Tagged: Beta Pictoris star system Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:06 am on August 20, 2018 Permalink | Reply
    Tags: Beta Pictoris star system, , , , ,   

    From European Space Agency: “Infant exoplanet weighed by Hipparcos and Gaia” 

    ESA Space For Europe Banner

    From European Space Agency

    20 August 2018

    The mass of a very young exoplanet has been revealed for the first time using data from ESA’s star mapping spacecraft Gaia and its predecessor, the quarter-century retired Hipparcos satellite.

    Astronomers Ignas Snellen and Anthony Brown from Leiden University, the Netherlands, deduced the mass of the planet Beta Pictoris b from the motion of its host star over a long period of time as captured by both Gaia and Hipparcos. ([Nature Astronomy])

    2
    Beta Pictoris system

    ESA/GAIA satellite

    ESA/Hipparcos satellite

    The planet is a gas giant similar to Jupiter but, according to the new estimate, is 9 to 13 times more massive. It orbits the star Beta Pictoris, the second brightest star in the constellation Pictor.

    The planet was only discovered in 2008 in images captured by the Very Large Telescope at the European Southern Observatory in Chile.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo

    Both the planet and the star are only about 20 million years old – roughly 225 times younger than the Solar System. Its young age makes the system intriguing but also difficult to study using conventional methods.

    “In the Beta Pictoris system, the planet has essentially just formed,” says Ignas. “Therefore we can get a picture of how planets form and how they behave in the early stages of their evolution. On the other hand, the star is very hot, rotates fast, and it pulsates.”

    This behaviour makes it difficult for astronomers to accurately measure the star’s radial velocity – the speed at which it appears to periodically move towards and away from the Earth. Tiny changes in the radial velocity of a star, caused by the gravitational pull of planets in its vicinity, are commonly used to estimate masses of exoplanets. But this method mainly works for systems that have already gone through the fiery early stages of their evolution.

    In the case of Beta Pictoris b, upper limits of the planet’s mass range had been arrived at before using the radial velocity method. To obtain a better estimate, the astronomers used a different method, taking advantage of Hipparcos’ and Gaia’s measurements that reveal the precise position and motion of the planet’s host star in the sky over time.

    2
    Astrometric measurements to detect exoplanets

    “The star moves for different reasons,” says Ignas. “First, the star circles around the centre of the Milky Way, just as the Sun does. That appears from the Earth as a linear motion projected on the sky. We call it proper motion. And then there is the parallax effect, which is caused by the Earth orbiting around the Sun. Because of this, over the year, we see the star from slightly different angles.”

    And then there is something that the astronomers describe as ‘tiny wobbles’ in the trajectory of the star across the sky – minuscule deviations from the expected course caused by the gravitational pull of the planet in the star’s orbit.

    Planet transit. NASA/Ames

    This is the same wobble that can be measured via changes in the radial velocity, but along a different direction – on the plane of the sky, rather than along the line of sight.

    Radial Velocity Method-Las Cumbres Observatory


    Radial velocity Image via SuperWasp http:// http://www.superwasp.org/exoplanets.htm

    “We are looking at the deviation from what you expect if there was no planet and then we measure the mass of the planet from the significance of this deviation,” says Anthony. “The more massive the planet, the more significant the deviation.”

    To be able to make such an assessment, astronomers need to observe the trajectory of the star for a long period of time to properly understand the proper motion and the parallax effect.

    The Gaia mission, designed to observe more than one billion stars in our Galaxy, will eventually be able to provide information about a large amount of exoplanets.

    In the 22 months of observations included in Gaia’s second data release, published in April, the satellite has recorded the star Beta Pictoris about thirty times. That, however, is not enough.

    “Gaia will find thousands of exoplanets, that’s still on our to-do list,” says Timo Prusti, ESA’s Gaia project scientist. “The reason that the exoplanets can be expected only late in the mission is the fact that to measure the tiny wobble that the exoplanets are causing, we need to trace the position of stars for several years.”

    Combining the Gaia measurements with those from ESA’s Hipparcos mission, which observed Beta Pictoris 111 times between 1990 and 1993, enabled Ignas and Anthony to get their result much faster.

    This led to the first successful estimate of a young planet’s mass using astrometric measurements.

    “By combining data from Hipparcos and Gaia, which have a time difference of about 25 years, you get a very long term proper motion,” says Anthony.

    “This proper motion also contains the component caused by the orbiting planet. Hipparcos on its own would not have been able to find this planet because it would look like a perfectly normal single star unless we had measured it for a much longer time.

    “Now, by combining Gaia and Hipparcos and looking at the difference in the long term and the short term proper motion, we can see the effect of the planet on the star.”

    The result represents an important step towards better understanding the processes involved in planet formation, and anticipates the exciting exoplanet discoveries that will be unleashed by Gaia’s future data releases.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 3:41 pm on January 12, 2018 Permalink | Reply
    Tags: , , , Beta Pictoris star system, , , , PicSat, PicSat is is one of the few CubeSats worldwide with an astrophysical science goal,   

    From ESOblog: “Combining the freedom of a CubeSat with the power of an ESO telescope” 

    ESO 50 Large

    ESOblog

    How ESO’s HARPS will help PicSat the CubeSat to unravel the mysteries of the Beta Pictoris star system.

    12 January 2018

    A shoebox-sized satellite called PicSat, developed in record time by a small team of scientists and engineers at the Paris Observatory in France, has just been launched into space to study the Beta Pictoris star system. PicSat will be assisted in its mission by the HARPS instrument on the ESO 3.6-metre telescope, which will make follow-up observations to PicSat’s detections. This will be the first time that a small modular satellite — a CubeSat — and a ground-based telescope work together to address some of the mysteries of the Universe. We speak to Sylvestre Lacour, an astrophysicist and instrumentalist who leads the PicSat team, to find out more about this exciting project.

    1
    Science@ESO

    Q. First of all, tell us a bit about why you chose to look at the Beta Pictoris star system.

    A. Having celebrated only roughly 23 million years of life, Beta Pictoris is a very young star, astronomically speaking. At about twice the mass and size of the Sun, and just 63.4 light years away, it is relatively easy to observe. Over the past decades, Beta Pictoris has been a popular target for astronomers studying the early stages of star and planet formation, with those astronomers often using ESO facilities. In 2008 a team of French astronomers discovered a giant gas planet orbiting Beta Pictoris. The planet, baptised Beta Pictoris b, has about seven times the mass of Jupiter and orbits its host star at around ten Astronomical Units (AU). The distance between Beta Pictoris and Beta Pictoris b is similar to that between the Sun and our neighbouring ringed planet, Saturn.

    2
    Satellite and ground-based telescopic observations of Beta Pictoris revealed the presence of an outer, dusty, debris disk and an inner clear zone about the size of our Solar System. In 2008, infrared observations from ESO telescopes provided evidence for a giant planet.
    Credit: ESO/A.-M. Lagrange et al.

    A few years ago it became clear that from the viewpoint of the Earth, either Beta Pictoris b, or at least its Hill Sphere, will transit in front of Beta Pictoris. The Hill Sphere of a planet is its gravitational sphere of influence — the region around it that dominates the attraction of rings and moons. Observing a planetary transit would tell us more about the young planet, for example about its size and the chemical composition of its atmosphere. Observing a Hill Sphere transit could tell us about the properties of objects around Beta Pictoris b, for example, its moons or rings.

    Q. Sounds exciting! So what exactly happens during a transit?

    A. During a transit, the planet blocks the light from a small part of the star, diminishing the amount of starlight that reaches us. A telescope captures the light from the star, and a sensitive instrument called a photometer accurately measures the amount of light received. The main goal of PicSat will be exactly that — to monitor the brightness of Beta Pictoris continuously, so as to capture the little revealing dip in its lightcurve as the planet Beta Pictoris b, or its Hill Sphere, passes in front of it.

    A transit of Beta Pictoris b itself would take a few hours and would show a clear dip in the light curve. Because the reach of the Hill Sphere extends a very long way from the planet, a transit of only the Hill Sphere could take up to several months and could result in a more irregular light curve as several rings or moons pass by.

    4
    A diagram showing the dip in brightness of a host star as it is transited by a planet. By measuring the amount of dip in brightness and knowing the size of the star, scientists can determine the size of the planet. Credit: NASA Ames

    Q. And why did you choose to build PicSat for this job? Couldn’t an existing ground-based telescope do exactly the same thing?

    A. So far it has only been possible to estimate an approximate time for the moment of transit — we believe that it should occur by summer 2018. Because of this uncertainty, we needed something that could continuously monitor the star system. Ground-based telescopes can only observe at night and are in high-demand — they are too busy to make continuous observations. So we decided that sending a satellite into space would be the only way to ensure that we capture this phenomenon. PicSat will orbit around the Earth from pole to pole, as the Earth rotates below it. This means that PicSat can always see to either side of the Earth without its view being blocked, allowing it to continuously observe Beta Pictoris.

    5
    With a polar orbit, PicSat will pass over the poles of the Earth, constantly keeping an eagle eye on Beta Pictoris.
    Credit: NASA illustration by Robert Simmon

    6
    The fully assembled PicSat, which consists of three cubic units stacked on top of each other.
    Credit: PicSat CubeSat

    When PicSat observes photometrically that a transit is taking place, we will use an online form to alert people working at the ESO 3.6-m telescope. As soon as possible after they have been alerted, they will use the HARPS (High Accuracy Radial velocity Planet Searcher) instrument to make detailed spectroscopic observations. The photometric (measurement of the amount of light) and spectroscopic (measurement of the wavelength distribution of light) observations can then be combined to find out much more about the star system.

    Q. We’d love to hear a bit more about PicSat itself.

    A. PicSat, a contraction of Beta Pictoris and Satellite, is composed of three standard cubic units with side lengths of 10 cm. The project started in 2014 when I proposed using CubeSat technology to observe the predicted transit. I gathered a small local team and together we worked hard to design and build PicSat. It is incredible that in less than four years we have reached a stage where PicSat is being launched!

    One really cool thing about PicSat is that it is one of the few CubeSats worldwide with an astrophysical science goal, and is the first CubeSat aiming to provide answers in the challenging field of exoplanetary science.

    Q. You say that PicSat is made of three cubic units — do these units each have different roles in the operation of the satellite?

    A. Absolutely! The top and middle cubic units house the “science payloads”, whilst the bottom unit contains the onboard computer.

    More specifically, the top cubic unit of PicSat contains a small telescope. Thanks to the brightness of Beta Pictoris, the mirror of this telescope can have a diameter of just 5 cm.

    This telescope sends the light from Beta Pictoris down into the middle unit. Here, a tiny optical fibre, three micrometres in diameter (or about a fifth of the size of a thin human hair) collects the light and guides it onto a sensitive photodiode that accurately measures the arrival time of each individual photon. Because light will be guided by the tube-shaped fibre, unwanted light will be prevented from entering the photodiode. This allows for a very accurate measurement of the star’s brightness. Imagine looking through a tube — you are able to focus much more easily on a distant object than if you use just your unaided eye because the tube prevents peripheral light from entering your eye. Optical fibres are often used in ground-based telescopes, but this will be the first time an optical fibre is flown in space for astronomical observations.

    However, PicSat will wiggle and wobble a little as it orbits the Earth, so the accuracy with which it points at Beta Pictoris wouldn’t be good enough for the telescope to send all the light from the star into the small fibre all the time. We devised an innovative solution to this problem by connecting the optical fibre to a small plate, a “piezoelectric actuator”, that can track the star and immediately follow it to remain on target.

    7
    A “naked” PicSat, with its cover removed so that its science payload is visible. The optical fibre is in the centre of the image.
    Credit: NASA illustration by Robert Simmon

    The bottom unit of PicSat contains the onboard computer for operating the satellite, communicating with Earth, raw pointing of the telescope and other important monitoring tasks. The whole satellite is clothed in solar panels that provide the satellite with energy, but it does not need a lot. In fact, the total power consumption of PicSat is about 5 watts, similar to a small light bulb!

    8
    PicSat’s compact optical system collects the light from Beta Pictoris and the electronics track the star’s position. Inbuilt electronics include a precision stage for moving the optical fibre and a state-of-the-art photodiode.
    Credit: PicSat CubeSat

    Q. And what exactly will happen when PicSat observes a transit?

    A. If PicSat detects the beginning of a transit, whether it be Beta Pictoris b, its Hill Sphere, or any other transit like phenomena, ESO’s 3.6-metre telescope will immediately be put into action. Dr Flavien Kiefer from the Institut d’Astrophysique de Paris will lead the ground-based observations and has guaranteed time using HARPS to support PicSat. He will be the one to respond quickly to our online alert.

    8
    The ESO 3.6-metre telescope at La Silla. This telescope is mounted with the High Accuracy Radial velocity Planet Searcher (HARPS), an instrument dedicated to the discovery of exoplanets. Credit: Y. Beletsky (LCO)/ESO

    Another exciting thing this project might address is that the Beta Pictoris system is rich in objects thought to be comet-like, which have often been observed spectroscopically by ESO telescopes. The presence of these objects has been inferred through the absorption lines of elements such as calcium, sodium and iron present in the object’s tails, which appear in the spectra and disappear again as they transit the star. However, a photometric detection of the dust in a cometary tail passing in front of Beta Pictoris has not yet been achieved. PicSat could well provide us with the first of these observations, which would confirm that these objects are indeed exocomets. If combined with an immediate follow up by HARPS, this would provide new and unique information about such comets and the system as a whole.


    Astrophysicist and PicSat team member Flavien Kiefer (Institut d’Astrophysique de Paris, France) talks about the detection of exocomets in the Beta Pictoris system. Credit: PicSat CubeSat

    Q. And finally, I’m curious to know what could go wrong and how you would deal with any problems that might arise.

    A. As with any space mission, things can, of course, go wrong! This is the first time that our team (and in fact the LESIA lab!) has constructed an entire satellite, and with a small team, low budget and short time-scale, risks are higher than for conventional missions.

    We were most concerned about the launch, but that was a huge success this morning!! So the next stage is to cross our fingers that the automatic initiation sequence that will start PicSat works successfully. At the end of this sequence, antennas will deploy — critical for communication with the satellite. Antenna deployment and pointing at Beta Pictoris have been tested many times in the lab, so we are hopeful that they work in space as well.

    As for how we would deal with it, well that really depends on the problem! Fortunately, we have a varied and intuitive team and we believe can adapt to most situations.

    The PicSat satellite was successfully launched at 05:00 CET on Friday 12 January 2018. Follow the progress of the mission and find out more about the project at https://picsat.obspm.fr.

    Links

    PicSat website
    PicSat YouTube channel
    PicSat Flickr account
    PicSat Beta Pictoris Star System Info Sheet
    PicSat Twitter account

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m.

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    SPECULOOS four 1m-diameter robotic telescopes 2016 in the ESO Paranal Observatory, 2,635 metres (8,645 ft) above sea level

    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: