Tagged: Astrobiology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:46 am on September 19, 2022 Permalink | Reply
    Tags: "Super-Earths are bigger and more common and more habitable than Earth itself – and astronomers are discovering more of the billions they think are out there", Astrobiology, Based on current projections about a third of all exoplanets are super-Earths., , Most super-Earths orbit cool dwarf stars which are lower in mass and live much longer than the Sun., ,   

    From “The Conversation (AU)” : “Super-Earths are bigger and more common and more habitable than Earth itself – and astronomers are discovering more of the billions they think are out there” 

    From “The Conversation (AU)”

    9.19.22
    Chris Impey
    University Distinguished Professor of Astronomy
    University of Arizona

    1
    Astronomers think the most likely place to find life in the galaxy is on super-Earths, like Kepler-69c, seen in this artist’s rendering. NASA Ames/JPL-CalTech.

    “Astronomers now routinely discover planets orbiting stars outside of the solar system – they’re called exoplanets. But in summer 2022, teams working on NASA’s Transiting Exoplanet Survey Satellite found a few particularly interesting planets orbiting in the habitable zones of their parent stars.

    One planet is 30% larger than Earth and orbits its star in less than three days. The other is 70% larger than the Earth and might host a deep ocean. These two exoplanets are super-Earths – more massive than the Earth but smaller than ice giants like Uranus and Neptune.

    I’m a professor of astronomy who studies galactic cores, distant galaxies, astrobiology and exoplanets. I closely follow the search for planets that might host life.

    Earth is still the only place in the universe scientists know to be home to life. It would seem logical to focus the search for life on Earth clones – planets with properties close to Earth’s. But research has shown that the best chance astronomers have of finding life on another planet is likely to be on a super-Earth similar to the ones found recently.

    2
    A super-Earth is any rocky planet that is bigger than Earth and smaller than Neptune. Credit: Aldaron, CC BY-SA.

    Common and easy to find

    Most super-Earths orbit cool dwarf stars which are lower in mass and live much longer than the Sun. There are hundreds of cool dwarf stars for every star like the Sun, and scientists have found super-Earths orbiting 40% of cool dwarfs they have looked at. Using that number, astronomers estimate that there are tens of billions of super-Earths in habitable zones where liquid water can exist in the Milky Way alone. Since all life on Earth uses water, water is thought to be critical for habitability.

    Based on current projections about a third of all exoplanets are super-Earths, making them the most common type of exoplanet in the Milky Way. The nearest is only six light-years away from Earth. You might even say that our solar system is unusual since it does not have a planet with a mass between that of Earth and Neptune.

    2
    Most exoplanets are discovered by looking for how they dim the light coming from their parent stars, so bigger planets are easier to find. Credit: Nikola Smolenski, CC BY-SA.

    Another reason super-Earths are ideal targets in the search for life is that they’re much easier to detect and study than Earth-sized planets. There are two methods astronomers use to detect exoplanets. One looks for the gravitational effect of a planet on its parent star and the other looks for brief dimming of a star’s light as the planet passes in front of it. Both of these detection methods are easier with a bigger planet.

    Super-Earths are super habitable

    Over 300 years ago, German philosopher Gottfried Wilhelm Leibniz argued that Earth was the “best of all possible worlds.” Leibniz’s argument was meant to address the question of why evil exists, but modern astrobiologists have explored a similar question by asking what makes a planet hospitable to life. It turns out that Earth is not the best of all possible worlds.

    Due to Earth’s tectonic activity and changes in the brightness of the Sun, the climate has veered over time from ocean-boiling hot to planet wide, deep-freeze cold. Earth has been uninhabitable for humans and other larger creatures for most of its 4.5-billion-year history. Simulations suggest the long-term habitability of Earth was not inevitable [Communications Earth & Environment (below)], but was a matter of chance. Humans are literally lucky to be alive.

    Researchers have come up with a list of the attributes that make a planet very conducive to life. Larger planets are more likely to be geologically active, a feature that scientists think would promote biological evolution. So the most habitable planet would have roughly twice the mass of the Earth and be between 20% and 30% larger by volume. It would also have oceans that are shallow enough for light to stimulate life all the way to the seafloor and an average temperature of 77 degrees Fahrenheit (25 degrees Celsius). It would have an atmosphere thicker than the Earth’s that would act as an insulating blanket. Finally, such a planet would orbit a star older than the Sun to give life longer to develop, and it would have a strong magnetic field that protects against cosmic radiation. Scientists think that these attributes combined will make a planet super habitable.

    By definition, super-Earths have many of the attributes of a super habitable planet. To date, astronomers have discovered two dozen super-Earth exoplanets that are, if not the best of all possible worlds, theoretically more habitable than Earth.

    Recently, there’s been an exciting addition to the inventory of habitable planets. Astronomers have started discovering exoplanets that have been ejected from their star systems, and there could be billions of them roaming the Milky Way. If a super-Earth is ejected from its star system and has a dense atmosphere and watery surface, it could sustain life for tens of billions of years, far longer than life on Earth could persist before the Sun dies.

    4
    One of the newly discovered super-Earths, TOI-1452b, might be covered in a deep ocean and could be conducive to life. Credit: Benoit Gougeon, Université de Montréal, CC BY-ND.

    Detecting life on super-Earths

    To detect life on distant exoplanets, astronomers will look for biosignatures, byproducts of biology that are detectable in a planet’s atmosphere.

    NASA’s James Webb Space Telescope was designed before astronomers had discovered exoplanets, so the telescope is not optimized for exoplanet research. But it is able to do some of this science and is scheduled to target two potentially habitable super-Earths in its first year of operations. Another set of super-Earths with massive oceans discovered in the past few years, as well as the planets discovered this summer, are also compelling targets for James Webb.

    But the best chances for finding signs of life in exoplanet atmospheres will come with the next generation of giant, ground-based telescopes: the 39-meter Extremely Large Telescope, the Thirty Meter Telescope and the 24.5-meter Giant Magellan Telescope. These telescopes are all under construction and set to start collecting data by the end of the decade.

    Astronomers know that the ingredients for life are out there, but habitable does not mean inhabited. Until researchers find evidence of life elsewhere, it’s possible that life on Earth was a unique accident. While there are many reasons why a habitable world would not have signs of life, if, over the coming years, astronomers look at these super habitable super-Earths and find nothing, humanity may be forced to conclude that the universe is a lonely place.”

    Science paper:
    Communications Earth & Environment

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation (AU) launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 2:10 pm on September 16, 2022 Permalink | Reply
    Tags: "How will we recognize life elsewhere in the cosmos?", Astrobiology, , , , , With scientists finding new and bizarre exoplanets each year searching for life as we know it might be too narrow a parameter.   

    From “Astronomy Magazine” : “How will we recognize life elsewhere in the cosmos?” 

    From “Astronomy Magazine”

    9.9.22
    Conor Feehly

    With scientists finding new and bizarre exoplanets each year searching for life as we know it might be too narrow a parameter.

    1
    Astronomers estimate that there are more exoplanets than stars in the Milky Way, but what might alien life look like on these worlds? Credit: NASA/JPL-Caltech.

    In the search for extraterrestrial life, astrobiologists face a bit of a conundrum: How wide of a net should they cast when searching for life elsewhere in the cosmos?

    After all, scientists have been shocked by the extreme environments life manages to thrive in here on Earth. So it isn’t too hard to imagine that the universe might be teeming with the unexpected. However, with human interplanetary travel still more science fiction than reality, researchers are limited by the technology and knowledge of life currently accessible. But that doesn’t mean they can’t get creative.

    Identifying candidates for life

    In astrobiology, a popular technique for determining whether an exoplanet might support extraterrestrial life involves analyzing the atmosphere of the planet via the transit method.

    When a distant star passes behind its exoplanet from the point of view of Earth, starlight filters through the atmosphere of the exoplanet before making its way to our instruments. Using a spectrograph, astronomers can separate that filtered starlight into its constituent components. Analyzing this resulting emission spectra can provide astronomers with a detailed log of the chemistry likely present in the atmosphere of the alien world.

    Astrobiologists who investigate the atmospheres of exoplanets this way are looking for what they call biosignatures, or chemical evidence for past or present life. Since we know that certain biological processes on Earth leave chemical traces in our atmosphere, if we manage to identify those same traces in the atmospheres of other planets, then we would have good reason to believe living organisms inhabit or inhabited those other worlds.

    Currently, the transit method has been mostly used to analyze giant, hot planets that orbit very near their host stars. That’s because they are much easier to spot and confirm, as these so-called “hot Jupiters” block more starlight more frequently than smaller, more distantly orbiting worlds.

    2
    Researchers detected the basic chemistry for life in the hot gas planet HD 209458b. Credit: T. Pyle (SSC)/NASA/JPL-Caltech.

    But hot Jupiters are unlikely to be habitable locales for life — at least life as we know it. To fully realize the potential of the transit method in detecting possible life-supporting planets, astronomers must seek improvements in our technology for detecting and isolating the emission spectra of exoplanets.

    Fortunately, NASA’s proposed FINESSE mission, the European Space Agency’s proposed Exoplanet Spectroscopy Mission, and the recently launched Webb will provide scientists with a look at many new potential homes for extraterrestrial life, as well as provide them with a vastly improved ability to analyze the emission spectra of exoplanets.

    There are, however, certain problems with the biosignature method of detecting life on alien worlds.

    The problem with assumptions

    Some astrobiologists argue that we should be open to the possibility that extraterrestrial organisms could be very different to life as we know it. One of the most basic signs that an entity is an organism on Earth, that it produces carbon dioxide or water as a product of respiration or photosynthesis, may not apply as the universal indicator of life elsewhere in the cosmos.

    3
    The super-Earth HD 219134b is a mere 21 light-years from our solar system. Credit: NASA/JPL-Caltech.

    Even our understanding of biosignatures on Earth is still murky, as discoveries in exotic metabolic processes can attest. It is an ongoing debate as to how astrobiologists might distinguish between the chemical compositions of alien atmospheres that indicate the presence of life and those that don’t since we cannot assume that extraterrestrial life will produce the same biosignatures of living organisms on Earth.

    So, if the parameters set out for identifying life in the cosmos is currently too narrow, how can we search for extraterrestrial life if we don’t necessarily know what we are looking for?

    According to Princeton philosopher David Kinney and Search for Extraterrestrial Intelligence (SETI) principal investigator Christopher Kempes, we should be looking at planets with the strangest atmospheres.

    Strange bedfellows

    Planets with peculiar atmospheres, relative to a representative sample, should be regarded as the most likely settings for extraterrestrial life. The parameters for ‘anomalousness’ should be data-dependent, rather than being based on assumptions about life that may be Earth-centric.

    “Conceptually, there must be some common thread between all things in the universe that we want to describe as being alive,” says Kinney, who co-authored the paper, published June 22 in Biology & Philosophy [below], outlining their theory.

    In moving away from the assumption that the thread must be chemical, Kinney and Kempes hope to avoid some common pitfalls, namely abiotic processes that mimic biotic ones. “There has been a long history in exoplanet research of people finding abiotic mechanisms that produce candidate biosignature gases,” says Kinney. “Our method circumvents this issue a bit by saying ‘let the data tell us what is anomalous.’”

    Still their argument does rest on a few core assumptions. First that a given sample of exoplanets can be statistically representative of all the atmospheres in the universe. While over 5,000 exoplanet candidates have been confirmed, scientists estimate that there are hundreds of billions of planets within the Milky Way alone. It also assumes that life in that set of observable exoplanets is rare and that living organisms tend to leave biosignatures in the planets they inhabit.

    Although each of these assumptions can be questioned, it follows that if the chemical composition of a planet is unusual, then a possible cause of this unusual composition is that life exists on that planet. The foundation of their method comes from a paper published in Astrobiology [below] in 2016 in which a list of roughly 14,000 compounds likely to appear as gasses in the atmospheres of extrasolar planets’ is outlined.

    “A key takeaway from our paper is that when science is conducted under conditions of deep uncertainty, a scientist often must be willing to speculate,” says Kemples. “That is, they must be ready to make assumptions that go beyond their data, and to then explore the consequences of those assumptions. Whatever one discovers very likely won’t verify those initial assumptions, but this method can nevertheless lead to extraordinary breakthroughs.”

    Science papers:
    Biology & Philosophy
    Astrobiology

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Astronomy is a magazine about the science and hobby of Astronomy. Based near Milwaukee in Waukesha, Wisconsin, it is produced by Kalmbach Publishing. Astronomy’s readers include those interested in astronomy and those who want to know about sky events, observing techniques, astrophotography, and amateur astronomy in general.

    Astronomy was founded in 1973 by Stephen A. Walther, a graduate of The University of Wisconsin–Stevens Point and amateur astronomer. The first issue, August 1973, consisted of 48 pages with five feature articles and information about what to see in the sky that month. Issues contained astrophotos and illustrations created by astronomical artists. Walther had worked part time as a planetarium lecturer at The University of Wisconsin–Milwaukee and developed an interest in photographing constellations at an early age. Although even in childhood he was interested to obsession in Astronomy, he did so poorly in mathematics that his mother despaired that he would ever be able to earn a living. However, he graduated in Journalism from the University of Wisconsin Stevens Point, and as a senior class project he created a business plan for a magazine for amateur astronomers. With the help of his brother David, he was able to bring the magazine to fruition. He died in 1977.

     
  • richardmitnick 10:18 am on July 24, 2022 Permalink | Reply
    Tags: "Webb could see biosignatures on distant planets", Astrobiology, , , , , , , , The Nautilus Life-Finding Project, The University of Arizona Department of Astronomy and Steward Observatory   

    From “EarthSky” and The University of Arizona Department of Astronomy and Steward Observatory: “Webb could see biosignatures on distant planets” and “The Nautilus Life-Finding Project” 

    1

    From “EarthSky”

    And

    The University of Arizona Department of Astronomy and Steward Observatory

    At

    The University of Arizona

    July 22, 2022
    Chris Impey, University of Arizona
    Daniel Apai, University of Arizona

    _______________________________________
    The TRAPPIST-1 star and planet system; the ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile.


    _______________________________________

    The ingredients for life are spread throughout the universe. While Earth is the only known place in the universe with life, detecting life beyond Earth is a major goal of modern astronomy and planetary science.

    We are two scientists who study exoplanets and astrobiology. Thanks in large part to next-generation telescopes like James Webb, researchers like us will soon be able to measure the chemical makeup of atmospheres of planets around other stars.

    The hope is that one or more of these planets will have a chemical signature of life.

    1
    There are many known exoplanets in habitable zones – orbits not too close to a star that the water boils off but not so far that the planet is frozen solid – as marked in green for both the solar system and Kepler-186 star system with its planets labeled b, c, d, e and f. Image via NASA Ames/ SETI Institute/ JPL-Caltech/ Wikimedia Commons.

    Habitable exoplanets

    Life might exist in the solar system where there is liquid water, such as the subsurface aquifers on Mars or in the oceans of Jupiter’s moon Europa. However, searching for life in these places is incredibly difficult. They are hard to reach and detecting life would require sending a probe to return physical samples.

    Many astronomers believe there’s a good chance that life exists on planets orbiting other stars. It’s possible that’s where life will first be found.

    Theoretical calculations suggest that there are around 300 million potentially habitable planets in the Milky Way galaxy alone. Calculations also suggest there are several habitable Earth-sized planets within only 30 light-years of Earth. They are essentially humanity’s galactic neighbors. So far, astronomers have discovered over 5,000 exoplanets, including hundreds of potentially habitable ones, using indirect methods that measure how a planet affects its nearby star. These measurements can give astronomers information on the mass and size of an exoplanet, but not much else.

    2
    Every material absorbs certain wavelengths of light. This diagram depicts chlorophyll absorbing wavelengths of light. Image via Daniele Pugliesi/ Wikimedia Commons.

    Looking for biosignatures with Webb

    To detect life on a distant planet, astrobiologists will study starlight that has interacted with a planet’s surface or atmosphere. If life transformed the atmosphere or surface, the light may carry a clue, called a biosignature.

    For the first half of its existence, Earth sported an atmosphere without oxygen, even though it had simple, single-celled life. Earth’s biosignature was very faint during this early era. Then, 2.4 billion years ago, a new family of algae evolved. The algae used a process of photosynthesis that produces free oxygen, which isn’t chemically bonded to any other element. From then on, Earth’s oxygen-filled atmosphere has left a strong and easily detectable biosignature on light.

    When light bounces off the surface of a material or passes through a gas, certain wavelengths are more likely to remain trapped in the gas or material’s surface. This selective trapping of wavelengths of light is why objects are different colors. Leaves are green because chlorophyll is particularly good at absorbing light in the red and blue wavelengths. That leaves mostly green light to hit your eyes.

    The specific composition of the material the light interacts with determines the pattern of missing light. Because of this, astronomers can learn something about the composition of an exoplanet’s atmosphere or surface by, in essence, measuring the specific color of light that comes from a planet.

    Astronomers can recognize the presence of certain atmospheric gases associated with life – such as oxygen or methane – because they leave very specific signatures in light. It could also be used to detect peculiar colors on the surface of a planet. On Earth, for example, the chlorophyll and other pigments plants and algae use for photosynthesis capture specific wavelengths of light. These pigments produce characteristic colors that sensitive infrared cameras can detect. If you were to see this color reflecting off the surface of a distant planet, it would potentially signify the presence of chlorophyll.

    Enter the Webb telescope

    It takes an incredibly powerful telescope to detect these subtle changes to the light coming from a potentially habitable exoplanet. For now, the only telescope capable of such a feat is the new James Webb Space Telescope. As it began science operations in July 2022, James Webb took a reading of the spectrum of the gas giant exoplanet WASP-96b. The spectrum showed the presence of water and clouds. However, a planet as large and hot as WASP-96b is unlikely to host life.

    Yet, this early data shows that James Webb is capable of detecting faint chemical signatures in light coming from exoplanets. In the coming months, Webb is set to turn its mirrors toward TRAPPIST-1e [above], a potentially habitable Earth-sized planet a mere 39 light-years from Earth.

    Webb can look for biosignatures by studying planets as they pass in front of their host stars. It can capture starlight that filters through the planet’s atmosphere. But Webb’s goal was not to search for life. So the telescope is only able to scrutinize a few of the nearest potentially habitable worlds. It also can only detect changes to atmospheric levels of carbon dioxide, methane and water vapor. While certain combinations of these gases may suggest life, Webb is not able to detect the presence of unbonded oxygen, which is the strongest signal for life.

    2
    The James Webb Space Telescope is the 1st telescope able to detect chemical signatures from exoplanets. Image via NASA.

    Other telescopes

    Leading concepts for future, even more powerful, space telescopes include plans to block the bright light of a planet’s host star to reveal starlight reflected from the planet.

    This idea is like using your hand to block sunlight to better see something in the distance. Future space telescopes could use small, internal masks or large, external, umbrella-like spacecraft to do this. Once astronomers block the starlight, it becomes much easier to study light bouncing off a planet.

    There are also three enormous ground-based telescopes currently under construction that will be able to search for biosignatures. First is the Giant Magellan Telescope, then the Thirty Meter Telescope and lastly, the European Extremely Large Telescope. Each is far more powerful than existing telescopes on Earth. Despite the handicap of Earth’s atmosphere distorting starlight, these telescopes might be able to probe the atmospheres of the closest worlds for oxygen.

    Is it biology or geology?

    Even using the most powerful telescopes of the coming decades, astrobiologists will only be able to detect strong biosignatures from worlds where life has completely transformed them.

    Unfortunately, most gases released by terrestrial life can also have a nonbiological source. Cows and volcanoes both release methane. Photosynthesis produces oxygen, but sunlight does, too, when it splits water molecules into oxygen and hydrogen. There is a good chance astronomers will detect some false positives when looking for distant life. To help rule out false positives, astronomers will need to understand whether the planet’s geologic or atmospheric processes could mimic a biosignature.

    The next generation of exoplanet studies has the potential to pass the bar of the extraordinary evidence needed to prove the existence of life. The first data release from the James Webb Space Telescope gives us a sense of the exciting progress that’s coming soon.

    The Nautilus Life-Finding Project
    Daniel Apai
    Tom Milster

    While thousands of extra-solar planets have been discovered to date – including many potentially habitable planets with the same size and equilibrium temperature as the Earth – astronomers have so far been unable to rigorously survey their atmospheres for signs of life – such as the presence of oxygen, ozone, or methane. A key limitation is the size of space telescopes: even the James Webb Space Telescope, with its 6.5 meter diameter mirror – the largest and most expensive space telescope ever built for astronomy – will be able to search for biosignatures in only a handful of the closest potentially habitable worlds. To survey hundreds of such planets for evidence of life may require an orders of magnitude increase in the amount of light which space telescopes are able to collect.

    Motivated by this challenge, UA Professors Daniel Apai and Tom Milster are developing a concept for a space telescope called “Nautilus” which would maximize light collecting power by using a specially engineered lens instead of a mirror.

    3
    Nautilus Array

    Nautilus would eschew a mirror in favor of a new type of large, light-weight, and reproducible lens which is currently being developed by Milster’s team at the College of Optical Sciences. Unlike traditional lenses, which are bulky and produce poorer quality images than mirrors, Nautilus’ lenses are precisely engineered to be lightweight while producing images of comparable quality to Hubble’s mirror. And unlike a mirror, a lens is more tolerant to misalignments, which enables a lightweight and less expensive spacecraft to support it. While the lens design is complex, it can be etched into a mold with diamond-tipped tools, allowing further lenses to be affordable and quickly reproduced.

    A single Nautilus telescope would boast an 8.5-meter lens with more than twice the light-collecting area of JWST and a lighter, inflatable spacecraft. Yet thanks to its simple design and reproducible lens, Nautilus telescopes could be replicated at low cost and launched in groups of up to fifteen using future launch fairings. The telescopes would observe a star as its planet transits in front of it, allowing astronomers to deduce the composition of the planet’s atmosphere by measuring how much of the star’s spectrum it absorbs.

    Through this technique, Apai and UA graduate student Alex Bixel estimate that with thirty-five Nautilus telescopes they could survey as many as a thousand potentially habitable planets for evidence of life. If even a fraction of these worlds are inhabited, the Nautilus array would discover dozens of examples of life beyond Earth.

    You can read articles about this project HERE and HERE and HERE and HERE.

    See the full EarthSky article here .

    See The Nautilus Life-Finding Project here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Steward Observatory is the research arm of the Department of Astronomy at The University of Arizona. Its offices are located on The University of Arizona campus in Tucson, Arizona. Established in 1916, the first telescope and building were formally dedicated on April 23, 1923. It now operates, or is a partner in telescopes at five mountain-top locations in Arizona, one in New Mexico, one in Hawaii, and one in Chile. It has provided instruments for three different space telescopes and numerous terrestrial ones. Steward also has one of the few facilities in the world that can cast and figure the very large primary mirrors used in telescopes built in the early 21st century.

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.

    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, The University of Arizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 7:55 am on July 17, 2022 Permalink | Reply
    Tags: , Astrobiology, , , , , , , Scientists created a family tree that allowed them to reconstruct rhodopsins from 2.5 to 4 billion years ago and the conditions that they likely faced., Scientists have reconstructed what life was like for some of Earth’s earliest organisms., ,   

    From The University of California-Riverside: “Ancient microbes may help us find extraterrestrial life forms” 

    UC Riverside bloc

    From The University of California-Riverside

    June 27, 2022
    Jules Bernstein

    Using light-capturing proteins in living microbes, scientists have reconstructed what life was like for some of Earth’s earliest organisms. These efforts could help us recognize signs of life on other planets, whose atmospheres may more closely resemble our pre-oxygen planet.

    2
    Earth of billions of years ago illuminated by light-capturing proteins.
    Rendering of the process by which ancient microbes captured light with rhodopsin proteins. (Sohail Wasif/UCR)

    The earliest living things, including bacteria and single-celled organisms called archaea, inhabited a primarily oceanic planet without an ozone layer to protect them from the sun’s radiation. These microbes evolved rhodopsins — proteins with the ability to turn sunlight into energy, using them to power cellular processes.

    “On early Earth, energy may have been very scarce. Bacteria and archaea figured out how to use the plentiful energy from the sun without the complex biomolecules required for photosynthesis,” said UC Riverside astrobiologist Edward Schwieterman, who is co-author of a study describing the research.

    Rhodopsins are related to rods and cones in human eyes that enable us to distinguish between light and dark and see colors. They are also widely distributed among modern organisms and environments like saltern ponds, which present a rainbow of vibrant colors.

    Using machine learning the research team analyzed rhodopsin protein sequences from all over the world and tracked how they evolved over time. Then, they created a type of family tree that allowed them to reconstruct rhodopsins from 2.5 to 4 billion years ago, and the conditions that they likely faced.

    “Life as we know it is as much an expression of the conditions on our planet as it is of life itself. We resurrected ancient DNA sequences of one molecule, and it allowed us to link to the biology and environment of the past,” said University of Wisconsin-Madison astrobiologist and study lead Betul Kacar.

    “It’s like taking the DNA of many grandchildren to reproduce the DNA of their grandparents. Only, it’s not grandparents, but tiny things that lived billions of years ago, all over the world,” Schwieterman said.

    Modern rhodopsins absorb blue, green, yellow and orange light, and can appear pink, purple or red by virtue of the light they are not absorbing or complementary pigments. However, according to the team’s reconstructions, ancient rhodopsins were tuned to absorb mainly blue and green light.

    Since ancient Earth did not yet have the benefit of an ozone layer, the research team theorizes that billions-of-years-old microbes lived many meters down in the water column to shield themselves from intense UVB radiation at the surface.

    Blue and green light best penetrates water, so it is likely that the earliest rhodopsins primarily absorbed these colors. “This could be the best combination of being shielded and still being able to absorb light for energy,” Schwieterman said.

    After the Great Oxidation Event, more than 2 billion years ago, Earth’s atmosphere began to experience a rise in the amount of oxygen. With additional oxygen and ozone in the atmosphere, rhodopsins evolved to absorb additional colors of light.

    Rhodopsins today are able to absorb colors of light that chlorophyll pigments in plants cannot. Though they represent completely unrelated and independent light capture mechanisms, they absorb complementary areas of the spectrum.

    “This suggests co-evolution, in that one group of organisms is exploiting light not absorbed by the other,” Schwieterman said. “This could have been because rhodopsins developed first and screened out the green light, so chlorophylls later developed to absorb the rest. Or it could have happened the other way around.”

    Moving forward, the team is hoping to resurrect model rhodopsins in a laboratory using synthetic biology techniques.

    “We engineer the ancient DNA inside modern genomes and reprogram the bugs to behave how we believe they did millions of years ago. Rhodopsin is a great candidate for laboratory time-travel studies,” Kacar said.

    Ultimately, the team is pleased about the possibilities for research opened up by techniques they used for this study. Since other signs of life from the deep geologic past need to be physically preserved and only some molecules are amenable to long-term preservation, there are many aspects of life’s history that have not been accessible to researchers until now.

    “Our study demonstrates for the first time that the behavioral histories of enzymes are amenable to evolutionary reconstruction in ways that conventional molecular biosignatures are not,” Kacar said.

    The team also hopes to take what they learned about the behavior of early Earth organisms and use it to search the skies for signs of life on other planets.

    “Early Earth is an alien environment compared to our world today. Understanding how organisms here have changed with time and in different environments is going to teach us crucial things about how to search for and recognize life elsewhere,” Schwieterman said.

    The findings are detailed in a paper published in the journal Molecular Biology and Evolution.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of California-Riverside Campus

    The University of California-Riverside is a public land-grant research university in Riverside, California. It is one of the 10 campuses of The University of California system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to The University of California-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    The University of California-Riverside ‘s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared The University of California-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the The University of California-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    The University of California-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of The University of California-Riverside ‘s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked The University of California-Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks The University of California-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all The University of California-Riverside students graduate within six years without regard to economic disparity. The University of California-Riverside ‘s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, The University of California-Riverside became the first public university campus in the nation to offer a gender-neutral housing option. The University of California-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The University of California-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the University of California Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley alumni, lobbied aggressively for a University of California -administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at The University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    The University of California-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. The University of California-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. The University of California-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at University of California-Riverside to keep the campus open.

    In the 1990s, The University of California-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted The University of California-Riverside for an annual growth rate of 6.3%, the fastest in The University of California system, and anticipated 19,900 students at The University of California-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of The University of California-Riverside student body, the highest proportion of any University of California campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at The University of California-Riverside.

    With The University of California-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move The University of California-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at The University of California-Riverside, with The University of California-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, The University of California-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved The University of California-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of The University of California system, The University of California-Riverside is governed by a Board of Regents and administered by a president University of California-Riverside ‘s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    The University of California-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. The University of California-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at The University of California-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. The University of California-Riverside ‘s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and The University of California-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. The University of California-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with The University of California-Berkeley and The University of California-Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, The University of California-Riverside offers the Thomas Haider medical degree program in collaboration with The University of California-Los Angeles. The University of California-Riverside ‘s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and The University of California-Riverside ‘s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    The University of California-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at The University of California-Riverside have an economic impact of nearly $1 billion in California. The University of California-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at The University of California-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout The University of California-Riverside’s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, The University of California-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, The University of California-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. University of California-Riverside can also boast the birthplace of two-name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 12:22 pm on July 15, 2022 Permalink | Reply
    Tags: "To search for alien life astronomers will look for clues in the atmospheres of distant planets – and the James Webb Space Telescope just proved it’s possible to do so", Astrobiologists will study starlight that has interacted with a planet’s surface or atmosphere., Astrobiology, , , , , Earth’s oxygen-filled atmosphere has left a strong and easily detectable biosignature on light that passes through it., , Many astronomers believe there’s a good chance that life exists on planets orbiting other stars and it’s possible that is where life will first be found., , , , Theoretical calculations suggest that there are around 300 million potentially habitable planets in the Milky Way galaxy alone., There might be several habitable Earth-sized planets within only 30 light-years of Earth – essentially humanity’s galactic neighbors.   

    From “The Conversation (AU)” : “To search for alien life astronomers will look for clues in the atmospheres of distant planets – and the James Webb Space Telescope just proved it’s possible to do so” 

    From “The Conversation (AU)”

    July 14, 2022

    Chris Impey
    University Distinguished Professor of Astronomy
    University of Arizona

    Daniel Apai
    Professor of Astronomy and Planetary Sciences
    University of Arizona

    The ingredients for life are spread throughout the universe [PNAS]. While Earth is the only known place in the universe with life, detecting life beyond Earth is a major goal of modern astronomy and planetary science.

    We are two scientists who study exoplanets and astrobiology. Thanks in large part to next-generation telescopes like James Webb, researchers like us will soon be able to measure the chemical makeup of atmospheres of planets around other stars. The hope is that one or more of these planets will have a chemical signature of life.

    1
    There are many known exoplanets in habitable zones – orbits not too close to a star that the water boils off but not so far that the planet is frozen solid – as marked in green for both the solar system and Kepler-186 star system with its planets labeled b, c, d, e and f. NASA Ames/SETI Institute/JPL-Caltech/Wikimedia Commons.

    Habitable exoplanets

    Life might exist in the solar system where there is liquid water – like the subsurface aquifers on Mars or in the oceans of Jupiter’s moon Europa. However, searching for life in these places is incredibly difficult, as they are hard to reach and detecting life would require sending a probe to return physical samples.

    Many astronomers believe there’s a good chance that life exists on planets orbiting other stars and it’s possible that is where life will first be found.

    Theoretical calculations suggest that there are around 300 million potentially habitable planets in the Milky Way galaxy alone and several habitable Earth-sized planets within only 30 light-years of Earth – essentially humanity’s galactic neighbors. So far, astronomers have discovered over 5,000 exoplanets, including hundreds of potentially habitable ones, using indirect methods that measure how a planet affects its nearby star. These measurements can give astronomers information on the mass and size of an exoplanet, but not much else.

    2
    Every material absorbs certain wavelengths of light, as shown in this diagram depicting the wavelengths of light absorbed most easily by different types of chlorophyll. Daniele Pugliesi/Wikimedia Commons, CC BY-SA.

    Looking for biosignatures

    To detect life on a distant planet, astrobiologists will study starlight that has interacted with a planet’s surface or atmosphere. If the atmosphere or surface was transformed by life, the light may carry a clue, called a “biosignature.”

    For the first half of its existence, Earth sported an atmosphere without oxygen, even though it hosted simple, single-celled life. Earth’s biosignature was very faint during this early era. That changed abruptly 2.4 billion years ago when a new family of algae evolved. The algae used a process of photosynthesis that produces free oxygen – oxygen that isn’t chemically bonded to any other element. From that time on, Earth’s oxygen-filled atmosphere has left a strong and easily detectable biosignature on light that passes through it.

    When light bounces off the surface of a material or passes through a gas, certain wavelengths of the light are more likely to remain trapped in the gas or material’s surface than others. This selective trapping of wavelengths of light is why objects are different colors. Leaves are green because chlorophyll is particularly good at absorbing light in the red and blue wavelengths. As light hits a leaf, the red and blue wavelengths are absorbed, leaving mostly green light to bounce back into your eyes.

    The pattern of missing light is determined by the specific composition of the material the light interacts with. Because of this, astronomers can learn something about the composition of an exoplanet’s atmosphere or surface by, in essence, measuring the specific color of light that comes from a planet.

    This method can be used to recognize the presence of certain atmospheric gases that are associated with life – such as oxygen or methane – because these gasses leave very specific signatures in light. It could also be used to detect peculiar colors on the surface of a planet. On Earth, for example, the chlorophyll and other pigments plants and algae use for photosynthesis capture specific wavelengths of light. These pigments produce characteristic colors that can be detected by using a sensitive infrared camera. If you were to see this color reflecting off the surface of a distant planet, it would potentially signify the presence of chlorophyll.

    Telescopes in space and on Earth

    It takes an incredibly powerful telescope to detect these subtle changes to the light coming from a potentially habitable exoplanet. For now, the only telescope capable of such a feat is the new James Webb Space Telescope.

    As it began science operations in July 2022, James Webb took a reading of the spectrum of the gas giant exoplanet WASP-96b. The spectrum showed the presence of water and clouds, but a planet as large and hot as WASP-96b is unlikely to host life.

    However, this early data shows that James Webb is capable of detecting faint chemical signatures in light coming from exoplanets. In the coming months, Webb is set to turn its mirrors toward TRAPPIST-1e, a potentially habitable Earth-sized planet a mere 39 light-years from Earth.

    _______________________________________
    The TRAPPIST-1 star and planet system; the ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile.


    _______________________________________

    Webb can look for biosignatures by studying planets as they pass in front of their host stars and capturing starlight that filters through the planet’s atmosphere [Uppsala University Department of Physics]. But Webb was not designed to search for life, so the telescope is only able to scrutinize a few of the nearest potentially habitable worlds. It also can only detect changes to atmospheric levels of carbon dioxide, methane and water vapor [The Astronomical Journal]. While certain combinations of these gasses may suggest life [Nature Astronomy], Webb is not able to detect the presence of unbonded oxygen, which is the strongest signal for life.

    Leading concepts for future, even more powerful, space telescopes include plans to block the bright light of a planet’s host star to reveal starlight reflected back from the planet. This idea is similar to using your hand to block sunlight to better see something in the distance. Future space telescopes could use small, internal masks or large, external, umbrella-like spacecraft to do this. Once the starlight is blocked, it becomes much easier to study light bouncing off a planet.

    There are also three enormous, ground-based telescopes currently under construction that will be able to search for biosignatures: the Giant Magellen Telescope, the Thirty Meter Telescope and the European Extremely Large Telescope.

    Each is far more powerful than existing telescopes on Earth, and despite the handicap of Earth’s atmosphere distorting starlight, these telescopes might be able to probe the atmospheres of the closest worlds for oxygen.

    Is it biology or geology?

    Even using the most powerful telescopes of the coming decades, astrobiologists will only be able to detect strong biosignatures produced by worlds that have been completely transformed by life.

    Unfortunately, most gases released by terrestrial life can also be produced by nonbiological processes – cows and volcanoes both release methane. Photosynthesis produces oxygen, but sunlight does, too, when it splits water molecules into oxygen and hydrogen. There is a good chance astronomers will detect some false positives when looking for distant life. To help rule out false positives, astronomers will need to understand a planet of interest well enough to understand whether its geologic or atmospheric processes could mimic a biosignature.

    The next generation of exoplanet studies has the potential to pass the bar of the extraordinary evidence needed to prove the existence of life. The first data release from the James Webb Space Telescope gives us a sense of the exciting progress that’s coming soon.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation (AU) launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.

    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 9:42 am on July 8, 2022 Permalink | Reply
    Tags: "Central Molecular Zone": Scientists have found a bunch of prebiotic molecules hanging around there., "Loads of Precursors For RNA Have Been Detected in The Center of Our Galaxy", "Nitriles": Organic molecules that are often toxic in isolation but also constitute the building blocks of molecules essential for life., "Prebiotic molecules": Molecules involved in the emergence of life., "RNA World Hypothesis", , Astrobiology, , , , How life emerges in the Universe – and how it did so here on Earth., One particular cloud-named G+0.693-0.027 is especially interesting., Precisely how life emerged on Earth is a mystery whose bottom scientists are extremely keen to reach., Previous observations of G+0.693-0.027 revealed the presence of cyanoformaldehyde and glycolonitrile., , , Scientists have detected so far several simple precursors of ribonucleotides-the building blocks of RNA., The Solar System's birth cloud is long gone but the center of the galaxy is thick with molecular clouds., There are still key missing molecules that are hard to detect., We have found prebiotic molecules on meteors; comets and asteroids hanging around the Solar System today., We're not likely to ever get direct evidence from Earth but we can put together more and more clues to figure out how plausible and likely this scenario is.   

    From “Science Alert (AU)” : “Loads of Precursors For RNA Have Been Detected in The Center of Our Galaxy” 

    ScienceAlert

    From “Science Alert (AU)”

    8 JULY 2022
    MICHELLE STARR

    1
    The galactic center, imaged in infared. (NASA/JPL-Caltech/S. Stolovy, Spitzer Science Center/Caltech)

    The heart of the Milky Way is apparently a hotspot for molecules that combine to form RNA.

    A new survey of the thick, molecular clouds that shroud the galactic center has revealed the presence of a wide range of nitriles – organic molecules that are often toxic in isolation but also constitute the building blocks of molecules essential for life.

    The increase in prebiotic molecules (molecules involved in the emergence of life) identified in the galactic center, particularly those associated with RNA, has implications for our understanding of how life emerges in the Universe – and how it did so here on Earth.

    “Here we show that the chemistry that takes place in the interstellar medium is able to efficiently form multiple nitriles, which are key molecular precursors of the ‘RNA World’ scenario,” explained astrobiologist Víctor Rivilla of the Spanish National Research Council and the National Institute of Aerospace Technology in Spain.

    Precisely how life emerged on Earth is a mystery whose bottom scientists are extremely keen to reach. That information will yield important clues to discovering exoplanets likely to harbor living organisms.

    One version is that RNA emerged first from the metaphorical ooze, self-replicating and diversifying all on its own; this is what’s called the “RNA World Hypothesis”.

    We’re not likely to ever get direct evidence from Earth, but we can put together more and more clues to figure out how plausible and likely this scenario is. One of the questions raised by this hypothesis is about the source of RNA prebiotic molecules such as nitriles. Were they here on Earth from the start, or could they have been carried in from space on meteorites and asteroids?

    We know the inner Solar System, including Earth, was subject to a period of intense asteroid bombardment very early in its history. We have found prebiotic molecules on meteors; comets and asteroids hanging around the Solar System today. And where do meteors, comets and asteroids get them?

    Well, probably the clouds they were born in: cold molecular clouds that give birth to stars. Once a star finishes forming from a section of cloud, the cloud leftovers go on to form everything else in a planetary system – planets, comets, asteroids, dwarf planets, and whatever else might be lurking about.

    The Solar System’s birth cloud is long gone but the center of the galaxy is thick with molecular clouds. It’s called the “Central Molecular Zone”, and scientists have found a bunch of prebiotic molecules hanging around there.

    One particular cloud-named G+0.693-0.027 is especially interesting. There’s no evidence of star formation there yet, but scientists believe that a star or stars will form there in the future.

    “The chemical content of G+0.693-0.027 is similar to those of other star-forming regions in our galaxy, and also to that of Solar System objects like comets,” Rivilla said.

    “This means that its study can give us important insights about the chemical ingredients that were available in the nebula that give rise to our planetary system.”

    The researchers used two telescopes to study the spectrum of light coming from the cloud. When certain elements or molecules absorb and re-emit light, this can be seen on the spectrum as a darker or lighter line. Interpreting these absorption and emission lines can be tricky, but it can also be used to identify which molecules are present: each one has its own spectral signature.

    By carefully studying and analyzing emission features from G+0.693-0.027, Rivilla and his colleagues identified a range of nitriles, including cyanic acid, cyanoallene, propargyl cyanide, and cyanopropyne. They also made tentative detections of cyanoformaldehyde, and glycolonitrile.

    Previous observations of G+0.693-0.027 revealed the presence of cyanoformaldehyde and glycolonitrile. This suggests that nitriles are among the most abundant chemical families in the Milky Way, and that the most basic building blocks for RNA can be found in the clouds that give birth to stars and planets.

    But there is – of course, as there always is – more work to be done.

    “We have detected so far several simple precursors of ribonucleotides-the building blocks of RNA,” explained astrobiologist Izaskun Jiménez-Serra, also of the Spanish National Research Council and the National Institute of Aerospace Technology.

    “But there are still key missing molecules that are hard to detect. For example, we know that the origin of life on Earth probably also required other molecules such as lipids, responsible for the formation of the first cells. Therefore we should also focus on understanding how lipids could be formed from simpler precursors available in the interstellar medium.”

    The research has been published in Frontiers in Astronomy and Space Sciences.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 12:56 pm on June 27, 2022 Permalink | Reply
    Tags: , After the "Great Oxidation Event" more than 2 billion years ago Earth’s atmosphere began to experience a rise in the amount of oxygen., , Astrobiology, Bacteria and archaea figured out how to use the plentiful energy from the sun without the complex biomolecules required for photosynthesis., , , Early Earth is an alien environment compared to our world today., Earth of billions of years ago illuminated by light-capturing proteins., , It’s like taking the DNA of many grandchildren to reproduce the DNA of their grandparents., Life as we know it is as much an expression of the conditions on our planet as it is of life itself., , Our study demonstrates for the first time that the behavioral histories of enzymes are amenable to evolutionary reconstruction in ways that conventional molecular biosignatures are not., Rhodopsins are related to rods and cones in human eyes that enable us to distinguish between light and dark and see colors., Rhodopsins today are able to absorb colors of light that chlorophyll pigments in plants cannot., The earliest living things-archaea-inhabited a primarily oceanic planet without an ozone layer to protect them from the sun’s radiation., The research team theorizes that billions-of-years-old microbes lived many meters down in the water column to shield themselves from intense UVB radiation at the surface., The scientists created a type of family tree that allowed them to reconstruct rhodopsins from 2.5 to 4 billion years ago., , , These microbes evolved rhodopsins — proteins with the ability to turn sunlight into energy using them to power cellular processes., This suggests co-evolution in that one group of organisms is exploiting light not absorbed by the other., Understanding how organisms here have changed with time and in different environments is going to teach us crucial things about how to search for and recognize life elsewhere., Using light-capturing proteins in living microbes scientists have reconstructed what life was like for some of Earth’s earliest organisms.,   

    From The University of California-Riverside: “Ancient microbes may help us find extraterrestrial life forms” 

    UC Riverside bloc

    From The University of California-Riverside

    June 27, 2022

    Jules L Bernstein
    Senior Public Information Officer
    jules.bernstein@ucr.edu
    (951) 827-4580

    1
    Rendering of the process by which ancient microbes captured light with rhodopsin proteins. (Credit: Sohail Wasif/UCR)

    Earth of billions of years ago illuminated by light-capturing proteins.

    Using light-capturing proteins in living microbes scientists have reconstructed what life was like for some of Earth’s earliest organisms. These efforts could help us recognize signs of life on other planets, whose atmospheres may more closely resemble our pre-oxygen planet.

    The earliest living things, including bacteria and single-celled organisms called archaea, inhabited a primarily oceanic planet without an ozone layer to protect them from the sun’s radiation. These microbes evolved rhodopsins — proteins with the ability to turn sunlight into energy using them to power cellular processes.

    “On early Earth, energy may have been very scarce. Bacteria and archaea figured out how to use the plentiful energy from the sun without the complex biomolecules required for photosynthesis,” said UC Riverside astrobiologist Edward Schwieterman, who is co-author of a study describing the research.

    Rhodopsins are related to rods and cones in human eyes that enable us to distinguish between light and dark and see colors. They are also widely distributed among modern organisms and environments like saltern ponds, which present a rainbow of vibrant colors.

    Using machine learning the research team analyzed rhodopsin protein sequences from all over the world and tracked how they evolved over time. Then, they created a type of family tree that allowed them to reconstruct rhodopsins from 2.5 to 4 billion years ago, and the conditions that they likely faced.

    Their findings are detailed in a paper published in the journal Molecular Biology and Evolution.

    2
    Aerial view of saltern ponds in Namibia, southwest Africa. (R.M. Nunes/iStock/Getty)

    “Life as we know it is as much an expression of the conditions on our planet as it is of life itself. We resurrected ancient DNA sequences of one molecule, and it allowed us to link to the biology and environment of the past,” said University of Wisconsin-Madison astrobiologist and study lead Betul Kacar.

    “It’s like taking the DNA of many grandchildren to reproduce the DNA of their grandparents. Only, it’s not grandparents, but tiny things that lived billions of years ago, all over the world,” Schwieterman said.

    Modern rhodopsins absorb blue, green, yellow and orange light, and can appear pink, purple or red by virtue of the light they are not absorbing or complementary pigments. However, according to the team’s reconstructions, ancient rhodopsins were tuned to absorb mainly blue and green light.

    Since ancient Earth did not yet have the benefit of an ozone layer, the research team theorizes that billions-of-years-old microbes lived many meters down in the water column to shield themselves from intense UVB radiation at the surface.

    Blue and green light best penetrates water, so it is likely that the earliest rhodopsins primarily absorbed these colors. “This could be the best combination of being shielded and still being able to absorb light for energy,” Schwieterman said.

    After the Great Oxidation Event, more than 2 billion years ago Earth’s atmosphere began to experience a rise in the amount of oxygen. With additional oxygen and ozone in the atmosphere, rhodopsins evolved to absorb additional colors of light.

    Rhodopsins today are able to absorb colors of light that chlorophyll pigments in plants cannot. Though they represent completely unrelated and independent light capture mechanisms, they absorb complementary areas of the spectrum.

    3
    Illustration of photosynthesis in a plant, an alternative method of capturing light to create energy. (Viacheslav Besputin/iStock/Getty)

    “This suggests co-evolution in that one group of organisms is exploiting light not absorbed by the other,” Schwieterman said. “This could have been because rhodopsins developed first and screened out the green light, so chlorophylls later developed to absorb the rest. Or it could have happened the other way around.”

    Moving forward, the team is hoping to resurrect model rhodopsins in a laboratory using synthetic biology techniques.

    “We engineer the ancient DNA inside modern genomes and reprogram the bugs to behave how we believe they did millions of years ago. Rhodopsin is a great candidate for laboratory time-travel studies,” Kacar said.

    Ultimately, the team is pleased about the possibilities for research opened up by techniques they used for this study. Since other signs of life from the deep geologic past need to be physically preserved and only some molecules are amenable to long-term preservation, there are many aspects of life’s history that have not been accessible to researchers until now.

    “Our study demonstrates for the first time that the behavioral histories of enzymes are amenable to evolutionary reconstruction in ways that conventional molecular biosignatures are not,” Kacar said.

    The team also hopes to take what they learned about the behavior of early Earth organisms and use it to search the skies for signs of life on other planets.

    “Early Earth is an alien environment compared to our world today. Understanding how organisms here have changed with time and in different environments is going to teach us crucial things about how to search for and recognize life elsewhere,” Schwieterman said.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of California-Riverside Campus

    The University of California-Riverside is a public land-grant research university in Riverside, California. It is one of the 10 campuses of The University of California system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to The University of California-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    The University of California-Riverside ‘s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared The University of California-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the The University of California-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    The University of California-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of The University of California-Riverside ‘s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked The University of California-Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks The University of California-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all The University of California-Riverside students graduate within six years without regard to economic disparity. The University of California-Riverside ‘s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, The University of California-Riverside became the first public university campus in the nation to offer a gender-neutral housing option. The University of California-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The University of California-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the University of California Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley alumni, lobbied aggressively for a University of California -administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at The University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    The University of California-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. The University of California-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. The University of California-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at University of California-Riverside to keep the campus open.

    In the 1990s, The University of California-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted The University of California-Riverside for an annual growth rate of 6.3%, the fastest in The University of California system, and anticipated 19,900 students at The University of California-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of The University of California-Riverside student body, the highest proportion of any University of California campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at The University of California-Riverside.

    With The University of California-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move The University of California-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at The University of California-Riverside, with The University of California-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, The University of California-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved The University of California-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of The University of California system, The University of California-Riverside is governed by a Board of Regents and administered by a president University of California-Riverside ‘s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    The University of California-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. The University of California-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at The University of California-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. The University of California-Riverside ‘s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and The University of California-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. The University of California-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with The University of California-Berkeley and The University of California-Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, The University of California-Riverside offers the Thomas Haider medical degree program in collaboration with The University of California-Los Angeles. The University of California-Riverside ‘s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and The University of California-Riverside ‘s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    The University of California-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at The University of California-Riverside have an economic impact of nearly $1 billion in California. The University of California-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at The University of California-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout The University of California-Riverside ‘s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, The University of California-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, The University of California-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. University of California-Riverside can also boast the birthplace of two-name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 5:37 pm on May 16, 2022 Permalink | Reply
    Tags: "The search for how life on Earth transformed from simple to complex", A new collaboration of astrobiology researchers working together under a Research Coordination Network called “LIFE” will spend five years trying to understand the journey from alien to familiar., , Astrobiology, “LIFE” will discern rules of co-evolution (between organisms and their environment) that will enable us to predict how life could evolve on worlds other than our own and how we might search for it, , ,   

    From The University of Wisconsin-Madison: “The search for how life on Earth transformed from simple to complex” 

    From The University of Wisconsin-Madison

    May 16, 2022
    Kelly April Tyrrell
    ktyrrell2@wisc.edu


    At left, Betül Kaçar, assistant professor of bacteriology, and graduate student Kaitlyn McGrath look at and discuss Petri dishes containing cultures of ancient DNA molecules in Kaçar’s research lab in the Microbial Sciences Building. Photo: Jeff Miller.

    Once upon a time, all life on Earth was alien.

    But eventually, strange single-celled organisms thriving on a harsh planet gave way to complex, multicellular organisms made up of the basic building blocks we associate with life today, including carbon, oxygen and nitrogen.

    Announced by NASA today, a new collaboration of astrobiology researchers across the country working together under a Research Coordination Network called LIFE will spend the next five years dedicating their efforts to understanding this journey from alien to familiar.

    Astrobiologists study how life originated here on Earth to better understand how life might evolve elsewhere in the universe.

    The network is co-led by the University of Wisconsin–Madison’s Betül Kaçar, alongside Georgia Institute of Technology’s Frank Rosenzweig, Arizona State University’s Ariel Anbar, and University of California- Riverside’s Mary Droser. It’s just one part of a larger effort by The National Aeronautics and Space Administration to bring hundreds of international scientists together to study particular questions in astrobiology.

    “LIFE will discern rules of co-evolution (between organisms and their environment) that will enable us to predict how life could evolve on worlds other than our own, and how we might search for it,” explains Kaçar, professor of bacteriology and director of another NASA-funded multimillion-dollar astrobiology research consortium called MUSE, or Metal Utilization and Selection Across Eons. “We know that the journey from single cells to multicellularity relied on critical environmental and biological innovations.”

    For instance, the network will explore how the environments on Earth since its formation influenced the development and expansion of multicellular life, the conditions that gave rise to the last universal common ancestor, and how different cells within an organism evolved for different functions. The work requires tools from across scientific disciplines, from geology to chemistry and biology.

    “Our planet’s past resembles an altogether alien planet,” says Kaçar. Early Earth would be unrecognizable to us today. “If we can’t understand (life) here, how can we look for it elsewhere? Sometimes what you’re looking for is right in front of you.”

    Kaçar describes herself as a biologist on the only planet in the universe (currently) known to host life. Her research group at UW–Madison studies questions related to how life emerged on Earth and began to evolve.

    The team is interested in the metabolic foundations of life — how organisms generate and use energy to survive, whether from sunlight, food, or some other means.

    “We use modern molecules to reconstruct ancient metabolisms. We aim to unravel how the harsh conditions of our ancient planet shaped life to be the way it is today,” Kaçar explains. “Is life a result of a fluke accident? What is the likelihood of life occurring elsewhere in the universe?”

    As part of the LIFE network, her lab will study the “first innovations” that mark key events in evolution, the “biological singularities” that provide clues for discovering complex life beyond our planet.

    As the director of MUSE, she coordinates a network of researchers across the country exploring how different metals, such as iron, became critical for life, while others, like zirconium, did not. By retracing the path of how certain elements on Earth became adopted by living organisms, she says, they can turn back Earth’s clock.

    “We need to explore why life selected the metals that it did here, to understand how the elemental composition of other planets and moons can impact the chemistries in these bodies,” Kaçar says.

    She joined the faculty of UW–Madison in fall 2021, after giving a talk for the Department of Bacteriology: “I immediately knew this was the place to dive deeper and grow this new line of work on the molecular foundations of ancient life.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Wisconsin–Madison is a public land-grant research university in Madison, Wisconsin. Founded when Wisconsin achieved statehood in 1848, The University of Wisconsin-Madison is the official state university of Wisconsin and the flagship campus of the University of Wisconsin System. It was the first public university established in Wisconsin and remains the oldest and largest public university in the state. It became a land-grant institution in 1866. The 933-acre (378 ha) main campus, located on the shores of Lake Mendota, includes four National Historic Landmarks. The university also owns and operates a National Historic Landmark 1,200-acre (486 ha) arboretum established in 1932, located 4 miles (6.4 km) south of the main campus.

    The University of Wisconsin-Madison is organized into 20 schools and colleges, which enrolled 30,361 undergraduate and 14,052 graduate students in 2018. Its academic programs include 136 undergraduate majors, 148 master’s degree programs, and 120 doctoral programs. A major contributor to Wisconsin’s economy, the university is the largest employer in the state, with over 21,600 faculty and staff.

    The University of Wisconsin is one of the twelve founding members of The Association of American Universities, a selective group of major research universities in North America. It is considered a Public Ivy, and is classified as an R1 University, meaning that it engages in a very high level of research activity. In 2018, it had research and development expenditures of $1.2 billion, the eighth-highest among universities in the U.S. As of March 2020, 26 Nobel laureates, 2 Fields medalists and 1 Turing award winner have been associated with The University of Wisconsin-Madison as alumni, faculty, or researchers. Additionally, as of November 2018, the current CEOs of 14 Fortune 500 companies have attended The University of Wisconsin-Madison, the most of any university in the United States.

    Among the scientific advances made at The University of Wisconsin-Madison are the single-grain experiment, the discovery of vitamins A and B by Elmer McCollum and Marguerite Davis, the development of the anticoagulant medication warfarin by Karl Paul Link, the first chemical synthesis of a gene by Har Gobind Khorana, the discovery of the retroviral enzyme reverse transcriptase by Howard Temin, and the first synthesis of human embryonic stem cells by James Thomson The University of Wisconsin-Madison was also the home of both the prominent “Wisconsin School” of economics and of diplomatic history, while UW–Madison professor Aldo Leopold played an important role in the development of modern environmental science and conservationism.

    The University of Wisconsin-Madison Badgers compete in 25 intercollegiate sports in the NCAA Division I Big Ten Conference and have won 30 national championships. Wisconsin students and alumni have won 50 Olympic medals (including 13 gold medals).

    Research

    The University of Wisconsin-Madison was a founding member of The Association of American Universities. In fiscal year 2018 the school received $1.206 billion in research and development (R&D) funding, placing it eighth in the U.S. among institutions of higher education. Its research programs were fourth in the number of patents issued in 2010.

    The University of Wisconsin–Madison is one of 33 sea grant colleges in the United States. These colleges are involved in scientific research, education, training, and extension projects geared toward the conservation and practical use of U.S. coasts, the Great Lakes and other marine areas.

    The University of Wisconsin-Madison maintains almost 100 research centers and programs, ranging from agriculture to arts, from education to engineering. It has been considered a major academic center for embryonic stem cell research ever since The University of Wisconsin-Madison professor James Thomson became the first scientist to isolate human embryonic stem cells. This has brought significant attention and respect for The University of Wisconsin-Madison research programs from around the world. The University of Wisconsin-Madison continues to be a leader in stem cell research, helped in part by the funding of The University of Wisconsin-Madison Alumni Research Foundation and promotion of WiCell.

    Its center for research on internal combustion engines, called the Engine Research Center, has a five-year collaboration agreement with General Motors. It has also been the recipient of multimillion-dollar funding from the federal government.

    In June 2013, it was reported that The National Institutes of Health would fund an $18.13 million study at the University of Wisconsin. The study would research lethal qualities of viruses such as Ebola, West Nile and influenza. The goal of the study is to help find new drugs to fight off the most lethal pathogens.

    In 2012, The University of Wisconsin-Madison experiments on cats came under fire from People for the Ethical Treatment of Animals who claimed the animals were abused. In 2013, the NIH briefly suspended the research’s funding pending an agency investigation. The following year the university was fined more than $35,000 for several violations of the Animal Welfare Act. Bill Maher, James Cromwell and others spoke out against the experiments that ended in 2014. The university defended the research and the care the animals received claiming that PETA’s objections were merely a “stunt” by the organization.

    As of October 2018, 26 Nobel laureates and 2 Fields medalists have been associated with The University of Wisconsin-Madison as alumni, faculty, or researchers. Additionally, as of November 2018, the current CEOs of 14 Fortune 500 companies have attended The University of Wisconsin-Madison, the most of any university in the United States. Notable CEOs who have attended UW-Madison include Thomas J. Falk (Kimberly-Clark), Carol Bartz (Yahoo!), David J. Lesar (Halliburton), Keith Nosbusch (Rockwell Automation), Lee Raymond (Exxon Mobil), Tom Kingsbury (Burlington Stores), and Judith Faulkner (Epic Systems).

    As of 2017, The University of Wisconsin-Madison had more than 427,000 living alumni. Although a large number of alumni live in Wisconsin, a significant number live in Illinois, Minnesota, New York, California, and Washington, D.C.

    UW–Madison alumni, faculty, or former faculty have been awarded 26 Nobel Prizes and 38 Pulitzer Prizes.

     
  • richardmitnick 9:06 am on April 21, 2022 Permalink | Reply
    Tags: "Atmospherica", "Small but mighty-How UArizona researchers are harnessing the power of algae to capture carbon", Air accordion photobioreactor, , Astrobiology, , , , Biosystems Engineering, , , Coccolithophores naturally extract carbon dioxide from the ocean as part of their life cycle., , Harnessing the power of algae, , Photobioreactors, , Plans to harness the principles of the carbon cycle to trap massive amounts of carbon dioxide and curb the worst impacts of climate change., The photobioreactor make it possible to efficiently grow large amounts of algae.,   

    From The University of Arizona: “Small but mighty-How UArizona researchers are harnessing the power of algae to capture carbon” 

    From The University of Arizona

    4.20.22
    Resources for the media
    Media contact(s)
    Mikayla Mace Kelley
    Science Writer, University Communications
    mikaylamace@arizona.edu
    520-621-1878

    Researcher contact(s)
    Daniel Apai
    Steward Observatory
    apai@as.arizona.edu
    520-621-6534

    Joel Cuello
    Department of Agricultural and Biosystems Engineering
    cuelloj@email.arizona.edu
    520-621-7757

    Régis Ferrière
    Department of Ecology and Evolutionary Biology
    regisf@arizona.edu
    520-626-4741

    An astrobiologist, an engineer and an ecologist have teamed up to mitigate the worst effects of climate change.

    1
    Astrobiologist Daniel Apai (right) and biosystems engineer Joel Cuello (left) work with algae in the lab. Their team aims to harness the power of coccolithophores, which are a single-celled marine algae that use atmospheric carbon dioxide and calcium from saltwater to create intricate shells made of calcium carbonate. The shells are made from a very stable, chalk-like mineral. They can be grown efficiently, then stored to trap carbon dioxide. Credit: Chris Richards.

    As a University of Arizona professor of astronomy and planetary sciences who studies planets orbiting other stars, Daniel Apai spends much of his time thinking about what makes worlds habitable.

    On Earth, the carbon cycle plays a key role in maintaining conditions for life. Earth releases carbon into the atmosphere and reabsorbs it through geological and biological processes. But humans have released more carbon dioxide into the atmosphere than the carbon cycle naturally would, causing global temperatures to rise.

    Apai has assembled a team that plans to harness the principles of the carbon cycle to trap massive amounts of carbon dioxide and curb the worst impacts of climate change.

    They call themselves Atmospherica. In addition to Apai, the team includes Joel Cuello, a professor of agricultural and biosystems engineering and BIO5 Institute member; Régis Ferrière, an associate professor of ecology and evolutionary biology; Martin Schlecker, an astrophysicist and postdoctoral research associate; and Jack Welchert, a biosystems engineering doctoral student.

    Reports from the Intergovernmental Panel on Climate Change and future climate projections find that preventing the worst effects of climate change will require carbon removal from the atmosphere at gigaton-per-year levels.

    “Yet, no existing technology is thought to be scalable enough to succeed in this,” Apai said. “What we need to do as a civilization is to reduce our emissions as much as possible, because extracting from the air is much more difficult than not emitting it. No one has come up with a solution that extracts carbon dioxide so efficiently as to allow the continued burning of fossil fuels.”

    2
    A sample of coccolithophores of various shapes sourced from the Maldives.

    The Atmospherica team team hopes to be a part of the solution, by harnessing the power of algae.

    It’s all in the algae

    “Climate change is one of the great challenges we are facing as a species and civilization,” Apai said.

    He began the search for potential climate change solutions as a hobby seven years ago. He found that most existing carbon removal solutions could not be scaled up to the levels required, were prohibitively expensive or were harmful to the environment.

    As an astrobiologist, he decided to pursue solutions inspired by nature. That’s when he learned about coccolithophores – single-celled marine algae. What makes these algae special is the fact that they use atmospheric carbon dioxide and calcium from saltwater to create intricate shells made of calcium carbonate – a very stable, chalk-like mineral. These shells evolved to protect the algae and regulate the algae’s buoyancy and light exposure.

    Coccolithophores naturally extract carbon dioxide from the ocean as part of their life cycle. While most of them are consumed by predators, a very small fraction decompose, uneaten, while their carbon-containing shells sink to the ocean floor, where they remain indefinitely. The White Cliffs of Dover on the English coastline are huge 90-million-year-old deposits of these shells and demonstrate their incredible stability.

    3
    The White Cliffs of Dover in England are an example of large coccolithophore shell deposits and how stable they are over time.

    Apai wondered if it would be possible to grow coccolithophores on a large enough scale to change Earth’s atmospheric composition. To do this would require a safe and controlled environment for the algae to grow.

    Enter the air accordion

    Cuello and his Biosystems Engineering Lab have developed a portfolio of patented low-cost novel photobioreactors in which to grow algae and other types of cell cultures in an efficient and productive way. One of the designs is the air accordion photobioreactor.

    4
    The air accordion photobioreactor that Joel Cuello and his biosystems engineering team designed. This photobioreactor will be further optimized to grow coccolithophores most efficiently. Credit: Joel Cuello.

    The air accordion photobioreactor consists of a rectangular metal frame with horizontal bars – like steps on a ladder – spaced closer together at the bottom and farther apart at the top. A polyethylene bag full of nutrient-rich saltwater is woven throughout this ladder-like frame. Air is pumped in from the bottom and circulated through the saltwater mixture. The design maximizes the liquid-mixing capacity of air bubbles pumped in from the bottom and allows for even distribution of light and dissolved nutrients.

    The photobioreactor make it possible to efficiently grow large amounts of algae. And because the algae is grown in a controlled environment, within the polyethylene bag, it is protected from predators. The researchers say their air accordion photobioreactor is also easy to scale up.

    Cuello and Apai patented the use of coccolithophore algae for carbon dioxide removal in this kind of photobioreactor, and they hope to continue to optimize the design for even more efficient coccolithophore growth and carbon uptake.

    “Our goal is to reach a gigaton-per-year level of carbon dioxide extraction capacity, while remaining affordable and with very limited environmental impact,” Apai said.

    The researchers hope the photobioreactors can be made even more sustainable in the future. They envision a world in which solar-powered bioreactors would be located by the ocean, allowing for easy access to the seawater required to help the coccolithophores grow. Even better, the researchers say, would be to establish the photobioreactors near desalination plants, which produce calcium as a waste product. Calcium is an important nutrient for coccolithophores and is used in the saltwater mixture.

    The team hopes the design offers a viable solution for carbon removal that overcomes some of the limitations of existing technologies, such as chemical filtration techniques, which are difficult to scale up because they are energy intensive and often require rare minerals. They also can produce environmentally harmful waste products.

    To ensure that their method is scalable and confirm how much net carbon dioxide it pulls from the atmosphere, members of the Atmospherica team plan to build a demonstration facility in a greenhouse atop the university’s Sixth Street Garage and a larger facility at the university’s Biosphere 2 research facility [below].

    They also plan to “do a full accounting of its carbon footprint, from cradle to grave,” Apai said.

    “We have completed a promising exploratory analysis and plan to publish a paper on the subject this summer,” Apai said.

    The team is also aiming to keep the cost of carbon removal to less than $100 per ton extracted.

    “Anything more expensive is not viable,” Apai said.

    The urgency

    Apai stressed that even if we can transition most industries efficiently toward zero emissions, for a few decades we will still end up producing about 15% of our current emissions, or about 6 billion tons of carbon dioxide annually. That’s partly because things like large airplanes and cargo ships rely on fossil fuels that pack a lot of energy in a small volume. They physically cannot be battery powered.

    That remaining 6 billion tons of carbon dioxide is what Atmospherica hopes the coccolithophores can successfully absorb.

    “Our governments have delayed action so much that we now need to be successful on both counts: building a sustainable future and fixing the damage we keep doing in the meantime,” Ferrière said. “With its emphasis on resilience science, our university and its international partners are committed to advance the interdisciplinary research that will solve this grand challenge.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, the The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 10:54 am on April 3, 2022 Permalink | Reply
    Tags: "Peptides on Stardust May Have Provided a Shortcut to Life", , Astrobiology, , , ,   

    From WIRED: “Peptides on Stardust May Have Provided a Shortcut to Life” 

    From WIRED

    Apr 3, 2022
    Yasemin Saplakoglu

    The discovery that short peptides can form spontaneously on cosmic dust hints at more of a role for them in the origin of life, on Earth or elsewhere.

    1
    The spontaneous formation of peptide molecules on cosmic dust in interstellar clouds could have implications for theories about the origin of life.Illustration: Kristina Armitage/Quanta Magazine

    Billions of years ago, some unknown location on the sterile, primordial Earth became a cauldron of complex organic molecules from which the first cells emerged. Origin-of-life researchers have proposed countless imaginative ideas about how that occurred and where the necessary raw ingredients came from. Some of the most difficult to account for are proteins, the critical backbones of cellular chemistry, because in nature today they are made exclusively by living cells. How did the first protein form without life to make it?

    Scientists have mostly looked for clues on Earth. Yet a new discovery suggests that the answer could be found beyond the sky, inside dark interstellar clouds.

    Last month in Nature Astronomy, a group of astrobiologists showed that peptides, the molecular subunits of proteins, can spontaneously form on the solid, frozen particles of cosmic dust drifting through the universe. Those peptides could in theory have traveled inside comets and meteorites to the young Earth—and to other worlds—to become some of the starting materials for life.

    The simplicity and favorable thermodynamics of this new space-based mechanism for forming peptides make it a more promising alternative to the known purely chemical processes that could have occurred on a lifeless Earth, according to Serge Krasnokutski, the lead author on the new paper and a researcher at The MPG Institute for Astronomy [MPG Institut für Astronomie](DE) and The Friedrich Schiller University Jena [Friedrich-Schiller-Universität Jena](DE). And that simplicity “suggests that proteins were among the first molecules involved in the evolutionary process leading to life,” he said.

    Whether those peptides could have survived their arduous trek from space and contributed meaningfully to the origin of life is very much an open question. Paul Falkowski, a professor at the School of Environmental and Biological Sciences at Rutgers University, said that the chemistry demonstrated in the new paper is “very cool” but “doesn’t yet bridge the phenomenal gap between proto-prebiotic chemistry and the first evidence of life.” He added, “There’s a spark that’s still missing.”

    Still, the finding by Krasnokutski and his colleagues shows that peptides might be a much more readily available resource throughout the universe than scientists believed, a possibility that could also have consequences for the prospects for life elsewhere.

    Cosmic Dust in a Vacuum

    Cells make the production of proteins look easy. They manufacture both peptides and proteins extravagantly, empowered by environments rich in useful molecules like amino acids and their own stockpiles of genetic instructions and catalytic enzymes (which are themselves typically proteins).

    But before cells existed, there wasn’t an easy way to do it on Earth, Krasnokutski said. Without any of the enzymes that biochemistry provides, the production of peptides is an inefficient two-step process that involves first making amino acids and then removing water as the amino acids link up into chains in a process called polymerization. Both steps have a high energy barrier, so they occur only if large amounts of energy are available to help kick-start the reaction.

    Because of these requirements, most theories about the origin of proteins have either centered on scenarios in extreme environments, such as near hydrothermal vents on the ocean floor, or assumed the presence of molecules like RNA with catalytic properties that could lower the energy barrier enough to push the reactions forward. (The most popular origin-of-life theory proposes that RNA preceded all other molecules, including proteins.) And even under those circumstances, Krasnokutski says that “special conditions” would be needed to concentrate the amino acids enough for polymerization. Though there have been many proposals, it isn’t clear how and where those conditions could have arisen on the primordial Earth.

    But now researchers say they’ve found a shortcut to proteins—a simpler chemical pathway that re-energizes the theory that proteins were present very early in the genesis of life.

    Last year in Low Temperature Physics, Krasnokutski predicted through a series of calculations that a more direct way to make peptides could exist under the conditions available in space, inside the extremely dense and frigid clouds of dust and gas that linger between the stars. These molecular clouds, the nurseries of new stars and solar systems, are packed with cosmic dust and chemicals, some of the most abundant of which are carbon monoxide, atomic carbon and ammonia.

    In their new paper, Krasnokutski and his colleagues showed that these reactions in the gas clouds would likely lead to the condensation of carbon onto cosmic dust particles and the formation of small molecules called aminoketenes. These aminoketenes would spontaneously link up to form a very simple peptide called polyglycine. By skipping the formation of amino acids, reactions could proceed spontaneously, without needing energy from the environment.

    To test their claim, the researchers experimentally simulated the conditions found in molecular clouds. Inside an ultrahigh vacuum chamber, they mimicked the icy surface of cosmic dust particles by depositing carbon monoxide and ammonia onto substrate plates chilled to minus 263 degrees Celsius. They then deposited carbon atoms on top of this ice layer to simulate their condensation inside molecular clouds. Chemical analyses confirmed that the vacuum simulation had indeed produced various forms of polyglycines, up to chains 10 or 11 subunits long.

    The researchers hypothesized that billions of years ago, as cosmic dust stuck together and formed asteroids and comets, simple peptides on the dust could have hitchhiked to Earth in meteorites and other impactors. They might have done the same on countless other worlds, too.

    The Gap From Peptides to Life

    The delivery of peptides to Earth and other planets “certainly would provide a head start” to forming life, said Daniel Glavin, an astrobiologist at NASA’s Goddard Space Flight Center. But “I think there’s a large jump to go from interstellar ice dust chemistry to life on Earth.”

    First the peptides would have to endure the perils of their journey through the universe, from radiation to water exposure inside asteroids, both of which can fragment the molecules. Then they’d have to survive the impact of hitting a planet. And even if they made it through all that, they would still have to go through a lot of chemical evolution to get large enough to fold into proteins that are useful for biological chemistry, Glavin said.

    Is there evidence that this has happened? Astrobiologists have discovered many small molecules including amino acids inside meteorites, and one study from 2002 discovered that two meteorites held extremely small, simple peptides made from two amino acids. But researchers have yet to discover other convincing evidence for the presence of such peptides and proteins in meteorites or samples returned from asteroids or comets, Glavin said. It’s unclear if the nearly total absence of even relatively small peptides in space rocks means that they don’t exist or if we just haven’t detected them yet.

    But Krasnokutski’s work could encourage more scientists to really start looking for these more complex molecules in extraterrestrial materials, Glavin said. For example, next year NASA’s OSIRIS-REx spacecraft is expected to bring back samples from the asteroid Bennu, and Glavin and his team plan to look for some of these types of molecules.

    The researchers are now planning to test whether bigger peptides or different types of peptides can form in molecular clouds. Other chemicals and energetic photons in the interstellar medium might be able to trigger the formation of larger and more complex molecules, Krasnokutski said. Through their unique laboratory window into molecular clouds, they hope to witness peptides getting longer and longer, and one day folding, like natural origami, into beautiful proteins that burst with potential.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: