Tagged: astrobio.net Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:36 pm on August 5, 2018 Permalink | Reply
    Tags: astrobio.net, , , , , Scientists identify exoplanets where life could develop as it did on Earth,   

    From U Cambridge via Astrobiology Magazine: “Scientists identify exoplanets where life could develop as it did on Earth” 

    U Cambridge bloc

    From University of Cambridge

    Astrobiology Magazine

    From Astrobiology Magazine

    Aug 4, 2018
    1
    Artist’s concept depicting one possible appearance of the planet Kepler-452b. Credit: NASA Ames/JPL-Caltech/T. Pyle

    Scientists have identified a group of planets outside our solar system where the same chemical conditions that may have led to life on Earth exist.

    The researchers, from the University of Cambridge and the Medical Research Council Laboratory of Molecular Biology (MRC LMB), found that the chances for life to develop on the surface of a rocky planet like Earth are connected to the type and strength of light given off by its host star.

    Their study, published in the journal Science Advances, proposes that stars which give off sufficient ultraviolet (UV) light could kick-start life on their orbiting planets in the same way it likely developed on Earth, where the UV light powers a series of chemical reactions that produce the building blocks of life.

    The researchers have identified a range of planets where the UV light from their host star is sufficient to allow these chemical reactions to take place, and that lie within the habitable range where liquid water can exist on the planet’s surface.

    “This work allows us to narrow down the best places to search for life,” said Dr Paul Rimmer, a postdoctoral researcher with a joint affiliation at Cambridge’s Cavendish Laboratory and the MRC LMB, and the paper’s first author. “It brings us just a little bit closer to addressing the question of whether we are alone in the universe.”

    The new paper is the result of an ongoing collaboration between the Cavendish Laboratory and the MRC LMB, bringing together organic chemistry and exoplanet research. It builds on the work of Professor John Sutherland, a co-author on the current paper, who studies the chemical origin of life on Earth.

    In a paper published in 2015, Professor Sutherland’s group at the MRC LMB proposed that cyanide, although a deadly poison, was in fact a key ingredient in the primordial soup from which all life on Earth originated.

    In this hypothesis, carbon from meteorites that slammed into the young Earth interacted with nitrogen in the atmosphere to form hydrogen cyanide. The hydrogen cyanide rained to the surface, where it interacted with other elements in various ways, powered by the UV light from the sun. The chemicals produced from these interactions generated the building blocks of RNA, the close relative of DNA which most biologists believe was the first molecule of life to carry information.

    In the laboratory, Sutherland’s group recreated these chemical reactions under UV lamps, and generated the precursors to lipids, amino acids and nucleotides, all of which are essential components of living cells.

    “I came across these earlier experiments, and as an astronomer, my first question is always what kind of light are you using, which as chemists they hadn’t really thought about,” said Rimmer. “I started out measuring the number of photons emitted by their lamps, and then realised that comparing this light to the light of different stars was a straightforward next step.”

    The two groups performed a series of laboratory experiments to measure how quickly the building blocks of life can be formed from hydrogen cyanide and hydrogen sulphite ions in water when exposed to UV light. They then performed the same experiment in the absence of light.

    “There is chemistry that happens in the dark: it’s slower than the chemistry that happens in the light, but it’s there,” said senior author Professor Didier Queloz, also from the Cavendish Laboratory. “We wanted to see how much light it would take for the light chemistry to win out over the dark chemistry.”

    The same experiment run in the dark with the hydrogen cyanide and the hydrogen sulphite resulted in an inert compound which could not be used to form the building blocks of life, while the experiment performed under the lights did result in the necessary building blocks.

    The researchers then compared the light chemistry to the dark chemistry against the UV light of different stars. They plotted the amount of UV light available to planets in orbit around these stars to determine where the chemistry could be activated.

    They found that stars around the same temperature as our sun emitted enough light for the building blocks of life to have formed on the surfaces of their planets. Cool stars, on the other hand, do not produce enough light for these building blocks to be formed, except if they have frequent powerful solar flares to jolt the chemistry forward step by step. Planets that both receive enough light to activate the chemistry and could have liquid water on their surfaces reside in what the researchers have called the abiogenesis zone.

    2
    Diagram of confirmed exoplanets within the liquid water habitable zone (as well as Earth). Credit: Paul Rimmer

    Among the known exoplanets which reside in the abiogenesis zone are several planets detected by the Kepler telescope, including Kepler 452b, a planet that has been nicknamed Earth’s ‘cousin’, although it is too far away to probe with current technology. Next-generation telescopes, such as NASA’s TESS and James Webb Telescopes, will hopefully be able to identify and potentially characterise many more planets that lie within the abiogenesis zone.

    Of course, it is also possible that if there is life on other planets, that it has or will develop in a totally different way than it did on Earth.

    “I’m not sure how contingent life is, but given that we only have one example so far, it makes sense to look for places that are most like us,” said Rimmer. “There’s an important distinction between what is necessary and what is sufficient. The building blocks are necessary, but they may not be sufficient: it’s possible you could mix them for billions of years and nothing happens. But you want to at least look at the places where the necessary things exist.”

    According to recent estimates, there are as many as 700 million trillion terrestrial planets in the observable universe. “Getting some idea of what fraction have been, or might be, primed for life fascinates me,” said Sutherland. “Of course, being primed for life is not everything and we still don’t know how likely the origin of life is, even given favourable circumstances – if it’s really unlikely then we might be alone, but if not, we may have company.”

    The research was funded by the Kavli Foundation and the Simons Foundation.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (abbreviated as Cantab in post-nominal letters) is a collegiate public research university in Cambridge, England. Founded in 1209, Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 constituent colleges and over 100 academic departments organised into six schools. The university occupies buildings throughout the town, many of which are of historical importance. The colleges are self-governing institutions founded as integral parts of the university. In the year ended 31 July 2014, the university had a total income of £1.51 billion, of which £371 million was from research grants and contracts. The central university and colleges have a combined endowment of around £4.9 billion, the largest of any university outside the United States. Cambridge is a member of many associations and forms part of the “golden triangle” of leading English universities and Cambridge University Health Partners, an academic health science centre. The university is closely linked with the development of the high-tech business cluster known as “Silicon Fen”.

    Advertisements
     
    • stewarthoughblog 7:04 pm on August 5, 2018 Permalink | Reply

      Some very interesting science here, but very speculative to set a “abiogenesis zone” based on the paucity of habitable factors, even admitting this is the best possible at this time.

      Abiogenesis is a myth, like Darwin’s “warm little ponds,” Oparin-Haldane primordial soup, and Miller-Urey test tube goo. If there is no clue how naturalistically life developed on Earth, it is a matter of faith, not objective science, to believe it is relatively easily generated on the basis of the factors delineated here.

      Like

  • richardmitnick 12:54 pm on August 2, 2018 Permalink | Reply
    Tags: astrobio.net, , , , , , , Life on moon Titan   

    From Astrobiology Magazine via EarthSky: “Where to look for life on Titan” 

    http://www.astrobio.net/

    1

    From EarthSky

    August 2, 2018
    Paul Scott Anderson

    1
    Saturn’s largest moon Titan as seen by the Cassini spacecraft. This world’s liquid methane and ethane rivers, lakes and seas might support some kind of life, and scientists now think they know the best places to look. Image via NASA/JPL-Caltech.

    NASA/ESA/ASI Cassini-Huygens Spacecraft

    NASA’s Cassini spacecraft and ESA’s Huygens lander showed that Saturn’s large moon Titan mimics Earth in many ways. But Titan displays different kinds of chemistry in a far colder environment. Given the similarities, the question of life inevitably arises: could Titan support some kind of simple life? Given the differences, scientists ponder the best places to look for Titan life. In late July 2018, a new study published in the peer-reviewed journal Astrobiology and reported on in Astrobiology Magazine suggests the best places on Titan to look for evidence of life.

    Titan is a geological wonderland for planetary scientists. It has rivers, lakes and seas of actual liquid – not water, but the hydrocarbons methane and ethane – and it has mountain ranges, possible ice volcanoes (aka cryovolcanoes) and vast hydrocarbon dunes. There is also evidence for a subsurface ocean of water, similar to those believed to lie beneath the surface of Jupiter’s moon Europa and Saturn’s moon Enceladus.

    Perhaps surprisingly, the research team, led by Catherine Neish, a planetary scientist specializing in impact cratering at the University of Western Ontario, suggested that the best locations to look for life on Titan would not be the lakes or seas. Instead, the new work shows a better place to look would be within impact craters and cryovolcanoes on Titan.

    The scientists reason that these areas are where water ice in Titan’s crust could temporarily melt into a liquid. Water is still the only solvent known to be able to support life as we know it.

    2
    A large, fairly young crater on Titan, about 25 miles (40 km) in diameter. Such craters could temporarily melt frozen water in the crust, providing an environment for pre-biotic or biotic molecules to form. Image via NASA/JPL-Caltech.

    Various studies have suggested that liquid methane and ethane could support life. But Saturn’s moon Titan – some nine astronomical units farther from the sun than Earth – is very cold, with surface temperatures hovering around -300 degrees Fahrenheit (–179 degrees Celsius). Methane and ethane do remain liquid at Titan’s surface temperature, but it’s too cold there for biochemical processes, at least as far as we know (although that, too, is a matter of debate).

    Titan’s surface is also covered with tholins, which are large, complex organic molecules produced when gases are subjected to cosmic radiation. When mixed with liquid water, tholins can produce amino acids, which are, essentially, life’s building blocks. According to researcher Morgan Cable at NASA’s Jet Propulsion Laboratory in Pasadena, California:

    “When we mix tholins with liquid water, we make amino acids really fast. So any place where there is liquid water on Titan’s surface or near its surface could be generating the precursors to life – biomolecules – that would be important for life as we know it, and that’s really exciting.”

    The temperatures on Titan’s surface are too cold for liquid water, so where could it be found? The answer is Titan’s craters and cryovolcanoes. The processes involved with both of these geologic features can melt water ice into liquid, even if only temporarily.

    But that might be enough for more complex organic molecules like amino acids to form.

    3
    Sotra Facula is a possible cryovolcano on Titan, one of the few candidates known. Image via NASA/JPL–Caltech/USGS/University of Arizona.

    4
    Another view of Sotra Facula. This image was built from radar topography with infrared colors overlaid on top. Image via NASA/JPL–Caltech/USGS/University of Arizona.

    Between craters and cryovolcanoes, it would seem that craters would be the most ideal location for pre-biotic or biotic chemistry to occur. As Neish explained:

    “Craters really emerged as the clear winner for three main reasons. One, is that we’re pretty sure there are craters on Titan. Cratering is a very common geologic process and we see circular features that are almost certainly craters on the surface.’

    Neish also noted that craters would produce more liquid water melt than a cryovolcano, so any water would remain liquid for a longer period of time. She also added:

    “The last point is that impact craters should produce water that’s at a higher temperature than a cryovolcano.”

    Warmer water would allow for faster chemical reaction rates, which would help in the creation of prebiotic or even biotic molecules. The largest known craters on Titan are Sinlap (70 miles/112 kms in diameter), Selk (56 miles/90 kms) and Menrva (244 miles/392 kms). These would be the primary locations to look for biomolecules.

    David Grinspoon at the Planetary Science Institute isn’t convinced yet, however. He commented:

    “We don’t know where to search even with results like this. I wouldn’t use it to guide our next mission to Titan. It’s premature.”

    5
    Titan is well-known for its lakes and seas of liquid methane/ethane, such as Ligiea Mare, shown here. Image via NASA/JPL-Caltech/ASI/Cornell.

    So what about cryovolcanoes? They haven’t actually been confirmed yet to exist on Titan, and if they do, they are more rare than craters (even though craters are also relatively rare on Titan). The most likely feature to be a cryovolcano is a mountain with a caldera on top called Sotra Facula. Other than that, they seem to be few and far between. As Neish said:

    “Cryovolcanism is the harder thing to do and there is very little evidence of it on Titan.”

    6
    Diagram illustrating how biosignatures could also be transported from the subsurface ocean to the surface of Titan. Image via Athanasios Karagiotas/Theoni Shalamberidze.

    There is also, of course, a possible subsurface ocean of water on Titan, but, if it exists, it is deep below the moon’s surface and inaccessible to any robotic probes in the near future. For now, we can only imagine what might be in that alien abyss.

    The methane/ethane lakes and seas should still be explored too; they are the only other known bodies of liquid on the surface of another moon or planet in the solar system. Methane-based life could theoretically exist in such environments, so it would obviously be a good idea to look, at least.

    Bottom line: Titan is a world that is eerily similar to Earth in some ways, yet still uniquely alien. Whether it supports any kind of life is still a big question, but researchers now think they know the best places to search for it.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 10:37 am on June 8, 2018 Permalink | Reply
    Tags: , Archaean period, astrobio.net, , Did plate tectonics set the stage for life on Earth?, , Great Oxidation Event (GOE), Neoproterozoic Oxygen Event,   

    From Astrobiology Magazine: “Did plate tectonics set the stage for life on Earth?” 

    Astrobiology Magazine

    From Astrobiology Magazine

    Jun 7, 2018
    Lisa Kaspin-Powell

    The tectonic plates of the world were mapped in 1996, USGS.

    A new study suggests that rapid cooling within the Earth’s mantle through plate tectonics played a major role in the development of the first life forms, which in turn led to the oxygenation of the Earth’s atmosphere. The study was published in the March 2018 issue of Earth and Planetary Science Letters.

    Scientists at the University of Adelaide and Curtin University in Australia, and the University of California at Riverside, California, USA, gathered and analyzed data on igneous rocks from geological and geochemical data repositories in Australia, Canada, New Zealand, Sweden and the United States. They found that over the 4.5 billion years of the Earth’s development, rocks rich in phosphorus accumulated in the Earth’s crust. They then looked at the relationship of this accumulation with that of oxygen in the atmosphere.

    Phosphorus is essential for life as we know it. Phosphates, which are compounds containing phosphorus and oxygen, are part of the backbones of DNA and RNA as well as the membranes of cells, and help control cell growth and function.

    To find out how the level of phosphorus in the Earth’s crust has increased over time, the scientists studied how rock formed as the Earth’s mantle cooled. They performed modeling to find out how mantle-derived rocks changed composition as a consequence of the long-term cooling of the mantle.

    Their results suggest that during an early, hotter period in Earth’s history – the Archaean period between four and 2.5 billion years ago – there was a larger amount of molten mantle. Phosphorus would have been too dilute in these rocks. However, over time, the Earth cooled sufficiently, aided by the onset of plate tectonics, in which the colder outer crust of the planet is subducted back into the hot mantle. With this cooling, partial mantle melts became smaller.

    As Dr. Grant Cox, an earth scientist at the University of Adelaide and a co-author of the study, explains, the result is that “phosphorus will be concentrated in small percentage melts, so as the mantle cools, the amount of melt you extract is smaller but that melt will have higher concentrations of phosphorus in it.”

    1
    A cross section of the Earth, showing the exterior crust, the molten mantle beneath it and the core at the center of the planet. Image credit: NASA/JPL-Université Paris Diderot – Institut de Physique du Globe de Paris.

    Phosphorus’ role in the oxidation of Earth

    The phosphorus was concentrated and crystallized into a mineral called apatite, which became part of the igneous rocks that were created from the cooled mantle. Eventually, these rocks reached the Earth’s surface and formed a large proportion of the crust. When phosphorus minerals derived from the crust mixed with the water in lakes, rivers and oceans, apatite broke down into phosphates, which became available for development and nourishment of primitive life.

    The scientists estimated the mixing of elements from the Earth’s crust with seawater over time. They found that higher levels of bio-essential elements parallel major increases in the oxygenation of the Earth’s atmosphere: the Great Oxidation Event (GOE) 2.4 billion years ago, and the Neoproterozoic Oxygen Event, 800 million years ago, after which oxygen levels were presumed to be high enough to support multicellular life.

    Even before the GOE, from approximately 3.5 to 2.5 billion years ago, some of the earliest life forms possibly generated oxygen through photosynthesis. However, during that time, most of this oxygen reacted with iron and sulfur in igneous rocks. To understand how these reactions affected oxygen levels in the atmosphere over a period of four billion years, the scientists measured the amounts of sulfur and iron in igneous rocks, and figured out how much oxygen had reacted. They compared all of these events with changes in levels of atmospheric oxygen. The scientists found that decreases in sulfur and iron along with increases in phosphorus paralleled the Great Oxidation Event and the Neoproterozoic Oxygen Event.

    An explosion of life

    All of these events support a scenario in which the cooling of the Earth’s mantle led to the increase of phosphorus-rich rocks in the Earth’s crust. These rocks then mixed with the oceans, where phosphorus-containing minerals broke down and leached into the water. Once phosphorus levels in seawater were high enough, primitive life forms thrived and their numbers increased, so they could generate enough oxygen that most of it reached the atmosphere. Oxygen reached levels sufficient to support multicellular life.

    Dr. Peter Cawood, a geologist at Monash University inMelbourne, Australia, comments to Astrobiology Magazine that, “it’s intriguing to think that the [oxygen] on which we depend for life owes its ultimate origin to secular decreases in mantle temperature, which are thought to have decreased from some 1,550 degrees Celsius some three billion years ago to around 1,350 degrees Celsius today.”

    Could a similar scenario be playing out on a possible exo-Earth? With the Kepler discoveries of a growing number of possibly Earth-like planets, could any of these support life? Cawood suggests that the finding is potentially significant for the development of aerobic life (i.e. life that evolves in an oxygen-rich environment) on exoplanets. “This is provided that [phosphorus] within the igneous rocks on the surface of the planet is undergoing weathering to ensure its bio-availability,” says Cawood. “Significantly, the phosphorus content of igneous rocks is highest in those rocks low in silica [rocks formed by rapid cooling] and rocks of this composition dominate the crusts of Venus and Mars and likely also on exoplanets.”

    Cox concludes by saying that, “This relationship [between rising oxygen levels and mantle cooling] has implications for any terrestrial planet. All planets will cool, and those with efficient plate tectonic convection will cool more rapidly. We are left concluding that the speed of such cooling may affect the rate and pattern of biological evolution on any potentially habitable planet.”

    The research was supported by the NASA Astrobiology Institute (NAI) element of the NASA Astrobiology Program, as well as the National Science Foundation Frontiers in Earth System Dynamics Program and the Australian Research Council.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

     
    • stewarthoughblog 2:45 am on June 12, 2018 Permalink | Reply

      Interesting science relative to chemical and geologic observation of early Earth conditions. But, the continuous overly optimistic speculation about origin of life,OoL, in this case based on molecular formation and migration which are such a minuscule aspect of OoL origination suggests a level of desperation of naturalists to find any positive aspects of the present chaotic mess of naturalistic OoL..

      Like

  • richardmitnick 12:38 pm on May 20, 2018 Permalink | Reply
    Tags: astrobio.net, , , ,   

    From Astrobiology Magazine: “How primordial life on Earth might have replicated itself” 

    Astrobiology Magazine

    From Astrobiology Magazine

    May 20, 2018

    1
    Liquid brine containing replicating RNA molecules is concentrated in the cracks between ice crystals, as seen with an electron microscope. Credit: Philipp Holliger, MRC LMB

    Scientists have created a new type of genetic replication system which demonstrates how the first life on Earth – in the form of RNA – could have replicated itself. The scientists from the Medical Research Council (MRC) Laboratory of Molecular Biology say the new RNA utilises a system of genetic replication unlike any known to naturally occur on Earth today.

    A popular theory for the earliest stages of life on Earth is that it was founded on strands of RNA, a chemical cousin of DNA. Like DNA, RNA strands can carry genetic information using a code of four molecular letters (bases), but RNA can be more than a simple ‘string’ of information. Some RNA strands can also fold up into three-dimensional shapes that can form enzymes, called ribozymes, and carry out chemical reactions.

    If a ribozyme could replicate folded RNA, it might be able to copy itself and support a simple living system.

    Previously, scientists had developed ribozymes that could replicate straight strands of RNA, but if the RNA was folded it blocked the ribozyme from copying it. Since ribozymes themselves are folded RNAs, their own replication is blocked.

    Now, in a paper published today in the journal eLife, the scientists have resolved this paradox by engineering the first ribozyme that is able to replicate folded RNAs, including itself.

    Normally when copying RNA, an enzyme would add single bases (C, G, A or U) one at a time, but the new ribozyme uses three bases joined together, as a ‘triplet’ (e.g. GAU). These triplet building blocks enable the ribozyme to copy folded RNA, because the triplets bind to the RNA much more strongly and cause it to unravel – so the new ribozyme can copy its own folded RNA strands.

    The scientists say that the ‘primordial soup’ could have contained a mixture of bases in many lengths – one, two, three, four or more bases joined together – but they found that using strings of bases longer than a triplet made copying the RNA less accurate.

    Dr Philipp Holliger, from the MRC Laboratory of Molecular Biology and senior author on the paper, said: “We found a solution to the RNA replication paradox by re-thinking how to approach the problem – we stopped trying to mimic existing biology and designed a completely new synthetic strategy. It is exciting that our RNA can now synthesise itself.

    “These triplets of bases seem to represent a sweet spot, where we get a nice opening up of the folded RNA structures, but accuracy is still high. Notably, although triplets are not used in present-day biology for replication, protein synthesis by the ribosome – an ancient RNA machine thought to be a relic of early RNA-based life – proceeds using a triplet code.

    “However, this is only a first step because our ribozyme still needs a lot of help from us to do replication. We provided a pure system, so the next step is to integrate this into the more complex substrate mixtures mimicking the primordial soup – this likely was a diverse chemical environment also containing a range of simple peptides and lipids that could have interacted with the RNA.”

    The experiments were conducted in ice at -7°C, because the researchers had previously discovered that freezing concentrates the RNA molecules in a liquid brine in tiny gaps between the ice crystals. This also is beneficial for the RNA enzymes, which are more stable and function better at cold temperatures.

    Dr Holliger added: “This is completely new synthetic biology and there are many aspects of the system that we have not yet explored. We hope in future, it will also have some biotechnology applications, such as adding chemical modifications at specific positions to RNA polymers to study RNA epigenetics or augment the function of RNA.”

    Dr Nathan Richardson, Head of Molecular and Cellular Medicine at the MRC, said: “This is a really exciting example of blue skies research that has revealed important insights into how the very beginnings of life may have emerged from the ‘primordial soup’ some 3.7 billion years ago. Not only is this fascinating science, but understanding the minimal requirements for RNA replication and how these systems can be manipulated could offer exciting new strategies for treating human disease.”

    See the full article here .

    Please help promote STEM in your local schools.

    stem

    Stem Education Coalition

     
  • richardmitnick 8:00 am on March 9, 2018 Permalink | Reply
    Tags: astrobio.net, , , ,   

    From astrobio.net: “Photosynthesis originated a billion years earlier than we thought, study shows” 

    Astrobiology Magazine

    Astrobiology Magazine

    Mar 7, 2018
    https://www.elsevier.com

    1
    This plate is a culture of Synechocystis sp. PCC 6803, a type of unicellular Cyanobacteria. Credit: Elsevier

    Ancient microbes may have been producing oxygen through photosynthesis a billion years earlier than we thought, which means oxygen was available for living organisms very close to the origin of life on earth. In a new article in Heliyon, a researcher from Imperial College London studied the molecular machines responsible for photosynthesis and found the process may have evolved as long as 3.6 billion years ago.

    The author of the study, Dr. Tanai Cardona, says the research can help to solve the controversy around when organisms started producing oxygen – something that was vital to the evolution of life on earth. It also suggests that the microorganisms we previously believed to be the first to produce oxygen – cyanobacteria – evolved later, and that simpler bacteria produced oxygen first.

    “My results mean that the process that sustains almost all life on earth today may have been doing so for a lot longer than we think,” said Dr. Cardona. “It may have been that the early availability of oxygen was what allowed microbes to diversify and dominate the world for billions of years. What allowed microbes to escape the cradle where life arose and conquer every corner of this world, more than 3 billion years ago.”

    Photosynthesis is the process that sustains complex life on earth – all of the oxygen on our planet comes from photosynthesis. There are two types of photosynthesis: oxygenic and anoxygenic. Oxygenic photosynthesis uses light energy to split water molecules, releasing oxygen, electrons and protons. Anoxygenic photosynthesis use compounds like hydrogen sulfide or minerals like iron or arsenic instead of water, and it does not produce oxygen.

    2
    This image is the crystal structure of Photosystem I (PDB ID: 1JB0). Credit: Elsevier

    Previously, scientists believed that anoxygenic evolved long before oxygenic photosynthesis, and that the earth’s atmosphere contained no oxygen until about 2.4 to 3 billion years ago. However, the new study suggests that the origin of oxygenic photosynthesis may have been as much as a billion years earlier, which means complex life would have been able to evolve earlier too.

    Dr. Cardona wanted to find out when oxygenic photosynthesis originated. Instead of trying to detect oxygen in ancient rocks, which is what had been done previously, he looked deep inside the molecular machines that carry out photosynthesis – these are complex enzymes called photosystems. Oxygenic and anoxygenic photosynthesis both use an enzyme called Photosystem I. The core of the enzyme looks different in the two types of photosynthesis, and by studying how long ago the genes evolved to be different, Dr. Cardona could work out when oxidative photosynthesis first occurred.

    He found that the differences in the genes may have occurred more than 3.4 billion years ago – long before oxygen was thought to have first been produced on earth. This is also long before cyanobacteria – microbes that were thought to be the first organisms to produce oxygen – existed. This means there must have been predecessors, such as early bacteria, that have since evolved to carry out anoxygenic photosynthesis instead.

    “This is the first time that anyone has tried to time the evolution of the photosystems,” said Dr. Cardona. “The result hints towards the possibility that oxygenic photosynthesis, the process that have produced all oxygen on earth, actually started at a very early stage in the evolutionary history of life – it helps solve one of the big controversies in biology today.”

    One surprising finding was that the evolution of the photosystem was not linear. Photosystems are known to evolve very slowly – they have done so since cyanobacteria appeared at least 2.4 billion years ago. But when Dr. Cardona used that slow rate of evolution to calculate the origin of photosynthesis, he came up with a date that was older than the earth itself. This means the photosystem must have evolved much faster at the beginning – something recent research suggests was due to the planet being hotter.

    “There is still a lot we don’t know about why life is the way it is and how most biological process originated,” said Dr. Cardona. “Sometimes our best educated guesses don’t even come close to representing what really happened so long ago.”

    Dr. Cardona hopes his findings may also help scientists who are looking for life on other planets answer some of their biggest questions.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA

     
  • richardmitnick 8:50 pm on February 20, 2018 Permalink | Reply
    Tags: , astrobio.net, , PLANTS COLONIZED THE EARTH 100 MILLION YEARS EARLIER THAN PREVIOUSLY THOUGHT   

    From Astrobiology Magazine: “PLANTS COLONIZED THE EARTH 100 MILLION YEARS EARLIER THAN PREVIOUSLY THOUGHT” 

    Astrobiology Magazine

    Astrobiology Magazine

    Feb 20, 2018

    1

    For the first four billion years of Earth’s history, our planet’s continents would have been devoid of all life except microbes.

    All of this changed with the origin of land plants from their pond scum relatives, greening the continents and creating habitats that animals would later invade.

    The timing of this episode has previously relied on the oldest fossil plants which are about 420 million years old.

    New research, published in the journal Proceedings of the National Academy of Sciences USA, indicates that these events actually occurred a hundred million years earlier, changing perceptions of the evolution of the Earth’s biosphere.

    Plants are major contributors to the chemical weathering of continental rocks, a key process in the carbon cycle that regulates Earth’s atmosphere and climate over millions of years.

    The team used ‘molecular clock’ methodology, which combined evidence on the genetic differences between living species and fossil constraints on the age of their shared ancestors, to establish an evolutionary timescale that sees through the gaps in the fossil record.

    Dr Jennifer Morris, from the University of Bristol’s School of Earth Sciences and co-lead author on the study, explained: “The global spread of plants and their adaptations to life on land, led to an increase in continental weathering rates that ultimately resulted in a dramatic decrease the levels of the ‘greenhouse gas’ carbon dioxide in the atmosphere and global cooling.

    “Previous attempts to model these changes in the atmosphere have accepted the plant fossil record at face value – our research shows that these fossil ages underestimate the origins of land plants, and so these models need to be revised.”

    Co-lead author Mark Puttick described the team’s approach to produce the timescale. He said: “The fossil record is too sparse and incomplete to be a reliable guide to date the origin of land plants. Instead of relying on the fossil record alone, we used a ‘molecular clock’ approach to compare differences in the make-up of genes of living species – these relative genetic differences were then converted into ages by using the fossil ages as a loose framework.

    “Our results show the ancestor of land plants was alive in the middle Cambrian Period, which was similar to the age for the first known terrestrial animals.”

    One difficulty in the study is that the relationships between the earliest land plants are not known. Therefore the team, which also includes members from Cardiff University and the Natural History Museum, London, explored if different relationships changed the estimated origin time for land plants.

    Leaders of the overall study, Professor Philip Donoghue and Harald Schneider added: “We used different assumptions on the relationships between land plants and found this did not impact the age of the earliest land plants.

    “Any future attempts to model atmospheric changes in deep-time must incorporate the full range of uncertainties we have used here.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA

     
  • richardmitnick 2:19 pm on January 8, 2017 Permalink | Reply
    Tags: astrobio.net, Scientists Offer Sharper Insight into Pluto’s Bladed Terrain   

    From astrobio.net: “Scientists Offer Sharper Insight into Pluto’s Bladed Terrain” 

    Astrobiology Magazine

    Astrobiology Magazine

    Jan 6, 2017
    No writer credit

    1
    The bladed terrain of Pluto’s informally named Tartarus Dorsa region, imaged by NASA’s New Horizons spacecraft in July 2015. Credits: NASA/JHUAPL/SwRI

    NASA/New Horizons spacecraft
    NASA/New Horizons spacecraft

    Using a model similar to what meteorologists use to forecast weather and a computer simulation of the physics of evaporating ices, scientists have found evidence of snow and ice features on Pluto that, until now, had only been seen on Earth.

    Formed by erosion, the features, known as “penitentes,” are bowl-shaped depressions with blade-like spires around the edge that rise several hundreds of feet.

    The research, led by John Moores of York University, Toronto, and done in collaboration with scientists at the Johns Hopkins University Applied Physics Laboratory and NASA Goddard Space Flight Center, indicates that these icy features may also exist on other planets where environmental conditions are similar.

    The identification of these ridges in Pluto’s informally named Tartarus Dorsa area suggests that the presence of an atmosphere is necessary for the formation of penitentes – which Moores says would explain why they have not previously been seen on other airless icy satellites or dwarf planets. “But exotic differences in the environment give rise to features with very different scales,” he adds. “This test of our terrestrial models for penitentes suggests that we may find these features elsewhere in the solar system, and in other solar systems, where the conditions are right.”

    The research team, which also includes York’s Christina Smith, Anthony Toigo of APL and Scott Guzewich of Goddard Space Flight Center, compared its model to ridges on Pluto imaged by NASA’s New Horizons spacecraft in 2015. Pluto’s ridges are much larger – more than 1,600 feet (about 500 meters) tall and separated by two to three miles (about three to five kilometers) – than their Earthly counterparts.

    “This gargantuan size is predicted by the same theory that explains the formation of these features on Earth,” says Moores. “In fact, we were able to match the size and separation, the direction of the ridges, as well as their age: three pieces of evidence that support our identification of these ridges as penitentes.”

    Moores says though Pluto’s environment is very different from Earth’s — it is much colder, the air much thinner, the sun much dimmer and the snow and ice on the surface are made from methane and nitrogen instead of water — the same laws of nature apply. He adds that both NASA and APL were instrumental in the collaboration that led to this new finding; both provided background information on Pluto’s atmosphere using a model similar to what meteorologists use to forecast weather on Earth. This was one of the key ingredients in Moores’ own models of the penitentes, without which this discovery would not have been made.

    The findings appear this week in the journal Nature.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA

     
  • richardmitnick 1:20 pm on December 10, 2016 Permalink | Reply
    Tags: , astrobio.net, , L2 Puppis, Will Earth still exist 5 billion years from now?   

    From astrobio.net: “Will Earth still exist 5 billion years from now?” 

    Astrobiology Magazine

    Astrobiology Magazine

    Dec 9, 2016
    No writer credit found

    1
    Composite view of L2 Puppis in visible light | © P. Kervella et al. (CNRS/U. de Chile/Observatoire de Paris/LESIA/ESO/ALMA)

    What will happen to Earth when, in a few billion years’ time, the Sun is a hundred times bigger than it is today? Using the most powerful radio telescope in the world, an international team of astronomers has set out to look for answers in the star L2 Puppis.

    3
    L2 Puppis http://www.surastronomico.com/variable-10-l2-puppis.html

    Five billion years ago, this star was very similar to the Sun as it is today.

    “Five billion years from now, the Sun will have grown into a red giant star, more than a hundred times larger than its current size,” says Professor Leen Decin from the KU Leuven Institute of Astronomy. “It will also experience an intense mass loss through a very strong stellar wind. The end product of its evolution, 7 billion years from now, will be a tiny white dwarf star. This will be about the size of the Earth, but much heavier: one tea spoon of white dwarf material weighs about 5 tons.”

    This metamorphosis will have a dramatic impact on the planets of our Solar System. Mercury and Venus, for instance, will be engulfed in the giant star and destroyed.

    “But the fate of the Earth is still uncertain,” continues Decin. “We already know that our Sun will be bigger and brighter, so that it will probably destroy any form of life on our planet. But will the Earth’s rocky core survive the red giant phase and continue orbiting the white dwarf?”

    2
    ALMA is the world’s largest observatory at millimetre wavelengths. It is installed on the high-altitude plateau of Chajnantor in the Atacama desert (Chile). It consists of 66 individual radio antennas used jointly to synthesize a giant virtual telescope of 16 km in diameter. Credit: ALMA (ESO/NAOJ/NRAO)

    To answer this question, an international team of astronomers observed the evolved star L2 Puppis. This star is 208 light years away from Earth – which, in astronomy terms, means nearby. The researchers used the ALMA radio telescope, which consists of 66 individual radio antennas that together form a giant virtual telescope with a 16-kilometre diameter.

    “We discovered that L2 Puppis is about 10 billion years old,” says Ward Homan from the KU Leuven Institute of Astronomy. “Five billion years ago, the star was an almost perfect twin of our Sun as it is today, with the same mass. One third of this mass was lost during the evolution of the star. The same will happen with our Sun in the very distant future.”

    300 million kilometres from L2 Puppis – or twice the distance between the Sun and the Earth – the researchers detected an object orbiting the giant star. In all likelihood, this is a planet that offers a unique preview of our Earth five billion years from now.

    A deeper understanding of the interactions between L2 Puppis and its planet will yield valuable information on the final evolution of the Sun and its impact on the planets in our Solar System. Whether the Earth will eventually survive the Sun or be destroyed is still uncertain. L2 Puppis may be the key to answering this question.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA

     
  • richardmitnick 10:02 am on October 23, 2016 Permalink | Reply
    Tags: astrobio.net, , , NASA’s MAVEN Mission Observes Ups and Downs of Water Escape from Mars   

    From astrobio.net: “NASA’s MAVEN Mission Observes Ups and Downs of Water Escape from Mars” 

    Astrobiology Magazine

    Astrobiology Magazine

    Oct 22, 2016
    No writer credit found

    1
    NASA

    After investigating the upper atmosphere of the Red Planet for a full Martian year, NASA’s MAVEN mission has determined that the escaping water does not always go gently into space.

    Sophisticated measurements made by a suite of instruments on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft revealed the ups and downs of hydrogen escape – and therefore water loss. The escape rate peaked when Mars was at its closest point to the sun and dropped off when the planet was farthest from the sun. The rate of loss varied dramatically overall, with 10 times more hydrogen escaping at the maximum.

    “MAVEN is giving us unprecedented detail about hydrogen escape from the upper atmosphere of Mars, and this is crucial for helping us figure out the total amount of water lost over billions of years,” said Ali Rahmati, a MAVEN team member at the University of California at Berkeley who analyzed data from two of the spacecraft’s instruments.

    Hydrogen in Mars’ upper atmosphere comes from water vapor in the lower atmosphere. An atmospheric water molecule can be broken apart by sunlight, releasing the two hydrogen atoms from the oxygen atom that they had been bound to. Several processes at work in Mars’ upper atmosphere may then act on the hydrogen, leading to its escape.

    This loss had long been assumed to be more-or-less constant, like a slow leak in a tire. But previous observations made using NASA’s Hubble Space Telescope and ESA’s Mars Express orbiter found unexpected fluctuations. Only a handful of these measurements have been made so far, and most were essentially snapshots, taken months or years apart. MAVEN has been tracking the hydrogen escape without interruption over the course of a Martian year, which lasts nearly two Earth years.

    2
    This image shows atomic hydrogen scattering sunlight in the upper atmosphere of Mars, as seen by the Imaging Ultraviolet Spectrograph on NASA’s Mars Atmosphere and Volatile Evolution mission. About 400,000 observations, taken over the course of four days shortly after the spacecraft entered orbit around Mars, were used to create the image. Hydrogen is produced by the breakdown of water, which was once abundant on Mars’ surface. Because hydrogen has low atomic mass and is weakly bound by gravity, it extends far from the planet (the darkened circle) and can readily escape. Credits: NASA/Goddard/University of Colorado

    “Now that we know such large changes occur, we think of hydrogen escape from Mars less as a slow and steady leak and more as an episodic flow – rising and falling with season and perhaps punctuated by strong bursts,” said Michael Chaffin, a scientist at the University of Colorado at Boulder who is on the Imaging Ultraviolet Spectrograph (IUVS) team. Chaffin is presenting some IUVS results on Oct. 19 at the joint meeting of the Division for Planetary Sciences and the European Planetary Science Congress in Pasadena, California.

    In the most detailed observations of hydrogen loss to date, four of MAVEN’s instruments detected the factor-of-10 change in the rate of escape. Changes in the density of hydrogen in the upper atmosphere were inferred from the flux of hydrogen ions – electrically charged hydrogen atoms – measured by the Solar Wind Ion Analyzer and by the Suprathermal and Thermal Ion Composition instrument. IUVS observed a drop in the amount of sunlight scattered by hydrogen in the upper atmosphere. MAVEN’s magnetometer found a decrease in the occurrence of electromagnetic waves excited by hydrogen ions, indicating a decrease in the amount of hydrogen present.

    By investigating hydrogen escape in multiple ways, the MAVEN team will be able to work out which factors drive the escape. Scientists already know that Mars’ elliptical orbit causes the intensity of the sunlight reaching Mars to vary by 40 percent during a Martian year. There also is a seasonal effect that controls how much water vapor is present in the lower atmosphere, as well as variations in how much water makes it into the upper atmosphere. The 11-year cycle of the sun’s activity is another likely factor.

    “In addition, when Mars is closest to the sun, the atmosphere becomes turbulent, resulting in global dust storms and other activity. This could allow the water in the lower atmosphere to rise to very high altitudes, providing an intermittent source of hydrogen that can then escape,” said John Clarke, a Boston University scientist on the IUVS team. Clarke will present IUVS measurements of hydrogen and deuterium – a form of hydrogen that contains a neutron and is heavier – on Oct. 19 at the planetary conference.

    By making observations for a second Mars year and during different parts of the solar cycle, the scientists will be better able to distinguish among these effects. MAVEN is continuing these observations in its extended mission, which has been approved until at least September 2018.

    “MAVEN’s findings reveal what is happening in Mars’ atmosphere now, but over time this type of loss contributed to the global change from a wetter environment to the dry planet we see today,” said Rahmati.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA

     
  • richardmitnick 3:32 pm on September 2, 2016 Permalink | Reply
    Tags: , astrobio.net, , , , Phosphorous, , Schreibersite   

    From astrobio.net via SETI: “Did meteorites bring life’s phosphorus to Earth?” 

    Astrobiology Magazine

    Astrobiology Magazine

    Aug 30, 2016
    Keith Cooper

    1
    An artist’s impression of meteors crashing into water on the young Earth. Did they bring phosphorous with them? Image credit: David A Aguilar (CfA)

    Meteorites that crashed onto Earth billions of years ago may have provided the phosphorous essential to the biological systems of terrestrial life. The meteorites are believed to have contained a phosphorus-bearing mineral called schreibersite, and scientists have recently developed a synthetic version that reacts chemically with organic molecules, showing its potential as a nutrient for life.

    Phosphorus is one of life’s most vital components, but often goes unheralded. It helps form the backbone of the long chains of nucleotides that create RNA and DNA; it is part of the phospholipids in cell membranes; and is a building block of the coenzyme used as an energy carrier in cells, adenosine triphosphate (ATP).

    Yet the majority of phosphorus on Earth is found in the form of inert phosphates that are insoluble in water and are generally unable to react with organic molecules. This appears at odds with phosphorus’ ubiquity in biochemistry, so how did phosphorus end up being critical to life?

    In 2004, Matthew Pasek, an astrobiologist and geochemist from the University of South Florida, developed the idea that schreibersite [(Fe, Ni)3P], which is found in a range of meteorites from chondrites to stony–iron pallasites, could be the original source of life’s phosphorus. Because the phosphorus within schreibersite is a phosphide, which is a compound containing a phosphorus ion bonded to a metal, it behaves in a more reactive fashion than the phosphate typically found on Earth.

    Finding naturally-formed schreibersite to use in laboratory experiments can be time consuming when harvesting from newly-fallen meteorites and expensive when buying from private collectors. Instead, it has become easier to produce schreibersite synthetically for use in the laboratory.

    Natural schreibersite is an alloy of iron, phosphorous and nickel, but the common form of synthetic schreibersite that has typically been used in experiments is made of just iron and phosphorus, and is easily obtainable as a natural byproduct of iron manufacturing. Previous experiments have indicated it reacts with organics to form chemical bonds with oxygen, the first step towards integrating phosphorous into biological systems.

    However, since natural schreibersite also incorporates nickel, some scientific criticism has pointed out that the nickel could potentially alter the chemistry of the mineral, rendering it non-reactive despite the presence phosphides. If this were the case it would mean that the experiments with the iron–phosphorous synthetic schreibersite would not represent the behavior of the mineral in nature.

    Since the natural version incorporates nickel, there has always been the worry that the synthetic version is not representative of how schreibersite actually reacts and that the nickel might somehow hamper those chemical reactions.

    “There was always this criticism that if we did include nickel it might not react as much,” says Pasek.

    Pasek and his colleagues have addressed this criticism by developing a synthetic form of schreibersite that includes nickel.

    2
    This 15cm wide fragment of the Seymchan meteorite found in Russia in 1967 is an iron-nickel pallasite. The long filament of dark grey material in the center is schreibersite. Image credit: University of South Florida.

    Nickel-flavored schreibersite

    In a recent paper published in the journal Physical Chemistry Chemical Physics, Pasek and lead author and geochemist Nikita La Cruz of the University of Michigan show how a form of synthetic schreibersite that includes nickel reacts when exposed to water. As the water evaporates, it creates phosphorus–oxygen (P–O) bonds on the surface of the schreibersite, making the phosphorus bioavailable to life. The findings seem to remove any doubts as to whether meteoritic schreibersite could stimulate organic reactions.

    “Biological systems have a phosphorus atom surrounded by four oxygen atoms, so the first step is to put one oxygen atom and one phosphorous atom together in a single P–O bond,” Pasek explains.

    Terry Kee, a geochemist at the University of Leeds and president of the Astrobiology Society of Britain, has conducted his own extensive work with schreibersite and, along with Pasek, is one of the original champions of the idea that it could be the source of life’s phosphorus.

    “The bottom line of what [La Cruz and Pasek] have done is that it appears that this form of nickel-flavored synthetic schreibersite reacts pretty much the same as the previous synthetic form of schreibersite,” he says.

    This puts to rest any criticism that previous experiments lacked nickel.

    3
    A bubbling hydrothermal pool in the Mývatn area of Iceland. Could such pools have pro-moted P–O bonds on the surfaces of schreibersite meteorites that had fallen into the pools? Image credit: Keith Cooper

    Shallow pools and volcanic vents

    Pasek describes how meteors would have fallen into shallow pools of water on ancient Earth. The pools would then have undergone cycles of evaporation and rehydration, a crucial process for chemical reactions to take place. As the surface of the schreibersite dries, it allows molecules to join into longer chains. Then, when the water returns, these chains become mobile, bumping into other chains. When the pool dries out again, the chains bond and build ever larger structures.

    “The reactions need to lose water in some way in order to build the molecules that make up life,” says Pasek. “If you have a long enough system with enough complex organics then, hypothetically, you could build longer and longer polymers to make bigger pieces of RNA. The idea is that at some point you might have enough RNA to begin to catalyze other reactions, starting a chain reaction that builds up to some sort of primitive biochemistry, but there’s still a lot of steps we don’t understand.”

    Demonstrating that nickel-flavored schreibersite, of the sort contained in meteorites, can produce phosphorus-based chemistry is exciting. However, Kee says further evidence is needed to show that the raw materials of life on Earth came from space.

    “I wouldn’t necessarily say that the meteoric origin of phosphorus is the strongest idea,” he says. “Although it’s certainly one of the more pre-biotically plausible routes.”

    Despite having co-developed much of the theory behind schreibersite with Pasek, Kee points out that hydrothermal vents could rival the meteoritic model. Deep sea volcanic vents are already known to produce iron-nickel alloys such as awaruite and Kee says that the search is now on for the existence of awaruite’s phosphide equivalent in the vents: schreibersite.

    “If it could be shown that schreibersite can be produced in the conditions found in vents — and I think those conditions are highly conducive to forming schreibersite — then you’ve got the potential for a lot of interesting phosphorylation chemistry to take place,” says Kee.

    Pasek agrees that hydrothermal vents could prove a good environment to promote phosphorus chemistry with the heat driving off the water to allow the P–O bonds to form. “Essentially it’s this driving off of water that you’ve got to look for,” he adds.

    Pasek and Kee both agree that it is possible that both mechanisms — the meteorites in the shallow pools and the deep sea hydrothermal vents — could have been at work during the same time period and provided phosphorus for life on the young Earth.

    Meanwhile David Deamer, a biologist from the University of California, Santa Cruz, has gone one step further by merging the two models, describing schreibersite reacting in hydrothermal fields of bubbling shallow pools in volcanic locations similar to those found today in locations such as Iceland or Yellowstone.

    Certainly, La Cruz and Pasek’s results indicate that schreibersite becomes more reactive the warmer the environment in which it exists.

    “Although we see the reaction occurring at room temperature, if you increase the temperature to 60 or 80 degree Celsius, you get increased reactivity,” says Pasek. “So, hypothetically, if you have a warmer Earth you should get more reactivity.”

    One twist to the tale is the possibility that phosphorus could have bonded with oxygen in space, beginning the construction of life’s molecules before ever reaching Earth. Schreibersite-rich grains coated in ice and then heated by shocks in planet-forming disks of gas and dust could potentially have provided conditions suitable for simple biochemistry. While Pasek agrees in principle, he says he has “a hard time seeing bigger things like RNA or DNA forming in space without fluid to promote them.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: