Tagged: Astrobites Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:56 pm on June 19, 2018 Permalink | Reply
    Tags: Astrobites, , , , , , The paleo-detector   

    From astrobites: “A Paleo-Detector for Dark Matter: How Ancient Rocks Could Help Unravel the Mystery” 

    Astrobites bloc

    From astrobites

    Title: Searching for Dark Matter with Paleo-Detectors
    Authors: S. Baum, A. K. Drukier, K. Freese, M. Górski, & P. Stengel
    First Author’s Institution: The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, Sweden
    1
    Status: Pre-print available [open access on arXiv]

    Dark matter is, by its very nature, elusive. Though we can detect its presence by observing its gravitational influence, dark matter remains invisible because it doesn’t interact electromagnetically. The most widely accepted explanation for dark matter is the existence of weakly interacting massive particles (WIMPs). WIMPs, if eventually observed, would constitute a new, massive kind of elementary particle. Their discovery would be revolutionary for particle physics and cosmology; therefore, countless direct (in labs) and indirect (observing their annihilation or decay) detection experiments are being conducted to identify them. Today’s astrobite discusses a novel proposal for direct dark matter detection that seems more fit for scientists in Jurassic Park than for particle physicists: the paleo-detector.

    The authors of today’s featured paper theorize that ancient rocks could contain evidence of interactions between WIMPS and nuclei in the minerals, forming a completely natural “detector” that would allow scientists to search for evidence of the massive particles using excavated rocks. This experiment varies significantly from other direct detection efforts, as those look for evidence of WIMPs hitting Earth-based detectors in real time. The paleo-detector would instead trace nanometers-long “tracks” of chemical and physical change in the rocks as the result of WIMP-induced nuclear recoil that occurred long ago.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

    Advertisements
     
  • richardmitnick 9:23 am on June 18, 2018 Permalink | Reply
    Tags: Astrobites, , , ,   

    From astrobites: “The Planets in the Gaps” 

    Astrobites bloc

    From astrobites

    Title: A Kinematical Detection of Two Embedded Jupiter Mass Planets in HD 163296
    Authors: Richard Teague (University of Michigan), Jaehan Bae, Edwin Bergin, Tilman Birnstiel, Daniel Foreman-Mackey

    Status: Accepted to ApJL, 2018 [open access]

    Planets form. (We know this, occupying, as we do, a planet.) And planets form out of the disks of gas and dust that surround young stars. (We know this because we see these disks around young stars, and we cannot explain where the stuff of planets comes from otherwise.) And planets form in these disks quite quickly. (We know this because the disks only last a few million years–a blink of an eye, astronomically speaking.) And planets form in these disks easily. (We know this because planets are everywhere! On average, there’s at least one planet per star.)

    Planet formation, then: it’s quick, easy, commonplace, and completely mysterious. How does a sphere the size of Jupiter coalesce from a bunch of grains of dust swimming in hydrogen gas? Or a snowball like Pluto (planet, dwarf planet, don’t @ me), for that matter, or a rock like Earth?

    1
    Figure 1. The big q

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 2:23 pm on June 14, 2018 Permalink | Reply
    Tags: Astrobites, , , , , Deflating a Planet: Helium Loss in the Atmosphere of Wasp-107b   

    From astrobites: “Deflating a Planet: Helium Loss in the Atmosphere of Wasp-107b” 

    Astrobites bloc

    From astrobites

    Title: Helium in the Eroding Atmosphere of an Exoplanet
    Authors: J. J. Spake, D. K. Sing, T. M. Evans, et al.
    First Author’s Institution: University of Exeter
    1
    Status: Published in Nature [closed access] (open access on arxiv here)

    Hydrogen and helium are the two most abundant elements in our Solar System (and the Universe as a whole). They are the main constituents in our Sun and in the atmospheres of our gas giants. Even Earth has some minor amount of helium in its upper atmosphere. Because these elements are so common, we also expect gas giant exoplanets to have large abundances of hydrogen and helium in their atmospheres. In fact, in 2000, Seager and Sasselov [The Astrophysical Journal] predicted that we should be able to observe helium and other atoms in the atmospheres of these planets in the near-future.

    Wasp-107b: The Perfect Target

    3

    Wasp-107b is a highly-inflated hot Jupiter with a radius similar to Jupiter but only with 12% the mass of Jupiter. It orbits a very active star once every 5.7 days, putting it up close and right in the path of a large number of UV photons. Wasp-107b just needed a significant quantity of helium in its extended atmosphere to make it the perfect target.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 10:21 am on June 13, 2018 Permalink | Reply
    Tags: 44Ti in the young supernova remnant Cassiopeia A, Astrobites, , , ,   

    From astrobites: “Supernova Archeology with Radioactive Eyes” 

    Astrobites bloc

    From astrobites

    Jun 13, 2018
    Maria Arias, guest author

    Title: The distribution of radioactive 44Ti in Cassiopeia A
    Authors: Brian Grefenstette et al.
    First author institution: Caltech

    Status: published in ApJ, open access version available

    Massive stars die as core collapse supernovae: the star can no longer produce the nuclear reactions that balance its strong gravity, and the star collapses onto its core. When this happens, large amounts of energy and neutrons are available to form elements heavier than iron. The distribution of elements produced in the deepest layers of the star as it goes supernova is key to understanding the mechanism by which the collapse of the star leads to an explosion.Radioactive decay powers the optical light emitted by the supernova ~ 50−100 days after the explosion. In fact, we can still see radioactive signatures in remnants that are hundreds of years old. In today’s paper, the authors use high energy X-ray satellite NuStar observations to study the distribution of 44Ti in the young supernova remnant Cassiopeia A (Cas A).

    NASA NuSTAR X-ray telescope

    3
    44Ti Cas A map. Grefenstette et al 2017

    The current distribution of radioactive elements and their decay products is linked to the local conditions in which they were synthesised when the explosion took place. Therefore, knowing where the 44Ti is now can shed light on the details of the supernova event that ended the life of Cas A’s progenitor star.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 9:39 am on June 12, 2018 Permalink | Reply
    Tags: Astrobites, , , , ,   

    From astrobites: “Testing micro with macro – from quantum to the cosmos” 

    Astrobites bloc

    From astrobites

    June 12, 2018
    Philippa Cole

    Title: Precision test of quantum mechanics – our Universe
    Authors: Julian Georg and Carl Rosenzweig

    First Author’s Institution: Department of Physics, Syracuse University, Syracuse, NY 13244, USA
    Status: Open access on arXiv

    Quantum mechanics governs what goes on at mind-bogglingly small scales. So far it’s provided a really good description of microscopic systems that we’ve been able to test on earth, but today’s authors muse that it’s not really had any competition – “all theories benefit from having an alternative to serve as a foil”.

    Since quantum laws should work on all scales, why not zoom all the way out and use the increasingly precise measurements we have on cosmological scales to test our quantum framework? In order to do this we need something to describe the relationship between the unfathomably large and the unimaginably small, and luckily, the leading theory of the early universe connects the two – that theory is inflation.

    4
    Alan Guth, Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:
    5

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 2:13 pm on June 11, 2018 Permalink | Reply
    Tags: Astrobites, , , , , SMSS J215728.21-360215.1, The Biggest Baddest Quasar of Them All" [So Far]   

    From astrobites: “The Biggest, Baddest Quasar of Them All” [So Far] 

    Astrobites bloc

    From astrobites

    Title: Discovery of the Most Ultra-luminous QSO using Gaia, SkyMapper, and WISE
    Authors: Christian Wolf, Fuyan Bian, Christopher A. Onken, Brian P. Schmidt, Patrick Tisserand, Noura Alonzi, Wei Jeat Hon, John L. Tonry
    First Author’s Institution: Research School of Astronomy and Astrophysics, Australia National University

    Status: Accepted to PASA, open access on arxiv

    ESA/GAIA satellite


    ANU Skymapper telescope, a fully automated 1.35 m (4.4 ft) wide-angle optical telescope, at Siding Spring Observatory , near Coonabarabran, New South Wales, Australia, Altitude 1,165 m (3,822 ft)

    NASA/WISE Telescope

    If you’re reading this, chances are you have heard of black holes. These mysterious objects have long captured the interest of the public and scientists alike. Even The Simpsons have tackled this topic.

    A supermassive black hole gives life to the subject of today’s paper, a quasar known as SMSS J215728.21-360215.1 (J2157-3602 for short), the brightest quasar yet discovered.

    2
    Artist impression of a feeding black hole (NASA/Goddard Space Flight Center)

    Quasars are a type of Active Galactic Nuclei (AGN), which sit at the center of high redshift galaxies, meaning they have only been found at distances corresponding to the early universe. Their massive accretion disks allow them to outshine their entire host galaxy, making these astronomical bodies among the brightest objects in the sky.

    So what’s with the name? ‘Quasar’ originated from the phrase ‘quasi-stellar radio source.’ These objects were identified as quasi-stellar because they appear to be a point-source, like a star. Many of the first quasars discovered emitted very strongly in radio wavelengths, but since then, it has been determined that only a fraction of quasars are ‘radio loud.’ So now, ‘quasar’ is simply in reference to ‘quasi-stellar objects,’ or ‘QSOs,’ as in the title of today’s paper.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 9:21 am on June 1, 2018 Permalink | Reply
    Tags: Astrobites, , , , , , Galactic and Extragalactic Magnetic Fields   

    From astrobites: “Extragalactic Magnetic Fields: Uncovering Their Origin Story” 

    Astrobites bloc

    From astrobites

    June 1, 2018
    Joshua Kerrigan

    Title: Probing the origin of extragalactic magnetic fields with Fast Radio Bursts
    Authors: F. Vazza, M. Brüggen , P.M. Hinz, D. Wittor, N. Locatelli, and C. Gheller
    First Author’s Institution: Dipartimento di Fisica e Astronomia, Universita ́ di Bologna, Bologna, Italy
    1
    Status: Submitted to MNRAS, open access

    What do Fast Radio Bursts (FRBs), polarization, and extragalactic magnetic fields on massive scales have in relation to each other? Well to cut to the chase, by combining the polarization of FRB signals we can potentially determine the origin of extragalactic magnetic fields. This could be made possible – in simulation as of now – by some special characteristics of FRBs that wouldn’t necessarily be offered by more steady state radio sources. So welcome to today’s astrobite, where we’ll take some time to learn about how we can uncover the origin story of extragalactic magnetic fields.

    FRB Fast Radio Bursts from NAOJ Subaru, Mauna Kea, Hawaii, USA

    3
    Galactic and Extragalactic Magnetic Fields, Rainer Beck, U Mainz

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 9:21 am on May 30, 2018 Permalink | Reply
    Tags: Astrobites, , , , , Dust n’ H2, ESO/ MPIfR APEX telescope   

    From astrobites: “Dust n’ H2” 

    Astrobites bloc

    From astrobites

    May 30, 2018
    Jamila Pegues

    Title: Compact Dusty Clouds and Efficient H2 Formation in Diffuse ISM
    Authors: A. V. Ivlev, A. Burkert, A. Vasyunin, and P. Caselli
    First Author’s Institution: Max-Planck-Institut für Extraterrestrische Physik, 85748 Garching, Germany

    Status: Accepted to The Astrophysical Journal [open access]

    1
    Figure 1: A filament of the Taurus Molecular Cloud, which contains both (1) stars that are newly formed and (2) stars that have yet to form. Image Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

    ESO/ MPIfR APEX high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft)

    The simplest known element in the universe, hydrogen, is also the most important. Hydrogen (aka “H”) plays a crucial role for many of the awesome astrophysical phenomena that have happened (and will happen!) across the universe’s history. This element fuses in the cores of stars, lights up ionized regions in supernova remnants, and serves as a building block for other elements in the periodic table – just to name a few of its many talents.

    But that’s not all this epic element can do! Its molecular form, H2, is the primary ingredient for molecular clouds, like the one shown in Figure 1. These molecular clouds are made up of both gas and dust grains. They are often found within spiral galaxies (like our own Milky Way), and they’re interesting in part because they’re the only known sites where glorious star formation occurs.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 9:22 am on May 28, 2018 Permalink | Reply
    Tags: Astrobites, , , , , , Things that go bump in the detector: dealing with glitches in LIGO data   

    From astrobites: “Things that go bump in the detector: dealing with glitches in LIGO data” 

    Astrobites bloc

    From astrobites

    Title: Parameter Estimation and Model Selection of Gravitational Wave Signals Contaminated by Transient Detector Noise Glitches
    Authors: Jade Powell, no affiliation listed
    Status: arXiv preprint

    On August 17, 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) made a historic detection of a gravitational wave signal from a merging neutron star binary.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    This detection was interesting for many reasons, not least of all because it was the first multi-messenger detection of both gravitational waves and electromagnetic radiation from the same event.

    Because gravitational wave detectors are so complicated and sensitive, they are vulnerable to transient, short-duration instrumental or environmental noise, called glitches. An interesting feature of GW170817 was that it occurred during a glitch in one of the detectors (Livingston), causing the automated system to veto the data from that detector and preventing the neutron star merger signal from being distributed immediately.

    1
    Figure 1. Characteristic examples of the types of transient features that can occur in the LIGO data due to detector glitches. From left to right: a “blip” glitch, a “whistle” glitch and a “scattered light” glitch (which occurs due to scattered laser light in the detector). Figure 1 in paper.

    Fortunately, the signal was long and the glitch was short, meaning that the glitch could easily be removed from the data. But we may not be so lucky next time! For example, if the signal itself is not well understood or even completely unknown, we need to know how to deal with detector glitches.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 2:29 pm on May 22, 2018 Permalink | Reply
    Tags: Astrobites, , , , CCD's- charge coupled devices, , New Frontiers in CCD Systematics   

    From astrobites: “New Frontiers in CCD Systematics” 

    Astrobites bloc

    From astrobites

    May 22, 2018
    Daniel Berke

    Title: A Binary Offset Effect in CCD Readout and Its Impact on Astronomical Data
    Authors: K. Boone, G. Aldering, Y. Copin, S. Dixon, R. S. Domagalski, E. Gangler, E. Pecontal, S. Perlmutter
    First Author’s Institution: Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720; Department of Physics, University of California Berkeley, 366 LeConte Hall MC 7300, Berkeley, CA, 94720-7300

    Status: Published in Publications of the Astronomical Society of the Pacific [open access]

    I’ve lost count of the number of people who assume my job as an astronomer involves peering through a giant telescope all night. This romanticized picture of astronomy is out of date by over a century now, as astronomers were quick to adopt the new technology of photography to make observations repeatable and objective. At first this involved dry plate photography, but since the 1970s virtually all astronomical research has been conducted using charge coupled devices, or CCDs.

    CCD schematic
    Hamamatsu Learning Center – Florida State University

    CCDs are a remarkable technology, so important that their discoverers won the 2009 Nobel Prize in Physics for the discovery. They do however have some limitations, and astronomers have become very good over the years at correcting for many of the issues they can have. In today’s paper the authors identify a previously-unknown issue with CCDs and set about quantifying its effects in a number of popular instruments and figuring out how to correct for it.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: