Tagged: Biogeochemistry Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:57 pm on February 2, 2023 Permalink | Reply
    Tags: "Critical zone": the term scientists use to refer to the area of Earth's land surface responsible for sustaining life., "Microbes are 'active engineers' in Earth's rock-to-life cycle", A strong relationship between the rate at which the rock was weathering to form soil and the activities of the microbiome in the subsurface, An open-air living laboratory that spans parts of Arizona and New Mexico breaks down rock and minerals over timea nd feeds into Earth's intricate life-support system., , Biogeochemistry, , Chemical and mineral weathering drives the evolution of everything from the soil microbiome to the carbon cycle., , , , Minerals and microorganisms and organics interact with each other constantly to provide all terrestrial life with nutrients energy and suitable living environments.", National Science Foundation Critical Zone Observatory program,   

    From The University of Arizona: “Microbes are ‘active engineers’ in Earth’s rock-to-life cycle” 

    From The University of Arizona

    Jake Kerr and Rosemary Brandt | College of Agriculture and Life Sciences

    An open-air, living laboratory that spans parts of Arizona and New Mexico is helping researchers better understand how mineral weathering – the breaking down or dissolving of rocks and minerals over time – feeds into Earth’s intricate life-support system.

    An eddy covariance tower helps researchers measure forest-atmosphere exchanges of gas and water in the Santa Catalina Mountains in Arizona. Courtesy of The University of Arizona Department of Environmental Science.

    The name “critical zone” may give off 1980s action thriller vibes, but it’s the term scientists use to refer to the area of Earth’s land surface responsible for sustaining life. A relatively small portion of the planetary structure, it spans from the bedrock below groundwater all the way up to the lower atmosphere.

    “Think of it as Earth’s skin,” said Jon Chorover, head of the Department of Environmental Science in the University of Arizona College of Agriculture and Life Sciences. “It’s sometimes termed the zone where rock meets life.”

    Most people – even geologists – don’t typically think about rock as the foundation of life or the way life may alter rock, but that cuts to the heart of critical zone science, Chorover said.

    A relatively new framework for approaching Earth sciences, the critical zone aligns researchers across disciplines to better understand how the delicate web of physical, chemical and biological processes come together to form Earth’s life-support system.

    As a biogeochemist, the whole-system approach is a way of thinking that comes naturally to Chorover, who has spent much of his career working to unravel the ways in which chemical and mineral weathering drives the evolution of everything from the soil microbiome to the carbon cycle.

    Together with Qian Fang, a postdoctoral researcher from Peking University in Beijing, Chorover recently published the results [Nature Communications (below)] of nearly 10 years of data collected at the Santa Catalina-Jemez River Basin Critical Zone Observatory – which spans a gradient of elevation and climates on rock basins in northern New Mexico and Southern Arizona.
    Fig. 1: A conceptual model showing the relationship of weathering congruency to the priming effect.
    Mineral breakdown at high and low weathering congruencies results in different proportions of dissolved vs. solid-phase products (Table 1). High weathering congruency yields more dissolved cations and fewer solids relative to low congruency. Low congruency generates more short-range-order minerals that can bond with and protect organic matter (including dissolved organic matter-DOM) through formation of mineral-organic associations, which are inaccessible to microorganisms and, thus, influence the priming effect. The more limited production of solid phases at high congruency limits bonding and precipitation of dissolved organic matter, thus facilitating the priming of soil organic matter.

    Their findings, according to Chorover, provide a “smoking gun” link between the activities of carbon-consuming microbes and the transformation of rock to life-sustaining soil in the critical zone.

    An open-air, living laboratory

    In the past, measuring something like mineral weathering often wasn’t that exciting — imagine researchers breaking off chunks of rock and watching it dissolve in beakers back at the lab. But viewing that process in a natural ecological system is a different story.

    At the Santa Catalina-Jemez River Basin Critical Zone Observatory, towers that measure the exchange of water between the forest and atmosphere, soil probes that read the transfer of energy and gases, and a host of other in-environment instrumentation offer scientists a firsthand view of the complex systems within the critical zone.

    The site is part of a larger National Science Foundation Critical Zone Observatory program, which unlike traditional brick-and-mortar observatories provides a network of regional ecological environments rigged with scientific instrumentation across the United States.

    Temperature, moisture and gas sensors at the site collect measurements every 15 minutes, and after compiling and correlating the data, “What we found was a strong relationship between the rate at which the rock was weathering to form soil and the activities of the microbiome in the subsurface,” said Chorover, a principal investigator at the Catalina-Jemez observatory.

    Breaking down the rock-to-life cycle

    “Minerals, microorganisms and organics are among the most important components in Earth’s surface,” Fang said. “They interact with each other constantly to provide all terrestrial life with nutrients, energy and suitable living environments.”

    These minerals in the critical zone are continuously attacked by microorganisms, organic acids and water, Fang explained. As the minerals break down, microbes in the soil consume the new organic matter and transform it into material that feeds plants and other microorganisms, while releasing carbon dioxide.

    Previous studies suggest that microbial decomposition of soil organic matter can be fueled when more “fresh” organics – such as plant matter – are introduced to the soil system. This process is called the “priming effect” by soil scientists. However, the relationship between mineral weathering and microbial priming remains unclear.

    “Our study shows, for the first time, how these essential soil processes are coupled, and these two processes continuously influence soil formation, CO2 emission and global climate,” Fang said. “The linkages may even be associated with long-term elemental cycling and rapid turnover of soil carbon and nutrients on Earth.”

    While it is easy to perceive the success of plants and microorganisms as lucky environmental circumstance, Chorover said this study proves even the smallest parts of the critical zone have a substantial role to play.

    “It shows that life is not simply a passive passenger on the trajectory of critical zone evolution, but actually an active engineer in determining the direction and path of how the Earth’s skin evolves,” Chorover said.

    Nature Communications

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university. (Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.


    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.


    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise /NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft), annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

  • richardmitnick 3:59 pm on January 19, 2023 Permalink | Reply
    Tags: "Why rivers matter for the global carbon cycle", , Biogeochemistry, , Demonstrating the critical importance of river ecosystems for global carbon fluxes — integrating land and atmosphere and the oceans., , , Our current understanding of carbon fluxes in the world’s river networks., Scientists already have recent aggregate estimates for lakes and coastal environments and the open oceans. This research adds the missing piece to the puzzle., Shedding new light on the key role that river networks play in our changing world., The findings point to a clear link between river ecosystem metabolism and the global carbon cycle., The researchers arrived at their findings by compiling global data on river ecosystem respiration and plant photosynthesis., The role of the global river ecosystem metabolism., , While routing water toward the oceans river ecosystem metabolism consumes organic carbon derived from terrestrial ecosystems which produces CO2 emitted into the atmosphere.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Why rivers matter for the global carbon cycle” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    Rebecca Mosimann

    In a new journal article, EPFL professor Tom Battin reviews our current understanding of carbon fluxes in the world’s river networks. He demonstrates their central role in the global carbon cycle and argues for the creation of a global River Observation System.

    Until recently, our understanding of the global carbon cycle was largely limited to the world’s oceans and terrestrial ecosystems. Tom Battin, who heads EPFL’s River Ecosystems Laboratory (RIVER), has now shed new light on the key role that river networks play in our changing world. These findings are outlined in a review article commissioned by Nature [below].

    Battin, a full professor at EPFL’s School of Architecture, Civil and Environmental Engineering (ENAC), persuaded a dozen experts in the field to contribute to the article. For the first time, their research combines the most recent data to demonstrate the critical importance of river ecosystems for global carbon fluxes — integrating land, atmosphere and the oceans.

    A sensor network studies the biogeochemistry of streams in the Swiss Alps.© Nicolas Deluigi.

    Calculating carbon fluxes
    In their article, the authors highlight the role of the global river ecosystem metabolism. “River ecosystems have a much more complex metabolism than the human body,” explains Battin. “They produce both oxygen and CO2 through the combined effect of microbial respiration and plant photosynthesis. It’s important to fully appreciate the underlying mechanisms, so that we can evaluate and quantify the impact of the ecosystem metabolism on carbon fluxes.” Pierre Regnier, a professor at Université Libre de Bruxelles (ULB) and one of the contributing authors, adds: “Understanding river ecosystem metabolism is an essential first step towards better measuring the carbon cycle, since this metabolism determines the exchange of oxygen and greenhouse gases with the air. Scientists already have recent aggregate estimates for lakes, coastal environments and the open oceans. Our research adds the missing piece to the puzzle, paving the way to a comprehensive, integrated, quantified picture of this key process for our ‘blue planet.’” The researchers arrived at their findings by compiling global data on river ecosystem respiration and plant photosynthesis.

    Their findings point to a clear link between river ecosystem metabolism and the global carbon cycle. While routing water toward the oceans, river ecosystem metabolism consumes organic carbon derived from terrestrial ecosystems, which produces CO2 emitted into the atmosphere. Residual organic carbon that is not metabolized makes its way into the oceans, together with CO2 that is not emitted into the atmosphere. These riverine inputs of carbon can influence the biogeochemistry of the coastal waters.

    Battin and his colleagues also discuss how global change, particularly climate change, urbanization, land use change and flow regulation, including dams, affect river ecosystem metabolism and related greenhouse gas fluxes. For instance, rivers that drain agricultural lands receive massive amounts of nitrogen from fertilizers. Elevated nitrogen concentrations, coupled with rising temperatures owing to global warming, can cause eutrophication – a process that leads to the formation of algal blooms. As these algae die, they stimulate the production of methane and nitrous oxide, greenhouse gases that are even more potent than CO2. Dams can also exacerbate eutrophication, potentially leading to even higher greenhouse gas emissions.

    Tom Battin, head of EPFL’s River Ecosystems Laboratory (RIVER).© Alain Herzog.

    A new river observation system
    The authors conclude their article by underlining the necessity for a global River Observing System (RIOS) to better quantify and predict the role of rivers for the global carbon cycle. RIOS will integrate data from sensors networks in the rivers and satellite imagery with mathematical models to generate near-real time carbon fluxes related to river ecosystem metabolism. “Thereby, RIOS would serve as a diagnostic tool, allowing us to ‘take the pulse’ of river ecosystems and respond to human disturbances,” says Battin. “River networks are comparable to our vascular systems that we monitor for health purposes. It is time now to monitor the health of the world’s river networks’. The message couldn’t be clearer.

    EPFL River Ecosystems Laboratory

    Owing to global change, the ecological integrity of streams and rivers is at threat worldwide. At EPFL’s River Ecosystems Laboratory (RIVER), we conduct insight-driven and fundamental research that cuts across the physical, chemical and biological domains of alpine stream ecosystems. We study biofilms, the dominant form of microbial life in streams, including the structure and function of their microbiome, and their orchestration of ecosystem processes. We also study stream ecosystem processes and biogeochemistry, including whole-ecosystem metabolism and related carbon fluxes — from the small to the global scale. We blend environmental sciences and ecology, and combine fieldwork with experiments and modeling to gain a better mechanistic understanding of stream ecosystem functioning.

    Nature – River ecosystem metabolism and carbon biogeochemistry in a changing world

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.


    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

  • richardmitnick 10:16 am on August 13, 2022 Permalink | Reply
    Tags: "Hypoxic shoaling events", "Short-Term Events Can Shrink the Habitable Zone in Oceans", "THREEs": transient habitat reduction extreme events, Biogeochemistry, , Could short-term events provide a window into the long-term health of oceans?, , Habitat reduction during low-oxygen events, La Niña events appear to precondition the waters for THREEs.,   

    From “Eos” : “Short-Term Events Can Shrink the Habitable Zone in Oceans” 

    Eos news bloc

    From “Eos”



    Sarah Derouin

    A new study looks at habitat reduction during low-oxygen events, spurring the question, Could short-term events provide a window into the long-term health of oceans?

    Credit: Max Gotts/Unsplash.

    Climate change is driving the oceans to lose oxygen. Marine organisms that need oxygen to survive live in a gradually shoaling, or shallowing, zone of water above a hypoxic, low-oxygen layer. Researchers have studied the long-term deoxygenation trend in marine ecosystems, but investigations on how shorter, transient events can affect ecosystems on weeks- to months-long timescales are lacking.

    Now, a new study Journal of Geophysical Research: Oceans [below] looks at when and where these “hypoxic shoaling events” occur. These so-called transient habitat reduction extreme events (THREEs) can change biogeochemical processes or alter entire ocean ecosystems. To find THREEs, which are rare because their detection requires data on changes in the hypoxic layer, the researchers used a simulation model to look at data from the eastern Pacific Ocean because it features a vast area of horizontal hypoxic waters that are driven by physical and biogeochemical processes. They detected THREEs by applying a fixed threshold depth for the hypoxic layer. Each event was also characterized in time and space, and drivers were identified.

    They found that THREEs compress the oxygenated zone by up to 50%–70% in subtropical and tropical regions. La Niña events appear to precondition the waters for THREEs. As a result, in subtropical regions, THREEs occur primarily during boreal winter (December–February) and spring. In the subtropical eastern Pacific, THREEs appear to be associated with mesoscale eddies, which are known as hot spots for low-oxygen conditions, and occur independently of season. The team also noted that 71% of THREEs go along with cold, low-pH, shoaling waters. These events—low oxygen and low pH—can compound the stressors on fish and other marine organisms.

    These findings show how THREEs could be detected in other open-ocean locations to better understand water column biogeochemistry and ocean ecosystems. The authors note that THREEs can also foreshadow long-term changes and shifts in ocean habitats.

    Science paper:
    Journal of Geophysical Research: Oceans

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Eos” is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 7:02 am on June 6, 2022 Permalink | Reply
    Tags: "How we’re using machine learning to detect coral-eating COTS", "Internet of Things", , Biogeochemistry, , CSIRO’s Data61, , , , , The Great Barrier Reef is one of Australia’s most diverse and unique landscapes.   

    From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization: “How we’re using machine learning to detect coral-eating COTS” 

    CSIRO bloc

    From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization

    June 5th, 2022
    Alex Persley

    The Great Barrier Reef is one of Australia’s most diverse and unique landscapes. Covering more than 2,900 individual reefs, it is home to unmatched marine biodiversity. A multidisciplinary group of researchers from Australia’s national science agency, CSIRO, have been working on projects using innovative science and technology to help combat some of the threats facing our reef.

    The team have worked with a range of stakeholders, most recently joining forces with Google and the international Kaggle community to explore ways to help with the monitoring and detection of crown-of-thorns starfish.

    Meet the team and learn more about their work here.

    Dr. Brano Kusy

    Dr. Brano Kusy is an internationally respected scientist and research group leader with CSIRO’s Data61. Dr. Kusy’s work focuses on new frontiers in networked embedded systems, mobile and wearable computing, and Internet of Things. 

    Brano, tell us about your work on the Great Barrier Reef and what attracted you to it?

    My research interests are at an intersection between digital technology and the physical world. Digital technology delivers high value in land environments, however, coastal ecosystems such as coral reefs remain poorly understood. This is due to their size, that seawater hides detail from remote sensing methods in all but the shallowest marine ecosystems, and the general difficulty of operating digital technology in remote marine environments.

    I have championed a multi-pronged approach to solve reef challenges that relied on CSIRO’s in-house technologies, such as Internet of Things, robotics, machine learning, and computer vision.

    We have developed biosensors that can monitor feeding of coral trouts and physiology of oysters, a new underwater hyperspectral imaging platform, and a robust method for detecting Irukandji jellyfish based on eDNA contained in seawater.

    Can you tell us more about the machine learning technology behind the crown-of-thorns starfish surveys?

    The COTS monitoring application is the culmination of edge ML (machine learning) and imaging technologies developed over the past four years.

    It is based on a close collaboration of CSIRO computer vision and edge ML experts with Google and Kaggle and it is a shining example of ML technology helping to protect the environment.

    We have built an edge ML platform for oceans that can analyse underwater images as they are collected by marine scientists in the field and basically uncover the hidden world under the surface through an intuitive touch-screen interface.

    In the COTS monitoring use case, the ML platform processes the images in real-time and shows the survey team on the boat how many COTS have been detected and their whereabouts.

    The beauty of this approach is that it is not locked in – it generalizes too many applications and devices. We demonstrated it works amazingly well for mapping COTS on coral reefs, but the method can be adapted for sea cucumbers in a sustainable aquaculture context, seagrass biomass for carbon accounting, or surveying condition, health, and diversity of sea life on coral reefs for climate impact assessment.

    Additionally, our platform works with many different data collection technologies and supports multiple ML software frameworks, all you need is a wired or wireless connection from your data collection platform. We demonstrated the platform with in-house data collection technology, real-time GoPro camera streams, commercial Pro Squid platform, and will be adding more in the future.

    AI model detecting crown-of-thorn-starfish.

    What role can digital sciences play in ensuring the sustainability of our natural environments?

    One of our major objectives was to scale our invention to increase global impact. This was achieved by allowing fellow researchers to use our technology to explore the plethora of opportunities in this space.

    In collaboration with Google TensorFlow team, we open sourced the COTS ML model and workflows under Apache license. This allowed students, scientists, and entrepreneurs worldwide to evaluate our ML technology with their own image datasets and extend it to suit their application.

    The ML model training toolchain will be released soon to retrain the ML models for other species or object identification. By democratising ML capabilities in this space, we can make a tangible difference in ocean and marine life protection.

    How important are partnerships to this kind of work?

    It’s impossible to overstate the importance of partnerships and open sharing of scientific ideas in this line of work. In addition to our technology being inherently multi-disciplinary (designed by computer geeks like me, but used and interpreted by marine scientists), careful planning is required to deploy the technology prototypes reliably and safely at sea. Conditions can change in an instant and internet connectivity is non-existent.

    The project team needs to work as a tight-knit unit. We are very fortunate to have worked with some of the most competent and experienced crews in Australia. Shout out to University of Queensland’s Heron Island and Moreton Bay research stations, University of Sydney’s One Tree Island research station, Blue Planet Marine, and GBR Marine Park Authority.

    It was also a great privilege to work with Google Tensorflow and Kaggle teams. Having access to the latest ML expertise and hardware resources coupled with the global reach of both brands was pivotal in getting the message out. Over 2,000 international ML teams participated in the competition, the video was viewed 26 million times, and we were featured in a keynote at Google’s annual I/O conference.

    Dr Joey Crosswell

    Dr Joey Crosswell is a biogeochemist with broad research interests across oceanography and engineering. His research includes diverse environments around the world, ranging from mangroves and mesoscale eddies, to arid tropical estuaries in northern Australia and fjords in Patagonia.

    Joey, tell us about your work on the Great Barrier Reef and what attracted you to it?

    My research focuses on the connectivity of coastal systems, particularly carbon and nutrient cycling between land, ocean, and atmosphere. The Reef is particularly interesting in this regard because it is one of the largest and most complex coastal ecosystems in the world. For example, human activities far up in river catchments and oceanic processes that start on the other side of the Pacific come together in the GBR to affect the health and resilience of the Reef.

    My work looks at untangling these processes across the multiple time and space scales by using novel observation methods combined with advanced modelling tools, such as eReefs. This multi-scale understanding is important for managing the Reef because it informs where meaningful local actions can be taken, such as restoration, through to needs for larger-scale efforts such as global climate action.

    I have worked in estuaries and coral reefs along the entire coast of the GBR, but I am particularly interested in those further afield. That is, the more remote, the better. These systems provide a valuable comparison that help us gauge the impact of coastal development and future change.

    The lack of existing data in many of these remote environments also presents the challenge of building a holistic understanding from the ground up, a task for which I think CSIRO’s research disciplines, researchers, and partnerships are uniquely suited. I also have a keen interest in extreme events such as cyclones and floods that are relatively brief but have lasting impacts.

    We currently have a limited ability to resolve these events, and the development of new observational tools, methods and models for extreme conditions is one of my long-term research passions.

    An aerial map of the reef showing where where crown-of-thorn-starfish have been detected.

    How important is multidisciplinary science and collaboration between different groups in this space?

    Put simply, it is the only effective way forward.

    Like the Reef faces combined threats from rising sea temperature, water quality, COTS and coastal development, so too must we employ cross-cutting science to support Reef resilience to these threats.

    The benefits of multidisciplinary research are being widely recognized through programs like eReefs the Reef Restoration and Adaptation Program, and the COTS Control and Innovation Program. The COTS ML model that we recently developed through a cross disciplinary multi-institutional collaboration clearly shows how integrative research can drive a step change in technical methods that have otherwise made little progress for decades.

    AI model detecting 6 crown-of-thorn starfish in underwater imagery.

    Moreover, closer coupling of research and management disciplines allows technical innovations to have a ripple effect that drives systemic change. In the COTS application, more and better data collected using ML COTS detection will enable more efficient decision support for active control measures.

    New data dimensions unlocked by computer vision will also feedback to research on key relationships and thresholds, such as triggers for COTS outbreaks that can be proactively managed. Even more exciting than the potential of multidisciplinary science to mitigate threats is the potential to maximize benefits and ecosystem services.

    Last but not least is the more personal aspect of multidisciplinary science. This blog highlights only a few members and accomplishments of much larger teams of which I am a part. Not only is it fun and fulfilling to learn from diverse expertise, backgrounds and perspectives, but it also expands the impact of our research to new environments and cultures.

    Multidisciplinary research teams are a big part of why I enjoy what I do and who I do it with, which is particularly important when you spend a lot of time on small boats at sea!

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    CSIRO campus

    CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    CSIRO works with leading organizations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

    Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organization as CSIRO.

    Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

    Research and focus areas

    Research Business Units

    As at 2019, CSIRO’s research areas are identified as “Impact science” and organized into the following Business Units:

    Agriculture and Food
    Health and Biosecurity
    Data 61
    Land and Water
    Mineral Resources
    Oceans and Atmosphere

    National Facilities
    CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

    Australian Animal Health Laboratory (AAHL)
    Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

    STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) Parkes Observatory [Murriyang, the traditional Indigenous name], located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA.

    CSIRO Canberra campus.

    ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia.

    CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU)CSIRO R/V Investigator.

    UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

    CSIRO Pawsey Supercomputing Centre AU)

    Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia.

    Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia.

    Pausey Supercomputer CSIRO Zeus SGI Linux cluster.

    Others not shown


    SKA- Square Kilometer Array.

    SKA Square Kilometre Array low frequency at Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

    EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.

  • richardmitnick 11:03 am on March 10, 2022 Permalink | Reply
    Tags: "The First Explosion of Life on Earth Made an Impact Deep Under The Surface", , Biogeochemistry, , , , , It's a shift potentially caused by the immense changes in the carbon cycle during a time when the biosphere was increasing in mass and diversity., , The Cambrian Explosion-around 541 million years ago-was when life and organisms really got going on planet Earth., The new study looked at rare diamond-filled volcanic rocks called kimberlites., The researchers found a shift in the ratio of specific carbon isotopes around 250 million years ago., , This link between the cycling of carbon close to the surface and deeper underground hasn't been easy to measure.   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) via Science Alert (AU) : “The First Explosion of Life on Earth Made an Impact Deep Under The Surface” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)



    Science Alert (AU)

    10 MARCH 2022

    A thin section of a carbonate-​rich kimberlite. (David Swart/Messengers of the Mantle Exhibition).

    The Cambrian Explosion-around 541 million years ago-was when life and organisms really got going on planet Earth. Now new research has revealed how that explosion of life has left behind traces deep within Earth’s mantle.

    For scientists, it shows the connected interplay between Earth’s surface and what lies beneath, as sediments carrying organic material are pushed under the ground over vast geological timescales through subduction.

    The new study looked at rare diamond-filled volcanic rocks called kimberlites. When they’re pushed up to the surface, they tell us what’s happening deep in the mantle, and researchers measured the carbon composition in 144 samples taken from 60 locations around the world.

    A prevailing view among geologists is that carbon trapped inside diamonds doesn’t vary considerably over grand timescales of hundreds of millions of years.

    Yet here the researchers found a shift in the ratio of specific carbon isotopes around 250 million years ago, about the time that sediment from the Cambrian Explosion would’ve been folded into the mantle. It’s a shift potentially caused by the immense changes in the carbon cycle during a time when the biosphere was increasing in mass and diversity.

    “These observations demonstrate that biogeochemical processes at Earth’s surface have a profound influence on the deep mantle, revealing an integral link between the deep and shallow carbon cycles,” write the researchers.

    This link between the cycling of carbon close to the surface and deeper underground hasn’t been easy to measure – and indeed it has changed significantly throughout the billions of years that Earth has been around, rather than staying fixed.

    It does seem clear though that dead creatures trapped in sediment found their way into the mantle through plate tectonics. Their carbon remains mixed with other material before eventually reaching the surface again through events like volcanic eruptions.

    The link was confirmed by further observations of strontium and hafnium in the samples. They matched the carbon pattern, narrowing down the number of possibilities for how these rock compositions were altered.

    “This means that the signature for carbon cannot be explained by other processes such as degassing, because otherwise the isotopes of strontium and hafnium would not be correlated with those of carbon,” says geochemist Andrea Giuliani from ETH Zürich in Switzerland.

    Technically, what we’re dealing with here is sedimentary subduction flux, and these carbon cycle details are important in terms of being aware of what’s happening on our planet – especially as the effects of the climate crisis continue to be felt.

    New studies [Nature Communications] continue to reveal more about how carbon is taken from and released back into the atmosphere, especially through the continuous recycling of the tectonic plates that make up the surface of the planet.

    Scientists know that relatively speaking, only small amounts of sediment ever get pushed deep into the mantle through subduction zones, which means that traces of the Cambrian Explosion must have taken a direct route to the depths of the mantle.

    “This confirms that the subducted rock material in Earth’s mantle is not distributed homogeneously, but moves along specific trajectories,” says Giuliani.

    “Earth is really a complex overall system. And we now want to understand this system in more detail.”

    The research has been published in Science Advances.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology (US), Stanford University (US) and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

  • richardmitnick 10:19 am on October 5, 2021 Permalink | Reply
    Tags: "Stanford scientists find oxygen levels explain ancient extinction slowdown", Any further drop in oxygen or change in temperature may be catastrophic for organisms that are already pushing the limits of their aerobic capacity., Biogeochemistry, , The “Big Five” mass extinctions, The new study reveals that even five degrees of warming would be more than enough to trigger mass die-offs early in the Phanerozoic., There has never been an explanation for why we have all those high-magnitude extinctions early on.   

    From Stanford University (US) : “Stanford scientists find oxygen levels explain ancient extinction slowdown” 

    Stanford University Name

    From Stanford University (US)

    October 5, 2021
    Josie Garthwaite

    A new Stanford University study shows rising oxygen levels may explain why global extinction rates slowed down over the past 541 million years. Below 40 percent of present atmospheric oxygen, ocean dead zones rapidly expand, and extinctions ramp up.

    Brachiopod and crinoid fossils from the Late Ordovician, about 445 million years ago. (Image credit: Seth Finnegan.)

    Not long after the dawn of complex animal life, tens of millions of years before the first of the “Big Five” mass extinctions, a rash of die-offs struck the world’s oceans. Then, for reasons that scientists have debated for at least 40 years, extinctions slowed down.

    A new Stanford University study shows rising oxygen levels may explain why global extinction rates slowed down throughout the Phanerozoic Eon, which began 541 million years ago. The results, published Oct. 4 in PNAS point to 40 percent of present atmospheric oxygen levels as a key threshold beyond which viable ocean habitat expands and the global extinction rate sharply falls.

    “There’s a whole set of high-magnitude extinctions earlier in the history of animal life, and then they taper off until there’s just these huge mass extinctions. And there’s never been an explanation for why we have all those high-magnitude extinctions early on,” said senior study author Erik Sperling, an assistant professor of geological sciences at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth).

    The new study reveals that even five degrees of warming – extreme for our current climate but common in Earth’s deep past – would be more than enough to trigger mass die-offs early in the Phanerozoic. The research shows this is because, in a low oxygen world, marine animals were already on the razor’s edge of their ability to breathe and maintain their body temperatures. The finding has implications for understanding the fate of ocean creatures in today’s warming world.

    Virtual oceans

    The authors used computer models of Earth’s climate to simulate seawater temperatures and the amount of oxygen that would be dissolved in the ocean as atmospheric carbon dioxide and oxygen fluctuated throughout the Phanerozoic. They paired these simulations with mathematical models of interactions between animal physiology and local environments, then estimated the proportion of marine animal types that would be lost with every 5 degrees Celsius of ocean warming, as would be expected from roughly every fourfold increase in atmospheric carbon dioxide. Such warming events are extreme but not infrequent throughout Earth history.

    The approach allowed the authors to effectively populate virtual oceans with realistic organisms, then crank up the heat to see who would survive. “These are fully three-dimensional models with the physics of the water circulating around the continents in different configurations and all the biogeochemistry,” Sperling said. “That’s a huge computational advance.”

    Twin threats

    The results are consistent with a series of major extinction events during the first 50 to 100 million years of the Phanerozoic being a direct consequence of low oxygen levels and physiological responses to heat. “We don’t need to invoke something outside of climatic change to explain these anomalously severe extinction rates and anomalously common mass extinctions early in the animal fossil record,” said lead study author Richard Stockey, a Stanford PhD student in geological sciences.

    The need, rather, is to consider how oxygen scarcity hindered the ability of animals to cope with heat. That’s because as oceans warm, their oxygen content declines while animals’ need for oxygen grows. This is particularly true for cold-blooded species that rely on the external environment to regulate body temperature and metabolism. “The way we looked at things puts oxygen change and temperature change in a common currency and evaluates them at once,” Sperling said. “We’re treating fossils as ancient living organisms and thinking about how they feed, live and breathe – how they get through a day.”

    The researchers found several additional factors that influenced the proportion of species that died out during warmer periods over the past 541 million years, including the configuration of Earth’s continents, the efficiency of carbon cycling between ocean and atmosphere and the state of the climate at the start of a given warming event. However, “atmospheric oxygen is the dominant predictor of extinction vulnerability,” the authors write. “Changes in atmospheric oxygen were likely much more important than those other factors,” Stockey said.

    The study reinforces previous findings from Sperling’s group that underline oxygen and temperature as interlocking keys to understanding extinction and survival patterns in ancient oceans. “The geological and paleontological record is telling us over and over that it is the combination of oxygen and temperature change that are the big killers for marine animals,” Sperling said.

    Scientists used respirometry experiments on modern marine animals including scallops to gather data for simulations of ancient marine animals’ physiology and interactions with their local environment. (Image credit: Andres Marquez.)

    In areas of today’s oceans that have low oxygen levels, including deeper waters of the continental margin off the California coast, any further drop in oxygen or change in temperature may be catastrophic for organisms that are already pushing the limits of their aerobic capacity. “Those are some of the places that are potentially in the gravest danger as climate change drives further ocean warming and deoxygenation,” Sperling said. “For the first hundred million years or so of animal evolution, almost the entire ocean was like that.”

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus
    Stanford University (US)

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.


    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.


    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.


    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

  • richardmitnick 12:59 pm on July 9, 2021 Permalink | Reply
    Tags: "This One Planetary Feature May Be Crucial For The Rise of Complex Life in The Universe", Biogeochemistry, , , , The way a planet is tilted on its rotational axis with respect to its orbital plane around a star - what we know as 'axial tilt' - could be key to the emergence of complex life.   

    From Purdue University (US) via Science Alert (US) : “This One Planetary Feature May Be Crucial For The Rise of Complex Life in The Universe” 

    From Purdue University (US)



    Science Alert (US)

    9 JULY 2021

    Credit: Maksim Shutov/Unsplash

    The way a planet is tilted on its rotational axis with respect to its orbital plane around a star – what we know as ‘axial tilt’ – could be key to the emergence of complex life.

    According to a new study, a modest axial tilt, like Earth’s, helps increase the production of oxygen, which is vital for life as we know it – and planets with tilts that are too small or too large might not be able to produce enough oxygen for complex life to thrive.

    “The bottom line is that worlds that are modestly tilted on their axes may be more likely to evolve complex life,” said planetary scientist Stephanie Olson of Purdue University. “This helps us narrow the search for complex, perhaps even intelligent life in the Universe.”

    It’s possible that life may emerge outside the parameters we know here on Earth, of course, but this pale blue dot is the only world which we know for a certainty harbors life. Therefore, it’s expedient to model our searches accordingly.

    When looking for habitable worlds elsewhere in the galaxy, the first things we look for are: is it relatively small and rocky, like Earth? And does it orbit the star at a distance called the habitable zone, the Goldilocks region of not too hot, not too cold, where temperatures allow liquid water on the surface?

    Those questions are good, but the contributing factors to the emergence of life are likely a lot more complex.

    The presence of a magnetic field, for instance, is thought to be pretty important, because it protects the planetary atmosphere from stellar winds. The eccentricity of the planet’s orbit, and what kind of other planets are present in the system might also be key.

    Olson and her team went a little more granular, looking at the presence and production of oxygen; specifically, the conditions on the planet that may impact the amount of oxygen produced by photosynthetic life.

    Most organisms (although not all) on Earth require oxygen for respiration – we can’t live without it. Yet early Earth was low in oxygen. Our atmosphere only became rich in oxygen about 2.4 to 2 billion years ago, a period known as the Great Oxidation Event. It was triggered by a boom in cyanobacteria, which pumped out vast amounts of oxygen as a metabolic waste product, enabling the rise of multicellular life.

    An image of Cyanobacteria, Tolypothrix.

    Olson and her team sought to understand how the conditions arose in which cyanobacteria could thrive, using modelling.

    “The model allows us to change things such as day length, the amount of atmosphere, or the distribution of land to see how marine environments and the oxygen-producing life in the oceans respond,” Olson explained.

    Their model showed that several factors could have influenced the transport of nutrients in the oceans in a way that contributed to the rise of oxygen-producing organisms like cyanobacteria.

    Over time, Earth’s rotation slowed, its days lengthened, and the continents formed and migrated. Each of these changes could have helped increase the oxygen content, the researchers found.

    Then they factored in axial tilt. Earth’s axis isn’t exactly perpendicular to its orbital plane around the Sun; it’s tilted at an angle of 23.5 degrees from the perpendicular – think of a desktop globe.

    This tilt is why we have seasons – the tilt away from or towards the Sun influences seasonal variability. Seasonal temperature changes also influence the oceans, resulting in convective mixing and currents, and the availability of nutrients.

    So perhaps it’s not surprising that axial tilt had a significant effect on oxygen production in the team’s study.

    “Greater tilting increased photosynthetic oxygen production in the ocean in our model, in part by increasing the efficiency with which biological ingredients are recycled,” explained planetary scientist Megan Barnett of the University of Chicago (US).

    “The effect was similar to doubling the amount of nutrients that sustain life.”

    But there’s a limit. Uranus, for example, is tilted at 98 degrees from the perpendicular. Such an extreme tilt would result in seasonality that may be too extreme for life. A small tilt, also, might not produce enough seasonality to encourage the right level of nutrient availability. This suggests there may be a Goldilocks zone for axial tilt, too – neither too extreme, nor too small.

    It’s another parameter we can use to help narrow down planets elsewhere in the galaxy that are likely to harbor life as we know it.

    “This work reveals how key factors, including a planet’s seasonality, could increase or decrease the possibility of finding oxygen derived from life outside our Solar System,” said biogeochemist Timothy Lyons of the University of California-Riverside (US).

    “These results are certain to help guide our searches for that life.”

    The research has been presented at the 2021 Goldschmidt Geochemistry Conference.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University (US) is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities (US) and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University(US). By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.


    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.


    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.


    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation (US), National Aeronautics and Space Administration (US), and the departments of Agriculture (US), Defense (US), Energy (US), and Health and Human Services (US). Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million.

    Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.


    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.


    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: