event horizon analogue, two differently coloured ultrafast pulses of laser light are sent down the fibre. The first interferes with the second, resulting in an event horizon effect, observable as changes in the refractive index of the fibre.

    The team then used an additional light on this system, which resulted in an increase in radiation with a negative frequency. In other words, ‘negative’ light was drawing energy from the ‘event horizon’ – an indication of stimulated Hawking radiation.

    While the findings were undoubtedly cool, the end goal for such research is to observe spontaneous Hawking radiation.

    Stimulated emission is exactly what it sounds like – emission that requires an external electromagnetic stimulus. Meanwhile the Hawking radiation emanating from a black hole would be of the spontaneous variety, not stimulated.

    There are other problems with stimulated Hawking radiation experiments; namely, they are rarely unambiguous, since it’s impossible to precisely recreate in the lab the conditions around an event horizon.

    With this experiment, for example, it’s difficult to be 100 percent certain that the emission wasn’t created by an amplification of normal radiation, although Leonhardt and his team are confident that their experiment did actually produce Hawking radiation.

    Either way, it’s a fascinating achievement and has landed another mystery in the team’s hands, too – they found the result was not quite as they expected.

    “Our numerical calculations predict a much stronger Hawking light than we have seen,” Leonhardt told Physics World.

    “We plan to investigate this next. But we are open to surprises and will remain our own worst critics.”

    The research has been published in the journal Physical Review Letters.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Weizmann Institute Campus

    The Weizmann Institute of Science is one of the world’s leading multidisciplinary research institutions. Hundreds of scientists, laboratory technicians and research students working on its lushly landscaped campus embark daily on fascinating journeys into the unknown, seeking to improve our understanding of nature and our place within it.

    Guiding these scientists is the spirit of inquiry so characteristic of the human race. It is this spirit that propelled humans upward along the evolutionary ladder, helping them reach their utmost heights. It prompted humankind to pursue agriculture, learn to build lodgings, invent writing, harness electricity to power emerging technologies, observe distant galaxies, design drugs to combat various diseases, develop new materials and decipher the genetic code embedded in all the plants and animals on Earth.

    The quest to maintain this increasing momentum compels Weizmann Institute scientists to seek out places that have not yet been reached by the human mind. What awaits us in these places? No one has the answer to this question. But one thing is certain – the journey fired by curiosity will lead onward to a better future.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: