Tagged: Biosignatures Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:30 pm on December 3, 2022 Permalink | Reply
    Tags: "A space telescope please – but a sustainable one if possible", "LIFE" (Large Interferometer For Exoplanets), , Biosignatures, , ,   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “A space telescope please – but a sustainable one if possible” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    Dr. Daniel Angerhausen

    Daniel Angerhausen believes that fundamental research is essential, especially in the current crisis. Still, he wonders if we shouldn’t extend the idea of sustainability into the infinite reaches of outer space.

    “It is one of the great questions of humanity: “Are we alone in the universe?” Our generation is the first in history to have the technology capable of finding life on other planets. But at the same time, we are the generation facing the greatest challenge in history: keeping the Earth habitable for our civilization. It is the only planet in the universe where we know for sure that life exists.

    The LIFE space telescope is to consist of several satellites flying in formation. The telescope uses infrared light to study the atmospheres of distant planets. (Visualisations: ETH Zürich)

    As temperatures on our planet rise and extreme weather events become more and more frequent, our team at ETH is planning a mission to search for life among the stars. I am often asked whether we have our priorities in order; whether it makes sense to spend so much (tax) money on space exploration when we have other problems on our planet to solve. But I believe there is no contradiction: fundamental research is one of the most important investments we can make in the future – especially now in these times of crisis. But we researchers also have to do our homework when it comes to sustainability.

    Here’s my example: The main goal of the upcoming space mission “LIFE” (Large Interferometer For Exoplanets), which I’m working on at ETH, is to systematically search our galactic neighborhood for planets that could contain life. LIFE will search for warm and rocky planets within a radius of about 100 light years and test their atmospheres for biosignatures such as combinations of oxygen and methane. Thanks to this new generation of telescopes, we will be able to find out if there is extraterrestrial life in our cosmic backyard.

    Research is money well spent…

    There’s a lot to be said for sticking with space exploration. It’s not like we’re shoveling millions of dollar bills into rockets just to burn them up in orbit. A large portion of the funding for scientific projects, especially at universities and colleges, goes towards training young researchers. Most of them will leave academia after graduation and make a positive contribution to society in a variety of ways.

    Another large share of the funds goes to the development of new technologies, which often lead to practical commercial applications. We can show that every dollar spent on space exploration flows back to society three to five times over – just not timed with election cycles, unfortunately. The fact that almost every one of us nowadays has a smartphone with a megapixel camera in their pocket with which to surf the internet is due largely to investments in science over the last century. If we are to have any chance at all of preventing the worst consequences of the climate catastrophe, one reason will be that we have done so much research in the past and can now apply these research results in modern technologies. In this respect, fundamental research is a bit like an old-​age pension scheme for society.

    …but must become more sustainable!

    Still, as the climate catastrophe looms, I ask myself how I can justify building a space telescope that will – as of today – probably have a fairly sizable carbon footprint. Is the question of life in outer space really so important that we will allocate some of our limited greenhouse gas budget to it? All while our planet becomes less habitable for our form of society and many other animal and plant species?

    When I talk to other researchers who feel the same way, we comfort each other with the thought that some of our research on exoplanet atmospheres may help us to better understand Earth’s atmosphere as well. That the students we teach, who learn on and from a mission like LIFE, will soon develop the technologies that will rescue us from our desperate situation. Or that our thought experiments about extraterrestrial civilizations will make us think about our own behaviour as a planetary society and take it in a new direction.

    Ideas from the scientific community in demand

    None of this is wrong, but we still need to ask how we can make a mission like LIFE – and fundamental research in general – sustainable, climate-​friendly and socially responsible. I don’t have any answers yet, but I hope that some of you reading this can contribute pieces to this vital puzzle. A first step would be a life-​cycle assessment for LIFE, perhaps with the help of other researchers from the ETH community. Do you think artificial intelligence, new materials or reforms in research funding could be the key? Do you have experience in making similar projects sustainable? If so, please get in touch. Let’s have this conversation and find some answers!

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology, Stanford University and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology, Stanford University, California Institute of Technology, Princeton University, University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

  • richardmitnick 11:06 am on November 12, 2022 Permalink | Reply
    Tags: "Shields Up - Red Dwarf Worlds Might Adapt to Hostile Systems", , , , Biosignatures, , , , , Worlds around red dwarf stars might build an ozone “shield” in response to stellar flares.   

    From “Sky & Telescope” : “Shields Up – Red Dwarf Worlds Might Adapt to Hostile Systems” 

    From “Sky & Telescope”

    Elise Cutts

    Worlds around red dwarf stars might build an ozone “shield” in response to stellar flares.

    An artist’s impression of a flaring red dwarf and its exoplanet. Credit: J. Fohlmeister/AIP.

    In the hunt for habitable exoplanets, red dwarf stars — also known as M dwarfs — make tempting targets. Not only are these stars extremely common, it’s also easier to observe terrestrial planets in their habitable zones, where they can potentially host water on their surfaces, than it is to find rocky worlds orbiting stars like our Sun. But M dwarfs are also incredibly volatile, blasting any would-be biospheres on their habitable zone planets with high-energy radiation.

    However, new findings suggest that habitable worlds orbiting red dwarfs might not be completely defenseless against their systems’ turbulent stellar weather. Simulation results, to be published in the MNRAS [below], show that repeated stellar flares could build up a “shielding layer” of ozone on such planets, offering some protection from future flares.

    Habitable Worlds?

    “Planets orbiting M dwarfs are our best chance in the next 20 years for finding signs of life outside the solar system,” says exoplanet researcher Ian Crossfield (University of Kansas). While today’s telescopes aren’t powerful enough to glimpse the atmospheres of rocky worlds around stars like our Sun, he adds, “there’s a small number of planets orbiting the smallest and coolest of the M stars that we might be able to make some very interesting atmospheric measurements for.”

    The question, then, is whether these worlds really could be habitable — or if there’s something about M stars that’s fundamentally incompatible with supporting life. And there are reasons to wonder.

    Red dwarfs are much smaller and cooler than the Sun, so their planets must orbit much closer to fall within the habitable zone. This forces those planets into a tidal lock, which keeps one side facing star-wards, sweltering, while the dark side freezes.

    M dwarfs are also far more active than Sun-like stars. As frequently as once a month, they can fling out flares and particles in events as powerful as the most powerful in all the Sun’s recorded history. It’s even possible that these flares, as well as violent eruptions of charged particles known as coronal mass ejections, could strip planets their atmospheres altogether.

    This artist’s conception of a powerful stellar flare from red dwarf star Proxima Centauri shows an accompanying coronal mass ejection that’s sending material out into space. Credit: S. Dagnello / NRAO / AUI / NSF.

    Previous studies leave room for hope, though, since red dwarfs tend to flare from their poles, which might spare planets the worst of their blasts. And assuming that planets around M dwarfs can hold onto their atmospheres, flares would still leave a mark on their chemical composition.

    Ozone Shield

    To understand how flares might meddle with the atmospheres of potentially habitable M dwarf planets, researchers created a computer model of such a planet and subjected it to simulated flares. The results showed that flares could increase the amount of UV-blocking ozone in the atmosphere 20-fold.

    “The surprising thing in our result was that actually ozone grows quite rapidly once we actually ‘turn on’ the flares,” says study lead Robert Ridgway (University of Exeter, UK).

    In the simulations, this shielding layer cuts UV radiation from subsequent flayers by 85%, although even the reduced UV index of 55 would still be high by terrestrial standards. (Typical UV indices on Earth range from 0 to 10.)

    To simplify matters, the simulations assume the planet starts with an Earth-like atmosphere full of oxygen, Ridgway said, and Earth didn’t have such an oxygen-rich atmosphere until life was already well-established. “Something we plan to look at with future work is what happens in a more anoxic environment,” which might be more realistic, he continued.

    Understanding Biosignatures

    Coronal mass ejections in the simulations also built up nitrous oxide in the atmosphere. This gas, as well as ozone, is considered a possible indicator of life, or biosignature. As astronomers search for such life signs in exoplanet atmospheres, they’ll need to know how likely it is that they could be made by abiotic processes, like stellar flares, instead. Simulations like this one can help provide that information.

    “The detection of life outside the solar system, if it happens someday, it’s going to be probably the single most consequential result in all of the field of exoplanets,” said Crossfield. “So it really pays to be extremely careful.”

    Science paper:

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

  • richardmitnick 12:41 pm on November 4, 2022 Permalink | Reply
    Tags: "A Dream of Discovering Alien Life Finds New Hope", A newfound Earth-size planet dubbed SPECULOOS-2c, , , , , , Biosignatures, , , , The search for signs of extraterrestrial life happens under an unavoidable spotlight.   

    From “Quanta Magazine” : “A Dream of Discovering Alien Life Finds New Hope” 

    From “Quanta Magazine”

    Joshua Sokol

    For Lisa Kaltenegger and her generation of exoplanet astronomers, decades of planning have set the stage for an epochal detection.

    Lisa Kaltenegger, pictured at Cornell University’s Fuertes Observatory, hopes to identify the first candidate living planets. Credit: Sasha Maslov for Quanta Magazine

    “One of the many times Lisa Kaltenegger’s dream jolted a little closer toward reality was on a cold April morning a decade ago at an astronomy conference. She was clutching what she recalls was a terrible, just awful cup of coffee, not because she was going to drink any more of it but because she had waited in line and it was warm in her hands. Then Bill Borucki veered in her direction.

    She readied herself to tell him to avoid the coffee. But Borucki, head of NASA’s Kepler mission, a space telescope designed to hunt for planets orbiting other stars (or “exoplanets”), had something else to discuss.

    Kepler had glimpsed its first two Earth-size exoplanets with a decent chance of having liquid water on their surfaces. These were the sort of strange new worlds that everyone at the conference — and possibly most of the human race — had imagined at least once. Would Kaltenegger confirm that the planets might be habitable?

    Kaltenegger, at the time an astrophysicist at the Max Planck Institute for Astronomy in Heidelberg, Germany, started running new climate models before the conference was over, incorporating basic facts like the planets’ diameters and the lukewarm glow of their star. Her ultimate answer: a qualified yes [The Astrophysical Journal Letters (below)]. The planets might be suitable for life, or at least for liquid water; they could even be water worlds, encased in endless oceans without a single rocky outcrop poking above the waves. The caveat was that she would need more advanced observations to be sure.

    Kaltenegger has since become perhaps the world’s leading computer modeler of potentially habitable worlds. In 2019, when another exoplanet-hunting NASA spacecraft called TESS found its own first rocky, temperate worlds[ The Astrophysical Journal Letters (below)], she was called on again to play the role of cosmic home inspector.

    Most recently, the Belgium-based SPECULOOS survey reached out for her help understanding a newfound Earth-size planet [Astronomy & Astrophysics (below)] dubbed SPECULOOS-2c that’s precariously close to its star.

    She and her colleagues completed an analysis, uploaded as a preprint [The Astrophysical Journal Letters (below)] in September, showing that SPECULOOS-2c’s water could be in the process of steaming away like sauna vapor, as any seas of Venus did long ago and as Earth’s own oceans will begin to do in half a billion years. Telescope observations should be able to tell within a few years if that’s happening, which will help reveal our own planet’s future and further demarcate the knife’s-edge distinction between hostile and habitable worlds across the galaxy.

    In simulating ersatz Earths and more speculative visions of living planets, Kaltenegger leverages the bizarre life and geology found on Earth to develop a more systematic set of expectations about what might be possible elsewhere. “I’m trying to do the fundamentals,” she told me during a recent visit to Cornell University, where she leads an institute named for Carl Sagan, another charismatic Ithaca-based astronomer with big ideas about ending humanity’s lonely sojourn in the cosmos.

    Kaltenegger’s office decor includes orreries, a telescope, a puzzle and an autographed photo of Carl Sagan, a previous occupant of the same office. Credit: Sasha Maslov for Quanta Magazine .

    Her overarching quest — the search for alien life — is entering an unprecedented phase. Barring the bolt-from-the-blue arrival of something like an extraterrestrial radio broadcast, most astronomers believe that our best near-term chance of encountering other life in the cosmos is to detect biosignature gases — gases that could only have come from life — floating in exoplanets’ atmospheres. The sort of remote measurement necessary to make that kind of detection has strained the capabilities of even humanity’s most advanced observatories. But with the James Webb Space Telescope (JWST) now in its first few months of observations, such a discovery has become possible.

    Over the next few years, the enormous space telescope will closely scrutinize a handful of rocky worlds that are regarded as most likely to be habitable, probably including the new SPECULOOS-2c. At minimum, JWST’s studies should discern whether these planets have atmospheres; they might also show that some are dripping with liquid water. Most optimistically — if biospheres bloom easily from Earth-like worlds — the telescope may detect odd ratios of, say, carbon dioxide, oxygen and methane on one of these planets. Astronomers may then be sorely tempted to attribute the concoction to the presence of an extraterrestrial ecosystem.

    Finding biosignatures will require Kaltenegger and a small group of her peers to squeeze certainty from exceedingly few photons. Not only will the atmospheric signals they’re looking for be weak, but she and her colleagues must model a planet’s possible interplay of starlight, rock and air accurately enough to be sure that nothing besides life could explain the presence of a particular atmospheric gas. Any such analysis must navigate between a Scylla and Charybdis, avoiding both false negatives — life was there but you missed it — and false positives that find life where there is none.

    Getting it wrong carries consequences. Unlike most scientific endeavors, the search for signs of extraterrestrial life happens under an unavoidable spotlight, and in a turbocharged information ecosystem where any scientist crying “Life!” warps the fabric of funding, attention and public trust. Kaltenegger herself recently had a front-row seat to just such an episode.

    Her generation faces another pressure, one I intended to pose delicately but ended up blurting out just an hour after meeting her. She and her colleagues began their careers at the dawn of the era of exoplanets. Now they’re in a race to discover life on one before they die.

    Planetary Dreamers

    The modern search for biosignatures began almost immediately after the 1995 discovery of the first exoplanet — a gas giant — that orbited a sunlike star. Planet-hunting soon became fractious and competitive, a race for headlines. Some senior astronomers doubted that the flashy, resource-hungry subfield could deliver much more than one-off measurements of a few unique planets. “People were openly skeptical, and some people were angrily against it,” said Sara Seager, an exoplanet astronomer at the Massachusetts Institute of Technology. Meanwhile, enclaves of like-minded researchers started gathering at workshops to explore an open sky’s worth of new questions. “We never said no to any idea,” said Seager, who was a graduate student at the time.

    Kaltenegger was a freshman at university when news of the first giant exoplanets dropped. She had grown up in a small town in Austria, with parents who supported her interests in math, physics and languages; the town librarians knew her so well they would give her the new books they hadn’t yet categorized. “Everything was possible,” she said of her upbringing. At the University of Graz, she was drawn to the new quest for new worlds. Seager, who met Kaltenegger at a summer school program in 1997, now lauds the remarkable boldness that led an undergraduate to join a subfield that was still so fringe and ephemeral. “Being able to be there at the beginning — it wasn’t just a coincidence,” Seager said. By the end of Kaltenegger’s undergraduate studies, she had coaxed funding from the European Union and invited herself into an open spot at an observatory in Tenerife on the Canary Islands. There she spent long, coffee-addled nights hunting exoplanets, listening to a postdoc’s Dire Straits album on loop before stumbling outside to see the sun rise over a lava-strewn landscape.

    Meanwhile, the space agencies were getting in on the action. In 1996, a NASA administrator, Dan Goldin, publicized a plan that would effectively have sprinted straight from the discovery of the first gas giant exoplanets all the way to the end zone. His plan called for massive space-based observatories, dubbed Terrestrial Planet Finders, that could take detailed spectroscopic measurements of alien Earths, breaking their light into its component colors to understand their chemical makeup.

    Better still, Goldin wanted actual pictures of planets. In 1990 NASA’s Voyager probe, at Sagan’s behest, had snapped a photo of home from out beyond the orbit of Neptune, reducing our entire living, breathing, fragile world to a pale blue dot suspended in a void.

    What if we could see another pale blue dot out there twinkling in the black?

    The European Space Agency scoped out its own version of a[n] Earth twin-scouting, life-finding mission, called Darwin. Kaltenegger, then 24, applied to work on it and got the job. “I asked myself: If you live in a time where you can figure out if we are alone in the universe, and if I can help?” she said at Cornell, sporting a turquoise gem necklace symbolizing a pale blue dot and balancing a teacup on her knee. “Looking back on my life, that’s probably what I want to have done.” She was tasked with considering the mission’s design trade-offs and drafting the list of stars that Darwin’s fleet of telescopes should scan for planets; in parallel, she pursued her doctorate.

    But in the 2000s, visions of grand alien-hunting telescopes crumbled on both sides of the Atlantic. Darwin studies fizzled in 2007. One reason was JWST’s own sagging development schedule, which ate up budgets and attention spans. Another was scientific doubt: At the time, astronomers had no clue what fraction of the Milky Way’s stars have rocky planets with the possibility of a stable, temperate climate.

    That fraction would turn out to be about one in five, as revealed by the Kepler space telescope, which launched in 2009 and went on to discover thousands of exoplanets. A Terrestrial Planet Finder mission, should one be resurrected, would have plenty of places to point.

    Since Kepler’s launch, though, pragmatic compromises have led astrobiologists to dream smaller, diverting their resources down a humbler path. An observatory like Darwin could have picked out the signal of a rocky planet next to a much brighter star — a challenge often compared to taking a picture of a firefly as it flits around a searchlight. But now there’s another, cheaper way.

    Seager and the Harvard astronomer Dimitar Sasselov dreamed up the alternative method in 2000 [The Astrophysical Journal (below)] — a way to sniff into an exoplanet’s atmosphere even if light from the planet and its star are blended together. First, telescopes look for planets that “transit,” crossing in front of their star as seen from Earth’s perspective, which causes a slight diminution in the starlight.

    These transits are rich with information. During a transit, a star’s spectrum sprouts new bumps and wiggles, because some of the starlight shines through the ring of atmosphere around the planet and molecules in the atmosphere absorb light of specific frequencies. Artful analysis of the spectral wiggles reveals the high-altitude chemistry responsible. The Hubble Space Telescope started testing this technique in 2002, finding sodium vapor [The Astrophysical Journal (below)] around a faraway gas giant planet; along with other telescopes, it has since repeated the trick on dozens of targets.

    Now the universe just needed to cough up some suitable Earth-like worlds to look at.

    Exoplanet surveys seemed to encounter plenty of overcooked Jupiters and undersize Neptunes around other stars, but rocky planets with the potential for liquid water remained scarce until the Kepler era. By the mid-2010s, Kepler had shown that Earth-size worlds are common; it even spotted some potentially habitable ones transiting in front of their stars, like the pair Kaltenegger modeled for Borucki. Still, the specific examples Kepler turned up were too far away for good follow-up study. Meanwhile, in 2016 astronomers found that the nearest star to Earth, Proxima Centauri, has a potentially habitable Earth-size planet.

    But that planet doesn’t transit its star.

    In 2009, Kaltenegger, then at Harvard and shaping the field in her own right, and a collaborator, Wesley Traub, added yet another qualification. They thought about what it would take for an alien civilization to detect biosignature gases on Earth [The Astrophysical Journal (below)] — a planet with a relatively tight blanket of atmosphere, transiting a bright star. They realized that a telescope like JWST would see only tiny signals from atmospheric gases during each transit, so in order to achieve any statistical certainty, astronomers would need to observe dozens or even hundreds of transits, which would take years. Acting on this insight, astronomers started to seek Earths in close orbits around dimmer, colder red dwarf stars, where atmospheric signals will be less drowned out by starlight and transits repeat more frequently.

    The cosmos came through. In 2017, astronomers announced the discovery of seven rocky planets around a red dwarf star called TRAPPIST-1.

    Then in September, the SPECULOOS-2 system emerged as a backup. These stars are close. They’re dim and red. They each have multiple rocky planets that transit. And as of the summer, the JWST is up and running even better than expected. It will spend a sizable fraction of the next five years staring hard at these messy globes of rock and chemicals spinning around their strange stars. For theoreticians like Kaltenegger who went from daydreaming of alternate Earths to churning out predictions about their atmospheric chemistry, decades of anticipation have given way to a slow fade-in of squiggly spectra on computer monitors.

    Glowing Alien Lady

    For over two years, Kaltenegger’s office — the same one Sagan used to work in — was frozen in time. First came the pandemic, then a sabbatical. In August, she was back, advancing on her whiteboard with a marker in hand, reviewing a list of ideas that wouldn’t look out of place in the writer’s room of a Star Trek series. (Gaia and SETI. Dark oceans. Ozone. Land. Shallow Oceans. Iron?) “This is the fun part,” she said, striking through the topics of papers she has already published.

    Kaltenegger became the founding director of the Carl Sagan Institute in 2015 following stints at Harvard, then in Heidelberg, where she ran her first lab. One day during her time in Heidelberg, an email came in from Jonathan Lunine, the head of the astronomy department at Cornell, asking if she wanted to talk about important opportunities. “I go, oh my God, it’s a ‘woman in science’ event. At a certain point, you get too many of those invitations.” Lunine was instead looking to hire a new professor. Kaltenegger responded that she would rather work at an interdisciplinary, astrobiology-focused institute. So lead one here, he suggested.

    Samuel Velasco/Quanta Magazine

    One recent morning we sat in a garden on campus not far from the institute, flanked by rhododendrons. As dappled sunlight filtered down, a little bird hopped up a tree trunk, a cicada buzzed, and the drone of a lawn mower moved nearer, then farther away. This was obviously an inhabited world.

    Kaltenegger’s stock in trade is imagination: both the sort that astronomers trust when planning a $10 billion space telescope like JWST, and the more poetic kind that stirs public audiences. So what did this scene look like to her?

    She glanced up. The trees had green leaves, as do most known organisms that perform photosynthesis. They had evolved to take advantage of our yellow sun and its bounteous visible-light radiation, using pigments that snatch up blue and red photons while letting green wavelengths bounce away. But plants around colder stars, greedier for light, might take on darker hues. “In my mind’s eye, if I want to, it just completely transforms with us in the garden, sitting under a red sun,” she said. “Everything is purple around you, behind you,” including the leaves.

    Uncanny-valley versions of Earth have featured heavily in Kaltenegger’s thinking for two decades, owing to a nagging doubt she developed during her work on the Darwin mission in the early 2000s.

    The goal at the time was to compare spectra from rocky, temperate planets to what Earth’s spectrum would look like from far away, seeking conspicuous signals like a surplus of oxygen due to widespread photosynthesis. Kaltenegger’s objection was that, for the first 2 billion years of Earth’s existence, its atmosphere had no oxygen. Then it took another billion years for oxygen to build up to high levels. And this biosignature hit its highest concentration not in Earth’s present-day spectrum, but during a short window in the late Cretaceous Period when proto-birds chased giant insects through the skies.

    Without a good theoretical model for how Earth’s own spectrum has changed, Kaltenegger feared, the big planet-finding missions could easily miss a living world that didn’t match a narrow temporal template. She needed to envision Earth as an exoplanet evolving through time. To do this, she adapted one of the first global climate models, developed by the geoscientist James Kasting, which still includes references to the 1970s magnetic-tape era it originated in. Kaltenegger developed this code into a bespoke tool that can analyze not only Earth through time but also radically alien scenarios, and it remains her lab’s workhorse.

    The day after our chat in the garden, I sat in the office next to Kaltenegger’s, looking over the shoulder of postdoc Rebecca Payne as we both squinted at tight lines of text on a black background. “If I don’t go with a black color scheme, by the end of the day my eyes want to fall out of my head,” she said.

    Payne and her colleagues feed their software basic facts about a planet, such as its radius and orbital distance, and the type of its star. They then make guesses about its possible atmospheric composition, and run their models to see how the planet’s atmosphere would appear through the eons. When they did this for SPECULOOS-2c, they saw virtual chemicals bathed in virtual starlight rise, fall and annihilate each other through simulated chemical reactions. The imaginary atmosphere eventually settled into an equilibrium, and the software popped out a table. Payne pulled one up on the screen. She flicked her mouse over row after row, showing guesses at the new planet’s temperature and chemistry at varying altitudes. Using that information, she and her colleagues could identify especially abundant compounds that JWST or another instrument might be able to see.

    From the Earth-through-time study [The Astrophysical Journal (below)] on, many of Kaltenegger’s papers follow the same pattern. Her trick is to gather up what we know of Earth’s own richness in her theoretical palm, then spin it like a basketball along different axes. What if we rewound it in time? What if an alien Earth had different geology? A different atmosphere? An all-ocean surface? What if it circled a red sun, or the blazing-hot cinder of a white dwarf?

    In 2010 [The Astrophysical Journal (below)], for example, she found that the then-upcoming JWST should be able to infer the presence of gases from a volcanic eruption like the 1991 Mount Pinatubo eruption in the Philippines, if a similar event occurred on an exoplanet. Or it could identify worlds ruled not by the cycling of carbon between the surface and atmosphere (as on Earth), but instead by sulfur [The Astrophysical Journal (below)] released by volcanoes and then broken down by starlight. Such climate cycles matter when you’re trying to identify biosignature gases, and also because they are part of the larger physics of planets. “Biosignatures are just sitting there as the cherry on top of the cake, but basically, there is a lot of cake to eat,” said Sasselov, who collaborated with Kaltenegger on these projects.

    Kaltenegger’s catalog of biosignatures includes measurements of (from left) Bacillus bacteria from Arizona’s Sonoran Desert; Arthrobacter from the Atacama Desert in Chile; sap from a white poplar tree; and Ectothiorhodospira from Big Soda Lake in Nevada. Credit: Siddharth Hegde/MPIA.

    Outside of her atmospheric modeling, Kaltenegger has also spent the last decade scouring the Earth to assemble something of an astrobiologist’s cabinet of curiosities: a public database of strange spectra. If astronomers do manage to find an anomalous wiggle in an exoplanet spectrum, her database could provide the key to deciphering it.

    On a trip to Yellowstone National Park, for example, Kaltenegger marveled at multicolored microbial slicks on the surfaces of hot ponds. That led her and colleagues to cultivate 137 bacterial species in petri dishes, then publish their spectra [PNAS (below)]. “There is probably not a color in the rainbow that you couldn’t find on Earth right now,” said Lynn Rothschild, a synthetic biologist at NASA’s Ames Research Center and a collaborator on the project. Inspired by a different colleague’s work drilling ice cores in the Arctic, Kaltenegger’s group isolated 80 cold-loving microbes similar to what might evolve on an ice planet, publishing a reference database [Astrobiology] of these spectra this March.

    Other worlds might be biofluorescent [MNRAS (below)]. On Earth, biofluorescent organisms like corals protect themselves from ultraviolet light by absorbing it and re-emitting it as visible light. Given that planets in red dwarf star systems like TRAPPIST-1 are bathed in ultraviolet radiation, Kaltenegger argues that alien life there could evolve a similar process. (She has since been referred to as “that glowing alien lady.”) She also plans to obtain a series of spectra representing possible lava worlds; a geoscientist colleague and a newly arrived postdoc will soon start melting rocks.

    As her publication list has grown, Kaltenegger has experienced both the opportunities and the indignities of a rising-star woman scientist. Once, when she was filming an IMAX short in Hawai‘i on the search for life, producers dressed her in shorts to match their notion of a scientist, Laura Dern’s Jurassic Park character; the decision then necessitated more makeup to cover all the mosquito bites.

    Within a tight-knit field forced to share limited amounts of telescope time, she is an ebullient, warming presence, collaborators said. Her fingers weave through the air as she talks; sentences and stories tend to ramp up to big bursts of laughter. “She signs every text to me ‘hugs,’” said Rothschild. “I don’t have any other colleague who does that.”

    First Dots on the Map

    The first biosignatures will be tiny, ambiguous signals subjected to warring interpretations. In fact, some claims have already emerged.

    The most pertinent case study rocked the astronomy world in the fall of 2020. A team including Seager announced [Nature Astronomy (below)]that they had spotted an unusual compound called phosphine in the upper atmosphere of Venus, a sweltering, acid-washed planet typically dismissed as sterile. On Earth, phosphine is commonly produced by microbes. While some abiotic processes can also make the compound under certain conditions, the team’s analysis suggested those processes weren’t likely to occur on Venus. In their view, that left tiny floating Venusian organisms as a plausible explanation. “Life on Venus?” the New York Times headline wondered.

    Outside groups formed opposing camps. Some experts, including Victoria Meadows, an exoplanet atmosphere modeler at the University of Washington who uses a similar approach to Kaltenegger’s, reanalyzed the Venus data and concluded that the phosphine signal was just a mirage: The chemical isn’t even there. Others, including Lunine at Cornell, argued that even if phosphine is present, it could, in fact, come from geologic sources.

    Kaltenegger considers these critiques valid. In her view, the phosphine saga highlights a feedback loop between science and science funding that might entangle future candidate biosignatures too. At the time of the phosphine announcement, NASA was in the final stages of choosing between four small solar system missions, two of which were Venus-bound. By the following summer NASA announced that those two had been chosen to fly. The phosphine study “was a great way to get missions approved to Venus,” Kaltenegger said, breaking into laughter. “That’s the sarcastic take.” (Jane Greaves, the lead author of the phosphine study, said her team did not consider the mission selection process and the timing of the paper was a coincidence.)

    The next phase in the hunt for exoplanet biosignatures hinges on what JWST reveals about the TRAPPIST-1 planets. Seeing actual biosignatures in their skies might be unlikely. But the telescope could detect carbon dioxide and water vapor in the sorts of ratios that the Earth- and Venus-based models predict. This would confirm that modelers have a decent handle on which geochemical cycles matter across the galaxy, and which worlds might truly be habitable. Seeing something more unexpected would help researchers correct their models.

    A grimmer possibility is that these planets don’t have atmospheres at all. Red dwarf stars like TRAPPIST-1 are known to emit solar flares that could strip away everything but bare rock. (Kaltenegger doubts this, arguing that the planets’ gaseous emissions should keep replenishing their skies.)

    By the second half of this decade, data from multiple planet transits will have piled up, enough for astronomers not just to look for chemistry on these worlds, but also to examine how given molecules wax and wane from season to season. By then complementary observations could add to the data. Several new, staggeringly large observatories are scheduled to open basin-size mirrors to the cosmos beginning in 2027 — including the biggest of all, the Extremely Large Telescope in Chile. These telescopes will be sensitive to different wavelengths of light than JWST is, probing an alternate set of spectral features, and they should also be able to study planets outside of transit.

    All these instruments still fall short of what biosignature hunters really want, what they have always wanted: one of those giant space-based Terrestrial Planet Finders. Earlier this year, when the National Academy of Sciences released an influential, agenda-setting report called the decadal survey, which summarizes the astronomy community’s ideas of what NASA should prioritize, they effectively deferred a major push on the issue to the 2030s.

    “I’ve been thinking about this: What about if it’s not us?” Kaltenegger said. “What if it’s not our generation?” Based on the soonest a true next-generation planet-hunting telescope could fly, she figures that the most likely candidate to lead such a mission is probably in grad school now.

    Then again, her cohort of early exoplanet scientists have always been dreamers, she said. And science has always been an intergenerational activity.

    Siting in her office that was Sagan’s, she sketched out a specific scene. A far-future voyager walks up the bridge of a departing spacecraft like the Enterprise, ready to travel to a new world. Kaltenegger is sure she won’t be on the ship herself, but, she said, “in my mind’s eye, I see them with this old star chart.” The antique map would mark the locations of candidate living planets. It would probably be outdated, brought along only for sentimental reasons. “But I want to be the person who put the first dots on this map.” ”

    Science papers:
    The Astrophysical Journal Letters 2013
    The Astrophysical Journal Letters 2019
    The Astrophysical Journal Letters 2022
    See the above science papers for detailed material with images.
    The Astrophysical Journal 2000
    The Astrophysical Journal 2002
    The Astrophysical Journal 2007
    The Astrophysical Journal 2009
    The Astrophysical Journal 2010
    The Astrophysical Journal 2010
    PNAS 2015
    MNRAS 2019
    Nature Astronomy 2020
    Astronomy & Astrophysics 2022
    Astrobiology 2022

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by The Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

  • richardmitnick 2:10 pm on September 16, 2022 Permalink | Reply
    Tags: "How will we recognize life elsewhere in the cosmos?", , , Biosignatures, , , With scientists finding new and bizarre exoplanets each year searching for life as we know it might be too narrow a parameter.   

    From “Astronomy Magazine” : “How will we recognize life elsewhere in the cosmos?” 

    From “Astronomy Magazine”

    Conor Feehly

    With scientists finding new and bizarre exoplanets each year searching for life as we know it might be too narrow a parameter.

    Astronomers estimate that there are more exoplanets than stars in the Milky Way, but what might alien life look like on these worlds? Credit: NASA/JPL-Caltech.

    In the search for extraterrestrial life, astrobiologists face a bit of a conundrum: How wide of a net should they cast when searching for life elsewhere in the cosmos?

    After all, scientists have been shocked by the extreme environments life manages to thrive in here on Earth. So it isn’t too hard to imagine that the universe might be teeming with the unexpected. However, with human interplanetary travel still more science fiction than reality, researchers are limited by the technology and knowledge of life currently accessible. But that doesn’t mean they can’t get creative.

    Identifying candidates for life

    In astrobiology, a popular technique for determining whether an exoplanet might support extraterrestrial life involves analyzing the atmosphere of the planet via the transit method.

    When a distant star passes behind its exoplanet from the point of view of Earth, starlight filters through the atmosphere of the exoplanet before making its way to our instruments. Using a spectrograph, astronomers can separate that filtered starlight into its constituent components. Analyzing this resulting emission spectra can provide astronomers with a detailed log of the chemistry likely present in the atmosphere of the alien world.

    Astrobiologists who investigate the atmospheres of exoplanets this way are looking for what they call biosignatures, or chemical evidence for past or present life. Since we know that certain biological processes on Earth leave chemical traces in our atmosphere, if we manage to identify those same traces in the atmospheres of other planets, then we would have good reason to believe living organisms inhabit or inhabited those other worlds.

    Currently, the transit method has been mostly used to analyze giant, hot planets that orbit very near their host stars. That’s because they are much easier to spot and confirm, as these so-called “hot Jupiters” block more starlight more frequently than smaller, more distantly orbiting worlds.

    Researchers detected the basic chemistry for life in the hot gas planet HD 209458b. Credit: T. Pyle (SSC)/NASA/JPL-Caltech.

    But hot Jupiters are unlikely to be habitable locales for life — at least life as we know it. To fully realize the potential of the transit method in detecting possible life-supporting planets, astronomers must seek improvements in our technology for detecting and isolating the emission spectra of exoplanets.

    Fortunately, NASA’s proposed FINESSE mission, the European Space Agency’s proposed Exoplanet Spectroscopy Mission, and the recently launched Webb will provide scientists with a look at many new potential homes for extraterrestrial life, as well as provide them with a vastly improved ability to analyze the emission spectra of exoplanets.

    There are, however, certain problems with the biosignature method of detecting life on alien worlds.

    The problem with assumptions

    Some astrobiologists argue that we should be open to the possibility that extraterrestrial organisms could be very different to life as we know it. One of the most basic signs that an entity is an organism on Earth, that it produces carbon dioxide or water as a product of respiration or photosynthesis, may not apply as the universal indicator of life elsewhere in the cosmos.

    The super-Earth HD 219134b is a mere 21 light-years from our solar system. Credit: NASA/JPL-Caltech.

    Even our understanding of biosignatures on Earth is still murky, as discoveries in exotic metabolic processes can attest. It is an ongoing debate as to how astrobiologists might distinguish between the chemical compositions of alien atmospheres that indicate the presence of life and those that don’t since we cannot assume that extraterrestrial life will produce the same biosignatures of living organisms on Earth.

    So, if the parameters set out for identifying life in the cosmos is currently too narrow, how can we search for extraterrestrial life if we don’t necessarily know what we are looking for?

    According to Princeton philosopher David Kinney and Search for Extraterrestrial Intelligence (SETI) principal investigator Christopher Kempes, we should be looking at planets with the strangest atmospheres.

    Strange bedfellows

    Planets with peculiar atmospheres, relative to a representative sample, should be regarded as the most likely settings for extraterrestrial life. The parameters for ‘anomalousness’ should be data-dependent, rather than being based on assumptions about life that may be Earth-centric.

    “Conceptually, there must be some common thread between all things in the universe that we want to describe as being alive,” says Kinney, who co-authored the paper, published June 22 in Biology & Philosophy [below], outlining their theory.

    In moving away from the assumption that the thread must be chemical, Kinney and Kempes hope to avoid some common pitfalls, namely abiotic processes that mimic biotic ones. “There has been a long history in exoplanet research of people finding abiotic mechanisms that produce candidate biosignature gases,” says Kinney. “Our method circumvents this issue a bit by saying ‘let the data tell us what is anomalous.’”

    Still their argument does rest on a few core assumptions. First that a given sample of exoplanets can be statistically representative of all the atmospheres in the universe. While over 5,000 exoplanet candidates have been confirmed, scientists estimate that there are hundreds of billions of planets within the Milky Way alone. It also assumes that life in that set of observable exoplanets is rare and that living organisms tend to leave biosignatures in the planets they inhabit.

    Although each of these assumptions can be questioned, it follows that if the chemical composition of a planet is unusual, then a possible cause of this unusual composition is that life exists on that planet. The foundation of their method comes from a paper published in Astrobiology [below] in 2016 in which a list of roughly 14,000 compounds likely to appear as gasses in the atmospheres of extrasolar planets’ is outlined.

    “A key takeaway from our paper is that when science is conducted under conditions of deep uncertainty, a scientist often must be willing to speculate,” says Kemples. “That is, they must be ready to make assumptions that go beyond their data, and to then explore the consequences of those assumptions. Whatever one discovers very likely won’t verify those initial assumptions, but this method can nevertheless lead to extraordinary breakthroughs.”

    Science papers:
    Biology & Philosophy

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Astronomy is a magazine about the science and hobby of Astronomy. Based near Milwaukee in Waukesha, Wisconsin, it is produced by Kalmbach Publishing. Astronomy’s readers include those interested in astronomy and those who want to know about sky events, observing techniques, astrophotography, and amateur astronomy in general.

    Astronomy was founded in 1973 by Stephen A. Walther, a graduate of The University of Wisconsin–Stevens Point and amateur astronomer. The first issue, August 1973, consisted of 48 pages with five feature articles and information about what to see in the sky that month. Issues contained astrophotos and illustrations created by astronomical artists. Walther had worked part time as a planetarium lecturer at The University of Wisconsin–Milwaukee and developed an interest in photographing constellations at an early age. Although even in childhood he was interested to obsession in Astronomy, he did so poorly in mathematics that his mother despaired that he would ever be able to earn a living. However, he graduated in Journalism from the University of Wisconsin Stevens Point, and as a senior class project he created a business plan for a magazine for amateur astronomers. With the help of his brother David, he was able to bring the magazine to fruition. He died in 1977.

  • richardmitnick 8:55 pm on September 15, 2022 Permalink | Reply
    Tags: "CATS": Categorizing Atmospheric Technosignatures, "The Search for Intelligent Life Is About to Get a Lot More Interesting", As of August NASA’s confirmed tally of such exoplanets was 5084 and the number tends to grow by several hundred a year., Biosignatures, , Extraterrestrial technosignatures, Pretty much every star you see in the night sky has a planet around it if not a family of planets., Several advances have made the search for technosignatures feasible., Several other powerful ground- and space-based instruments are being developed that will allow us to view exceedingly distant objects for the first time., , The potential candidates for life-as well as for civilizations that possess technology-may involve numbers almost too large to imagine., There are probably at least 100 billion stars in the Milky Way galaxy and an estimated 100 billion galaxies in the universe., This summer the first pictures from the new James Webb Space Telescope were released.   

    From “The New York Times” : “The Search for Intelligent Life Is About to Get a Lot More Interesting” 

    From “The New York Times”

    Jon Gertner

    Extraterrestrial technosignatures

    When the space shuttle Atlantis lifted off from the Kennedy Space Center on Oct. 18, 1989, it carried the Galileo in its cargo bay.

    Arrayed with scientific instruments, Galileo’s ultimate destination was Jupiter, where it would spend years in orbit collecting data and taking pictures. After it left the shuttle, though, Galileo headed in the other direction, turning toward the sun and circling around Venus, in order to slingshot around the planet and pick up speed for its journey to the outer solar system. Along the way, it flew around Earth too — twice, in fact, at altitudes of 597 and 188 miles. This gave its engineering team an opportunity to test the craft’s sensors. The astronomer Carl Sagan, a member of Galileo’s science team, called the maneuver the first flyby in our planet’s history.

    Carl Sagan NASA/JPL

    It also allowed him to contemplate what a spacecraft might find when looking at a far-off planet for signs of intelligent life.

    There was plenty to see. Our technology creates an intriguing mess. Lights blaze, and heat islands glow in paved-over urban areas. Atmospheric gases ebb and flow — evident today not only in rising concentrations of carbon dioxide and methane, but also in clouds of floating industrial byproducts. Sometimes there are radiation leaks. And all the while, billions of gadgets and antennas cast off a buzzing, planetary swarm of electromagnetic transmissions.

    Would other planets’ civilizations be like ours? Would they create the same telltale chemical and electromagnetic signs — what scientists have recently begun calling technosignatures — that Galileo detected? The search for intelligence beyond Earth has long been defined by an assumption that extraterrestrials would have developed radio technologies akin to what humans have created. In some early academic papers on the topic, dating to the late 1950s, scientists even posited that these extraterrestrials might be interested in chatting with us. “That played into this whole idea of aliens as salvation — you know, aliens were going to teach us things,” Adam Frank, an astrophysicist at the University of Rochester, told me recently. Frank points out that the search for signals from deep space has, over time, become more agnostic: Rather than looking for direct calls to Earth, telescopes now sweep the sky, searching billions of frequencies simultaneously, for electronic signals whose origins can’t be explained by celestial phenomena. At the same time, the search for intelligent life has turned in a novel direction.

    In 2018, Frank attended a meeting in Houston whose focus was technosignatures. The goal was to get the 60 researchers in attendance to think about defining a new scientific field that, with NASA’s help, would seek out signs of technology on distant worlds, like atmospheric pollution, to take just one example. “That meeting in Houston was the dawn of the new era, at least as I saw it,” Frank recalls. NASA has a long history of staying out of the extraterrestrial business. “Everybody was sort of there with wide eyes — like, ‘Oh, my God, is this really happening?’”

    The result, at least for Frank, has been a new direction for his work, as well as some money to fund it. He and a few astronomy colleagues around the country formed the group Categorizing Atmospheric Technosignatures, or CATS, which NASA has since awarded nearly $1 million in grants. The ambition for CATS is to create a “library” of possible technosignatures. In short, Frank and his colleagues are researching what could constitute evidence that technological civilization exists on other planets. At this stage, Frank stresses, his team’s work is not about communicating with aliens; nor is it meant to contribute to research on extraterrestrial radio transmissions. They are instead thinking mainly about the atmospheres of distant worlds, and what those might tell us. “The civilization will just be doing whatever it’s doing, and we’re making no assumptions about whether anybody wants to communicate or doesn’t want to communicate,” he says.

    This line of inquiry might not have been productive just a few years ago. But several advances have made the search for technosignatures feasible. The first, thanks to new telescopes and astronomical techniques, is the identification of planets orbiting distant stars. As of August NASA’s confirmed tally of such exoplanets was 5,084, and the number tends to grow by several hundred a year. “Pretty much every star you see in the night sky has a planet around it, if not a family of planets,” Frank says; he notes that this realization has only taken hold in the past decade or so. Because there are probably at least 100 billion stars in the Milky Way galaxy and an estimated 100 billion galaxies in the universe, the potential candidates for life — as well as for civilizations that possess technology — may involve numbers almost too large to imagine. Perhaps more important, our tools keep getting better. This summer the first pictures from the new James Webb Space Telescope were released. But several other powerful ground- and space-based instruments are being developed that will allow us to view exceedingly distant objects for the first time or view previously identified objects in novel ways.

    “With things like J.W.S.T. and some of the other telescopes, we’re beginning to be able to probe atmospheres looking for much smaller signals,” Michael New, a NASA research official who attended the 2018 Houston conference, told me. “And this is something we just couldn’t have done before.”

    As Frank puts it, more bluntly: “The point is, after 2,500 years of people yelling at each other over life in the universe, in the next 10, 20 and 30 years we will actually get data.”

    Illustration by Somnath Bhatt.

    In July, when NASA released the first batch of images from the Webb telescope, we could glimpse remote corners of the universe with newfound clarity and beauty — a panorama of “cosmic cliffs,” 24 trillion miles tall, constructed from gas and dust, for instance. The images were stunning but also bewildering; they defied description. What could we even compare them to? Webb was reaching farther in distance and into the past than any telescope before it, collecting light from stars that in some cases required more than 13 billion years to reach us. We will need to acclimate ourselves to the task of constantly looking at — and interpreting — things we’ve never seen before.

    The Webb telescope can look near as well as far. During its first year, about 7 percent of its time will be spent observing our own solar system, according to Heidi B. Hammel, an interdisciplinary scientist who worked on the telescope’s development. Webb can analyze the atmospheres of nearby planets like Jupiter and Mars using its infrared sensors. These capabilities can also be directed at some of the closest Earth-size exoplanets, like those surrounding the small Trappist-1 star, 40 light-years away.

    One goal of that focus is to discern a biosignature — that is, an indication that life exists (or has existed) on those worlds. On Earth, a biosignature might be the discarded shell of a clam, the fallen feather of a bird, a fossilized fern embedded in sedimentary rock. On an exoplanet, it might be a certain ratio of gases — oxygen, methane, H₂O and CO₂, say — that suggest the presence of microbes or plants. Nikole Lewis, an associate professor of astronomy at Cornell University whose team has been approved for 22.5 hours of Webb observation time this year to look at Trappist-1e, one of seven planets circling the Trappist-1 star, told me that well before declaring the discovery of a biosignature, she would have to carefully determine the planet’s atmosphere and potential habitability. “First, we have to find out if there’s air,” she says, “and then we can ask, ‘OK, what’s in the air?’” She estimates that it would take three or more years of observing a system to be able to say there’s a biosignature.

    Biosignatures and technosignatures point the same way: toward life. But for now, they are being pursued by two separate scientific communities. One reason is historical: The study of biosignatures — which began in the 1960s, within the new discipline of exobiology — has been receiving support from NASA and academic institutions for decades. But “technosignature” was coined only recently, in 2007, by Jill Tarter, a pioneering figure in astronomy who has spent her career conducting searches for alien transmissions. Jason Wright, a professor of astronomy and astrophysics at Penn State who is a member of Frank’s CATS group, says he thinks of Tarter’s idea as a “rebranding” of the search for extraterrestrial intelligence, which has long been relegated to the scientific fringe. “When Jill coined the phrase,” Wright told me, “she was trying to emphasize that NASA was looking for microbes and slime and atmospheric biosignatures, but technosignatures were really under the same umbrella.” Any search for biosignatures on a distant planet, Wright contends, would logically overlap the search for technosignatures, once it became time to explain unusual observations. Does a telescopic reading suggest a life-sustaining atmosphere? Or is it possibly a sign of technology, too? Scientists looking for biosignatures, in other words, may encounter marks of technology as well.

    Wright, Frank and the rest of the CATS team are thus interested in atmospheric markers that would probably never occur naturally. One recent group paper, for example, written primarily by Jacob Haqq-Misra, a CATS member who works at the nonprofit Blue Marble Space Institute of Science, considers how the presence of chlorofluorocarbons, an industrial byproduct, would give a distinct spectral signal and could be picked up by Webb [The Planetary Science Journal (below)]. Haqq-Misra was also the first author on a recent paper suggesting that an exoplanet with agriculture — “exofarms” — might emit telltale atmospheric emissions [The Astrophysical Journal Letters (below)]. Another paper, one written mainly by Ravi Kopparapu, a CATS member who works at NASA’s Goddard Space Flight Center, makes the case that the emission of nitrogen dioxide, an industrial byproduct, could signal the existence of alien technology [The Astrophysical Journal (below)]. Those emissions might be observable by a NASA space telescope, known as LUVOIR (Large Ultraviolet Optical Infrared Surveyor), that is slated to be deployed after 2040. These scenarios — aliens running factories, say, or aliens riding tractors at harvest time — might seem unlikely, but the scientists working on technosignatures are comfortable with the low odds. “If we focus on what’s detectable, based on these instruments that we’re building, that’s really the fundamental question,” Haqq-Misra told me.

    When I visited Wright at his office at Penn State in the spring, he made the case that technosignatures are not only more detectable than biosignatures, possibly, but also more abundant and longer lived. Consider Earth as an example, he said. Its technology already extends all over the solar system. We have junk on the moon; we have Rovers driving around Mars; we have satellites orbiting other planets. What’s more, several spacecraft — including two Pioneers, two Voyagers and the Pluto-probe New Horizons, all launched by NASA — are venturing beyond the edge of the solar system into interstellar space. Such technosignatures could last billions of years. And we’re only 65 years into the age of space exploration. An older civilization could have seeded the galaxy with thousands of technosignatures, which could make them easier to detect.

    “Look, I’m truly agnostic about whether there’s even anything to find,” Wright said. In 1961, he pointed out, the astronomer Frank Drake presented what’s now known as the Drake Equation, which is made up of many variables and attempts to help calculate the number of intelligent civilizations elsewhere in the galaxy. But with so little data to plug in to the variables, there has yet to be any solution to the equation.

    For Wright, Drake’s equation at least allows for a “plausibility” that something is out there. But is it life or complex life? Biosignatures, Wright said, are going to be “extremely challenging to detect — if they exist. So that’s two big ifs. It’s very possible that life is just so rare that there’s nothing within a kiloparsec for us to find.” But technology, he explained, could have started the same distance away — a kiloparsec is 3,261 light-years in distance — and moved closer to Earth over eons. It could be a traveling probe like one of our Voyagers or a systematic species migration; it could be an electronic signal, sent 3,250 years ago and, moving at the speed of light, just coming into our range.

    “So we have a much bigger search radius for technology,” Wright said. “But also, perhaps complex life that builds technology is itself extremely rare, even when life forms.” He paused. “I don’t know,” he said. “What drives me is not the idea that we will find something in my lifetime. What drives me is that we’re not looking very well. And it’s too important a search, answering too important a question, not to do well.”

    “The giggle factor” — that’s what anyone who does research on extraterrestrials is bound to encounter, according to Frank. As a graduate student in the ’80s, Frank was wary of the field as a career move. “I’d never worked in this before, I’d never published any papers,” he told me, referring to his pre-technosignature research. His reluctance was reinforced by the marginalization of the subject. Early on, in the 1970s, NASA had shown a willingness to fund radio-telescope searches for extraterrestrial activity. But the search for aliens aroused opposition. In 1978, Senator William Proxmire declared that taxpayers were being fleeced, a criticism NASA heeded by striking the search for extraterrestrials from its budget. The agency was willing to back survey projects again in the 1980s, but another senator, Richard Bryan, stopped the programs in 1993. “This hopefully will be the end of Martian hunting at the taxpayer’s expense,” Bryan said at the time.

    Only recently has the stigma begun to wear off. At the urging of the Texas representative Lamar Smith (now retired), who was chairman of the House Science Committee, a bill was introduced in Congress for NASA to allocate $10 million to technosignatures. NASA quickly asked for a forum to get a clearer sense of what research was worth funding, positioning the effort as a departure from radio astronomy. “I was told the workshop had to be in a certain Texas congressional district,” Wright, who was asked to organize the Houston meeting, told me.

    When Frank, who trained as a theoretical astrophysicist rather than an observational astronomer, attended the Houston meeting, he had been writing about how civilizations alter their planetary atmospheres. Because humans have changed our world so significantly through global warming — essentially by burning wood and fossil fuels — he had been wondering if this would happen everywhere. “When you pull back and think of the evolution of any planet, you find that what we’re going through may be a common transition that you do, or don’t, make it through,” Frank says. In his view, any species that expands and grows is probably going to create significant feedback effects on its planet. “Civilizations are basically focused on harvesting energy and putting it to work,” he says. “And there should be unintentional markers when you do that. You’re leaving traces.” You’re creating technosignatures. Such assumptions about energy generation and activity are mostly what guide the CATS group.
    One day in early May, I sat in on their monthly meeting, which takes place online. Frank led the discussion from his office in Rochester. Wright joined from Penn State; Haqq-Misra from Delaware; Kopparapu from Maryland. Another team member, Sofia Sheikh, joined from San Francisco. A few other contributors tuned in, too. The first order of business was planning for a four-day technosignatures conference at Penn State, organized by Wright for late June, just weeks away. “This is the first time we’ll all be together, physically, since the 2018 meeting in Houston,” Frank said enthusiastically. “I think we want to advertise how much progress has happened.” He quickly mentioned the chlorofluorocarbons work, the exofarm paper and the visibility of nitrogen pollutants from afar.

    When Kopparapu’s turn came, he explained the relationship of the team’s ideas to the specifications of current and future telescopes. Some next-generation projects involve ground-based instruments that are much more powerful and sophisticated than what exists today — for instance, the Giant Magellan Telescope (now under construction in Chile) and the Thirty Meter Telescope (planned for Hawaii). For the CATS group, the most important of these future missions include LUVOIR and HabEx (Habitable Exoplanet Observatory), multibillion-dollar space telescopes that, unlike Webb, are to be built and calibrated expressly for the study of distant Earth-like planets.

    These devices — only one of which may be built — are two decades away from deployment, however, and for the time being exoplanet study will largely depend on Webb. Once a year, a call goes out for proposals from researchers who want to use the telescope. Fainter objects in the sky generally require more time, brighter objects less. “The competition for a slot is fierce,” Eric Smith, Webb’s program scientist, told me. Because so many requests are rejected — last year the telescope reviewed about 1,200 proposals and awarded time to 286 winners — the proposals have to be compelling. According to Smith, the competition is likely to become even greater in the coming years, now that the scientific community has seen what the telescope can do. Frank told me that he believes that his team, or other scientists taking a cue from his team’s technosignature research, are probably a few years away from making a formal request. “If we’re going ask for a hundred hours of James Webb time, we better have every possibility worked out,” he says. “They’re not going to give us that unless we’ve shown that this is exactly where to look, this is the signal-to-noise ratio we expect, and so on.”

    In the CATS meeting, the brainstorming covered a mix of old and new ideas. The technosignatures field is open to looking for inspiration anywhere, even in concepts that might have appeared decades earlier in journals or in obscure conference proceedings before being dismissed or forgotten (a 1961 paper on interstellar laser communication, for example). At this meeting, there was talk of “service worlds,” where a civilization develops a nearby planet or moon not for habitation but for, say, energy harvesting. It is an idea sometimes contemplated in science fiction, but in this instance the notion first arose from a paper that a member of the CATS group co-wrote a few years ago. On a service world, terrain might be covered entirely with photovoltaic panels that reflect part of the light spectrum back into space — a reflection that could be discernible trillions of miles away. “A service world wouldn’t even have a biosignature,” Frank said. “It’s just a pure technosignature.”

    Sheikh then mentioned something she had been thinking about lately: microplastic pollution in oceans, now an Earth technosignature. “You can see it if you scoop up a glass of water and look at it under a microscope, it’s very obvious in situ,” she said. “But is there any way to detect that remotely? So I just decided to check — it seemed kind of silly.” While reading academic papers, she told the group, she found that scientists are trying to spot plastic in our oceans using radar satellites. “So they’re using remote sensing to look for changes in viscosity of ocean water, which is indicative of microplastics, and it seems like it actually works.”

    As the discussion wound down, Frank raised something else: oxygen and combustion as a technosignature. This in turn raised an issue about ocean worlds. Could they, he asked, produce species that develop technology? “If you can’t start a fire underwater, how does an oceangoing species learn to do metallurgy?” The question was not a whimsy. Many exoplanets are thought to be complete water worlds. Earth, about one third of which is land, might be an exception. The group debated where an ocean species could find energy. “Hydrothermal vents,” Haqq-Misra offered. Others suggested chemical reactions that produce heat without combustion.

    Frank said he still wondered if fire in an oxygen-rich environment is a prerequisite to development. “That’s why we’re thinking about combustion,” he said. “You’re not going to start with nuclear power, right?”

    “It just seems very anthropocentric,” Nick Tusay, a Penn State graduate student on the call, said. “Just because that’s the way we did it, does it mean everyone else would? What if you have a civilization of octopuses?”

    The comment prompted Sheikh to share some links to academic studies. “There’s actually this cool literature about tool development and aquatic animals,” she said. Underwater tool development has been hard to observe, as she understood it, but it’s real, and it could mean that combustion is not the only route to sophistication. A number of species also use water pressure or bubbles — or other species — as tools. “I think there’s a lot to explore there,” she added.

    Frank seemed inclined to put off the discussion until next time. Still, as the meeting ended, the comments demonstrated how challenging it can be for the team to conceptualize other worlds. Their conversation likewise suggested that we know far less than we might think about our own.

    To imagine the unimaginable, Ravi Kopparapu told me one day, “we must reorient our minds.” The problem is that the technosignatures field relies, for now, on a small data set (a single planet: Earth) where we know a species has arisen that created gadgetry, made pollution and altered its atmosphere (dangerously so). The CATS members, Kopparapu says, understand this as a liability, but also as a requisite first step. “If you go to a party where you know hardly anyone,” Kopparapu says, “the first thing you do is go to someone that you recognize so you can start up the conversation.”

    During my visit to Frank, he told me that as difficult as it is for humans to imagine alien species, imagining long time frames is equally challenging. Modern science as a discipline is only about 500 years old. The transistor, the building block of modern technologies, is around 75 years old. The first iPhone came out 15 years ago. How would a technological society evolve over 10,000 years? Over a million?

    Frank notes that there may be many other ways to define a civilization beyond what his group has been focusing on. Rather than builders of big antennas, extraterrestrials could be more like trees in a grove, communicating through threads of fungi underground. Rather than creators of dirty power plants, aliens might be like octopuses using tools in ice-crusted oceans. Some theorists have even posited that an ancient society could discard matter altogether, choosing to supplant itself with a diaphanous and undying form of artificial intelligence. “I can imagine biologies that are much different; I can imagine minds that are much different,” Frank says. For civilizations that we can detect through our instruments, though, he is still convinced that the logical approach is to focus on energy and the consequences of its use.

    He is not inflexible, though. Since the meeting in Houston, Frank told me, some of his old assumptions and biases have been challenged. This includes the possibility that our familiarity with Western technology can trap us. He and some of the CATS members have been influenced by critiques of the search for extraterrestrials — chronicled, in part, in a recent issue of The American Indian Culture and Research Journal — that challenge our tendency to view industry and gadgetry as the primary indicators of “advancement.” Frank pointed out that some Indigenous cultures regard the whole natural world as intelligent. He has become wary, too, of grand, deterministic anthropological narratives he once saw as persuasive: the idea that “we were egalitarian hunter gatherers, and then there was the agricultural revolution, and then came villages, which turned into empires, and that then led to capitalism and science.” A new book, “The Dawn of Everything,” by David Graeber and David Wengrow, argues that research data from the last 30 years doesn’t support a story of such linear advancement. It has persuaded Frank that different and unpredictable paths for social and political arrangements — and technology, too — are possible anywhere. He has begun to seek out historians, anthropologists, sociologists, biologists and futurists to help his group narrow the possibilities.

    Kathryn Denning is an archaeologist at York University in Canada and a longtime contrarian voice in the extraterrestrial-search community. “The social evolutionary story of humans on Earth is not a simple, unilinear upward trajectory,” she told me recently. And we shouldn’t think of aliens that way either. Many societies on Earth have fallen apart and rebuilt from their ruins, Denning points out; and many have never sought to become conquerors. And yet public intellectuals have often rendered the future in ways that give their declarations of high-tech destiny — gleaming megacities and roving starships — an air of certainty.

    We might ascribe that to cultural hubris. At the June technosignatures meeting at Penn State, many presentations were given over to the CATS work as well as “traditional” extraterrestrial research involving radio astronomy. But there were also Denning and Hilding Neilson, an Indigenous astronomer and astrophysicist from the Memorial University of Newfoundland. Neilson challenged the audience to think about how some Indigenous societies were at least thousands of years old — older than science itself. And yet he wondered if they were considered “advanced” by Western definitions. In the case of looking for life elsewhere, he remarked, “we’re really looking for ourselves in space.”

    The CATS group appears to be able to avoid that trap. At the Penn State meeting, not long after Neilson’s talk, I wandered into a lounge and ended up listening to a coffee-break debate among Frank, Sheikh and Wright. They were discussing a lecture by a colleague who proposed to find a technosignature in the glow of sodium lights, commonly used in streetlamps. A strong-enough signal could be detectable through some telescopes if, say, an exoplanet were completely covered in urban development.

    But any technosignatures idea must go through the gantlet of group skepticism. Frank and Sheikh wondered if sodium light would be used by a civilization that developed differently — perhaps their eyes would function in different parts of the spectrum. Or perhaps they would live underground? “If you’re a creature that can’t see, if you’re like a bat that used echolocation, would you even need lights?” Frank said.

    “Would you even know you’re part of the galaxy and this larger world?” Sheikh asked.

    “Would you even look up at the stars?” Frank added. “I mean, if you couldn’t see, would you even know they’re there?”

    Frank turned to me. “That’s what’s so extraordinary about this,” he said, meaning the maze he and the group wander through. They have to rethink evolution, technology, culture and the meaning of intelligence. “But you always have to come back to the fact that we’re building a telescope,” he added. “What sensors should it have to find a technosignature?”

    He laughed, seemingly at the sheer number of details that would someday need to be worked out. “Also, what screws should it use — flat head, Phillips head or hex nut?”

    Officially, NASA considers the work on technosignatures to be “high risk, high reward.” The risk, in dollars, is modest for now: The amount allocated by the agency is minuscule in comparison to, say, the $93 billion being invested over the next few years in its Artemis moon mission. But moving on to a next step, which would mean devoting precious time for technosignatures research on a telescope like Webb, or building an entirely new space-based instrument, would involve a sizable investment. As for rewards, the development of a technosignatures discipline might mirror that of astrobiology, which arose 25 years ago in response to the discovery of exoplanets. In contemplating biosignatures, astrobiologists gained new knowledge into how basic life on Earth can endure in extreme environments — under icecaps, for example, or near hydrothermal vents. Thinking about far-off things yielded insights close to home.

    The ultimate success for the technosignature team would be an instance of someone using the CATS research to identify signs of a technological civilization. “That would be like the dog who is running and catches the car,” Kopparapu told me. What would we do next?

    He and Frank both think it’s possible that we would do … nothing. At least not right away. While there exists a growing body of literature about “first contact” protocols, we might just monitor a distant technosignature for decades, or perhaps centuries, taking readings with increasingly better telescopes. And then — maybe — we might send a space probe or message. Because distances are so vast, it’s not lost on the researchers that in viewing an apparently bustling exoplanet from, say, 50 light-years away, we would see the spectra of technology from 50 years earlier. To send an electronic message and receive a response would, at best, take 100 years. An actual journey could take millenniums.

    But the work may turn out to have utility beyond a contact scenario or headline-grabbing discovery. Since the 1950s, one of the defining ideas in the search for extraterrestrials has been the Fermi Paradox, named after the Italian American physicist Enrico Fermi. Essentially, it asks why, in a universe packed with stars and planets, we have yet to see evidence of life beyond Earth. One possible explanation is that life is rare or even unique to Earth. Another is that intelligent beings exist elsewhere but prefer not to make themselves observable. But there is a resolution to the paradox that is more unsettling: An idea known as “the great filter” posits that there are difficult, perhaps impassable, points in any species’ evolution. That filter might kick in early, as complex life begins, or later, when technology produces dangerous rebound effects. Either way, a result would be eerie cosmic silence.

    Rebecca Charbonneau, a science historian at the National Radio Astronomy Observatory who attended the Penn State technosignatures conference, told me that in the mid-1960s, not long after Drake came up with his equation, Carl Sagan, a close friend and colleague of his, asked, “Do technical civilizations tend to destroy themselves shortly after they become capable of interstellar radio communications?” Charbonneau says that the specter of nuclear annihilation probably shaped that era’s views. But while the agents of destruction may have changed, the fear remains. We can glimpse an updated version of how things might end in our warming atmosphere, in our world’s shocking declines in biodiversity.

    In a sense, this makes the search for technosignatures a search for sustainability as well. “Any society that’s long-lived on geological or astronomical time scales is by definition sustainable,” Michael New, the NASA administrator, told me. But the fact that a society avoided reducing its impact on the geology and chemistry of its home, he says, might hold a key to how they avoided self-destruction. “It may also be that really successful technological societies at some point become hard to detect,” he says, “because they’re living in more or less equilibrium with their planet.”

    This last point is being debated within Frank’s group, too; they don’t want to overlook technosignatures because they don’t fit ideas of what they should be looking for. Sofia Sheikh gave me an example: the first European settlers to California. “There are good records, primary sources from the time, that say that they were like, ‘Oh, it’s like a wonderland out here, you can just walk through the forest and there’s no undergrowth, there are just fruit trees growing naturally everywhere.’ But what they were seeing was not a natural process — it was the result of centuries of tending of the land by Indigenous groups.” These were technosignatures, she said, resulting from advanced agricultural techniques that stopped wildfires from breaking out — but Europeans didn’t recognize them. “And so we don’t want to see something astronomically and be like, ‘Wow, isn’t it cool that the universe did that?’ just because it doesn’t fit our idea of a resource-consuming, technological civilization.”

    And yet, it’s also possible that years from now — after all the arduous and careful searching — even a total absence of cosmic evidence could prove valuable. Two CATS members, Haqq-Misra and Kopparapu, recently considered how the coming age of observations for biosignatures and technosignatures might shed light on the great filter. “If we find biosignatures, that means there’s a bunch of planets that can have life on them,” Haqq-Misra told me. But if we find plentiful signs of life but no signs of technology, that’s more worrisome. It could mean the odds are against technological civilizations sustaining themselves. They may be exceedingly rare — or tend to self-destruct.

    “On the other hand,” Haqq-Misra added, “what if we find technosignatures everywhere? That’s actually encouraging. That means that it’s possible to have technology in a long-term, sustainable balance with your planet.”

    Would the data, I asked — assuming we ever find it — tell us how to become sustainable or how to remain sustainable? No, Haqq-Misra said. “Just that it’s possible.” As for getting there, we would still be on our own.

    Science papers:
    The Planetary Science Journal
    The Astrophysical Journal Letters
    The Astrophysical Journal

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 12:22 pm on July 15, 2022 Permalink | Reply
    Tags: "To search for alien life astronomers will look for clues in the atmospheres of distant planets – and the James Webb Space Telescope just proved it’s possible to do so", Astrobiologists will study starlight that has interacted with a planet’s surface or atmosphere., , , , Biosignatures, , Earth’s oxygen-filled atmosphere has left a strong and easily detectable biosignature on light that passes through it., , Many astronomers believe there’s a good chance that life exists on planets orbiting other stars and it’s possible that is where life will first be found., , , , Theoretical calculations suggest that there are around 300 million potentially habitable planets in the Milky Way galaxy alone., There might be several habitable Earth-sized planets within only 30 light-years of Earth – essentially humanity’s galactic neighbors.   

    From “The Conversation (AU)” : “To search for alien life astronomers will look for clues in the atmospheres of distant planets – and the James Webb Space Telescope just proved it’s possible to do so” 

    From “The Conversation (AU)”

    July 14, 2022

    Chris Impey
    University Distinguished Professor of Astronomy
    University of Arizona

    Daniel Apai
    Professor of Astronomy and Planetary Sciences
    University of Arizona

    The ingredients for life are spread throughout the universe [PNAS]. While Earth is the only known place in the universe with life, detecting life beyond Earth is a major goal of modern astronomy and planetary science.

    We are two scientists who study exoplanets and astrobiology. Thanks in large part to next-generation telescopes like James Webb, researchers like us will soon be able to measure the chemical makeup of atmospheres of planets around other stars. The hope is that one or more of these planets will have a chemical signature of life.

    There are many known exoplanets in habitable zones – orbits not too close to a star that the water boils off but not so far that the planet is frozen solid – as marked in green for both the solar system and Kepler-186 star system with its planets labeled b, c, d, e and f. NASA Ames/SETI Institute/JPL-Caltech/Wikimedia Commons.

    Habitable exoplanets

    Life might exist in the solar system where there is liquid water – like the subsurface aquifers on Mars or in the oceans of Jupiter’s moon Europa. However, searching for life in these places is incredibly difficult, as they are hard to reach and detecting life would require sending a probe to return physical samples.

    Many astronomers believe there’s a good chance that life exists on planets orbiting other stars and it’s possible that is where life will first be found.

    Theoretical calculations suggest that there are around 300 million potentially habitable planets in the Milky Way galaxy alone and several habitable Earth-sized planets within only 30 light-years of Earth – essentially humanity’s galactic neighbors. So far, astronomers have discovered over 5,000 exoplanets, including hundreds of potentially habitable ones, using indirect methods that measure how a planet affects its nearby star. These measurements can give astronomers information on the mass and size of an exoplanet, but not much else.

    Every material absorbs certain wavelengths of light, as shown in this diagram depicting the wavelengths of light absorbed most easily by different types of chlorophyll. Daniele Pugliesi/Wikimedia Commons, CC BY-SA.

    Looking for biosignatures

    To detect life on a distant planet, astrobiologists will study starlight that has interacted with a planet’s surface or atmosphere. If the atmosphere or surface was transformed by life, the light may carry a clue, called a “biosignature.”

    For the first half of its existence, Earth sported an atmosphere without oxygen, even though it hosted simple, single-celled life. Earth’s biosignature was very faint during this early era. That changed abruptly 2.4 billion years ago when a new family of algae evolved. The algae used a process of photosynthesis that produces free oxygen – oxygen that isn’t chemically bonded to any other element. From that time on, Earth’s oxygen-filled atmosphere has left a strong and easily detectable biosignature on light that passes through it.

    When light bounces off the surface of a material or passes through a gas, certain wavelengths of the light are more likely to remain trapped in the gas or material’s surface than others. This selective trapping of wavelengths of light is why objects are different colors. Leaves are green because chlorophyll is particularly good at absorbing light in the red and blue wavelengths. As light hits a leaf, the red and blue wavelengths are absorbed, leaving mostly green light to bounce back into your eyes.

    The pattern of missing light is determined by the specific composition of the material the light interacts with. Because of this, astronomers can learn something about the composition of an exoplanet’s atmosphere or surface by, in essence, measuring the specific color of light that comes from a planet.

    This method can be used to recognize the presence of certain atmospheric gases that are associated with life – such as oxygen or methane – because these gasses leave very specific signatures in light. It could also be used to detect peculiar colors on the surface of a planet. On Earth, for example, the chlorophyll and other pigments plants and algae use for photosynthesis capture specific wavelengths of light. These pigments produce characteristic colors that can be detected by using a sensitive infrared camera. If you were to see this color reflecting off the surface of a distant planet, it would potentially signify the presence of chlorophyll.

    Telescopes in space and on Earth

    It takes an incredibly powerful telescope to detect these subtle changes to the light coming from a potentially habitable exoplanet. For now, the only telescope capable of such a feat is the new James Webb Space Telescope.

    As it began science operations in July 2022, James Webb took a reading of the spectrum of the gas giant exoplanet WASP-96b. The spectrum showed the presence of water and clouds, but a planet as large and hot as WASP-96b is unlikely to host life.

    However, this early data shows that James Webb is capable of detecting faint chemical signatures in light coming from exoplanets. In the coming months, Webb is set to turn its mirrors toward TRAPPIST-1e, a potentially habitable Earth-sized planet a mere 39 light-years from Earth.

    The TRAPPIST-1 star and planet system; the ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile.


    Webb can look for biosignatures by studying planets as they pass in front of their host stars and capturing starlight that filters through the planet’s atmosphere [Uppsala University Department of Physics]. But Webb was not designed to search for life, so the telescope is only able to scrutinize a few of the nearest potentially habitable worlds. It also can only detect changes to atmospheric levels of carbon dioxide, methane and water vapor [The Astronomical Journal]. While certain combinations of these gasses may suggest life [Nature Astronomy], Webb is not able to detect the presence of unbonded oxygen, which is the strongest signal for life.

    Leading concepts for future, even more powerful, space telescopes include plans to block the bright light of a planet’s host star to reveal starlight reflected back from the planet. This idea is similar to using your hand to block sunlight to better see something in the distance. Future space telescopes could use small, internal masks or large, external, umbrella-like spacecraft to do this. Once the starlight is blocked, it becomes much easier to study light bouncing off a planet.

    There are also three enormous, ground-based telescopes currently under construction that will be able to search for biosignatures: the Giant Magellen Telescope, the Thirty Meter Telescope and the European Extremely Large Telescope.

    Each is far more powerful than existing telescopes on Earth, and despite the handicap of Earth’s atmosphere distorting starlight, these telescopes might be able to probe the atmospheres of the closest worlds for oxygen.

    Is it biology or geology?

    Even using the most powerful telescopes of the coming decades, astrobiologists will only be able to detect strong biosignatures produced by worlds that have been completely transformed by life.

    Unfortunately, most gases released by terrestrial life can also be produced by nonbiological processes – cows and volcanoes both release methane. Photosynthesis produces oxygen, but sunlight does, too, when it splits water molecules into oxygen and hydrogen. There is a good chance astronomers will detect some false positives when looking for distant life. To help rule out false positives, astronomers will need to understand a planet of interest well enough to understand whether its geologic or atmospheric processes could mimic a biosignature.

    The next generation of exoplanet studies has the potential to pass the bar of the extraordinary evidence needed to prove the existence of life. The first data release from the James Webb Space Telescope gives us a sense of the exciting progress that’s coming soon.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation (AU) launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.

    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

  • richardmitnick 10:10 am on July 3, 2022 Permalink | Reply
    Tags: "Webb Telescope Will Look for Signs of Life Way Out There", , , Biosignatures, , , ,   

    From “The New York Times” : “Webb Telescope Will Look for Signs of Life Way Out There” 

    From “The New York Times”

    July 2, 2022
    Carl Zimmer

    The folded-up James Webb Space Telescope as it was prepared for mounting on a rocket and launch last year at the European spaceport in Kourou, French Guiana. Credit: Chris Gunn/NASA.

    The first question astronomers want to answer about exoplanets: Do they have atmospheres friendly to life?

    This month will mark a new chapter in the search for extraterrestrial life, when the most powerful space telescope yet built will start spying on planets that orbit other stars. Astronomers hope that the James Webb Space Telescope will reveal whether some of those planets harbor atmospheres that might support life.

    Identifying an atmosphere in another solar system would be remarkable enough. But there is even a chance — albeit tiny — that one of these atmospheres will offer what is known as a biosignature: a signal of life itself.

    “I think we will be able to find planets that we think are interesting — you know, good possibilities for life,” said Megan Mansfield, an astronomer at the University of Arizona. “But we won’t necessarily be able to just identify life immediately.”

    So far, Earth remains the only planet in the universe where life is known to exist. Scientists have been sending probes to Mars for almost 60 years and have not yet found Martians. But it is conceivable that life is hiding under the surface of the Red Planet or waiting to be discovered on a moon of Jupiter or Saturn. Some scientists have held out hope that even Venus, despite its scorching atmosphere of sulfur dioxide clouds, might be home to Venusians.

    Even if Earth turns out to be the only planet harboring life in our own solar system, many other solar systems in the universe hold so-called exoplanets.

    In 1995, French astronomers spotted the first exoplanet orbiting a sunlike star. Known as 51 Pegasi b, the exoplanet turned out to be an unpromising home for life — a puffy gas giant bigger than Jupiter, and a toasty 1,800 degrees Fahrenheit.

    In the years since, scientists have found more than 5,000 other exoplanets. Some of them are far more similar to Earth — roughly the same size, made of rock rather than gas and orbiting in a “Goldilocks zone” around their star, not so close as to get cooked but not so far as to be frozen.

    An artist’s rendering of the exoplanet 51 Pegasi b, the first exoplanet ever discovered. Credit: The European Southern Observatory [La Observatorio Europeo Austral][Observatoire européen austral][Europäische Südsternwarte](EU)(CL).

    Unfortunately, the relatively small size of these exoplanets has made them extremely difficult to study, until now. The James Webb Space Telescope, launched last Christmas, will change that, acting as a magnifying glass to let astronomers look more closely at these worlds.

    Since its launch from Kourou, French Guiana, the telescope has traveled a million miles from Earth, entering its own orbit around the sun at L2.

    There, a shield protects its 21-foot mirror from any heat or light from the sun or Earth. In this profound darkness, the telescope can detect faint, distant glimmers of light, including those that could reveal new details about faraway planets.

    The space telescope “is the first big space observatory to take the study of exoplanet atmospheres into account in its design,” Dr. Mansfield said.

    NASA engineers began taking pictures of an array of objects with the Webb telescope in mid-June and will release its first images to the public on July 12.

    Exoplanets will be in that first batch of pictures, said Eric Smith, the program’s lead scientist. Because the telescope will spend relatively little time observing the exoplanets, Dr. Smith considered those first images a “quick and dirty” look at the telescope’s power.

    Those quick looks will be followed by a series of much longer observations, starting in July, offering a much clearer picture of the exoplanets.

    A number of teams of astronomers are planning to look at the seven planets that orbit a star called Trappist-1.

    The TRAPPIST-1 star and planet system; the ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile.


    Earlier observations have suggested that three of the planets occupy the habitable zone.

    “It’s an ideal place to look for traces of life outside of the solar system,” said Olivia Lim, a graduate student at the University of Montreal who will be observing the Trappist-1 planets starting around July 4.

    Because Trappist-1 is a small, cool star, its habitable zone is closer to it than in our own solar system. As a result, its potentially habitable planets orbit at close range, taking just a few days to circle the star. Every time the planets pass in front of Trappist-1, scientists will be able tackle a basic but crucial question: Do any of them have an atmosphere?

    “If it doesn’t have air, it’s not habitable, even if it’s in the habitable zone,” said Nikole Lewis, an astronomer at Cornell University.

    Dr. Lewis and other astronomers would not be surprised to find no atmospheres surrounding Trappist-1’s planets. Even if the planets had developed atmospheres when they formed, the star might have blasted them away long ago with ultraviolet and X-ray radiation.

    “It’s possible that they could just strip away all of the atmosphere on a planet before it even had a chance to like start forming life,” Dr. Mansfield said. “That’s the first-order question that we’re trying to answer here: whether these planets could have an atmosphere long enough that they’d be able to develop life.”

    A planet passing in front of Trappist-1 will create a tiny shadow, but the shadow will be too small for the space telescope to capture. Instead, the telescope will detect a slight dimming in the light traveling from the star.

    “It’s like looking at a solar eclipse with your eyes shut,” said Jacob Lustig-Yaeger, an astronomer doing a postdoctoral fellowship at the Johns Hopkins Applied Physics Laboratory. “You might have some sense that the light has dimmed.”

    A planet with an atmosphere would dim the star behind it differently than a bare planet would. Some of the star’s light will pass straight through the atmosphere, but the gases will absorb light at certain wavelengths. If astronomers look only at starlight at those wavelengths, the planet will dim Trappist-1 even more.

    The telescope will send these observations of Trappist-1 back to Earth. “And then you get an email that’s like, ‘Hello, your data are available,’” Dr. Mansfield said.

    But the light coming from Trappist-1 will be so faint that it will take time to make sense of it. “Your eye is used to dealing with millions of photons per second,” Dr. Smith said. “But these telescopes, they’re just collecting a few photons a second.”

    Before Dr. Mansfield or her fellow astronomers will be able to analyze exoplanets passing in front of Trappist-1, they will have to first distinguish it from tiny fluctuations produced by the telescope’s own machinery.

    “A lot of the work that I actually do is making sure that we’re carefully correcting for anything weird that the telescope is doing, so that we can see those teeny-tiny signals,” Dr. Mansfield said.

    An artist’s concept of the view from one of the planets in the Trappist-1 system. Credit: M. Kornmesser/European Southern Observatory, via European Pressphoto Agency.

    It is possible that at the end of those efforts, Dr. Mansfield and her colleagues will discover an atmosphere around a Trappist-1 planet. But that result alone will not reveal the nature of the atmosphere. It might be rich in nitrogen and oxygen, like on Earth, or more akin to the toxic stew of carbon dioxide and sulfuric acid on Venus. Or it could be a mix that scientists have never seen before.

    “We have no idea what these atmospheres are made of,” said Alexander Rathcke, an astronomer at the Technical University of Denmark. “We have ideas, simulations, and all this stuff, but we really have no idea. We have to go and look.”

    The James Webb Space Telescope, sometimes called the J.W.S.T., may prove powerful enough to determine the specific ingredients of exoplanet atmospheres because each kind of molecule absorbs a different range of wavelengths of light.

    But those discoveries will depend on the weather on the exoplanets. A bright, reflective blanket of clouds could prevent any starlight from entering an exoplanet’s atmosphere, ruining any attempt to find alien air.

    “It is really hard to distinguish between an atmosphere with clouds or no atmosphere,” Dr. Rathcke said.

    If the weather cooperates, astronomers are especially eager to see if the exoplanets have water in their atmospheres. At least on Earth, water is an essential requirement for biology. “We think that would probably be a good starting point to look for life,” Dr. Mansfield said.

    But a watery atmosphere will not necessarily mean that an exoplanet harbors life. To be sure a planet is alive, scientists will have to detect a biosignature, a molecule or a combination of several molecules that is distinctively made by living things.

    Scientists are still debating what a reliable biosignature would be. Earth’s atmosphere is unique in our solar system in that it contains a lot of oxygen, largely the product of plants and algae. But oxygen can also be produced without life’s help, when water molecules in the air are split. Methane, likewise, can be released by living microbes but also by volcanoes.

    It is possible that there is a particular balance of gases that can provide a clear biosignature, one that cannot be maintained without the help of life.

    “We need extremely favorable scenarios to find these biosignatures,” said Dr. Rathcke. “I’m not saying that it’s not possible. I just think it’s far-fetched. We need to be extremely lucky.”

    Joshua Krissansen-Totton, a planetary scientist at the University of California-Santa Cruz, said that finding such a balance may require the Webb telescope to observe a planet repeatedly passing in front of Trappist-1.

    “If anyone comes forward in the next five years and says, ‘Yes, we’ve found life with J.W.S.T.,’ I’ll be very skeptical of that claim,” Dr. Krissansen-Totton said

    It is possible that the James Webb Space Telescope simply will not be capable of finding biosignatures. That task may have to wait for the next generation of space telescopes, more than a decade away. These will study exoplanets the same way that people look at Mars or Venus in the night sky: by observing starlight reflecting off them against the black background of space, rather than observing them as they pass in front of a star.

    “Mostly, we’ll be doing the very important groundwork for future telescopes,” Dr. Rathcke predicted. “I would be very surprised if J.W.S.T. delivers biosignature detections, but I hope to stand corrected. I mean, this is basically what I’m doing this work for.”

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 7:46 am on April 29, 2022 Permalink | Reply
    Tags: "How the James Webb Space Telescope will search for extraterrestrial life", , Biosignatures, If Earth-sized planets were found to have an atmosphere similar to our home planet (that is containing mainly oxygen; nitrogen and carbon dioxide) that planet could likely support life forms., If the JWST detected CFCs in exoplanet atmospheres then that would be a tell-tale indication that a civilization is there., , Technological life could perhaps be identified by looking for the presence of chemicals that don’t occur naturally., The NASA Galileo spacecraft detected the vegetation red edge (VRE) biosignature-a mixture of red and infrared light that is reflected by plants.   

    From Astronomy Magazine: “How the James Webb Space Telescope will search for extraterrestrial life” 

    From Astronomy Magazine

    April 22, 2022
    Chris Holt

    The world’s most powerful telescope, now in space, will offer new tools to address the timeless question about life in the universe: Are we alone on Earth?

    Jurik Peter/Shutterstock.

    To date the only life we know about is here on Earth. Since the beginning of civilization, people have wondered whether there is life elsewhere in the universe. In 1984 American astronomer Jill Tarter and Thomas Pierson launched a project called Search for Extra-Terrestrial Intelligence (SETI), dedicated to that interstellar hunt.

    The nonprofit institute was designed to pick up radio signals from space. Radio signals can travel long distances because they are less scattered or absorbed compared to other sorts of radiation, making them more likely to be detected by the 42 radio telescopes that make up the one-of-a-kind Allen Telescope Array in the Cascade Mountains of California. But for 30 years, no verified alien signal has been received.

    Probing exoplanets

    Now, the James Webb Space Telescope (JWST) has been successfully deployed to aid the search. With its gigantic mirror and ultra-sensitive detectors, the world’s most powerful telescope (floating roughly 1 million miles away from Earth) will examine many distant unexplored planets orbiting distant stars. Twenty years ago, no other planets were known apart from those in our solar system. But since then, more than 4,000 other planets, called the exoplanets, have been discovered orbiting other stars. NASA estimates that the true number of exoplanets could be trillions.

    The first signs of life beyond our solar system might come from extraterrestrial plant life. The Galileo spacecraft, on its way to Jupiter, pointed its instruments back to Earth and picked up the distinct indication of the presence of plants.

    It detected the vegetation red edge (VRE) biosignature-a mixture of red and infrared light that is reflected by plants. The JWST will measure the VRE of distant Earth-like planets in the habitable zone around stars; and if there is a planet covered in jungle, for example, it should have a large VRE signal that should be easy to detect.

    There could be important signs of life in the composition of the atmospheres of the exoplanets. When an exoplanet passes across the face of its star, sunlight passes through its atmosphere and could be picked up by the JWST. Spectroscopy would then be used to discover which wavelengths are missing from the light. Atoms and molecules in the atmosphere absorb certain wavelengths and therefore leave a unique fingerprint for the JWST to detect. In that way, the composition of the atmosphere can be determined and the presence of life possibly inferred. If Earth-sized planets were found to have an atmosphere similar to our home planet (that is, containing mainly oxygen, nitrogen and carbon dioxide), that planet could likely support life forms.

    Technological life could perhaps be identified by looking for the presence of chemicals that don’t occur naturally. If aliens looked at the atmosphere of Earth from a distance, they would probably see chlorofluorocarbons (CFCs), which were manufactured for use in refrigeration and cleaning materials. Jacob Haqq-Misra at the Blue Marble Space Institute in Seattle has suggested that if the JWST detected CFCs in exoplanet atmospheres then that would be a tell-tale indication that a civilization is there.

    Recognizing life

    Of course living things on exoplanets might resemble nothing like life on Earth. Sometimes even life on Earth can seem alien, such as “extremophile” organisms. This is a class of organism, mostly microbes, that live in extremely harsh environments where life is impossible for other living creatures. Some live at very high temperatures, up to 250 Fahrenheit. Others survive extreme cold, as low as -4 Fahrenheit. Some live in strong acids with pH below 3, and there are other places on Earth where we would not expect to find life at all.

    However, it might be sensible initially to start looking at Earth-like planets where life is more likely — rather than those planets that have a temperature of 250 Fahrenheit, for instance, or are bathed in acid. Prime candidates might have a temperature where liquid water could form on the surface, and they’re orbiting around a stable star.

    Our Sun is classified as a G-type yellow star. But these stars tend to be short-lived and less common in space as we know it. More likely subject of study could be planets in orbit around the more numerous red dwarf stars, which are slightly cooler and less luminous than our Sun. These stars have much longer lifetimes, so there is more time for life to start up and evolution has more time to develop complicated life forms.

    First target

    The first project for JWST is to look at an exoplanet system called TRAPPIST-1, which is 40 light years away from us.

    This consists of seven rocky Earth-sized planets in orbit around a cool red dwarf star. Three of the rocky planets are in the so-called habitable zone, which means they could have liquid water on their surfaces. The TRAPPIST-1 star is only 1/10 the mass of our Sun and is much cooler, but the planets orbit close to the star so they receive light levels similar to here on Earth.

    Whether there is life anywhere else in the universe is one of the most important questions in science. The universe might be teeming with life, or maybe we are totally alone, marooned on a lonely world in the vastness of space. The definitive answer, either way, will likely require a profound psychological and philosophical adjustments for humankind.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Astronomy is a magazine about the science and hobby of astronomy. Based near Milwaukee in Waukesha, Wisconsin, it is produced by Kalmbach Publishing. Astronomy’s readers include those interested in astronomy and those who want to know about sky events, observing techniques, astrophotography, and amateur astronomy in general.

    Astronomy was founded in 1973 by Stephen A. Walther, a graduate of The University of Wisconsin–Stevens Point and amateur astronomer. The first issue, August 1973, consisted of 48 pages with five feature articles and information about what to see in the sky that month. Issues contained astrophotos and illustrations created by astronomical artists. Walther had worked part time as a planetarium lecturer at The University of Wisconsin–Milwaukee and developed an interest in photographing constellations at an early age. Although even in childhood he was interested to obsession in Astronomy, he did so poorly in mathematics that his mother despaired that he would ever be able to earn a living. However he graduated in Journalism from the University of Wisconsin Stevens Point, and as a senior class project he created a business plan for a magazine for amateur astronomers. With the help of his brother David, he was able to bring the magazine to fruition. He died in 1977.

  • richardmitnick 10:25 pm on March 30, 2022 Permalink | Reply
    Tags: "Methane could be the first detectable indication of life beyond Earth", Biosignatures, , ,   

    From The University of California-Santa Cruz: “Methane could be the first detectable indication of life beyond Earth” 

    From The University of California-Santa Cruz

    March 28, 2022
    Tim Stephens

    A new study assesses the planetary context in which the detection of methane in an exoplanet’s atmosphere could be considered a compelling sign of life.

    Methane in a planet’s atmosphere may be a sign of life if nonbiological sources can be ruled out. This illustration summarizes the known abiotic sources of methane on Earth, including outgassing from volcanoes, reactions in settings such as mid-ocean ridges, hydrothermal vents, and subduction zones, and impacts from asteroids and comets. Image credit: © 2022 Elena Hartley.

    If life is abundant in the universe, atmospheric methane may be the first sign of life beyond Earth detectable by astronomers. Although nonbiological processes can generate methane, a new study by scientists at UC Santa Cruz establishes a set of circumstances in which a persuasive case could be made for biological activity as the source of methane in a rocky planet’s atmosphere.

    This is especially noteworthy because methane is one of the few potential signs of life, or “biosignatures,” that could be readily detectable with the James Webb Space Telescope, which will begin observations later this year.

    “Oxygen is often talked about as one of the best biosignatures, but it’s probably going to be hard to detect with JWST,” said Maggie Thompson, a graduate student in astronomy and astrophysics at UC Santa Cruz and lead author of the new study.

    Despite some prior studies on methane biosignatures, there had not been an up-to-date, dedicated assessment of the planetary conditions needed for methane to be a good biosignature. “We wanted to provide a framework for interpreting observations, so if we see a rocky planet with methane, we know what other observations are needed for it to be a persuasive biosignature,” Thompson said.

    Published the week of March 28 in PNAS, the study examines a variety of non-biological sources of methane and assesses their potential to maintain a methane-rich atmosphere. These include volcanoes; reactions in settings such as mid-ocean ridges, hydrothermal vents, and tectonic subduction zones; and comet or asteroid impacts.

    The case for methane as a biosignature stems from its instability in the atmosphere. Because photochemical reactions destroy atmospheric methane, it must be steadily replenished to maintain high levels.

    “If you detect a lot of methane on a rocky planet, you typically need a massive source to explain that,” said coauthor Joshua Krissansen-Totton, a Sagan Fellow at UCSC. “We know biological activity creates large amounts of methane on Earth, and probably did on the early Earth as well because making methane is a fairly easy thing to do metabolically.

    Nonbiological sources, however, would not be able to produce that much methane without also generating observable clues to its origins. Outgassing from volcanoes, for example, would add both methane and carbon monoxide to the atmosphere, while biological activity tends to readily consume carbon monoxide. The researchers found that nonbiological processes cannot easily produce habitable planet atmospheres rich in both methane and carbon dioxide and with little to no carbon monoxide.

    The study emphasizes the need to consider the full planetary context in evaluating potential biosignatures. The researchers concluded that, for a rocky planet orbiting a sun-like star, atmospheric methane is more likely to be considered a strong indication of life if the atmosphere also has carbon dioxide, methane is more abundant than carbon monoxide, and extremely water-rich planetary compositions can be ruled out.

    “One molecule is not going to give you the answer—you have to take into account the planet’s full context,” Thompson said. “Methane is one piece of the puzzle, but to determine if there is life on a planet you have to consider its geochemistry, how it’s interacting with its star, and the many processes that can affect a planet’s atmosphere on geologic timescales.”

    The study considers a variety of possibilities for “false positives” and provides guidelines for assessing methane biosignatures.

    “There are two things that could go wrong—you could misinterpret something as a biosignature and get a false positive, or you could overlook something that’s a real biosignature,” Krissansen-Totton said. “With this paper, we wanted to develop a framework to help avoid both of those potential errors with methane.”

    He added that there is still a lot of work to be done to fully understand any future methane detections. “This study is focused on the most obvious false positives for methane as a biosignature,” he said. “The atmospheres of rocky exoplanets are probably going to surprise us, and we will need to be cautious in our interpretations. Future work should try to anticipate and quantify more unusual mechanisms for nonbiological methane production.”

    In addition to Thompson and Krissansen-Totton, the coauthors of the paper include Jonathan Fortney, professor of astronomy and astrophysics at UCSC, Myriam Telus, assistant professor of Earth and planetary sciences at UCSC, and Nicholas Wogan at the University of Washington, Seattle. This work was supported by NASA.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Cruz campus.

    The University of California-Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.

    UC Santa Cruz Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch.)
    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    Alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument, developed at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) and brought to The University of California-San Diego and installed at the UC Santa Cruz Lick Observatory Nickel Telescope (Photo by Laurie Hatch). “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA).

    Shelley Wright of UC San Diego with NIROSETI, developed at U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz
    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, The University of California-San Diego; Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    Frank Drake with his Drake Equation. Credit Frank Drake.

    Drake Equation, Frank Drake, Seti Institute.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The University of California

    The University of California is a public land-grant research university system in the U.S. state of California. The system is composed of the campuses at Berkeley, Davis, Irvine, Los Angeles, Merced, Riverside, San Diego, San Francisco, Santa Barbara, and Santa Cruz, along with numerous research centers and academic abroad centers. The system is the state’s land-grant university.

    The University of California was founded on March 23, 1868, and operated in Oakland before moving to Berkeley in 1873. Over time, several branch locations and satellite programs were established. In March 1951, the University of California began to reorganize itself into something distinct from its campus in Berkeley, with University of California President Robert Gordon Sproul staying in place as chief executive of the University of California system, while Clark Kerr became the first chancellor of The University of California-Berkeley and Raymond B. Allen became the first chancellor of The University of California-Los Angeles. However, the 1951 reorganization was stalled by resistance from Sproul and his allies, and it was not until Kerr succeeded Sproul as University of California President that University of California was able to evolve into a university system from 1957 to 1960. At that time, chancellors were appointed for additional campuses and each was granted some degree of greater autonomy.

    The University of California currently has 10 campuses, a combined student body of 285,862 students, 24,400 faculty members, 143,200 staff members and over 2.0 million living alumni. Its newest campus in Merced opened in fall 2005. Nine campuses enroll both undergraduate and graduate students; one campus, The University of California-San Francisco, enrolls only graduate and professional students in the medical and health sciences. In addition, the University of California Hastings College of the Law, located in San Francisco, is legally affiliated with University of California, but other than sharing its name is entirely autonomous from the rest of the system. Under the California Master Plan for Higher Education, the University of California is a part of the state’s three-system public higher education plan, which also includes the California State University system and the California Community Colleges system. University of California is governed by a Board of Regents whose autonomy from the rest of the state government is protected by the state constitution. The University of California also manages or co-manages three national laboratories for the U.S. Department of Energy: The DOE’s Lawrence Berkeley National Laboratory , The DOE’s Lawrence Livermore National Laboratory , and The Doe’s Los Alamos National Laboratory.

    Collectively, the colleges, institutions, and alumni of the University of California make it the most comprehensive and advanced post-secondary educational system in the world, responsible for nearly $50 billion per year of economic impact. Major publications generally rank most University of California campuses as being among the best universities in the world. Eight of the campuses, Berkeley, Davis, Irvine, Los Angeles, Santa Barbara, San Diego, Santa Cruz, and Riverside, are considered Public Ivies, making California the state with the most universities in the nation to hold the title. University of California campuses have large numbers of distinguished faculty in almost every academic discipline, with University of California faculty and researchers having won 71 Nobel Prizes as of 2021.

    In 1849, the state of California ratified its first constitution, which contained the express objective of creating a complete educational system including a state university. Taking advantage of the Morrill Land-Grant Acts, the California State Legislature established an Agricultural, Mining, and Mechanical Arts College in 1866. However, it existed only on paper, as a placeholder to secure federal land-grant funds.

    Meanwhile, Congregational minister Henry Durant, an alumnus of Yale University, had established the private Contra Costa Academy, on June 20, 1853, in Oakland, California. The initial site was bounded by Twelfth and Fourteenth Streets and Harrison and Franklin Streets in downtown Oakland (and is marked today by State Historical Plaque No. 45 at the northeast corner of Thirteenth and Franklin). In turn, the academy’s trustees were granted a charter in 1855 for a College of California, though the college continued to operate as a college preparatory school until it added college-level courses in 1860. The college’s trustees, educators, and supporters believed in the importance of a liberal arts education (especially the study of the Greek and Roman classics), but ran into a lack of interest in liberal arts colleges on the American frontier (as a true college, the college was graduating only three or four students per year).

    In November 1857, the college’s trustees began to acquire various parcels of land facing the Golden Gate in what is now Berkeley for a future planned campus outside of Oakland. But first, they needed to secure the college’s water rights by buying a large farm to the east. In 1864, they organized the College Homestead Association, which borrowed $35,000 to purchase the land, plus another $33,000 to purchase 160 acres (650,000 m^2) of land to the south of the future campus. The Association subdivided the latter parcel and started selling lots with the hope it could raise enough money to repay its lenders and also create a new college town. But sales of new homesteads fell short.

    Governor Frederick Low favored the establishment of a state university based upon The University of Michigan plan, and thus in one sense may be regarded as the founder of the University of California. At the College of California’s 1867 commencement exercises, where Low was present, Benjamin Silliman Jr. criticized Californians for creating a state polytechnic school instead of a real university. That same day, Low reportedly first suggested a merger of the already-functional College of California (which had land, buildings, faculty, and students, but not enough money) with the nonfunctional state college (which had money and nothing else), and went on to participate in the ensuing negotiations. On October 9, 1867, the college’s trustees reluctantly agreed to join forces with the state college to their mutual advantage, but under one condition—that there not be simply an “Agricultural, Mining, and Mechanical Arts College”, but a complete university, within which the assets of the College of California would be used to create a College of Letters (now known as the College of Letters and Science). Accordingly, the Organic Act, establishing the University of California, was introduced as a bill by Assemblyman John W. Dwinelle on March 5, 1868, and after it was duly passed by both houses of the state legislature, it was signed into state law by Governor Henry H. Haight (Low’s successor) on March 23, 1868. However, as legally constituted, the new university was not an actual merger of the two colleges, but was an entirely new institution which merely inherited certain objectives and assets from each of them. The University of California’s second president, Daniel Coit Gilman, opened its new campus in Berkeley in September 1873.

    Section 8 of the Organic Act authorized the Board of Regents to affiliate the University of California with independent self-sustaining professional colleges. “Affiliation” meant University of California and its affiliates would “share the risk in launching new endeavors in education.” The affiliates shared the prestige of the state university’s brand, and University of California agreed to award degrees in its own name to their graduates on the recommendation of their respective faculties, but the affiliates were otherwise managed independently by their own boards of trustees, charged their own tuition and fees, and maintained their own budgets separate from the University of California budget. It was through the process of affiliation that University of California was able to claim it had medical and law schools in San Francisco within a decade of its founding.

    In 1879, California adopted its second and current constitution, which included unusually strong language to ensure University of California’s independence from the rest of the state government. This had lasting consequences for the Hastings College of the Law, which had been separately chartered and affiliated in 1878 by an act of the state legislature at the behest of founder Serranus Clinton Hastings. After a falling out with his own handpicked board of directors, the founder persuaded the state legislature in 1883 and 1885 to pass new laws to place his law school under the direct control of the Board of Regents. In 1886, the Supreme Court of California declared those newer acts to be unconstitutional because the clause protecting University of California’s independence in the 1879 state constitution had stripped the state legislature of the ability to amend the 1878 act. To this day, the Hastings College of the Law remains an affiliate of University of California, maintains its own board of directors, and is not governed by the Regents.

    In contrast, Toland Medical College (founded in 1864 and affiliated in 1873) and later, the dental, pharmacy, and nursing schools in SF were affiliated with University of California through written agreements, and not statutes invested with constitutional importance by court decisions. In the early 20th century, the Affiliated Colleges (as they came to be called) began to agree to submit to the Regents’ governance during the term of President Benjamin Ide Wheeler, as the Board of Regents had come to recognize the problems inherent in the existence of independent entities that shared the University of California brand but over which University of California had no real control. While Hastings remained independent, the Affiliated Colleges were able to increasingly coordinate their operations with one another under the supervision of the University of California President and Regents, and evolved into the health sciences campus known today as the University of California-San Francisco.

    In August 1882, the California State Normal School (whose original normal school in San Jose is now San Jose State University) opened a second school in Los Angeles to train teachers for the growing population of Southern California. In 1887, the Los Angeles school was granted its own board of trustees independent of the San Jose school, and in 1919, the state legislature transferred it to University of California control and renamed it the Southern Branch of the University of California. In 1927, it became The University of California-Los Angeles; the “at” would be replaced with a comma in 1958.

    Los Angeles surpassed San Francisco in the 1920 census to become the most populous metropolis in California. Because Los Angeles had become the state government’s single largest source of both tax revenue and votes, its residents felt entitled to demand more prestige and autonomy for their campus. Their efforts bore fruit in March 1951, when UCLA became the first University of California site outside of Berkeley to achieve de jure coequal status with the Berkeley campus. That month, the Regents approved a reorganization plan under which both the Berkeley and Los Angeles campuses would be supervised by chancellors reporting to the University of California President. However, the 1951 plan was severely flawed; it was overly vague about how the chancellors were to become the “executive heads” of their campuses. Due to stubborn resistance from President Sproul and several vice presidents and deans—who simply carried on as before—the chancellors ended up as glorified provosts with limited control over academic affairs and long-range planning while the President and the Regents retained de facto control over everything else.

    Upon becoming president in October 1957, Clark Kerr supervised University of California’s rapid transformation into a true public university system through a series of proposals adopted unanimously by the Regents from 1957 to 1960. Kerr’s reforms included expressly granting all campus chancellors the full range of executive powers, privileges, and responsibilities which Sproul had denied to Kerr himself, as well as the radical decentralization of a tightly knit bureaucracy in which all lines of authority had always run directly to the President at Berkeley or to the Regents themselves. In 1965, UCLA Chancellor Franklin D. Murphy tried to push this to what he saw as its logical conclusion: he advocated for authorizing all chancellors to report directly to the Board of Regents, thereby rendering the University of California President redundant. Murphy wanted to transform University of California from one federated university into a confederation of independent universities, similar to the situation in Kansas (from where he was recruited). Murphy was unable to develop any support for his proposal, Kerr quickly put down what he thought of as “Murphy’s rebellion”, and therefore Kerr’s vision of University of California as a university system prevailed: “one university with pluralistic decision-making”.

    During the 20th century, University of California acquired additional satellite locations which, like Los Angeles, were all subordinate to administrators at the Berkeley campus. California farmers lobbied for University of California to perform applied research responsive to their immediate needs; in 1905, the Legislature established a “University Farm School” at Davis and in 1907 a “Citrus Experiment Station” at Riverside as adjuncts to the College of Agriculture at Berkeley. In 1912, University of California acquired a private oceanography laboratory in San Diego, which had been founded nine years earlier by local business promoters working with a Berkeley professor. In 1944, University of California acquired Santa Barbara State College from the California State Colleges, the descendants of the State Normal Schools. In 1958, the Regents began promoting these locations to general campuses, thereby creating The University of California-Santa Barbara (1958), The University of California-Davis (1959), The University of California-Riverside (1959), The University of California-San Diego (1960), and The University of California-San Francisco (1964). Each campus was also granted the right to have its own chancellor upon promotion. In response to California’s continued population growth, University of California opened two additional general campuses in 1965, with The University of California-Irvine opening in Irvine and The University of California-Santa Cruz opening in Santa Cruz. The youngest campus, The University of California-Merced opened in fall 2005 to serve the San Joaquin Valley.

    After losing campuses in Los Angeles and Santa Barbara to the University of California system, supporters of the California State College system arranged for the state constitution to be amended in 1946 to prevent similar losses from happening again in the future.

    The California Master Plan for Higher Education of 1960 established that University of California must admit undergraduates from the top 12.5% (one-eighth) of graduating high school seniors in California. Prior to the promulgation of the Master Plan, University of California was to admit undergraduates from the top 15%. University of California does not currently adhere to all tenets of the original Master Plan, such as the directives that no campus was to exceed total enrollment of 27,500 students (in order to ensure quality) and that public higher education should be tuition-free for California residents. Five campuses, Berkeley, Davis, Irvine, Los Angeles, and San Diego each have current total enrollment at over 30,000.

    After the state electorate severely limited long-term property tax revenue by enacting Proposition 13 in 1978, University of California was forced to make up for the resulting collapse in state financial support by imposing a variety of fees which were tuition in all but name. On November 18, 2010, the Regents finally gave up on the longstanding legal fiction that University of California does not charge tuition by renaming the Educational Fee to “Tuition.” As part of its search for funds during the 2000s and 2010s, University of California quietly began to admit higher percentages of highly accomplished (and more lucrative) students from other states and countries, but was forced to reverse course in 2015 in response to the inevitable public outcry and start admitting more California residents.

    As of 2019, University of California controls over 12,658 active patents. University of California researchers and faculty were responsible for 1,825 new inventions that same year. On average, University of California researchers create five new inventions per day.

    Seven of University of California’s ten campuses (UC Berkeley, UC Davis, UC Irvine, UCLA, UC San Diego, UC Santa Barbara, and UC Santa Cruz) are members of the Association of American Universities, an alliance of elite American research universities founded in 1900 at University of California’s suggestion. Collectively, the system counts among its faculty (as of 2002):

    389 members of the Academy of Arts and Sciences
    5 Fields Medal recipients
    19 Fulbright Scholars
    25 MacArthur Fellows
    254 members of the National Academy of Sciences
    91 members of the National Academy of Engineering
    13 National Medal of Science Laureates
    61 Nobel laureates.
    106 members of the Institute of Medicine

    Davis, Los Angeles, Riverside, and Santa Barbara all followed Berkeley’s example by aggregating the majority of arts, humanities, and science departments into a relatively large College of Letters and Science. Therefore, at Berkeley, Davis, Los Angeles, and Santa Barbara, their respective College of Letters and Science is by far the single largest academic unit on each campus. The College of Letters and Science at Los Angeles is the largest academic unit in the entire University of California system.

    Finally, Irvine is organized into 13 schools and San Francisco is organized into four schools, all of which are relatively narrow in scope.

    In 2006 the Scholarly Publishing and Academic Resources Coalition awarded the University of California the SPARC Innovator Award for its “extraordinarily effective institution-wide vision and efforts to move scholarly communication forward”, including the 1997 founding (under then University of California President Richard C. Atkinson) of the California Digital Library (CDL) and its 2002 launching of CDL’s eScholarship, an institutional repository. The award also specifically cited the widely influential 2005 academic journal publishing reform efforts of University of California faculty and librarians in “altering the marketplace” by publicly negotiating contracts with publishers, as well as their 2006 proposal to amend University of California’s copyright policy to allow open access to University of California faculty research. On July 24, 2013, the University of California Academic Senate adopted an Open Access Policy, mandating that all University of California faculty produced research with a publication agreement signed after that date be first deposited in University of California’s eScholarship open access repository.

    University of California system-wide research on the SAT exam found that, after controlling for familial income and parental education, so-called achievement tests known as the SAT II had 10 times more predictive ability of college aptitude than the SAT I.

    All University of California campuses except Hastings College of the Law are governed by the Regents of the University of California as required by the Constitution of the State of California. Eighteen regents are appointed by the governor for 12-year terms. One member is a student appointed for a one-year term. There are also seven ex officio members—the governor, lieutenant governor, speaker of the State Assembly, State Superintendent of Public Instruction, president and vice president of the alumni associations of University of California, and the University of California president. The Academic Senate, made up of faculty members, is empowered by the regents to set academic policies. In addition, the system-wide faculty chair and vice-chair sit on the Board of Regents as non-voting members.

    Originally, the president was the chief executive of the first campus, Berkeley. In turn, other University of California locations (with the exception of Hastings College of the Law) were treated as off-site departments of the Berkeley campus, and were headed by provosts who were subordinate to the president. In March 1951, the regents reorganized the university’s governing structure. Starting with the 1952–53 academic year, day-to-day “chief executive officer” functions for the Berkeley and Los Angeles campuses were transferred to chancellors who were vested with a high degree of autonomy, and reported as equals to University of California’s president. As noted above, the regents promoted five additional University of California locations to campuses and allowed them to have chancellors of their own in a series of decisions from 1958 to 1964, and the three campuses added since then have also been run by chancellors. In turn, all chancellors (again, with the exception of Hastings) report as equals to the University of California President. Today, the University of California Office of the President (UCOP) and the Office of the Secretary and Chief of Staff to the Regents of the University of California share an office building in downtown Oakland that serves as the University of California system’s headquarters.

    Kerr’s vision for University of California governance was “one university with pluralistic decision-making.” In other words, the internal delegation of operational authority to chancellors at the campus level and allowing nine other campuses to become separate centers of academic life independent of Berkeley did not change the fact that all campuses remain part of one legal entity. As a 1968 University of California centennial coffee table book explained: “Yet for all its campuses, colleges, schools, institutes, and research stations, it remains one University, under one Board of Regents and one president—the University of California.” University of California continues to take a “united approach” as one university in matters in which it inures to University of California’s advantage to do so, such as when negotiating with the legislature and governor in Sacramento. University of California continues to manage certain matters at the system wide level in order to maintain common standards across all campuses, such as student admissions, appointment and promotion of faculty, and approval of academic programs.

    The State of California currently (2021–2022) spends $3.467 billion on the University of California system, out of total University of California operating revenues of $41.6 billion. The “University of California Budget for Current Operations” lists the medical centers as the largest revenue source, contributing 39% of the budget, the federal government 11%, Core Funds (State General Funds, University of California General Funds, student tuition) 21%, private support (gifts, grants, endowments) 7% ,and Sales and Services at 21%. In 1980, the state funded 86.8% of the University of California budget. While state funding has somewhat recovered, as of 2019 state support still lags behind even recent historic levels (e.g. 2001) when adjusted for inflation.

    According to the California Public Policy Institute, California spends 12% of its General Fund on higher education, but that percentage is divided between the University of California, California State University and California Community Colleges. Over the past forty years, state funding of higher education has dropped from 18% to 12%, resulting in a drop in University of California’s per student funding from $23,000 in 2016 to a current $8,000 per year per student.

    In May 2004, University of California President Robert C. Dynes and CSU Chancellor Charles B. Reed struck a private deal, called the “Higher Education Compact”, with Governor Schwarzenegger. They agreed to slash spending by about a billion dollars (about a third of the university’s core budget for academic operations) in exchange for a funding formula lasting until 2011. The agreement calls for modest annual increases in state funds (but not enough to replace the loss in state funds Dynes and Schwarzenegger agreed to), private fundraising to help pay for basic programs, and large student fee hikes, especially for graduate and professional students. A detailed analysis of the Compact by the Academic Senate “Futures Report” indicated, despite the large fee increases, the university core budget did not recover to 2000 levels. Undergraduate student fees have risen 90% from 2003 to 2007. In 2011, for the first time in Univerchity of California’s history, student fees exceeded contributions from the State of California.

    The First District Court of Appeal in San Francisco ruled in 2007 that the University of California owed nearly $40 million in refunds to about 40,000 students who were promised that their tuition fees would remain steady, but were hit with increases when the state ran short of money in 2003.

    In September 2019, the University of California announced it will divest its $83 billion in endowment and pension funds from the fossil fuel industry, citing ‘financial risk’.

    At present, the University of California system officially describes itself as a “ten campus” system consisting of the campuses listed below.

    Los Angeles
    San Diego
    San Francisco
    Santa Barbara
    Santa Cruz

    These campuses are under the direct control of the Regents and President. Only these ten campuses are listed on the official University of California letterhead.

    Although it shares the name and public status of the University of California system, the Hastings College of the Law is not controlled by the Regents or President; it has a separate board of directors and must seek funding directly from the Legislature. However, under the California Education Code, Hastings degrees are awarded in the name of the Regents and bear the signature of the University of California president. Furthermore, Education Code section 92201 states that Hastings “is affiliated with the University of California, and is the law department thereof”.

  • richardmitnick 7:48 pm on March 21, 2022 Permalink | Reply
    Tags: "Machine learning will be one of the best ways to identify habitable exoplanets", , , Biosignatures, , , , Water is considered the divining rod for finding life.   

    From Cornell University and The Dunlap Institute for Astronomy and Astrophysics (CA) via phys.org: “Machine learning will be one of the best ways to identify habitable exoplanets” 

    From Cornell University


    The Dunlap Institute for Astronomy and Astrophysics (CA)


    University of Toronto (CA)



    Artist’s impression of a multi-planet system where three are making a transit. Credit: The National Aeronautics and Space Agency

    The field of extrasolar planet studies is undergoing a seismic shift. To date, 4,940 exoplanets have been confirmed in 3,711 planetary systems, with another 8,709 candidates awaiting confirmation. With so many planets available for study and improvements in telescope sensitivity and data analysis, the focus is transitioning from discovery to characterization. Instead of simply looking for more planets, astrobiologists will examine “potentially-habitable” worlds for potential “biosignatures.”

    This refers to the chemical signatures associated with life and biological processes, one of the most important of which is water. As the only known solvent that life (as we know it) cannot exist without, water is considered the divining rod for finding life. In a recent study, astrophysicists Dang Pham and Lisa Kaltenegger explain how future surveys (when combined with machine learning) could discern the presence of water, snow, and clouds on distant exoplanets.

    Dang Pham is a graduate student with the David A. Dunlap Department of Astronomy & Astrophysics at the University of Toronto, where he specializes in planetary dynamics research. Lisa Kaltenegger is an Associate Professor in Astronomy at Cornell University, the Director of the Carl Sagan Institute, and a world-leading expert in modeling potentially habitable worlds and characterizing their atmospheres.

    Water is something that all life on Earth depends on, hence its importance for exoplanet and astrobiological surveys. As Lisa Kaltenegger told Universe Today via email, this importance is reflected in NASA’s slogan—”just follow the water”—which also inspired the title of their paper.

    “Liquid water on a planet’s surface is one of the smoking guns for potential life—I say potential here because we don’t know what else we need to get life started. But liquid water is a great start. So we used NASA’s slogan of ‘just follow the water’ and asked, how can we find water on the surface of rocky exoplanets in the habitable zone? Doing spectroscopy is time intensive, thus we are searching for a faster way to initially identify promising planets—those with liquid water on them.”

    Currently, astronomers have been limited to looking for Lyman-alpha line absorption, which indicates the presence of hydrogen gas in an exoplanet’s atmosphere. This is a byproduct of atmospheric water vapor that’s been exposed to solar ultraviolet radiation, causing it to become chemically disassociated into hydrogen and molecular oxygen (O2)—the former of which is lost to space while the latter is retained.

    This is about to change, thanks to next-generation telescopes like the James Webb (JWST) and Nancy Grace Roman Space Telescopes (RST), as well as next-next-generation observatories like the Origins Space Telescope, the Habitable Exoplanet Observatory (HabEx), and the Large UV/Optical/IR Surveyor (LUVOIR). There are also ground-based telescopes like the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT), and the Thirty Meter Telescope (TMT).

    Thanks to their large primary mirrors and advanced suite of spectrographs, chronographs, adaptive optics, these instruments will be able to conduct direct imaging studies of exoplanets. This consists of studying light reflected directly from an exoplanet’s atmosphere or surface to obtain spectra, allowing astronomers to see what chemical elements are present. But as they indicate in their paper, this is a time-intensive process.

    Astronomers start by observing thousands of stars for periodic dips in brightness, then analyzing the light curves for signs of chemical signatures. Currently, exoplanet researchers and astrobiologists rely on amateur astronomers and machine algorithms to sort through the volumes of data their telescopes obtain. Looking ahead, Pham and Kaltenegger show how more advanced machine learning will be crucial.

    As they indicate, ML techniques will allow astronomers to conduct the initial characterizations of exoplanets more rapidly, allowing astronomers to prioritize targets for follow-up observations. By “following the water,” astronomers will be able to dedicate more of an observatory’s valuable survey time to exoplanets that are more likely to provide significant returns.

    “Next-generation telescopes will look for water vapor in the atmosphere of planets and water on the surface of planets,” said Kaltenegger. “Of course, to find water on the surface of planets, you should look [for water in its] liquid, solid, and gaseous forms, as we did in our paper.”

    “Machine learning allows us to quickly identify optimal filters, as well as the trade-off in accuracy at various signal-to-noise ratios,” added Pham. “In the first task, using [the open-source algorithm] XGBoost, we get a ranking of which filters are most helpful for the algorithm in its tasks of detecting water, snow, or cloud. In the second task, we can observe how much better the algorithm performs with less noise. With that, we can draw a line where getting more signal would not correspond to much better accuracy.”

    To make sure their algorithm was up to the task, Pham and Kaltenegger did some considerable calibrating. This consisted of creating 53,130 spectra profiles of a cold Earth with various surface components—including snow, water, and water clouds. They then simulated the spectra for this water in terms of atmosphere and surface reflectivity and assigned color profiles. As Pham explained:

    “The atmosphere was modeled using Exo-Prime2—Exo-Prime2 has been validated by comparison to Earth in various missions. The reflectivity of surfaces like snow and water are measured on Earth by USGS. We then create colors from these spectra. We train XGBoost on these colors to perform three separate goals: detecting the existence of water, the existence of clouds, and the existence of snow.”

    This trained XGBoost showed that clouds and snow are easier to identify than water, which is expected since clouds and snow have a much higher albedo (greater reflectivity of sunlight) than water. They further identified five optimal filters that worked extremely well for the algorithm, all of which were 0.2 micrometers broad and in the visible light range. The final step was to perform a mock probability assessment to evaluate their planet model regarding liquid water, snow, and clouds from the set of five optimal filters they identified.

    “Finally, we [performed] a brief Bayesian analysis using Markov-Chain Monte Carlo (MCMC) to do the same task on the five optimal filters, as a non-machine learning method to validate our finding,” said Pham. “Our findings there are similar: water is harder to detect, but identifying water, snow, and cloud through photometry is feasible.”

    Similarly, they were surprised to see how well the trained XGBoost could identify water on the surface of rocky planets based on color alone. According to Kaltenegger, this is what filters really are: a means for separating light into discreet “bins.” “Imagine a bin for all red light (the “red” filter), then a bin for all the green light, from light to dark green (the “green” filter),” she said.

    Their proposed method does not identify water in exoplanet atmospheres but on an exoplanet’s surface via photometry. In addition, it will not work with the Transit Method (aka. Transit Photometry), which is currently the most widely-used and effective means of exoplanet detection. This method consists of observing distant stars for periodic dips in luminosity attributed to exoplanets passing in front of the star (aka. transiting) relative to the observer.

    On occasion, astronomers can obtain spectra from an exoplanet’s atmosphere as it makes a transit—a process known as “transit spectroscopy.” As the sun’s light passes through the exoplanet’s atmosphere relative to the observer, astronomers will analyze it with spectrometers to determine what chemicals are there. Using its sensitive optics and suite of spectrometers, the JWST will rely on this method to characterize exoplanet atmospheres.

    Science paper submitted to MNRAS

    See the full article here .

    Dunlap Institute campus

    The Dunlap Institute for Astronomy & Astrophysics(CA) at University of Toronto(CA) is an endowed research institute with nearly 70 faculty, postdocs, students and staff, dedicated to innovative technology, ground-breaking research, world-class training, and public engagement. The research themes of its faculty and Dunlap Fellows span the Universe and include: optical, infrared and radio instrumentation; Dark Energy; large-scale structure; the Cosmic Microwave Background; the interstellar medium; galaxy evolution; cosmic magnetism; and time-domain science.

    The Dunlap Institute (CA), University of Toronto Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), and Centre for Planetary Sciences (CA) comprise the leading centre for astronomical research in Canada, at the leading research university in the country, the University of Toronto (CA).

    The Dunlap Institute (CA) is committed to making its science, training and public outreach activities productive and enjoyable for everyone, regardless of gender, sexual orientation, disability, physical appearance, body size, race, nationality or religion.

    Our work is greatly enhanced through collaborations with the Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), David Dunlap Observatory (CA), Ontario Science Centre (CA), Royal Astronomical Society of Canada (CA), the Toronto Public Library (CA), and many other partners.

    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, UCSD; Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

    The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities outside the United States, the other being McGill(CA).

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue forever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-story Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War, the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.


    Since 1926 the University of Toronto has been a member of the Association of American Universities a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts. Development of the infrared chemiluminescence technique improved analyses of energy behaviors in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institute in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.


    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University(US) laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.


    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration’s JPL-Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: