Tagged: Asteroids Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:34 am on May 17, 2016 Permalink | Reply
    Tags: , Asteroids, , Remains of giant asteroid found in outback Australia   

    From COSMOS: “Remains of giant asteroid found in outback Australia” 

    Cosmos Magazine bloc

    COSMOS

    17 May 2016
    Viviane Richter

    Scientists say asteroid could have been 40 kilometres across and would have left a crater hundreds of kilometres wide.

    1
    Chert in Marble Bar, Australia. The remains of the asteroid was found between two volcanic layers of this rock. Credit: DIRK WIERSMA/Getty Images
    ______________________________
    The remains of a giant asteroid that smashed into Earth 3.46 billion years ago have been discovered in north-western Australia.

    Scientists say the asteroid was up to 40 kilometres wide – amongst the largest to have collided with our planet – and its impact could have significantly changed how the Earth’s crust evolved during its youth.

    The remnants of this asteroid come in the shape of tiny glass beads called spherules, which the scientists say formed from material vapourised by the impact.

    These spherules were discovered in Western Australia’s Marble Bar, in samples of sedimentary rock which once formed a sea floor. Because the rock layer in which they were found was wedged between two volcanic layers, the team was able to date the glass beads to 3.46 billion years ago.

    And when the scientists analysed the chemical composition of the rims of the spherules, they discovered elements such as iron, magnesium and nickel matched the levels found in asteroids.

    As the second oldest known to have plummeted into Earth in its youth, this asteroid “is just the tip of the iceberg,” said author Andrew Glikson from the Australian National University. “We’ve only found evidence for 17 impacts older than 2.5 billion years, but there could have been hundreds.”

    Glikson said the crater this asteroid created would have been wiped out by tectonic movement and volcanic activity, which leaves the location of where it impacted unknown.

    2
    A microscopy image of the tiny glass beads called spherules that are all that is left of the asteroid. Credit: Andrew Glikson
    ______________________________

    But the scientists estimated the size of the asteroid based on a previously published model – a linear relationship between spherule size and the size of an impacting object.

    The authors state the two-millimetre spherules, each barely larger than a pinhead, was likely formed by an impacting asteroid as large as 40 kilometres in diameter.

    The crater left behind by such an asteroid would, in turn, have spanned hundreds of kilometres, Glikson said.

    “The impact would have triggered earthquakes orders of magnitude greater than terrestrial earthquakes, it would have caused huge tsunamis and would have made cliffs crumble,” he said.

    “Asteroid strikes this big result in major tectonic shifts and extensive magma flows,” Glikson added. “They could have significantly affected the way the Earth evolved.”

    The discovery was published [link to science paper] in the journal Precambrian Research,
    A new ∼3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: A petrological, microprobe and laser ablation ICPMS study

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 8:33 pm on April 5, 2016 Permalink | Reply
    Tags: Asteroids, , , ,   

    From JPL: “Asteroid-Hunting Spacecraft Delivers a Second Year of Data” 

    NASA JPL Banner

    JPL-Caltech

    April 5, 2016
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    1
    This graphic shows asteroids and comets observed by NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) mission. Image credit: NASA/JPL-Caltech/UCLA/JHU

    NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) mission has released its second year of survey data. The spacecraft has now characterized a total of 439 NEOs since the mission was re-started in December 2013. Of these, 72 were new discoveries.

    NASA/NEOWISE
    NASA/NEOWISE

    Near-Earth Objects (NEOs) are comets and asteroids that have been nudged by the gravitational attraction of the giant planets in our solar system into orbits that allow them to enter Earth’s neighborhood. Eight of the objects discovered in the past year have been classified as potentially hazardous asteroids (PHAs), based on their size and how closely their orbits approach Earth.

    DOWNLOAD VIDEO Two Years of NEOWISE Asteroid Data


    Access mp4 video here .

    With the release to the public of its second year of data, NASA’s NEOWISE spacecraft completed another milestone in its mission to discover, track and characterize the asteroids and comets that approach closest to Earth.

    Since beginning its survey in December 2013, NEOWISE has measured more than 19,000 asteroids and comets at infrared wavelengths. More than 5.1 million infrared images of the sky were collected in the last year. A new movie, based on the data collected, depicts asteroids and comets observed so far by NEOWISE.

    “By studying the distribution of lighter- and darker-colored material, NEOWISE data give us a better understanding of the origins of the NEOs, originating from either different parts of the main asteroid belt between Mars and Jupiter or the icier comet populations,” said James Bauer, the mission’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, California.

    Originally called the Wide-field Infrared Survey Explorer (WISE), the spacecraft was launched in December 2009. It was placed in hibernation in 2011 after its primary mission was completed. In September 2013, it was reactivated, renamed NEOWISE and assigned a new mission: to assist NASA’s efforts to identify the population of potentially hazardous near-Earth objects. NEOWISE also is characterizing previously known asteroids and comets to provide information about their sizes and compositions.

    “NEOWISE discovers large, dark, near-Earth objects, complementing our network of ground-based telescopes operating at visible-light wavelengths. On average, these objects are many hundreds of meters across,” said Amy Mainzer of JPL, NEOWISE principal investigator. NEOWISE has discovered 250 new objects since its restart, including 72 near-Earth objects and four new comets.

    NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the NEOWISE mission for NASA’s Science Mission Directorate in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    For more information about NEOWISE, visit:

    http://www.nasa.gov/neowise

    More information about asteroids and near-Earth objects is at:

    http://www.jpl.nasa.gov/asteroidwatch

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    NASA image

     
  • richardmitnick 10:17 am on December 17, 2015 Permalink | Reply
    Tags: Asteroids, , , ,   

    From Goddard: “International Instrument Delivered for NASA’s 2016 Asteroid Sample Return Mission” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Dec. 17, 2015
    Nancy Neal Jones
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland
    301-286-0039
    Nancy.N.Jones@nasa.gov

    1
    The OSIRIS-REx Laser Altimeter (OLA), contributed by the Canadian Space Agency, will create 3-D maps of asteroid Bennu to help the mission team select a sample collection site. NASA’s OSIRIS-REx spacecraft will travel to the near-Earth asteroid Bennu and bring at least a 60-gram (2.1-ounce) sample back to Earth for study. Credits: NASA/Goddard/Debbie McCallum /NASA

    A sophisticated laser-based mapping instrument has arrived at Lockheed Martin Space Systems in Denver for integration onto NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft.

    The OSIRIS-REx Laser Altimeter (OLA), contributed by the Canadian Space Agency (CSA), will create 3-D maps of asteroid Bennu to help the mission team select a sample collection site.

    “The OSIRIS-REx Project has worked very closely with our partner CSA and their contractor MDA to get this critical instrument delivered to the spacecraft contractor’s facility,” said Mike Donnelly, OSIRIS-REx project manager from NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We are very pleased with the performance of the instrument and look forward to its contribution to our mission.”

    OLA is an advanced LIDAR (Light Detecting and Ranging) system that will scan the entire surface of the asteroid to create a highly accurate, 3-D shape model of Bennu. This will provide mission scientists with fundamental data on the asteroid’s shape, topography (distribution of boulders, rocks and other surface features), surface processes and evolution. An accurate shape model will also be an important tool for navigators as they maneuver the OSIRIS-REx spacecraft around the 500-meter-wide (0.3-mile-wide) asteroid. In exchange for providing the OLA instrument, CSA will receive a portion of the returned asteroid sample for study by Canadian scientists.

    “OLA will measure the shape and topography of Bennu to a much higher fidelity and with much greater efficiency than any planetary science mission has achieved,” said Michael Daly, OLA instrument lead at York University, Toronto. “This information is essential to understanding the evolution and current state of the asteroid. It also provides invaluable information in aid of retrieving a sample of Bennu for return to Earth.”

    After launch in September 2016, the OSIRIS-REx spacecraft will travel to the near-Earth asteroid Bennu and bring at least a 60-gram (2.1-ounce) sample back to Earth for study. Scientists expect that Bennu may hold clues to the origin of the solar system and the source of water and organic molecules that may have made their way to Earth. OSIRIS-REx’s investigation will also inform future efforts to develop a mission to mitigate an asteroid impact on Earth, should one be required.

    “The data received from OLA will be key to determining a safe sample site on Bennu,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “This instrument is a valuable addition to the spacecraft, and I appreciate our Canadian partners’ hard work and contribution to the OSIRIS-REx mission.”

    The laser altimeter was built for CSA by MacDonald, Dettwiler and Associates Ltd. (MDA) and its partner, Optech. OSIRIS-REx is scheduled to ship from Lockheed Martin’s facility to NASA’s Kennedy Space Center, Florida in May 2016, where it will undergo final preparations for launch.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta is the mission’s principal investigator at the University of Arizona. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

    For more information on OSIRIS-REx visit:

    http://www.nasa.gov/osiris-rex

    and

    http://www.asteroidmission.org

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 10:30 am on December 15, 2015 Permalink | Reply
    Tags: Asteroids, , ,   

    From nationalgeographic.com: “Space Rocks Delivered One-Two Punch to Ancient Earth” 

    National Geographic

    National Geographics

    December 15, 2015
    Nadia Drake

    1
    A double asteroid impact in an ancient sea, around 460 million years ago, created two crater remnants near Lockne, Sweden.No image credit

    Scientists link a rare, double impact crater in central Sweden to a 470-million-year-old cataclysm in the asteroid belt.

    Around 470 million years ago, what is now central Sweden was covered in a shallow, ancient sea inhabited by tiny, plankton-like organisms. The placid scene would soon be scarred by one of the largest cataclysms in the last billion years.

    That’s because far away, trouble was brewing. In the main asteroid belt, between Mars and Jupiter, two space rocks were about to collide.

    2
    The inner Solar System, from the Sun to Jupiter. Also includes the asteroid belt (the white donut-shaped cloud), the Hildas (the orange “triangle” just inside the orbit of Jupiter), the Jupiter trojans (green), and the near-Earth asteroids. The group that leads Jupiter are called the “Greeks” and the trailing group are called the “Trojans” (Murray and Dermott, Solar System Dynamics, pg. 107).

    When they slammed together, the collision shattered a 200-kilometer-wide asteroid, sending fragments ricocheting through space—some of which headed right for planet Earth.

    As they traveled through the inner solar system, a portion of these pulverized bits and pieces re-congealed, forming what’s known as a rubble pile asteroid—a type of space object that is exactly what it sounds like. But this rocky swarm wasn’t like most of the others: It had a small, orbiting companion.

    And when that twosome finally plowed into the ancient Swedish sea after a 12-million-year journey, it left a distinctive double crater. Or rather, a double crater that would have been distinctive had the smaller of the two punches not remained hidden until just a few years ago.

    “We are quite convinced that the two craters were formed at the same time,” says Erik Sturkell of the University of Gothenburg, who presented the story Monday at the American Geophysical Union’s annual meeting.

    Double Whammy

    Binary craters aren’t exceptionally common on Earth, even though roughly 15 percent of asteroids in Earth-crossing orbits are thought to have a companion in tow. That’s because “getting two distinct nearby craters that are well dated has been hard to accomplish,” says Bill Bottke of the Southwest Research Institute.

    Today, these two 458-million-year-old craters—Lockne and Målingen—are set amidst forests and farmlands.

    3
    Lockne crater location

    Lockne, the larger of the two, is about 7.5 kilometers across and was created as the rubble pile asteroid collided with Earth. About 16 kilometers away is Målingen, which is just 0.7 kilometers across and made by the smaller companion.

    2
    This double crater on Mars was created by two nearly simultaneous impacts.
    Photograph by NASA/JPL-Caltech/University of Arizona

    Scientists aren’t sure precisely how big the two asteroids were, but they estimate the bigger one was at least 600 meters across, and the smaller was at least 150 meters across. Rubble pile asteroids create craters that are a bit different than the scars left behind by dense, intact impactors.

    “The fragments separate but maintain their trajectory,” Sturkell explains. “The effect on the target area can be compared to that of a shotgun blast rather than a single rifle bullet—a shallow, widespread, but still coherent crater.”

    Cataclysmic Breakup

    The fossilized remains of those hapless, plankton-like organisms helped the team determine how long ago planet Earth had gotten punched.

    But, how did scientists link these craters with that 470-million-year-old cataclysm?

    For starters, the asteroids that gouged these double pockmarks into Earth are a particular type of space rock called an L chondrite—something that is rich in olivine and relatively iron-poor. Sprinkled all over the planet are craters of similar ages, made from the same type of asteroid…and there are too many similarly aged craters, with similar fingerprints, to be explained by normal cratering rates.

    In addition, more than 100 fossilized meteorites have been uncovered from Sweden, China, and Russia. These small, preserved fragments arrived on Earth around the same time, and all except one are L chondrites. What’s more, the fragments bear the signature of an ancient collision that occurred about 470 million years ago—before they barreled into Earth.

    3
    Families of asteroids are created when space rocks collide.
    Illustration by NASA/JPL-Caltech

    The only way that pattern could emerge is if a mishap of cosmic proportions destroyed a parent space rock and sent shrapnel flying through the solar system.

    “It probably went through a supercatastrophic disruption event,” Bottke says, noting that, in addition to the cataclysmic breakup, research suggests the parent asteroid happened to be in a spot where gravitational nudges from Jupiter could efficiently send fragments flying toward Earth.

    “A lot of this material was able to get to Earth very quickly,” he says.

    But not all the fragments left their home: Today, the shards from that collision that still live in the main belt are known as the Gefion family. “There is a lot of cool stuff related to this particular event,” Bottke says. “The question is whether this event had other implications, say for life on Earth.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Geographic Society has been inspiring people to care about the planet since 1888. It is one of the largest nonprofit scientific and educational institutions in the world. Its interests include geography, archaeology and natural science, and the promotion of environmental and historical conservation.

     
  • richardmitnick 12:44 pm on December 8, 2015 Permalink | Reply
    Tags: Asteroids, ,   

    From ESA: “Robot arm simulates close approach of ESA’s asteroid mission” 

    ESASpaceForEuropeBanner
    European Space Agency

    8 December 2015

    The final approach to an asteroid has been practised for ESA’s proposed Asteroid Impact Mission using a real spacecraft camera mounted on a robot arm.

    1
    A real spacecraft camera mounted on a robot arm moving towards a model asteroid provided a practical test of image-based navigation software for ESA’s Asteroid Impact Mission. The aim was to simulate the deployment of AIM’s lander. The testing took place at GMV in Madrid, Spain, during autumn 2015.

    ESA AIM Asteroid Impact Mission
    AIM

    The 2020 AIM mission would find its way across deep space as usual with startrackers and radio ranging but the real challenge would come after arrival at its target Didymos double asteroids: picking its way around these unprecedented surroundings to close in on the smaller asteroid for detailed observations and setting down a lander.

    The rehearsal took place at the Madrid headquarters of Spain’s GMV company, with ESA’s arm-mounted camera using dedicated navigation software to close in on a model asteroid.

    “By including an actual navigation camera in the loop, we made the test as realistic as possible,” explains ESA guidance specialist Massimo Casasco.

    2
    Mascot-2 lander.
    ESA’s proposed Asteroid Impact Mission would put down a lander on the smaller of the two Didymos asteroids in 2022. AIM’s Mascot-2 lander is being designed and tested by Germany’s DLR space agency and is based on the lander scheduled to reach asteroid Ryugu as part of Japan’s Hayabusa-2 in July 2018.

    As the Rosetta comet adventure showed last year, landing on a small body is no easy task.

    ESA Rosetta spacecraft
    Rosetta

    “One of AIM’s objectives is to put down a lander on the smaller of the Didymos asteroids using onboard autonomy and very limited resources,” says Ian Carnelli, ESA’s AIM project manager.

    The low-budget AIM will avoid costly dedicated proximity sensors, instead calling on smart visual navigation software to track its motion over the surface.


    Testing camera-based navigation software for asteroid mission
    download mp4 video here.

    In addition, it might reuse its laser communication package for measuring height above the surface.

    ESA’s camera took images for the processing software to first select landmark ‘feature points’ within the field of view and then to follow them from frame to frame.

    The camera itself has a detector that acquires the images, a ‘frame store’ for their intermediate storage and an image-processing chip to perform the feature tracking, before providing the information to AIM’s guidance and navigation computer.

    4
    ESA’s Navigation for Planetary Approach and Landing (NPAL) navigation camera was tested for use with the Asteroid Impact Mission at GMV in Madrid, Spain, during autumn 2015. The camera took images for the processing software to first select landmark ‘feature points’ within the field of view and then to follow them from frame to frame. The camera itself has a detector that acquires the images, a ‘frame store’ for their intermediate storage and an image-processing chip to perform the feature tracking, before providing the information to AIM’s guidance and navigation computer. Changing tracks of the various feature points over time are checked against the onward and rotational motion of the spacecraft to determine its position and orientation.

    “The changing tracks of the various feature points over time (shown in purple in the video) are checked against the onward and rotational motion of the spacecraft to determine its position and orientation,” says ESA guidance expert Olivier Dubois-Matra.

    “The ultimate goal for AIM is to demonstrate new ways to explore small Solar System bodies in the future,” adds Ian, “so we are testing this approach as fully as possible. In effect, the test bench is a fully fledged optical and robotic laboratory, testing AIM’s approach and the lander descent right down to deployment altitude.”

    With a launch window opening in October 2020, AIM would be humanity’s first mission to a double asteroid. Its first major design review next month will allow detailed design to begin in February.

    The Mascot-2 lander is being designed and tested by Germany’s DLR space agency and is based on the lander scheduled to reach asteroid Ryugu as part of Japan’s Hayabusa-2 in July 2018.

    NASA’s own Double Asteroid Redirection Test, or DART, probe will impact the same asteroid, with AIM providing detailed before-and-after mapping to help assess the effects and test planetary defence techniques.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 7:21 am on October 8, 2015 Permalink | Reply
    Tags: Asteroids, , , , NASA DART   

    From ESA: “Robotic arm testing AIM mission’s camera” 

    ESASpaceForEuropeBanner
    European Space Agency

    07/10/2015
    ESA–G. Ortega

    1

    A practical test of the navigation camera planned to guide ESA’s proposed Asteroid Impact Mission [AIM] around its double-asteroid target.

    ESA AIM Asteroid Impact Mission
    ESA AIM

    Many of the thousands of visitors to ESA’s ESTEC technical heart in Noordwijk, the Netherlands, last Sunday were able to see the simulation for themselves.

    The red robotic arm seen left held the camera and moved it smoothly through three dimensions next to a spinning model of the Didymos asteroid system, destination of the candidate Asteroid Impact Mission (AIM).

    The screen in the foreground depicted the camera’s eye view as it gradually came closer to the main asteroid. To see how the test worked in practice, click on this video clip [in the full article, see link below].

    AIM is a candidate mission currently under preliminary design, and set to be presented to ESA’s Council of Ministers in November 2016 for approval.

    With a planned launch window opening in October 2020, AIM would be humanity’s first mission to a double asteroid, putting down a lander on the smaller body.

    NASA’s own Double Asteroid Redirection Test, or DART probe will impact the same asteroid, with AIM providing detailed before-and-after mapping to help assess the effects and test planetary defence techniques.

    NASA DART Double Imact Redirection Test vehicle
    NASA/DART

    Sunday’s experiment was performed by ESA’s Guidance, Navigation and Control section, in cooperation with the Agency’s Automation and Robotics section.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 6:01 am on August 4, 2015 Permalink | Reply
    Tags: Asteroids, , , ,   

    From JPL: “Tracking A Mysterious Group of Asteroid Outcasts” 

    JPL

    August 3, 2015
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    1
    The asteroid Euphrosyne glides across a field of background stars in this time-lapse view from NASA’s WISE spacecraft. WISE obtained the images used to create this view over a period of about a day around May 17, 2010, during which it observed the asteroid four times.

    Because WISE (renamed NEOWISE in 2013) is an infrared telescope, it senses heat from asteroids. Euphrosyne is quite dark in visible light, but glows brightly at infrared wavelengths.

    This view is a composite of images taken at four different infrared wavelengths: 3.4 microns (color-coded blue), 4.6 microns (cyan), 12 microns (green) and 22 microns (red).

    The moving asteroid appears as a string of red dots because it is much cooler than the distant background stars. Stars have temperatures in the thousands of degrees, but the asteroid is cooler than room temperature. Thus the stars are represented by shorter wavelength (hotter) blue colors in this view, while the asteroid is shown in longer wavelength (cooler) reddish colors.

    The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids.

    Fast Facts:

    › A new NASA study has traced some members of the near-Earth asteroid population back to their likely source.

    › The source may be the Euphrosyne family of dark, asteroids on highly inclined (or tilted) orbits in the outer asteroid belt.

    › The study used data from NASA’s NEOWISE space telescope, which has a second life following its reactivation in 2013.

    NASA Wise Telescope
    WISE

    High above the plane of our solar system, near the asteroid-rich abyss between Mars and Jupiter, scientists have found a unique family of space rocks. These interplanetary oddballs are the Euphrosyne(pronounced you-FROH-seh-nee) asteroids, and by any measure they have been distant, dark and mysterious — until now.

    Distributed at the outer edge of the asteroid belt, the Euphrosynes have an unusual orbital path that juts well above the ecliptic, the equator of the solar system. The asteroid after which they are named, Euphrosyne — for an ancient Greek goddess of mirth — is about 156 miles (260 kilometers) across and is one of the 10 largest asteroids in the main belt. Current-day Euphrosyne is thought to be a remnant of a massive collision about 700 million years ago that formed the family of smaller asteroids bearing its name. Scientists think this event was one of the last great collisions in the solar system.

    A new study conducted by scientists at NASA’s Jet Propulsion Laboratory in Pasadena, California, used the agency’s orbiting Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) telescope to look at these unusual asteroids to learn more about Near Earth Objects, or NEOs, and their potential threat to Earth.

    NEOs are bodies whose orbits around the sun approach the orbit of Earth; this population is short-lived on astronomical timescales and is fed by other reservoirs of bodies in our solar system. As they orbit the sun, NEOs can occasionally have close approaches to Earth. For this reason alone — the safety of our home planet — the study of such objects is important.

    As a result of their study, the JPL researchers believe the Euphrosynes may be the source of some of the dark NEOs found to be on long, highly inclined orbits. They found that, through gravitational interactions with Saturn, Euphrosyne asteroids can evolve into NEOs over timescales of millions of years.

    NEOs can originate in either the asteroid belt or the more distant outer reaches of the solar system. Those from the asteroid belt are thought to evolve toward Earth’s orbit through collisions and the gravitational influence of the planets. Originating well above the ecliptic and near the far edge of the asteroid belt, the forces that shape their trajectories toward Earth are far more moderate.

    “The Euphrosynes have a gentle resonance with the orbit of Saturn that slowly moves these objects, eventually turning some of them into NEOs,” said Joseph Masiero, JPL’s lead scientist on the Euphrosynes study. “This particular gravitational resonance tends to push some of the larger fragments of the Euphrosyne family into near-Earth space.”

    By studying the Euphrosyne family asteroids with NEOWISE, JPL scientists have been able to measure their sizes and the amount of solar energy they reflect. Since NEOWISE operates in the infrared portion of the spectrum, it detects heat. Therefore, it can see dark objects far better than telescopes operating at visible wavelengths, which sense reflected sunlight. Its heat-sensing capability also allows it to measure sizes more accurately.

    The 1,400 Euphrosyne asteroids studied by Masiero and his colleagues turned out to be large and dark, with highly inclined and elliptical orbits. These traits make them good candidates for the source of some of the dark NEOs the NEOWISE telescope detects and discovers, particularly those that also have highly inclined orbits.

    NEOWISE was originally launched as an astrophysics mission in 2009 as the Wide-field Infrared Survey Explorer, or WISE. It operated until 2011 and was then shut down. But the spacecraft, now dubbed NEOWISE, would get a second life. “NEOWISE is a great tool for searching for near-Earth asteroids, particularly high-inclination, dark objects,” Masiero said.

    There are over 700,000 asteroidal bodies currently known in the main belt that range in size from large boulders to about 60 percent of the diameter of Earth’s moon, with many yet to be discovered. This makes finding the specific point of origin of most NEOs extremely difficult.

    With the Euphrosynes it’s different. “Most near-Earth objects come from a number of sources in the inner region of the main belt, and they are quickly mixed around,” Masiero said. “But with objects coming from this family, in such a unique region, we are able to draw a likely path for some of the unusual, dark NEOs we find back to the collision in which they were born.”

    A better understanding of the origins and behaviors of these mysterious objects will give researchers a clearer picture of asteroids in general, and in particular the NEOs that skirt our home planet’s neighborhood. Such studies are important, and potentially critical, to the future of humanity, which is a primary reason JPL and its partners continue to relentlessly track these wanderers within our solar system. To date, U.S. assets have discovered more than 98 percent of the known NEOs.

    NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the NEOWISE mission for NASA’s Science Mission Directorate in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    NASA’s Near-Earth Object Program at NASA Headquarters, Washington, manages and funds the search, study and monitoring of asteroids and comets whose orbits periodically bring them close to Earth. JPL manages the Near-Earth Object Office for NASA’s Science Mission Directorate in Washington.

    For more information about NEOWISE, visit:

    http://www.nasa.gov/neowise

    More information about asteroids and near-Earth objects is available at:

    http://neo.jpl.nasa.gov

    http://www.jpl.nasa.gov/asteroidwatch

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 9:15 am on July 27, 2015 Permalink | Reply
    Tags: Asteroids, , , ,   

    From phys.org: “We will find organic materials on Asteroid Bennu, says OSIRIS-REx principal investigator” 

    physdotorg
    phys.org

    July 27, 2015
    Tomasz Nowakowski

    1
    OSIRIS-REx

    (Phys.org)—In September 2016, NASA plans to launch its first-ever asteroid sample return mission loaded with tasks that will help us better understand the composition of asteroids, their origin, and possibly even Earth’s origin. The Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx) mission designed to study asteroids, which are the leftover debris from the solar system formation process, could teach us a lot about the history of the sun and planets.

    The spacecraft, equipped with scientific instruments to map the near-Earth asteroid Bennu and to detect minerals and organic molecules that could be the signs of microbial life, is slated to reach its target in 2018 and return a sample to Earth in 2023. It will bring back at least a 2.1-ounce sample to study.

    One of the instruments, the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is designed to measure visible and near infrared light from the asteroid, to identify which chemicals are present on the space rock.

    NASA OSIRIS-REX OVIRS
    OVIRS

    The mission’s principal investigator, Dante Lauretta of the University of Arizona, Tucson, and the rest of the team are convinced that OSIRIS-REx will succeed in finding organic materials on Bennu.

    “We definitely believe we will find organic materials on Bennu and OVIRS’s job is to find and identify these organics,” Lauretta told Phys.org.

    Bennu is a carbon-rich asteroid that records the earliest history of our solar system because its composition probably has remained unchanged since it formed some four billion years ago. It could contain natural resources such as water, organics and precious metals—precursors to the origin of life. So could we even find primitive, microbial lifeforms on Bennu?

    Lauretta debunks this suggestion. He is convinced it is unlikely to find life in such a harsh space environment.

    “We are also confident that microbial life does not exist on Bennu. A body the size of Bennu has too little atmosphere and gravity to protect any known life form from the ravages of space,” Lauretta noted.

    To better identify chemicals on Bennu, the OVIRS instrument will split the light from the asteroid into its component wavelengths, similar to a prism that splits sunlight into a rainbow, but over a much broader range of wavelengths. Different chemicals express unique spectral signatures by absorbing sunlight and can be identified in the reflected spectrum.

    “In particular, we are looking to find the areas of Bennu rich in organic molecules to identify possible sample sites of high science value, but the instrument will also help us understand the general composition of Bennu,” Lauretta said. “Besides OVIRS, OSIRIS-REx has four other science instruments on board. They will all survey Bennu to determine its form, composition and make-up.”

    OTES (OSIRIS-REx Thermal Emission Spectrometer), from Arizona State University, will provide mineral and temperature information by collecting infrared spectral data from Bennu. According to Lauretta, thermal data from OTES will allow scientists to determine the mineral composition and temperature distribution of Bennu for global maps and local candidate sample-site areas.

    NASA OSIRIS REX OTES
    OTES

    Another instrument named OCAMS (OSIRIS-REx Camera Suite), built by the University of Arizona, is a suite of three cameras that will provide global image mapping and sample site imaging. It will also record the entire sampling procedure.

    “These cameras will give us the best up-close visuals of the asteroid that we have to date,” Lauretta revealed.

    OSIRIS-REx Laser Altimeter or OLA, is a scanning LIDAR (remote sensing technology that measures distance by illuminating a target with a laser and analyzing the reflected light), developed by the Canadian Space Agency. It will provide the mission with high-resolution topographical information about Bennu and will also help with sample site selection.

    NASA OSIRIS REX OLA
    OLA

    The fifth asteroid-exploring instrument – REXIS (Regolith X-ray Imaging Spectrometer), was built jointly by the Massachusetts Institute of Technology (MIT) and the Harvard College Observatory. REXIS will determine the elements that are present on Bennu and will complement the mineral mapping provided by OVIRS and OTES.

    The OSIRIS-REx spacecraft is now in the assembly, testing, and launch operations phase. To be fully ready for a demanding trip and scientific operations at its target asteroid, all the instruments need to be thoroughly tested after installation to ensure that they interact properly with all of the other systems on the spacecraft.

    “OTES was installed in late June and the OVIRS instrument was delivered in early July. OCAMS and REXIS will be installed in late summer and OLA will be delivered in the fall,” Lauretta said.

    After all the instruments are installed, the spacecraft will then go through system level environmental testing until next May, when it is scheduled to be shipped to Cape Canaveral, Florida. There, it will be mated to the Atlas V rocket and readied for our launch in September 2016.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
  • richardmitnick 9:07 am on July 9, 2015 Permalink | Reply
    Tags: Asteroids, , , ,   

    From NASA Goddard: “Second Instrument Delivered for NASA’s OSIRIS-REx Mission” 

    NASA Goddard Banner
    Goddard Space Flight Center

    July 8, 2015
    Nancy Neal Jones
    NASA’s Goddard Space Flight Center, Greenbelt, Md.
    301-286-0039
    Nancy.N.Jones@nasa.gov

    1
    The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) will measure visible and near infrared light from the asteroid Bennu. The instrument’s observations could be used to identify water and organic materials. This image shows OVIRS at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where it was built, prior to shipping to Lockheed Martin Space Systems in Denver.
    Credits: NASA Goddard/Bill Hrybyk

    The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) measures visible and near infrared light from Bennu, which can be used to identify water and organic materials. Goddard built the instrument.

    OVIRS, a point spectrometer, will split the light from the asteroid Bennu into its component wavelengths, similar to a prism that splits sunlight into a rainbow, but over a much broader range of wavelengths. Different chemicals have unique spectral signatures by absorbing sunlight and can be identified in the reflected spectrum. The spectra provided by the instrument will help guide sample site selection.

    NASA Osiris -REx
    OSIRIS-REx

    “Through the team’s efforts, OVIRS has become a remarkably capable instrument which we expect to return exciting science from the asteroid, Bennu,” said Dennis Reuter, OVIRS instrument lead from Goddard.

    After thorough testing with the spacecraft on the ground, the instrument will be powered on for check-out shortly after launch, with first science data collected during the Earth gravity assist in September 2017.

    OSIRIS-REx is the first U.S. mission to return samples from an asteroid to Earth for study. The mission is scheduled for launch in September 2016. It will reach its asteroid target in 2018 and return a sample to Earth in 2023.

    The spacecraft will travel to a near-Earth asteroid, called Bennu and bring at least a 2.1-ounce sample back to Earth for study. The mission will help scientists investigate the composition of the very early solar system and the source of organic materials and water that made their way to Earth, and improve understanding of asteroids that could impact our planet.

    “The delivery of OVIRS to the spacecraft means the mission now has the capability to measure the minerals and chemicals at the sample site on Bennu,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “I greatly appreciate the hard work and innovation the OVIRS team demonstrated during the creation of this instrument.”

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta is the mission’s principal investigator at the University of Arizona, Tucson. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages New Frontiers for the agency’s Science Mission Directorate in Washington.

    For more information on OSIRIS-REx visit:

    http://www.nasa.gov/osiris-rex

    and

    http://www.asteroidmission.org

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 8:26 am on May 20, 2015 Permalink | Reply
    Tags: Asteroids, , ,   

    From U Heidelberg: “Asteroid Research Benefits From Gaia Satellite Mission” 

    U Heidelberg bloc

    University of Heidelberg

    20 May 2015
    No Writer Credit

    Scientists discover dozens of small celestial bodies every night

    ESA Gaia satellite
    ESA/Gaia

    Astronomical research on asteroids, i.e. minor planets, is also benefiting from the large-scale Gaia mission of the European Space Agency (ESA). Even though the astrometry satellite’s main purpose is to precisely measure nearly one billion stars in the Milky Way, it has tracked down a multitude of minor planets in our solar system. To determine its current position in space and thus ensure Gaia’s extremely high measurement accuracy, images are taken every day of the regions of the sky where the very faint satellite is located. “Each night the images reveal several dozen minor planets. The data are quite valuable for our understanding of the origin of our solar system,” says Dr. Martin Altmann of the Institute for Astronomical Computing (ARI), which is part of the Centre for Astronomy of Heidelberg University. Dr. Altmann heads the observation programme to determine the position of the Gaia satellite for the Data Processing and Analysis Consortium (DPAC), which is responsible for evaluating the data from Gaia.

    The Gaia astrometry satellite, which has been fully operational since August 2014, measures with pinpoint accuracy the positions, movements and distances of stars in the Milky Way, thereby furnishing the basis for a three-dimensional map of our home galaxy. According to Dr. Altmann, it became clear during preparation for the Gaia mission that the ambitious accuracy goals required novel methods to determine the position and velocity of the satellite itself. For this purpose an observation campaign was launched to determine Gaia’s position and velocity from Earth. As early as 2009, Dr. Altmann of the ARI and his colleague Dr. Sebastien Bouquillon of the Observatoire de Paris (France) began planning the programme together with an international team. Among the partners for the implementation, they attracted observatories in Chile and Spain. The Institute for Astronomical Computing is responsible for coordinating the daily observations. Since the launch of Gaia in December 2013, Gaia’s ground-based position measurements are transmitted regularly to mission control, the European Space Operations Centre in Darmstadt.

    Dr. Altmann explains that the astrometry satellite is at a distance of approximately 1.5 million kilometres and is always located in the region of space away from the Sun as viewed from the Earth. “For this reason Gaia’s positioning images are also perfect for observing minor planets. This so-called oppositional position brings these celestial bodies closer to Earth, making them appear brighter than at other times,” continues the Heidelberg researcher. More than 2,000 small planets have been found this way since the beginning of this year, mainly on images from the VST telescope of the European Southern Observatory (ESO) in Chile.

    ESO VST telescope
    ESO VST

    Dr. Altmann indicates that nearly 40 per cent of them are new discoveries. Moreover, these current measurements are especially interesting for already known minor planets as well, precisely because Gaia and the minor planets located in the same part of space are always opposite the sun at the time of observation. Just like with the full moon, the planets’ entire earthward side is completely illuminated only at that location. This allows the researchers to measure the asteroid’s reflectivity very accurately and draw conclusions as to their chemical composition. Up to now only approximately 30 asteroids have their reflectivity sufficiently well-determined, according to Dr. Altmann.

    The Gaia astrometry satellite itself will also discover and accurately measure many asteroids in its survey of the sky, but in totally different regions. “In this respect, the observations from the Gaia mission and the ground-based measurements complement each other extremely well,” says Dr. Altmann. “We hope not only to acquire new insight into the origins of our home galaxy through the Gaia satellite mission. We will certainly learn more about the origins of our solar system,” stresses Prof. Dr. Stefan Jordan of the Institute for Astronomical Computing, whose responsibilities also include public relations for the DPAC Consortium.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Heidelberg Campus

    Founded in 1386, Heidelberg University, a state university of BadenWürttemberg, is Germany’s oldest university. In continuing its timehonoured tradition as a research university of international standing the Ruprecht-Karls-University’s mission is guided by the following principles:
    Firmly rooted in its history, the University is committed to expanding and disseminating our knowledge about all aspects of humanity and nature through research and education. The University upholds the principle of freedom of research and education, acknowledging its responsibility to humanity, society, and nature.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 560 other followers